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1 Aggregating non-independent risks

In an actuarial or financial context one often encounters a random variable (r.v.)
S of the type

S =
n∑

i=1

Xi. (1)

For example, for an insurer the different Xi may represent the claims from
individual policies over a specified time horizon and S represents the aggregate
risk related to the entire insurance portfolio. In another context, the Xi denote
the risks of a particular business line and S is then the aggregate risk across all
business lines. In a pension fund context, random variables of this type appear
when determining provisions and related optimal investment strategies. Another
field of application concerns personal finance problems where a decision maker
faces a series of future consumptions and looks for optimal saving and investment
strategies. Random variables of this type are also used to describe the pay-offs
of Asian and basket options. Finally, they also appear in a capital allocation or
capital aggregation context. Roughly speaking, these applications amount to
the evaluation of risk measures related to the cumulative distribution function
(cdf) FS (x) = Pr [S ≤ x] of the random variable S. We refer the interested
reader to [1], [2], [3], [4], [5] and [6] for more details.

In order to avoid technical complications we will assume that the expecta-
tions of the Xi exist. We denote the random vector (X1,X2, ...,Xn) by X. Let
U = (U1, U2, ..., Un) be a random vector of uniformly (0,1) distributed random
variables Ui such that:

X
d
=
(
F−1X1

(U1), F
−1
X2
(U2), . . . , F

−1
Xn
(Un)

)
. (2)

Here, F−1Xi
denotes the quantile function of the r.v. Xi and ‘

d
= ’ stands for

‘equality in distribution’. Hence,

FX(x) = FU (FX1(x1), FX2(x2), . . . , FXn
(xn)), (3)

which means that the cdf FX of X = (X1,X2, ...,Xn) is completely specified
by the marginal cdf’s FXi

of the Xi and by the cdf FU of U . The function
FU is called a ‘copula function’. For more details on this decomposition of a
multivariate distribution into its marginal distributions and a copula function,
see for example [7].

From (1) and (2), we find that the distribution of S can be characterized as
follows:

S
d
=

n∑

i=1

F−1Xi
(Ui). (4)

It is convenient to assume that the random variables Ui are mutually indepen-
dent, as in this case the distribution of S can be computed using the technique of
convolution. Powerful and accurate exact or approximate recursive computation
methods such as De Pril’s recursion and Panjer’s recursion can also be applied
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in this case. We refer to [8], [9] and [10]. When S represents the aggregate claims
of an insurance portfolio the assumption of independence is sometimes realis-
tic. Moreover, the existence of an insurance industry, where risks are pooled
between a large number of insureds, is mainly based on the fact that the risks
Xi associated with the individual policies can be assumed to be mutually inde-
pendent.

However, in many other actuarial and financial applications the individual
risks Xi in the sums S cannot be assumed to be mutually independent, for
instance because all Xi are influenced by the same economic or physical envi-
ronment. The independence assumption is then violated and as a consequence it
is not straightforward to determine the cdf of S. In the case of non-independent
risks the problem of determining the cdf of S is often further complicated by
the fact that the copula connecting the marginals FXi

is unknown or too cum-
bersome to work with.

A sum S of non-independent risks may occur for instance when consid-
ering the aggregate claims amount of a non-life insurance risk portfolio or a
credit portfolio where the insured risks are subject to some common factors
such as geography or economic environment. Another example concerns the
aggregate payments of a pension fund when the insured parties are working in
the same company. These people work at the same location and may use the
same transport facilities which will result in some positive dependency between
their mortality rates.

2 Comonotonicity

Let us consider the situation where the individual risks Xi of the random vector
X are subject to the same claim generating mechanism in the sense that

X
d
= (g1(Z), g2(Z), . . . , gn(Z)) , (5)

for some common random variable Z and non-decreasing functions gi. In this
case, the random vector X is said to be ‘comonotonic’ and the distribution of X
is called the ‘comonotonic distribution’. Notice that all gi(Z) are monotonic in-
creasing functions of the random variable Z, which explains the word comonotonic
(common monotonic).

Intuitively, it is clear that comonotonicity corresponds to an extreme form
of positive dependency between the individual risks involved. Indeed, increasing
the outcome z of the common source of risk Z is tied to a simultaneous increase
in the different outcomes gi(z).

One can prove that the comonotonicity of X can also be characterized by

X
d
=
(
F−1X1

(U), F−1X2
(U), . . . , F−1Xn

(U)
)
, (6)

which means that the representation (2) for the distribution function of X holds
true with U1 ≡ U2 ≡ ...Un ≡ U . Hence, the n-dimensional stochastic nature
of a general random vector X reduces to a single dimension in the case of
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comonotonicity. This aspect of comonotonicity implies that simulating outcomes
of a comonotonic random vector reduces to simulating outcomes of a univariate
uniform (0, 1) r.v. U .

It is straightforward to prove that comonotonicity of X is equivalent to

FX(x) = min [FX1
(x1), FX2

(x2), . . . , FXn
(xn)] . (7)

It is known since Hoeffding [11] and Fréchet [12] that the function
min [FX1(x1), FX2(x2), . . . , FXn

(xn)] is the multivariate cdf of a random vector
which has the same marginal distributions as the random vector X.

Let us denote the sum of the components of the comonotonic random vector(
F−1X1

(U), F−1X2
(U), . . . , F−1Xn

(U)
)

by Sc:

Sc =
n∑

i=1

F−1Xi
(U). (8)

Comonotonicity of X implies that S =
∑n

i=1Xi
d
= Sc.

Several important actuarial quantities of Sc such as quantiles and stop-
loss premiums exhibit an additivity property in the sense that they can be
expressed as a sum of corresponding quantities of the marginals involved. For
the quantiles, we have that

F−1Sc (p) =
n∑

i=1

F−1Xi
(p), 0 < p < 1. (9)

Let us now assume that the marginal cdf’s FXi
are strictly increasing. In this

case, one can prove that

[Sc − d]+ =
n∑

i=1

[
F−1Xi

(U)− d∗i
]
+

(10)

for any d such that 0 < FSc(d) < 1, and with the d∗i given by

d∗i = F
−1
Xi
(FSc(d)). (11)

Notice that
∑n
i=1 d

∗
i = d. Taking expectations of both sides of (10) leads to the

following additive relation for the stop-loss premiums of Sc:

E [Sc − d]+ =
n∑

i=1

E [Xi − d
∗
i ]+ . (12)

The expressions (10), (11) and (12) can be generalized to the case of general
distribution functions, see [13] and [14] for more details. Expressions similar to
(10) and (12) can also be found in [15] where it is proven that in the Vasicek
[16] model, a European call option on a portfolio of zero coupon bonds (in par-
ticular, an option on a single coupon paying bond) decomposes into a portfolio
of European call options on the individual zero coupon bonds in the portfolio.
This holds true because in the Vasicek model, the prices at a future date of all
zero coupon bonds involved are decreasing functions of the random spot rate at
that date.
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3 A comonotonic upper bound approximation

As opposed to the case of independent or comonotonic rv’s Xi, it is in general
not straightforward to determine the cdf of S. In the general case it may be
helpful to find a dependency structure for the random vector (X1,X2, ...,Xn)
that leads to a ‘less favorable’ or ‘more dangerous’ sum for the marginal terms
Xi and such that the cdf of this sum is easier to determine. Making decisions
based on the ‘less favorable’ distribution will lead to prudent or conservative
decisions.

In order to define what we mean by ‘less favorable’ we have to decide how
to order risks. In this respect it is convenient to consider convex ordering:
A r.v. X is smaller than a r.v. Y in convex order if E[X] = E[Y ] and E[(X −
d)+] ≤ E[(X − d)+] for all real d. In this case, we write

X ≤cx Y. (13)

In von Neumann & Morgenstern’s [17] ‘Expected Utility Theory’, as well
as in Yaari’s [18] ‘Dual Theory of Choice under Risk’, convex order represents
the common preferences of risk averse decision makers between risks with equal
expectations. See for example [19].

When X and Y represent losses or future payments, X ≤cx Y means that
every risk averse decision maker prefers paying X above paying Y . Hence, re-
placing (the distribution of) the real loss X by (the distribution of) the loss
Y and making decisions based on (the distribution of) Y can be considered
as a prudent strategy. On the other hand, when X and Y represent gains or
incomes, X ≤cx Y means that every risk averse decision maker prefers gaining
X to gaining Y . For more details on ordering (distributions of) r.v.’s, we refer
to [20]. Actuarial applications of stochastic ordering concepts are described in
detail in [21] and [22].

One can prove that for any random vector (X1,X2, ...,Xn), the following
ordering relation holds:

n∑

i=1

Xi ≤cx

n∑

i=1

F−1Xi
(U). (14)

This means that replacing (the distribution function of) S by (the distribution
function of) Sc and making decisions based on the latter distribution function
can be considered as a prudent strategy in the framework of expected utility
theory as well as Yaari’s dual theory of choice under risk. Moreover, quantiles
and stop-loss premiums of Sc can easily be determined from (9) and (12). The
comonotonic upper bound approximation FScwill be ‘close’ to the exact cdf FSc
when the different Ui in (4) possess a strong positive dependency structure. An
insightful geometric proof of (14) can be found in [23]. Earlier references to
closely related results are [24], [25] and [26].

As S ≤cx S
c implies that E[S] = E[Sc], it follows that the cdf.’s of S and Sc

must cross at least once. Hence, apart from the case that S
d
= Sc, we find that
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it is impossible that F−1Sc (p) is an upper bound for F−1
Sl
(p) for all 0 < p < 1.

This implies that the quantile risk measure is not subadditive.

Several actuarial and financial problems that we mentioned in the previous
section involve the evaluation of the net present value or the accumulated value
of future cash flows, which can be expressed as a sum S as in (1) where the
r.v.’s Xi are given by

Xi = αi e
Yi . (15)

Here, the αi are deterministic real numbers and (Y1, Y2, ..., Yn) is a random vec-
tor.
The accumulated value at time n of a series of future deterministic saving
amounts αi can be written in this form, where Yi denotes the cumulative lo-
greturn over the period [i, n]. Similarly, the present value of a series of future
deterministic payments αi can be written in this form where now eYi denotes
the random discount factor over the period [0, i].
In both cases (compounding and discounting), the random vector (X1,X2, ...,Xn)
will not be comonotonic, although neighboring components Xi and Xj will be
rather strongly dependent random variables. This is because there is a natural
overlapping process when compounding (or discounting) over the different time
periods. In case of discounting, the random variable S can be considered as the
stochastic present value of an n-year term annuity. A continuous version (with
payments continuously spread over time) is considered in [27].

Let us now assume that the Xi are given by Xi = αi eYi with αi > 0. We
also assume that any random variable Yi is normally distributed. We find that

Sc =
n∑

i=1

αi e
E[Yi]+σYiΦ

−1(U) , (16)

where Φ is the standard normal cdf. In this case the quantiles and the stop-loss
premiums of Sc are given by

F−1Sc (p) =
n∑

i=1

αi e
E[Yi]+σYiΦ

−1(p), 0 < p < 1, (17)

and

E [Sc − d]+ =
n∑

i=1

αi e
E[Yi]+

1
2σ

2
YiΦ

(
σYi −Φ

−1(FSc(d))
)
−d(1−FSc(d)), 0 < d <∞,

(18)
respectively. The quality of this upper bound approximation is investigated in
[2], [28] and [29].

For a general random vector (X1,X2, ...,Xn) and real d and di (i = 1, 2, ...n)
such that

∑n

i=1 di = d we have that
[
n∑

i=1

Xi − d

]

+

≤
n∑

i=1

[Xi − di]+ . (19)
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It can be proven that the minimum of the expectation of the right hand side in
(19), taken over all di such that

∑n

i=1 di = d, is given by E [Sc − d]+. Hence, in
the case of strictly increasing cdf’s FXi

, we find from (12) that this minimum
is obtained for the d∗i as defined in (11). This result can be generalized to the
case of general cdf’s FXi

.
When the Xi represent asset prices at some future date, say t, then the

r.v. [
∑n

i=1Xi − d]+can be interpreted as the pay-off of a European type basket
call option at expiration date t, whereas each of the terms [Xi − di]+ can be
interpreted as the pay-off of a European call option on the i-th asset involved
at the same expiration date. The inequality (19) provides an infinite number of
ways to super-replicate the pay-off of the basket option in terms of the individ-
ual asset options involved. The superhedging strategy consisting of buying the
n European calls with respective exercise prices d∗i corresponds to a cheapest
super-replicating hedging strategy for the basket option under consideration.
Similar results hold for Asian options. For more details, we refer to [2], [6], [30],
[31], [32], [33] and [34].

4 Comonotonic lower bound approximations

In the previous section, we introduced an approximation for the cdf FS by
keeping the marginal cdf’s FXi

unchanged while replacing the ‘real’ dependency
structure by the comonotonic one. The crucial feature of comonotonicity is that
only a one-dimensional randomness is involved. As a consequence, comonotonic
sums have convenient additivity properties for quantiles and stop-loss premiums.
In this section, we will look for less crude and hence better approximations for
FS without losing the convenient properties of the comonotonic upper bound
approximation. The technique of taking conditional expectations will help us to
achieve this goal.

For an appropriate random variable Λ, we consider the conditional expecta-
tions E[S | Λ = λ] for all outcomes λ of Λ. Now, we propose to approximate the
cdf of S by the cdf of Sl, which is defined by

Sl = E[S | Λ] =
n∑

i=1

E[Xi | Λ] (20)

This approximation allows us to move from the multivariate randomness of the
vector (X1,X2, ...,Xn) to the univariate randomness of the conditioning random
variable Λ. Notice that a continuous version of this technique applied to Asian
option pricing is considered in [35].

Let us now assume that all E[Xi | Λ] are increasing in Λ. In this case, we
find that Sl is a comonotonic sum. As a consequence, we have that

Sl
d
=

n∑

i=1

F−1
E[Xi|Λ]

(U), (21)
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where the random variable U is uniformly distributed on the unit interval. Fur-
thermore, the quantiles and the stop-loss premiums related with Sl can be ex-
pressed as a sum of corresponding quantities for the individual terms E[Xi | Λ].

Concerning an appropriate choice for Λ, notice that when Λ is chosen equal
to S, we find that Sl = S. Therefore, intuitively it is clear that the ‘closer’ Λ
is to S, the better the approximation Sl will perform. However, for the Λ to be
useful it must enable an explicit expression for the different E[Xi | Λ].

The most prominent case which leads to closed form expressions for quantiles
and stop-loss premiums of Sl is the one where Xi = αi e

Yi , with all αi > 0
and (Y1, Y2, ..., Yn) a multivariate normally distributed random vector. In this
section, we will further concentrate on this particular case.

We choose Λ to be a linear combination of the Y1, Y2, ..., Yn:

Λ =
n∑

i=1

γi Yi, (22)

for appropriate choices of the coefficients γi. In the literature, several choices for
these coefficients have been proposed. In [14] it is proposed to determine Λ such
that it can be interpreted as a first-order approximation for the original sum S.
In [36] the conditioning r.v. Λ is chosen such that a first-order approximation
for the variance of Sl is is maximized. In [37] it is argued that both choices
for Λ in some sense provide an overall goodness of fit for the cdf of S, based
on Sl, and one can further improve the choice for Λ when concentrating on a
particular neighborhood of the distribution function such as the extreme lower
or upper tails.

For the general Λ as considered in (22), we find that

Sl =
n∑

i=1

αi e
E[Yi]+

1
2 (1−r

2
i )σ2Yi+riσYi

Λ−E[Λ]
σΛ , (23)

where the ri are the correlations between the Yi and Λ:

ri =

∑i
j=1

∑n
k=j γk√

i
∑n

j=1

(∑n

k=j γk

)2 . (24)

From (23), we see that Sl is a comonotonic sum when all correlation co-
efficients ri are non-negative. Notice that the particular choices for the γi as
proposed in [14] and in [36] lead to non-negative ri. In the comonotonic case
the quantiles of Sl are given by

F−1
Sl
(p) =

n∑

i=1

αi e
E[Yi]+

1
2(1−r

2
i )σ2Yi+riσYiΦ

−1(p)
, 0 < p < 1, (25)
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whereas the stop-loss premiums are given by

E
[
Sl − d

]
+
=

n∑

i=1

αi e
E[Yi]+

1
2σ

2
ZiΦ

(
ri σYi −Φ

−1(FSl(d))
)
−d(1−FSl(d)), 0 < d <∞.

(26)
As mentioned above the expressions (23)-(26) hold when all cash flows αi and

correlations ri are positive. These results can be generalized. In [36] a particular
pattern of cash flows with mixed signs of the αi is considered, whereas in [38]
the case that some of the ri are negative is dealt with.

Using Jensen’s inequality, one can prove that

Sl ≤cx S, (27)

which means that Sl is ‘less dangerous’ than S. At first sight, it seems counter-
intuitive for a risk-averse decision maker to make his decisions based on the ‘less
dangerous’ Sl. However, numerical comparisons reveal that, at least when Xi =
αi e

Yi and assuming the (Y1, Y2, ..., Yn) to be multivariate normally distributed,
the risk measures of Sl can, statistically speaking, barely be distinguished from
the risk measures of the random variable S, obtained by simulation, provided an
appropriate choice is made for the conditioning r.v. Λ., see for example [30]. This
observation may outweigh the fact that the lower bound Sl is ‘less dangerous’
and the cdf of Sl may generically be considered to be an accurate approximation
for the cdf of S.

5 Dependencies in a non-Gaussian world

In the previous two sections, we considered the problem of how to determine
comonotonic lower and upper bounds for sums of r.v.’s. We illustrated the tech-
nique by deriving explicit expressions for sums of lognormal r.v.’s. The latter
case can directly be applied for the discounting and compounding applications
described above, provided the investment returns can be described by a lognor-
mal process. It is well-known that daily returns are correlated and exhibit fat
tails, which implies that they cannot be adequately modelled through normal
random variables. However, several of the applications we encountered concern
long time investments horizons (typically some decades) and hence, also the
time unit will be expressed in months or years. As soon as the time unit is
sufficiently long, assuming a Gaussian model for the (Y1, Y2, ..., Yn) seems to be
appropriate in many cases, see for instance [39] and [40].

The theoretical developments concerning the comonotonic lower and upper
bounds continue to hold for non-Gaussian random vectors. The comonotonic
upper bound can readily be applied in the general case. For sums of logelliptical
r.v.’s, we refer to [41]. The performance of the upper bound in case Lévy
processes are involved is investigated in [30] and [42].

The comonotonic lower bound results are more difficult to use for general
distribution functions, mainly because closed form expressions for E[Xi | Λ]
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are in general not available. In [3], the lower bound based on the conditioning
technique is investigated for sums consisting of a combination of lognormal and
normal r.v.’s. The case of sums of logelliptical r.v.’s is considered in [41]. They
illustrate that in the general logelliptical case, no closed-form expressions for Sl

are readily available.
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