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Abstract

In this paper we investigate approximations for the distribution function of
a sum S of lognormal random variables. These approximations are obtained
by considering the conditional expectation E[S | A | of S with respect to a
conditioning random variable A.

The choice for A is crucial in order to obtain accurate approximations. The
different alternatives for A that have been proposed in literature to date are
‘global” in the sense that A is chosen such that the entire distribution of the
approximation E[S | A | is ‘close’ to the corresponding distribution of the original
sum S.

In an actuarial or a financial context one is often only interested in a particular
tail of the distribution of S. Therefore in this paper we propose approximations
E[S | A | which are only locally optimal, in the sense that the relevant tail of
the distribution of E[S | A ] is an accurate approximation for the corresponding
tail of the distribution of S. Numerical illustrations reveal that local optimal
choices for A can improve the quality of the approximations in the relevant tail
significantly.

We also explore asymptotic properties of the approximations E[S | A | and
investigate links with results from Asmussen & Royas-Nandayapa (2005). Finally,
we briefly adress the sub-optimality of Asian options from the point of view of
risk averse decision makers with a fixed investment horizon.
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1 Introduction

Many problems in actuarial science and finance involve the evaluation of the distrib-
ution function (d.f.) of a random variable (r.v.) S of the form

S = iai e, (1)
i=1

where the «; (i = 1,2,...n) are real numbers and (71, Za, ..., Zy,) is a multivariate
random vector with means and variances denoted by E[Z;] and 0% respectively. If
Zi (i = 1,2,...n) denotes the stochastic logreturn of the period [i,n], the r.v. S can
be interpreted as the accumulated value at time n of a series of future deterministic
saving amounts ;. On the other hand, when —Z; denotes the stochastic logreturn
over the period [0, 7], eZ can be interpreted as the stochastic discount factor over the
period [0,4]. In this case, the r.v. S can be interpreted as the stochastic present value
of a series of future deterministic payments «;. Examples of financial and actuarial
problems that involve a sum S as defined in (1) include the valuation of exotic op-
tions such as Asian and Basket options, optimal portfolio selection problems and the
calculation of provisions and required capital.

The classical work horse in finance for modelling asset returns is the Gaussian
model. Both the celebrated Capital Asset Pricing Model and Black & Scholes’ option
pricing formulas have been derived in this setting. Apart from mathematical conve-
nience such a Gaussian model for the returns often seems to be appropriate when
the time unit is sufficiently long, because of a ‘Central Limit Theorem’ effect. Empir-
ical studies that support this theoretical setup can be found in Cesari & Cremonini
(2003), Levy (2004) and McNeil et al. (2005).

A sum of lognormals also appears as a crucial r.v. in other disciplines such as
physics and engineering. For a reference to applications in physics, see Romeo et al.
(2003). In engineering sums of lognormals appear when considering communication
problems, computer network design problems and traffic flow problems. In literature
on wireless systems it occurs in outage analysis and received signal power analysis,
see e.g. Stiiber (Ch2, 1996) and Fenton (1960). A sum of lognormals also arises
when modelling the cost of a routed path in a computer network, see e.g. Rasmusson
(2002). In the latter case, the lognormals are strongly correlated and the sums are
highly dimensional. Arroyo and Kornhauser (2005) consider sums of lognormals to
model travel time distributions on a road network.

The various applications in finance, insurance and engineering differ with respect
to the dimensionality of the random vector (Zi, Zs, ..., Z,) involved, the assumed
equality (or inequality) of the marginal distributions, the assumed independence (or
dependence) of the marginals, the level of the volatilities and the relevant region of
the distribution function.

Most applications deal with positive coefficients «;. Therefore, in the remainder
of this paper we will assume that all a; are positive. Furthermore, we will assume
that (Z1, Za, ..., Zp) has a multivariate normal density given by

1 1 re
f21.22,..2, (2122, o0 2n) = s exp(—(z — p) B Yz — ), (2)
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where z' = (21, 22, ..., z,) € R", u'€ R" is the vector of the means and X € R™*" is
the covariance matrix. Note that (u); = E[Z;] and (X);; = 0% . We also note that
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every covariance matrix 3 is necessarily symmetric and positive semidefinite, whereas
the existence of X! is guaranteed by assuming that X is positive definite. From the
assumed existence of a multivariate normal density for (Z1, Za, ..., Zy) it follows that
the Z; as well as the key r.v. of interest .S have a continuous and strictly increasing

d.f.

Most applications mentioned above amount to the evaluation of risk measures of
S. In this paper we will focus on some risk measures that are often used in practice.
The p-quantile risk measure for a r.v. X, also called the Value-at-Risk at level p, is
denoted by Q,[X]. It is defined as

Qp[X]=inf{z e R| Fx(z) >p}, pe(0,1), (3)

where Fx(z) = Pr[X < z].
The Conditional Tail Expectation at level p, denoted by CTE,, [X], is defined as

CTE,[X]=E[X | X >Q,[X]], pe(0,1). (4)

The Conditional Left Tail Expectation at level p, denoted by CLTE, [X], is defined
as

CLTE, [X] =E[X | X < Q,[X]], pe(0,1). (5)

Finally, the stop-loss premium with retention d of the r.v. X is defined by E[(X —d) ],
where the notation (x — d)4+ stands for max (x — d,0). By using partial integration,
we obtain

E[(X —d)4] = /doo Pr[X > z] dz, —00 < d < +00. (6)

We refer to Denuit et al. (2005) or Dhaene et al. (2006) for a discussion on risk
measures and the relations that hold between them.

In most cases it is impossible to obtain analytical expressions for risk measures of
a sum S of lognormal random variables. Based on an idea of Rogers & Shiu (1995)
in an Asian option context, Kaas et al. (2000) propose to approximate the d.f. of S
by the d.f. of the r.v. S! which is defined by

S RIS|A] = Zaz [eZi | A] (7)

for an appropriate choice of the conditioning r.v. A. Loosely speaking, this approach
allows one to transform the stochastic multi-dimensionality of the problem, caused by
(Z1, Za, ..., Zy,), to a single dimension, caused by A. Moreover, an appropriate choice of
A will lead to a comonotonic random vector (a;E[e?! | A], asE[e?2 | A], ..., a,E[e?" |
A]), which means that all o;E[e? | A] are non-decreasing functions of the conditioning
random variable A. Note that by taking —A as the conditioning random variable
we find that comonotonicity could also be characterised by requiring the different
components of the random vector to be non-increasing in the conditioning random
variable. In this paper we will always use the former characterisation.



Risk measures related to the d.f. of S are then approximated by the corresponding
risk measures of S'. These approximations are straightforward to calculate, taking
into account the additivity properties of sums of comonotonic r.v.’s. For an extensive
overview on the theory of comonotonicity and some of its applications, we refer to
Dhaene et al. (2002a, 2002b). Various applications of this theory have been discussed
in Deelstra et al. (2007), Denuit et al. (2006), Dhaene et al. (2004, 2006, 2007),
Vanduffel et al. (2002) and Vanmaele et al., amongst others.

The technique of taking conditional expectations has proven to provide accurate
and easy to compute approximations for several risk measures of sums of lognormal
r.v.’s, see for example Huang et al. (2004) or Vanduffel et al. (2005b) for detailed
numerical investigations. Intuitively, A should be chosen such that it is ‘close’ to
the original r.v. S. In literature, various choices for A have been proposed that are
in line with this approach. Kaas et al. (2000) propose to determine A as a normal
r.v. which can be considered as a first-order approximation of the original sum S.
Vanduffel et al. (2005a) propose to choose A as a normal r.v. such that a first-order
approximation of the variance of E[S|A] is ‘as close as possible’ to the variance of S.
Both choices for A are ‘global’ in the sense that the d.f. of E[S|A] can be considered
as a good approximation for the entire d.f. of S. Note however that there are many
financial and actuarial problems where one is only interested in a particular tail of
the distribution of S, and as such the approximation is only required to perform well
in that particular area of the distribution function. Therefore in this paper we will
propose and investigate comonotonic approximations for the d.f. of S which are only
‘locally’ optimal in some sense.

The rest of this paper is organised as follows. In Section 2, we give an overview
of general results concerning comonotonic approximations that will be used in later
sections. In Section 3, we recall and discuss ‘global’ optimal choices for the condition-
ing r.v. A. In particular, we describe the ‘Taylor-based” and the ‘Maximal Variance’
approximations. In Section 4, we propose new choices for A that are ‘locally’ opti-
mal. We also discuss their asymptotic characteristics and relate these with results
of Asmussen and Nandayapa (2005). In Section 5 we apply the locally optimal ap-
proximations to discounted or compounded sums and numerically investigate their
accuracy. In Section 6 we apply the approximations to the pricing of Asian Options
and we briefly discuss the optimality of these. Finally, Section 7 concludes the paper.

2 Comonotonic approximations

Let the r.v. S be given by (1), where the a; are non-negative real numbers and the ran-
dom vector (Z1, Za, ..., Zp) has a multivariate normal density given by (2). Consider
the conditioning r.v. A which is defined as the linear combination of 7y, Zs, ..., Z,
determined by

A=Y "NZ; (8)
j=1



for given real numbers \;, j = 1,2,...,n. We denote the mean and the variance of A
by E[A] and 03, respectively. From (7) and (8), we find that S' can be written as

Zal 3(1rE)oh, o S50 9)
Here r; is the correlation between Z; and A:
cov [Z;, A] 1 = .
= ;A R ZAJ- cov[Zi, Zj], i=1,2,..,n. (10)

Note that the expected values of the random variables S and S' are equal:

B[S =E[S') = S ai E[e%] = Y ay 144275, (11)
=1 =1

whereas their variances are given by

Var[S Z Zazaj E [e%i] (ePovZnZi) — 1) (12)
=1 j=1
and
Var Sl Z Zala] ¢ [er] (eTiTjUZiG'Zj _ 1) 7 (13)
=1 j=1
respectively.

If all the correlation coefficients r; defined in (10) are non-negative, we find from
(9) that S is a comonotonic sum. In this case, the quantiles and the conditional (left)
tail expectations of S! are given by the sum of the corresponding risk measures of the
marginals involved. Hence, in case all r; > 0, we have that

Q) [Sl] _ iai eE[Zi]Jr%(kr?)aZZﬁnazi@*l(p)’ (14)
=1
cTE, [s] = %piaiE[eZﬂ B (ri 07, — 5 (p) (15)
and _
CLTE, [ } Zal —® (r; 07, — 2 (p))), (16)

which holds for all p € (0,1), and where ® denotes the standard normal distribution.
Furthermore, in case all r; > 0 the stop-loss premium with retention d, 0 < d < oo,
of S! is given by

E [(Sl - d)J - ga E[eZ] @ (riog, — ® ' (p)) — d(1 —p), (17)



where p is the root of
Q, [Sl] —d (18)

From (10) it is easy to see that a sufficient condition for all 7; to be non-negative is
that all A; > 0 and also all cov[Z;, Z;] > 0.

Since the definition (7) of S involves a conditional expectation, eliminating the
randomness that cannot be explained by A, one may expect that S! will be ‘less risky’
than S, and examining equations (12) and (13) reveals that at least the ordering of
the variances supports this intuition. As a matter of fact a much stronger result holds.
From Jensen’s inequality one can prove that S’ is smaller in convex order than S:

S' < S, (19)
which means that for any convex function v(x) it holds that
E[v(8")] < E[v(3)], (20)

provided the expectations exist. In this case we also say that S’ is a convex lower
bound of S. The convex order relation (19) implies any of the following relations:

CTE, [Sl] < CTE,[S], foranype (0,1), (21)

CLTE,[S] < CLTE, [Sl] ., for any p € (0,1) (22)
and also

E [(Sl — d) J <E[(S-d),], for any d € R. (23)

In literature a comonotonic upper bound for the r.v. S has also been proposed and we
denote this by S¢; see e.g. Dhaene et al. (2002b). In our lognormal context S¢ can be
defined by imposing the correlations in expression (9) to be equal to one. Formally:

L 3 0 o
i=1
with U a uniformly (0,1) distributed r.v. Next, we find expressions for the different

risk measures of S¢ by setting the correlations r; to be equal to 1 in the expressions
(14), (15), (16) and (17). In particular we obtain that

Q159 =3 PlAlHoz 7 (), (25)
i=1
and
1 < .
CTE, [$] = 1= 2 i E[¢"] @ (07 - 27(») (26)
=1

It can be proven that S is convex smaller than S¢ and hence inequalities similar to
(21), (22) and (23) can be derived. In particular we obtain,

CTE, [Sl] < CTE, [S] < CTE,[S], pe(0,1), (27)
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CLTE, [SZ} > CLTE, [S] > CLTE,[S], pe (0,1), (28)
and
B[(S'—d)s| SE(S -] <B[S —d)s],  deR (29)

For more details about the results summarised in this section, we refer to Dhaene
et al. (2002b, 2006).

3 Globally optimal choices for A

3.1 The ‘Taylor-based’ approximation
From Kaas et al. (1994, p. 68) it follows that if X <., Y we have that

/ (E[Y —t)4] —E[(X —t)4])dt = %{Var[Y] — Var[X]} (30)
Hence, 3{Var[Y']—Var[X]} can be fairly interpreted as a measure for the total error
made when approximating the stop-loss premiums of Y by those of the convex smaller
X. Since the integrand in the left hand side of (30) is non-negative, we also find that
if X <. Y whilst Var[X] =Var[Y], then this means that X and ¥ must have equal
stop-loss premiums and hence the same d.f. This suggests that if we wish to replace
S by the convex smaller S!, the best approximations will occur when A is chosen such
that Var[S'] is as large as possible or equivalently, since Var[S] =Var[S!|+E[Var[S|A]],
when E[Var[S|A]] is as small as possible. We notice that either of this criteria means
that A and S should be ‘as alike as’ possible. Therefore, Kaas et al. (2000) propose
to choose the conditioning r.v. A as the linear combination of the Z; defined in (8),
with the coefficients A; given by

)\;*»FB = ajeE[Zj], j=1--,n. (31)

Indeed, this choice makes A a linear transformation of a first-order approximation of
the sum S. This can easily be seen from the following derivation:

S = zn:ajeE[Zﬂ e Zi—ElZi) s ¢ + zn:ajeE[Zj]Zj, (32)
j=1 j=1

where C' is some appropriate constant. We will call the approximation based on the

Aj defined in (31) the Taylor-based approximation. The conditioning r.v. A is

denoted by ATB in this case:

ATB =N "a,eP%l 7. (33)
j=1
Furthermore, the correlations corr[Z;, AT?] are denoted by r!”:
1 n
TB _ - BlZi] Zi, Zi ' =1,2,...,n. 34
T; o7 U%,BZaje cov [Z;, Zj] 7 2, .M (34)
7j=1
Here, JZ{B is given by
o (ZZaiajeE[Zi}eE[Zﬂcov [Zi, Zj])%. (35)
i=1 j=1



3.2 The ‘maximal variance’ approximation

The best approximations for the d.f. of S based on S' will be the ones where the
variance of S is ‘as large as possible’. The Taylor-based approach assumes a rather
intuitive approach to derive a A that gives rise to a ‘large’ value for Var[S!]. Vanduffel
et al. (2005a) use a more explicit approach to derive A. They derive the following
first order approximation of the variance of S':

n n
E[Z]+E[Z;]+3 (0% 0%,
Var [Sl} ~ E E ;o e [Zi1+EL JH2(gZiJrgZJ)(nrjaziazj)
i=1 j=1

2
= | Corr ZajE [ezf] JA) Var ZajE [ezj] Zj| . (36)
j=1 j=1

They then propose to choose the conditioning r.v. A as the linear combination of the
Zj defined in (8), with the coefficients A; such that the first order approximation (36)
of Var [S’l] is maximised:

)\?/[V:ajE[er], ji=1,...,n. (37)

We call the approximation S! based on the coefficients \; defined in (37) the maximal
variance approximation. The condition r.v. A is denoted by AMY in this case:

AMY =N " [e#] Z;, (38)
j=1
whereas the correlations corr [Zi, AM V] are denoted by T’ZN[ v.
1 n
rMV = — ZajE [ezj] cov [Z;, Zj), i=1,2,...,n. (39)

Here, af‘{ V' is given by

A = (30> s (4B ) cov 2, 21
i=1 j=1

=

(40)

Note that the conditioning r.v. AMY does not necessarily maximise the variance of
S!, but has to be understood as an approximate solution. One could use numerical
procedures to determine the ‘real” A that maximises Var [S’ ! ] but obviously this would
be at the cost of losing one of the main features of the approximations, namely that
quantiles, conditional (left) tail expectations and stop-loss premiums can be easily
determined analytically.

4 Locally optimal choices for A

4.1 The ‘CTE,-based’ approximation

For several practical applications one only needs to focus on a particular tail of the
distribution for S. The provision to be established at time 0 for future payment oblig-
ations can be determined as either Q,[S] or CTE,[S], with p sufficiently large. For



example, a provision equal to Qg.95[S] guarantees a non-ruin probability of 0.95. De-
termining Asian or basket European type option prices only involves the calculation
of upper or lower tails of the d.f. of S. As a result it makes sense to consider choices
for the conditioning r.v. A that are only optimal in a particular upper or lower tail of
the d.f. under consideration. The underlying intuitive idea is that when only requiring
a good fit between the distributions of S and S’ in a particular region, we will be able
to find better approximations, at least when constrained to that particular region.

In order to determine an optimal A for approximating the upper tail risk measure
CTE,[S], recall that (21) states that CTE,[S!] <CTE,[S] holds for all p in (0, 1). This
observation suggests that determining A such that CTE, [S!] is as ‘large as possible’
is a feasible choice for that purpose.

In the case that all correlations r; = corr[Z;, A] are non-negative we have that
CTE, [S’l] is given by (15). We will show that the following choice of the parameters
Aj maximises a first-order approximation of the formula (15):

)\g»p) =o; B [ezf] P [T’;-WVO'Zj — <I>*1(p)] , 7=1,...,n, (41)
where rjM V' is defined in (39). Notice that these optimal )\gp ) depend on the probability
level p, reflecting the fact that they are indeed constructed to be locally optimal in
some sense.

In order to derive the coefficients (41), we start by expanding (15) around the
correlations 7MY, Then we find:

CTE, [Sl] = 1% Zai E[e%] @ [rMVoz — o (p)]

i=1

+—> i E[%] & [rMoz -0 (p)] (ri—r}") 0z (42)

Hence, the first-order approximation (42) of the expression (15) of CTE,, [S'] is max-
imised when

Zai E [eZJ} P’ (Ti\/[VO'Zi — <I>_1(p)) Ti 0z, (43)
i=1
is maximised. As
Zo‘i E [ezi] ® [TZMVC’Zi ~ o (p)] rioz
i=1
_ 1 S0z @ MV gl ‘
= JACov <§az E[e”] @ [r" 0z, — O (p)] ZZ,A>
= Corr (Z a; E [eZ"] @’ [TZMVJZi - q)_l(p)] Zi,A>
i=1

x (Var ) ’ , (44)

it follows that the choice (41) for the parameters A\; maximises the first-order approx-
imation (42) of CTE,, [S'].

> i E[e%] & [rMV oy — 27 (p)] Z)
i=1




We will call the approximation S! based on the coefficients \; defined in (41) the
CTE,-based approximation. The conditioning r.v. A is denoted by A®) in this
case:

AP = Zaj E [ezj] o' [rj-wvazj — <I>_1(p)] Zj. (45)
j=1
Furthermore, the correlations r; = corr [Zi, A(p)] are denoted by TZ(p ). Hence,
1T - _ .
ri(p) = ZajE [eZJ] ) [rj-wvazj - d 1(p)] cov [Z;, Zj), 1=1,2,...,n.

02 Op j=1
(46)
(p)

Here, o, is given by

o = O aiE [ E[%] @ 1MV oz - o7 (p)] @ [r} oz — 7 (p)]
i=1 j=1

Since expression (15) requires the correlations r; to be non-negative we expect that the
choice (41) for the parameters A; will only perform well in case the true but unknown

optimal A, i.e. the one that maximises CTE, [S'] , has non-negative correlations 7;.

One can expect that this will hold true in case all ri(p ) in (46) are non-negative. The

accuracy of the approximations based on E[S|A®)] will be addressed in Sections 5
and 6.

Note that in (42) the Taylor expansion of CTE, [S’l] is performed around the
correlations MY (i = 1,2,...n). It can be easily verified that a naive expansion of
CTE, [S’l] around zero correlations would have provided AM" as an optimal choice.
This gives some more indication that the CTE,-based approximation is likely to
provide a better fit than the Taylor-based or maximal variance lower bound approx-
imations.

Since the construction of A®) involves a first order approximation of CTE, [S'] it
remains an approximation to the ‘optimal’ A. Using numerical techniques to optimise
CTE, [Sq instead of its first order approximation (42) would undoubtedly provide
better choices for A, but this would be at the expense of losing a full analytical
solution. Having a readily available approximation that can be implemented easily is
important from a practical point of view.

4.2 An ‘asymptotically optimal’ approximation

In the previous section we argued that the best convex lower bound to measure the
upper tail arises when A is such that CTE, [S’l] is maximised. Unfortunately, it ap-
pears that it is not possible to find an analytical solution for this optimisation problem
in general. Therefore, we considered the maximisation of a first order approximation
to CTE, [S’l] and this gave rise to the CTE,-based approximation. However, in the
asymptotic case, when p tends to 1, the solution for the maximisation of CTE, [S']
can be derived analytically.

10
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In addition to the assumption of non-negative o; made throughout this paper, in
this section we will also assume that all Z; in (1) are positively correlated:

cov|Z;i, 7] >0, ij=12..n (48)

In many applications this assumption will hold true, see Sections 5 and 6. In order
to prove the asymptotic results of this section, we will need the following lemma.

Lemma 1 If ¢; and co are real numbers such that 0 < ¢ < ¢z, then we have

m P (c2 — @ 1(p))
p—1 @ (c1 — @~ 1(p))

= 0. (49)

Proof. This follows by substituting z for ~!(p) and then applying de L’Hopital’s
rule. m

Without loss of generality, in this section we assume that the Z; are ranked such
that

Oz, >0z, > ...>20z,. (50)
Furthermore, we assume that the ranking of the Z; is such that

E[Z;]

0z, = 0z, for some i = a;e > aiHeE[Z"“]. (51)

The following theorem provides results regarding the lower bound approximations
that are asymptotically optimal.

Theorem 1 For any conditioning r.v. A of the form (8) with correlations r; defined
in (10) such that r; >0, i =1,2,...,n, we have that

CTE, [E[S | Z1]]

(@) I ore ES 1A = (52)
(b) lim CTE[FIS | 2] _ (53)

r—1  CTEploqe?]

In case 07, > oz, for alli=2,...,n, we also have

_ CTE,[S
(d) tim =1 15] (55)

p—1 CTEp[alt‘}Zl]

Proof. We first prove (a).
From (15) we find that

CTE, [E[S | Z1]] = %p zn:ai E [eZi] ® (corr [Z;, Z1) o7, — @ 1 (p)), 0<p<l
i=1
(56)
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Next, from (56) and (15) we obtain

EleZi] @(corr[Zi,Zﬂ Jzi—q’il(p»

CTEP [E[S ‘ Zl]] OqE[GZl] ) (0'21 — (I)_l(p)) 1+ Zi:Q a1E[e?1] @(le —®d—1(p)

CTE, [E[S | A]] N a;E[eZi] ® (TjJZj — q)*l(p))
a;Ele J] <I><T]Uz - 1(1’)

_ )

a;E[eZi] ®(r; 07, —d—1(p)

1+ 370, (r: oz ))

(57)

where we have chosen j € {1,2,...n} suchthat r; 07, > r;o0z7 > 0foralli =1,2,...,n

From the positive definiteness of the variance-covariance matrix X it follows that

corr[Z;, Z1] < 1 for i = 2,...,n. Indeed, suppose that corr[Z;, Z1] = 1 for a particular

i > 2, then Var[—oyz, Z; + 0z ,Z1] = 0, which contradicts the assumption of positive

definiteness. Hence, corr[Z;, Z1] .0z, < oz, and from (57) and Lemma 1 it follows
that

foy CTES[ES | Z1]) _ - aBle 211 ® (07, — 27 (p) 1

A CTE, [E[S | A iy JE[eZ1] @ (rjoz, — ®1(p)) 1.zt ; aiBleZi] ®(r; 07,—d1(p))
ojEle 5] @(Tjazj—@fl(l’n
(58)

+

From our previously stated assumptions it follows that r; 0z, <1; 07, < 0z holds
foralli=1,2,...,n
Let us first investigate the case where r; 07, < 0z, In this case (a) follows as an
application of Lemma 1 to expression (58).
On the other hand, when r; 07, = 0z, it follows from (50) that 7; = 1 and 07, = 0z;.
In this case we find that
lim CTE, [BIS | 2] = a1Efe”] lim ! (59)
p—1 CTEP [E[S | A]] ajE[ Zj ] p—1 1 +z a;E[eZi] <I>(rl oz7,—®~ L(p ))

#] a;Ele”1] ®(0z, —<1>*1<p))

By analogous reasoning the positive definiteness of ¥ will imply that for all i # j we
have that r; < r; = 1. Taking into account (50), this implies that r; 0z, < 0z holds
for all ¢ # j. Inequality (a) will then follow from Lemma 1 and (51), which implies
that a1 E[e?1] > a;E[e%].

Next, we prove (b).

As age?t = E[a1e?1|Z1], we have that CTE, [1e?1] can be found as a special case of
(56):

1poz1 E[e”] ® (07 -®'(p)), 0<p<l. (60)

CTE,[a1e?'] =

Combining (56) and (60), we find

CTE, [E[S | Z1]] 1 Za, Zi) ® (corr [Z;, Z1) 0z, — @~ 1(p))

. 0<p<l
CTEp[ozleZl Oé1E [e%1] @ (04, — P~1(p)) g

(61)

As we have that 0 < corr[Z;, Z1] < 1, ¢ = 2,3,...,n, statement (b) follows as a
straightforward application of Lemma 1.
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We will now prove (c). Using the expressions (26) and (60) for the relevant conditional
tail expectations, we obtain

CTE, [S°] .\ i a; E[e”] @ (07, — @' (p))

- a1 E[e?] @ (oz, — 7 1(p))’

e 1. 2
CTE, [a1c7] 0<p< (62)

=2
Since oz, > oz, for all i = 2,...,n, statement (c) follows as a direct consequence of

Lemma 1.
Finally, from (27) we have

CTE,[E[S | 41]] _ _CTE,[S] _ CTE,[5]

0 1.
CTEp[ae?] — CTEp[ai1e4] = CTEp[aqe?]’ sP<

Taking into account (b) and (c), these inequalities imply (d). m
In the remainder of this section we will assume that
oz, >0z fori=2,.,n. (63)

From (52) we can conclude that in an asymptotic sense, the largest, and hence the
best approximation CTE,, [E[S | A]] for CTE,, [S] is obtained by choosing A equal to
Z1. Results (53), (54) and (55) state that the upper tail of the sum S, as well as the
upper tail of its approximations E[S | Z;] and S¢, all measured by their respective
CTE’s, will asymptotically behave in the same way as the upper tail of the first term
are?t of S.

From the inequalities (27) and the relation

CTE, | / Q,1X] da,  pe(01), (64
which holds for continuously distributed r.v.’s, it follows that

QES 24 _ . OS]

lim ————-— < lim <1 65

r—1  QpSY T 10,59 T (65)

provided these limits exist. The proof of these inequalities follows by showing that
the opposite inequality leads to a contradiction with (27). Now, from (14) and (25)
we immediately obtain that

n E[Z;]+4(1— corr Zi . Z1))o2 + corr[Z;,7Z1) o7, &1L
- Qp [E[S | 1)) . S s e [Zi]+5( [Zi,21])0 %, + corr[Zi,Z1] 02,27 (p)
=1 QpS°] p—1 i1 PlZil+oz; 27 1(p)
n o eE[Zi}+%(17 corr[Zi,ZlDo'zZiﬁ» c()rr[Zi,Zl} o'Z’L,Q'fl(p)
‘ IR AP
- ;1713% 0 e [Z]+UZ<1> L(p)
1+ZZ 2 a1 E[Z1]+0'Z »—1(p)
- 1. (66)
Combining (65) and (66) it follows that
QES ] . QplS]
lim ————— = lim =1. 67
PTG A Qs (67)
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Furthermore, we have that

Q9] oy eElZil+oz,271(p) B
i ToNrea Rt S U Z BTz ) (%%)
From (67) and (68) we can conclude that
_@lS]

P Qylened] ~ (€9)
The results derived above mean that asymptotically the exact quantiles @, [S] and
their approximations @, [E[S | Z1]] and @,[S€] all coincide with the quantiles of the
first term of S.
Asmussen & Royas-Nandayapa (2005) investigate sums of lognormals in a more
general setting. In particular, they have proven that under condition (63) similar
asymptotic behaviour is found for the tail probabilities:

. Pr[S >az]
Jm Prlaje?t > x| L (70)

Hence, both in (69) and (70), the sum S asymptotically behaves like the component
;e with the largest value for oz,.
In the following theorem, we prove (70) by using the results on convex ordering.

Theorem 2 Under the condition (63) we have that

) Pr[S > z]

lim ——————— =1 71
:1351010 Pr[alezl > CL‘] ( )
Proof. From (6) and the stop loss ordering relation (29) it follows that

lim Pr[S > z] <1 Pr[S¢ > z]
z—oo Prlaje?t > x] ~ a—o0 Pr[ajet > z]’

(72)

provided these limits exist. The proof of this inequality follows by showing that the
opposite inequality leads to a contradiction with (29).
Because of (50) we have that for any 7 > 2 it holds that

o eE[Zi]JrUZi(b*l(U) < s eE[Zg]JraZqul(U)’
provided U is sufficiently large. This implies that for = sufficiently large, we have that
Pr[S¢>z] <Pr el Ziltoz, @71 U) (n— 1)ageE[Z2]+”Z2qu(U) >z|. (73)

From the Law of Total Probability it follows that the right hand side of this inequality
can be written as

Pr [aleE[ZlHUzl@*l(U) + (0 — 1)ageBlZelto2271 ) 5 x]

— Pr [aleE[ZlHazl@*l(U) + (n— 1)0126E[Z2]+022<I>*1(U) > g, aleE[leazlqu(U) > x}

L Pr [aleE[zl]jLaZl@ﬂ(U) Y (n— 1)a2eE[Zz]+Uzz<D*1(U) > g, apeflllton ot U) < x} '
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On the one hand, we have that

Pr [aleE[ZlHaZchrl(U) +(n— 1)a26E[Zg]+aZQ<Ir1(U) >, apPlAltez27HU) S o
= Pr [aleE[Zngzlqu(U) > x|, (75)

On the other hand, since

Bl Aoz, 27 U) < 4 o (n— 1)0426E[Zz}+022<1>*1(U) < v (76)
where = Z—jf and v = (n — 1)ageE[Zﬂ(a—lle_E[le)5, we find that.

Pr [aleE[ZﬂJrazlqu(U) +(n— 1>a2eE[ZQ]+JZZ<1>*1(U) >, aleE[Zﬂ—l—UZl@*l(U) < x]

< Pr [aleE[Zl]+”Z1¢7l(U) >z — ’yscﬁ,aleE[ZlHUZlqu(U) <zxzl, (77)
Combining (73), (75) and (77) we find for z sufficiently large that

Pr[S¢>z] <Pr [aleE[le+"Zl@7l(U) >z — P,

and therefore we obtain that
i Pr[S¢ > z] Prjaie?t > x — ya]
z—oo Prlaye?t > ] — a—o  Prlaget > a]
= 1, (78)

where the last equality can be be proven using de L’Hopital’s rule and the fact that
6 < 1.
Obviously we also have that

) Pr[S > z]
_—— > 1.
xh*{{.lo Prlage?r > z] — ! (79)

The stated result (71) follows then from (72), (78) and (79). m

4.3 The ‘CLTE,-based’ approximation

In practice, there are also applications where one focuses on the lower tails of the
distribution function of a sum of lognormal random variables as defined in (1). An
example is the determination of put option prices of arithmetic Asian options. In
this case, a ‘locally optimal’ approximation E[S | A] can be defined as the one for
which CLTE,, [E[S | A]] is ‘as close as possible’ to CLTE,, [S]. From (22), it follows
that A should be chosen such that CLTE, [E[S | A]] is minimised in order to obtain
the optimal approximation for the exact CLTE, [S]. As

E[S] =E[S[A] = p CLTE, [E[S | A] ] + (1 — p) CTE, [E[S [ A]], (80)

it follows that minimising CLTE,, [E[S | A] ] provides the same solution for A as max-
imising CTE, [E[S | A] ]. Therefore, the choice (41) for the parameters \; minimises
a first order approximation for CLTE, [E[S | A]].
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5 Application to Discounting and Compounding

5.1 Discounted sums

Let us consider the random variable S¢ which represents the random present value
of a series of n deterministic unit cash flows:

n n
—Y{—Yo—-..—Y; def d
5d = E e 1Yo i 2 E eZi (81)
i—1 i=1

Here the r.v.’s Y; denote the random return over the period [i—1, ], and e~ (Y1+Y2+4Y3)
= ¢Z is the random discount factor over the period [0,¢]. We will assume that the
periodic returns Y;’s are i.i.d. normally distributed random variables with mean p— "72
and variance o2,

Notice that S¢ is a r.v. of the general type defined in (1) with E[ZY], 02241 and

(3

Cov[Z¢, Zf] given as

. g
U2zd = i02,
Cov[Z{,Z{] = Min(i,j)o”. (82)

In Table 1 we compare the different approximations for the 0.95-conditional tail
expectation of S¢ for different levels of the yearly volatility o using the result of
Monte Carlo simulations as the benchmark. We fixed the number of yearly payments
to n = 20 and the yearly expected return p has been set equal to 0.075. Note that we
do not mention the results of the ‘asymptotically optimal approximations’ explicitly.
The reason for this is that more detailed numerical investigations revealed that in
a financial context these underperform the other approximations significantly for all
reasonable values for ¢ and p, also indicating that the convergence speed is low in
these instances.

Then the CTE,-based approximation which corresponds to the use of the condi-
tioning r.v. A = AP in the approximations based on E[S¢ | A], turns out to provide
the best for the conditional tail expectations for all values of the parameter ¢ whereas
the maximal variance approximation (AM"") outperforms the Taylor-based approxi-
mation (ATB).

n | Method using | ¢ =0.15 | ¢ =0.25 | 6 =0.35
ATB 24.39 59.02 193.69
20 AMV 24.42 59.45 196.85
A®) 24.46 59.64 197.28
24.48 59.84 198.23
MC () | g020) | (0.126) | (0.833)

Table 1: Approximations for the 0.95-conditional tail expectation of the discounted
sum S¢ for different volatilities (4=0.075; yearly payments of 1). The figures in brack-
ets represent the standard error on the Monte Carlo results.
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5.2 Compounded sums

We consider the random variable S¢ defined as the random compounded value of a
series of n deterministic unit cash flows:

n n
5'701 — Z eYitYirit+Yn def Z er7 (83)
i=1 =1

where the Z¢ (i = 1,2,...,n) now represent cumulative log-returns over the period
[i —1,n] .Note that S¢ is a r.v. of the general type defined in (1) with E[Z¢], 0225 and
Cov[Z{, Z§] given as

0.2

ElZ] = (—i+Dk-7), (84)
0% = (n—i+1)o” (85)
Cov[Z{,Z] = (n—Max(i—1,j—1))o>. (86)

Table 2 compares the different approximations for the 0.05-conditional left tail ex-
pectation of S¢ again for different levels of the yearly volatility ¢ whilst taking n = 20
and pu = 0.075. The results are also compared with Monte Carlo simulations. Keep-
ing in mind (22) we find that also in this case the CTE,-based approximation, which
coincides with the CLTE,-based approximation, provides the best results. Moreover,
the relative increase in accuracy as compared to the maximal variance and Taylor-
based approximation is significant. It is interesting to observe that as far as these
global choices for A are concerned the maximal variance approximation appears to
be less accurate than the Taylor-based approximation in this example. The reason
for this is that the maximal variance approximation is more sensitive to the right,
unbounded, tail of S¢, and this is at the expense of losing some accuracy in the left
tail of Sf.

This suggests that when choosing between the Taylor-based and maximal variance
approximation, the former one is often more appropriate in case of risk measures that
focus on the left tail of the distribution such as the CLTE whereas the latter is better
in case one focuses on the right tail of the distributions.

n | Method c=015| 0=025| 0 =0.35
ATE 17.80 9.35 5.22
20 | AMV 17.82 9.48 5.51
A®) 17.75 9.21 5.09
17.73 9.16 4.94
MC (&Es0) 1 0098) | (0.019) | (0.01)

Table 2: Approximations for the 0.05-conditional left tail expectation of the com-
pounded sum S¢ for different volatilities (u=0.075; yearly saving of 1). The figures
in brackets represent the standard error on the Monte Carlo results.

6 Application to the Pricing of Asian Options

In this section we will assess the accuracy of the different approximations for discrete
arithmetic Asian option prices. We refer to Dhaene et al (2002b) or Vanmaele et al
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(2006) for extensive reviews on how the prices of these instruments can be approxi-
mated using the theory on comonotonicity and convex ordering.

Consider a risky asset with a known price P(0) at time ¢ = 0 and unknown prices
P(i) at times ¢ = 1,2,...,n. A discrete Asian option with maturity n, strike K and
n — j averaging dates is a financial instrument that generates at maturity n a pay-off
that is equal to (n—ij > icjr1 P(i) — K)4. When averaging is carried out during the
entire period [0,n] at equidistant intermediate times ¢ = 1,2, ...,n, we find that the
pay-off can also be represented by (L P(0)S% — K) L with Sf given by

n n
- def a
SZ _ Z Y1 t+Yot4Y; @ Zezi ’ (87)
=1 i=1

where the Z¢ (i = 1,2, ...,n), are cumulative log-returns over the period [0,]. Note
that S% is a r.v. of the general type defined in (1). Furthermore, in the absence of
arbitrage opportunities and assuming a Black & Scholes market, the cost for an Asian
option with strike K will be denoted by C'x and is given as

Cx = e ™E[(—~ P(0)S% — K).], (88)

E[Z?] = Z(T - ?)7
JQZ? = io2 (89)
Cov[Z¢, Z§] = Min(i, j)o>. (90)

In fact, for arbitrage-free pricing purposes the expectation in (88) will be taken with
respect to the risk neutral measure, and in this case we will explicitly denote the
expectations operator by E, whereas the notation E, will be used when expecta-
tions are taken with respect to the initial (physical) probability measure; We refer
to e.g. Harrison & Kreps (1979) or Harrison & Pliska (1981) for extensive theory on
arbitrage-free pricing.

We will now assess the quality of the different lower bounds using the parameter
setting from Vanmaele et al (2006, p.29); see also Briickner (2007). The time-unit is
assumed to be one month, and averaging is done over the whole period taking into
account the monthly end prices of the underlying stock. Furthermore, the monthly

volatility o is given by o = % whereas for the monthly risk free rate r we have

that r = %. In Table 3 we compare lower bound approximations for the prices
of Asian call options for different strike prices K. The other parameters are fixed
and are stated in the table. The last column, indicated by A%4, corresponds to
the case that the approximation is based on the conditioning r.v. A taken as the

n
H eZi. The probability ‘p’ in the
i=1

standardised logarithm of the geometric average »

CTE,-based approximation is determined as the root of @, [(S%)'] = n%. In line
with the previous results we find that the newly proposed CTE,-based approximation
will always outperform the other approximations, and we also find that the relative

increase in accuracy is quite significant for out-of-the money call options when the
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o | K | MC(+s.e) AP AMV ATE AGA
0.25 | 50 (50().60046891) 50.0475 | 50.0472 | 50.0473 | 50.0473
80 (2045'07059097) 24.7478 | 24.7443 | 24.7457 | 24.7461
90 (107-'09131598) 17.9319 | 17.9298 | 17.9311 | 17.9314
100 (102'64183022) 12.4758 | 12.4754 | 12.4759 | 12.4759
110 (g:g?g% 8.3864 | 8.3864 | 8.3860 | 8.3857
150 (é:ggg; 1.3770 | 1.3736 | 1.3717| 1.3711
180 <323§§Z> 0.3212 | 0.3182| 03171 | 0.3168
200 (813353) 0.1209 | 0.1189 | 0.1183 | 0.1181

Table 3: Different approximations for Asian call option prices for different strikes
K (0=0.25; r=0.04; P(0)=100; T=3; n=36). The figures in brackets represent the
standard error on the Monte Carlo results.

strike K is larger than the current stock price. Since we focus on the right tail, also the
maximal variance approximation will outperform the Taylor-based approximation.
We notice that the quality of the approximation that uses A“4 as the conditioning
r.v. decreases as K increases.

We will now further investigate the case of an Asian option with strike K equal
to zero. More specifically, we will compare the zero-strike pay-off %P(O)Sf{ with its
conditional expectation E,[+P(0)S2 | A] where A is taken to be equal to ZZ. Note
that the expectation is taken with respect to the initial probability measure. We find
that E,[1P(0)S% | Z2] is given by

E [lp(())ga | 29 = i 1 30-2)io*+in (91)
12 n n n : n .
=1
It is important to note that the r.v. E,[2P(0)S% | Zg] does not depend on p. Its
arbitrage free price C' is given by:

—rn 1 a a
C = e ET[EM[EP(())SN | Zn“

= TR PO)SS | 2] (92
_ e‘r”Er[%P(O)Sﬁ;]
= Co (93)

Although the price of the zero-strike payoft %P(O)Sﬁ will coincide with its conditional
expectation E, [ P(0)S¢ | Z¢] the latter is convex smaller, and will be preferred by
all risk averse decision makers. Note that the latter pay-off, as it only depends on the
final state value Z? of the underlying return process, is path independent whereas
the former pay-off depends on the intermediate states and is path-dependent.
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The sub-optimality of path dependent structures was already discussed in Cox &
Leland (1982); see also Dybvig (1988). However, in this paper we present a short and
elegant proof regarding the sub-optimality for a particular choice of path dependent
pay-offs. We believe that these results can be generalised to other path dependent
structures and other asset return processes but this will be the topic of a subsequent

paper.

7 Concluding remarks

The stochastically discounted or compounded value of a series of cash flows is often
a key quantity in finance and actuarial science. Yet even for most realistic stochastic
return models, it is often difficult to obtain analytic expressions for the risk measures
involving these discounted sums. Following the works of Kaas et al. (2000), Dhaene
et al. (2002a, 2002b) and Vanduffel et al. (2005a) we show in this paper how to
improve the so-called convex lower bound approximations by suitably choosing the
conditioning variable A. It has already been documented in literature that choosing
this conditioning variable using either a Taylor-based or a maximal variance approx-
imation provides in some sense an overall goodness of fit. However, we can further
improve the approximations if we concentrate on a local neighborhood of the dis-
tribution function such as the lower or upper tails. In these instances, we find that
the approximations for various risk measures can be improved significantly if we use
conditioning variables on the basis of a first-order approximation of the conditional
tail expectation, if upper tails are concerned, and on a first-order approximation of
the conditional left tail expectation, if lower tails are concerned. We also present some
asymptotic results regarding the optimality of the approximations which show that
these do not perform arbitrarly bad in case p approaches 1 (or zero). We provide nu-
merical illustrations that show that the newly proposed CTE,-based approximation
usually provides better fits in the tail, and we briefly address the sub-optimality of
path dependent pay-offs in a restricted setting.
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