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Abstract

In this paper we investigate approximations for the distribution function of
a sum S of lognormal random variables. These approximations are obtained
by considering the conditional expectation E[S | Λ ] of S with respect to a
conditioning random variable Λ.

The choice for Λ is crucial in order to obtain accurate approximations. The
different alternatives for Λ that have been proposed in literature to date are
‘global’ in the sense that Λ is chosen such that the entire distribution of the
approximation E[S | Λ ] is ‘close’ to the corresponding distribution of the original
sum S.

In an actuarial or a financial context one is often only interested in a particular
tail of the distribution of S. Therefore in this paper we propose approximations
E[S | Λ ] which are only locally optimal, in the sense that the relevant tail of
the distribution of E[S | Λ ] is an accurate approximation for the corresponding
tail of the distribution of S. Numerical illustrations reveal that local optimal
choices for Λ can improve the quality of the approximations in the relevant tail
significantly.

We also explore asymptotic properties of the approximations E[S | Λ ] and
investigate links with results from Asmussen & Royas-Nandayapa (2005). Finally,
we briefly adress the sub-optimality of Asian options from the point of view of
risk averse decision makers with a fixed investment horizon.
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1 Introduction

Many problems in actuarial science and finance involve the evaluation of the distrib-
ution function (d.f.) of a random variable (r.v.) S of the form

S =
n∑

i=1

αi e
Zi , (1)

where the αi (i = 1, 2, ...n) are real numbers and (Z1, Z2, ..., Zn) is a multivariate
random vector with means and variances denoted by E[Zi] and σ2Zi respectively. If
Zi (i = 1, 2, ...n) denotes the stochastic logreturn of the period [i, n], the r.v. S can
be interpreted as the accumulated value at time n of a series of future deterministic
saving amounts αi. On the other hand, when −Zi denotes the stochastic logreturn
over the period [0, i], eZi can be interpreted as the stochastic discount factor over the
period [0, i]. In this case, the r.v. S can be interpreted as the stochastic present value
of a series of future deterministic payments αi. Examples of financial and actuarial
problems that involve a sum S as defined in (1) include the valuation of exotic op-
tions such as Asian and Basket options, optimal portfolio selection problems and the
calculation of provisions and required capital.

The classical work horse in finance for modelling asset returns is the Gaussian
model. Both the celebrated Capital Asset Pricing Model and Black & Scholes’ option
pricing formulas have been derived in this setting. Apart from mathematical conve-
nience such a Gaussian model for the returns often seems to be appropriate when
the time unit is sufficiently long, because of a ‘Central Limit Theorem’ effect. Empir-
ical studies that support this theoretical setup can be found in Cesari & Cremonini
(2003), Levy (2004) and McNeil et al. (2005).

A sum of lognormals also appears as a crucial r.v. in other disciplines such as
physics and engineering. For a reference to applications in physics, see Romeo et al.
(2003). In engineering sums of lognormals appear when considering communication
problems, computer network design problems and traffic flow problems. In literature
on wireless systems it occurs in outage analysis and received signal power analysis,
see e.g. Stüber (Ch2, 1996) and Fenton (1960). A sum of lognormals also arises
when modelling the cost of a routed path in a computer network, see e.g. Rasmusson
(2002). In the latter case, the lognormals are strongly correlated and the sums are
highly dimensional. Arroyo and Kornhauser (2005) consider sums of lognormals to
model travel time distributions on a road network.

The various applications in finance, insurance and engineering differ with respect
to the dimensionality of the random vector (Z1, Z2, ..., Zn) involved, the assumed
equality (or inequality) of the marginal distributions, the assumed independence (or
dependence) of the marginals, the level of the volatilities and the relevant region of
the distribution function.

Most applications deal with positive coefficients αi. Therefore, in the remainder
of this paper we will assume that all αi are positive. Furthermore, we will assume
that (Z1, Z2, ..., Zn) has a multivariate normal density given by

fZ1,Z2,...,Zn(z1, z2, ..., zn) =
1

(2π)
n
2 |Σ|

1
2

exp(−
1

2
(z−µ)

′

Σ
−1(z−µ)), (2)

where z
′
= (z1, z2, ..., zn) ∈ R

n, µ
′
∈ Rn is the vector of the means and Σ ∈ Rn×n is

the covariance matrix. Note that (µ)i = E[Zi] and (Σ)ii = σ2Zi . We also note that
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every covariance matrixΣ is necessarily symmetric and positive semidefinite, whereas
the existence of Σ−1 is guaranteed by assuming that Σ is positive definite. From the
assumed existence of a multivariate normal density for (Z1, Z2, ..., Zn) it follows that
the Zi as well as the key r.v. of interest S have a continuous and strictly increasing
d.f.

Most applications mentioned above amount to the evaluation of risk measures of
S. In this paper we will focus on some risk measures that are often used in practice.
The p-quantile risk measure for a r.v. X, also called the Value-at-Risk at level p, is
denoted by Qp[X]. It is defined as

Qp [X] = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1) , (3)

where FX(x) = Pr [X ≤ x].
The Conditional Tail Expectation at level p, denoted by CTEp [X], is defined as

CTEp [X] = E [X | X > Qp [X]] , p ∈ (0, 1) . (4)

The Conditional Left Tail Expectation at level p, denoted by CLTEp [X], is defined
as

CLTEp [X] = E [X | X < Qp [X]] , p ∈ (0, 1) . (5)

Finally, the stop-loss premium with retention d of the r.v.X is defined by E[(X−d)+],
where the notation (x− d)+ stands for max (x− d, 0). By using partial integration,
we obtain

E[(X − d)+] =

∫ ∞

d

Pr [X > x] dx, −∞ < d < +∞. (6)

We refer to Denuit et al. (2005) or Dhaene et al. (2006) for a discussion on risk
measures and the relations that hold between them.

In most cases it is impossible to obtain analytical expressions for risk measures of
a sum S of lognormal random variables. Based on an idea of Rogers & Shiu (1995)
in an Asian option context, Kaas et al. (2000) propose to approximate the d.f. of S
by the d.f. of the r.v. Sl which is defined by

Sl
def
= E[S|Λ] =

n∑

i=1

αi E[e
Zi | Λ] (7)

for an appropriate choice of the conditioning r.v. Λ. Loosely speaking, this approach
allows one to transform the stochastic multi-dimensionality of the problem, caused by
(Z1, Z2, ..., Zn), to a single dimension, caused by Λ. Moreover, an appropriate choice of
Λ will lead to a comonotonic random vector (α1E[e

Z1 | Λ], α2E[e
Z2 | Λ], ..., αnE[e

Zn |
Λ]), which means that all αiE[e

Zi | Λ] are non-decreasing functions of the conditioning
random variable Λ. Note that by taking −Λ as the conditioning random variable
we find that comonotonicity could also be characterised by requiring the different
components of the random vector to be non-increasing in the conditioning random
variable. In this paper we will always use the former characterisation.
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Risk measures related to the d.f. of S are then approximated by the corresponding
risk measures of Sl. These approximations are straightforward to calculate, taking
into account the additivity properties of sums of comonotonic r.v.’s. For an extensive
overview on the theory of comonotonicity and some of its applications, we refer to
Dhaene et al. (2002a, 2002b). Various applications of this theory have been discussed
in Deelstra et al. (2007), Denuit et al. (2006), Dhaene et al. (2004, 2006, 2007),
Vanduffel et al. (2002) and Vanmaele et al., amongst others.

The technique of taking conditional expectations has proven to provide accurate
and easy to compute approximations for several risk measures of sums of lognormal
r.v.’s, see for example Huang et al. (2004) or Vanduffel et al. (2005b) for detailed
numerical investigations. Intuitively, Λ should be chosen such that it is ‘close’ to
the original r.v. S. In literature, various choices for Λ have been proposed that are
in line with this approach. Kaas et al. (2000) propose to determine Λ as a normal
r.v. which can be considered as a first-order approximation of the original sum S.
Vanduffel et al. (2005a) propose to choose Λ as a normal r.v. such that a first-order
approximation of the variance of E[S|Λ] is ‘as close as possible’ to the variance of S.
Both choices for Λ are ‘global’ in the sense that the d.f. of E[S|Λ] can be considered
as a good approximation for the entire d.f. of S. Note however that there are many
financial and actuarial problems where one is only interested in a particular tail of
the distribution of S, and as such the approximation is only required to perform well
in that particular area of the distribution function. Therefore in this paper we will
propose and investigate comonotonic approximations for the d.f. of S which are only
‘locally’ optimal in some sense.

The rest of this paper is organised as follows. In Section 2, we give an overview
of general results concerning comonotonic approximations that will be used in later
sections. In Section 3, we recall and discuss ‘global’ optimal choices for the condition-
ing r.v. Λ. In particular, we describe the ‘Taylor-based’ and the ‘Maximal Variance’
approximations. In Section 4, we propose new choices for Λ that are ‘locally’ opti-
mal. We also discuss their asymptotic characteristics and relate these with results
of Asmussen and Nandayapa (2005). In Section 5 we apply the locally optimal ap-
proximations to discounted or compounded sums and numerically investigate their
accuracy. In Section 6 we apply the approximations to the pricing of Asian Options
and we briefly discuss the optimality of these. Finally, Section 7 concludes the paper.

2 Comonotonic approximations

Let the r.v. S be given by (1), where the αi are non-negative real numbers and the ran-
dom vector (Z1, Z2, ..., Zn) has a multivariate normal density given by (2). Consider
the conditioning r.v. Λ which is defined as the linear combination of Z1, Z2, ..., Zn
determined by

Λ =
n∑

j=1

λjZj (8)
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for given real numbers λj , j = 1, 2, ..., n. We denote the mean and the variance of Λ
by E[Λ] and σ2Λ, respectively. From (7) and (8), we find that Sl can be written as

Sl =
n∑

i=1

αi e
E[Zi]+

1
2(1−r

2
i )σ2Zi+riσZi

Λ−E [Λ]
σΛ . (9)

Here ri is the correlation between Zi and Λ:

ri =
cov [Zi,Λ]

σZi σΛ
=

1

σZi σΛ

n∑

j=1

λj cov [Zi, Zj] , i = 1, 2, ..., n. (10)

Note that the expected values of the random variables S and Sl are equal:

E[S] = E[Sl] =
n∑

i=1

αi E
[
eZi
]
=

n∑

i=1

αi e
E[Zi]+

1
2
σ2
Zi , (11)

whereas their variances are given by

Var[S] =
n∑

i=1

n∑

j=1

αiαj E
[
eZi
]
E
[
eZj
]
(eCov(Zi,Zj) − 1) (12)

and

Var[Sl] =
n∑

i=1

n∑

j=1

αiαj E
[
eZi
]
E
[
eZj
] (

e
rirjσZiσZj − 1

)
, (13)

respectively.
If all the correlation coefficients ri defined in (10) are non-negative, we find from

(9) that Sl is a comonotonic sum. In this case, the quantiles and the conditional (left)
tail expectations of Sl are given by the sum of the corresponding risk measures of the
marginals involved. Hence, in case all ri ≥ 0, we have that

Qp

[
Sl
]
=

n∑

i=1

αi e
E[Zi]+

1
2(1−r

2
i )σ2Zi+riσZiΦ

−1(p)
, (14)

CTEp
[
Sl
]
=

1

1− p

n∑

i=1

αi E
[
eZi
]
Φ
(
ri σZi −Φ

−1(p)
)

(15)

and

CLTEp
[
Sl
]
=
1

p

n∑

i=1

αi E
[
eZi
] (
1−Φ

(
ri σZi −Φ

−1(p)
))

, (16)

which holds for all p ∈ (0, 1) , and where Φ denotes the standard normal distribution.
Furthermore, in case all ri ≥ 0 the stop-loss premium with retention d, 0 < d <∞,
of Sl is given by

E

[(
Sl − d

)

+

]
=

n∑

i=1

αi E
[
eZi
]
Φ
(
riσZi −Φ

−1(p)
)
− d(1− p), (17)
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where p is the root of

Qp

[
Sl
]
= d. (18)

From (10) it is easy to see that a sufficient condition for all ri to be non-negative is
that all λj ≥ 0 and also all cov[Zi, Zj] ≥ 0.

Since the definition (7) of Sl involves a conditional expectation, eliminating the
randomness that cannot be explained by Λ, one may expect that Sl will be ‘less risky’
than S, and examining equations (12) and (13) reveals that at least the ordering of
the variances supports this intuition. As a matter of fact a much stronger result holds.
From Jensen’s inequality one can prove that Sl is smaller in convex order than S:

Sl ≤cx S, (19)

which means that for any convex function v(x) it holds that

E[v(Sl)] ≤ E[v(S)], (20)

provided the expectations exist. In this case we also say that Sl is a convex lower
bound of S. The convex order relation (19) implies any of the following relations:

CTEp
[
Sl
]
≤ CTEp [S] , for any p ∈ (0, 1) , (21)

CLTEp [S] ≤ CLTEp
[
Sl
]
, for any p ∈ (0, 1) (22)

and also

E

[(
Sl − d

)

+

]
≤ E

[
(S − d)+

]
, for any d ∈ R. (23)

In literature a comonotonic upper bound for the r.v. S has also been proposed and we
denote this by Sc; see e.g. Dhaene et al. (2002b). In our lognormal context Sc can be
defined by imposing the correlations in expression (9) to be equal to one. Formally:

Sc
d
=

n∑

i=1

αi e
E[Zi]+σZiΦ

−1(U), (24)

with U a uniformly (0, 1) distributed r.v. Next, we find expressions for the different
risk measures of Sc by setting the correlations ri to be equal to 1 in the expressions
(14), (15), (16) and (17). In particular we obtain that

Qp [S
c] =

n∑

i=1

αi e
E[Zi]+σZiΦ

−1(p). (25)

and

CTEp [S
c] =

1

1− p

n∑

i=1

αi E
[
eZi
]
Φ
(
σZi −Φ

−1(p)
)

(26)

It can be proven that S is convex smaller than Sc and hence inequalities similar to
(21), (22) and (23) can be derived. In particular we obtain,

CTEp
[
Sl
]
≤ CTEp [S] ≤ CTEp [S

c] , p ∈ (0, 1) , (27)
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CLTEp
[
Sl
]
≥ CLTEp [S] ≥ CLTEp [S

c] , p ∈ (0, 1) , (28)

and

E
[
(Sl − d)+

]
≤ E [(S − d)+] ≤ E [(Sc − d)+] , d ∈ R. (29)

For more details about the results summarised in this section, we refer to Dhaene
et al. (2002b, 2006).

3 Globally optimal choices for Λ

3.1 The ‘Taylor-based’ approximation

From Kaas et al. (1994, p. 68) it follows that if X ≤cx Y we have that
∫ ∞

−∞
(E[(Y − t)+]−E[(X − t)+])dt =

1

2
{Var[Y ]−Var[X]} (30)

Hence, 12{Var[Y ]−Var[X]} can be fairly interpreted as a measure for the total error
made when approximating the stop-loss premiums of Y by those of the convex smaller
X. Since the integrand in the left hand side of (30) is non-negative, we also find that
if X ≤cx Y whilst Var[X] =Var[Y ], then this means that X and Y must have equal
stop-loss premiums and hence the same d.f. This suggests that if we wish to replace
S by the convex smaller Sl, the best approximations will occur when Λ is chosen such
that Var[Sl] is as large as possible or equivalently, since Var[S] =Var[Sl]+E[Var[S|Λ]],
when E[Var[S|Λ]] is as small as possible. We notice that either of this criteria means
that Λ and S should be ‘as alike as’ possible. Therefore, Kaas et al. (2000) propose
to choose the conditioning r.v. Λ as the linear combination of the Zj defined in (8),
with the coefficients λj given by

λTBj = αje
E[Zj ], j = 1, · · · , n. (31)

Indeed, this choice makes Λ a linear transformation of a first-order approximation of
the sum S. This can easily be seen from the following derivation:

S =
n∑

j=1

αje
E[Zj ] e(Zj−E[Zj ]) ≈ C +

n∑

j=1

αje
E[Zj ]Zj, (32)

where C is some appropriate constant. We will call the approximation based on the
λj defined in (31) the Taylor-based approximation. The conditioning r.v. Λ is
denoted by ΛTB in this case:

ΛTB =
n∑

j=1

αje
E[Zj ]Zj . (33)

Furthermore, the correlations corr
[
Zi,Λ

TB
]
are denoted by rTBi :

rTBi =
1

σZi σTBΛ

n∑

j=1

αje
E[Zj ] cov [Zi, Zj] , i = 1, 2, ..., n. (34)

Here, σTBΛ is given by

σTBΛ = (
n∑

i=1

n∑

j=1

αiαje
E[Zi]eE[Zj ]cov [Zi, Zj])

1
2 . (35)
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3.2 The ‘maximal variance’ approximation

The best approximations for the d.f. of S based on Sl will be the ones where the
variance of Sl is ‘as large as possible’. The Taylor-based approach assumes a rather
intuitive approach to derive a Λ that gives rise to a ‘large’ value for Var[Sl]. Vanduffel
et al. (2005a) use a more explicit approach to derive Λ. They derive the following
first order approximation of the variance of Sl:

Var
[
Sl
]
≈

n∑

i=1

n∑

j=1

αiαj e
E[Zi]+E[Zj ]+

1
2
(σ2Zi

+σ2Zj)(rirjσZiσZj )

=



Corr




n∑

j=1

αjE
[
eZj
]
,Λ)








2

Var




n∑

j=1

αjE
[
eZj
]
Zj



 . (36)

They then propose to choose the conditioning r.v. Λ as the linear combination of the
Zj defined in (8), with the coefficients λj such that the first order approximation (36)
of Var

[
Sl
]
is maximised:

λMVj = αj E
[
eZj
]
, j = 1, . . . , n. (37)

We call the approximation Sl based on the coefficients λj defined in (37) the maximal

variance approximation. The condition r.v. Λ is denoted by ΛMV in this case:

ΛMV =
n∑

j=1

αjE
[
eZj
]
Zj , (38)

whereas the correlations corr
[
Zi,Λ

MV
]
are denoted by rMVi :

rMVi =
1

σZi σMVΛ

n∑

j=1

αjE
[
eZj
]
cov [Zi, Zj ] , i = 1, 2, ..., n. (39)

Here, σMVΛ is given by

σMVΛ = (
n∑

i=1

n∑

j=1

αiαjE
[
eZi
]
E
[
eZj
]
cov [Zi, Zj])

1
2 . (40)

Note that the conditioning r.v. ΛMV does not necessarily maximise the variance of
Sl, but has to be understood as an approximate solution. One could use numerical
procedures to determine the ‘real’ Λ that maximises Var

[
Sl
]
but obviously this would

be at the cost of losing one of the main features of the approximations, namely that
quantiles, conditional (left) tail expectations and stop-loss premiums can be easily
determined analytically.

4 Locally optimal choices for Λ

4.1 The ‘CTEp-based’ approximation

For several practical applications one only needs to focus on a particular tail of the
distribution for S. The provision to be established at time 0 for future payment oblig-
ations can be determined as either Qp[S] or CTEp[S], with p sufficiently large. For
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example, a provision equal to Q0.95[S] guarantees a non-ruin probability of 0.95. De-
termining Asian or basket European type option prices only involves the calculation
of upper or lower tails of the d.f. of S. As a result it makes sense to consider choices
for the conditioning r.v. Λ that are only optimal in a particular upper or lower tail of
the d.f. under consideration. The underlying intuitive idea is that when only requiring
a good fit between the distributions of S and Sl in a particular region, we will be able
to find better approximations, at least when constrained to that particular region.

In order to determine an optimal Λ for approximating the upper tail risk measure
CTEp[S], recall that (21) states that CTEp[S

l] ≤CTEp[S] holds for all p in (0, 1). This
observation suggests that determining Λ such that CTEp[S

l] is as ‘large as possible’
is a feasible choice for that purpose.

In the case that all correlations ri = corr[Zi,Λ] are non-negative we have that
CTEp

[
Sl
]
is given by (15). We will show that the following choice of the parameters

λj maximises a first-order approximation of the formula (15):

λ
(p)
j = αj E

[
eZj
]
Φ
′ [
rMVj σZj −Φ

−1(p)
]
, j = 1, . . . , n, (41)

where rMVj is defined in (39). Notice that these optimal λ
(p)
j depend on the probability

level p, reflecting the fact that they are indeed constructed to be locally optimal in
some sense.

In order to derive the coefficients (41), we start by expanding (15) around the
correlations rMVi . Then we find:

CTEp
[
Sl
]
≈

1

1− p

n∑

i=1

αi E
[
eZj
]
Φ
[
rMVi σZi −Φ

−1(p)
]

+
1

1− p

n∑

i=1

αi E
[
eZj
]
Φ
′ [
rMVi σZi −Φ

−1(p)
]
(ri − rMVi ) σZi (42)

Hence, the first-order approximation (42) of the expression (15) of CTEp
[
Sl
]
is max-

imised when

n∑

i=1

αi E
[
eZj
]
Φ
′ (

rMVi σZi −Φ
−1(p)

)
ri σZi (43)

is maximised. As

n∑

i=1

αi E
[
eZi
]
Φ
′ [
rMVi σZi −Φ

−1(p)
]

ri σZi

=
1

σΛ
Cov

(
n∑

i=1

αi E
[
eZi
]
Φ
′ [
rMVi σZi −Φ

−1(p)
]

Zi,Λ

)

= Corr

(
n∑

i=1

αi E
[
eZi
]
Φ
′ [
rMVi σZi −Φ

−1(p)
]

Zi,Λ

)

×

(

Var

[
n∑

i=1

αi E
[
eZj
]
Φ
′ [
rMVi σZi −Φ

−1(p)
]

Zi)

]) 1
2

, (44)

it follows that the choice (41) for the parameters λj maximises the first-order approx-
imation (42) of CTEp

[
Sl
]
.
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We will call the approximation Sl based on the coefficients λj defined in (41) the
CTEp-based approximation. The conditioning r.v. Λ is denoted by Λ(p) in this
case:

Λ(p) =
n∑

j=1

αj E
[
eZj
]
Φ
′ [
rMVj σZj −Φ

−1(p)
]
Zj . (45)

Furthermore, the correlations ri = corr
[
Zi,Λ

(p)
]
are denoted by r

(p)
i . Hence,

r
(p)
i =

1

σZi σ
(p)
Λ

n∑

j=1

αjE
[
eZj
]
Φ
′ [
rMVj σZj −Φ

−1(p)
]
cov [Zi, Zj ] , i = 1, 2, ..., n.

(46)

Here, σ
(p)
Λ is given by

σ
(p)
Λ = (

n∑

i=1

n∑

j=1

αiαjE
[
eZi
]
E
[
eZj
]
Φ
′ [
rMVi σZi −Φ

−1(p)
]
Φ
′ [
rMVj σZj −Φ

−1(p)
]
cov [Zi, Zj ])

1
2 .

(47)

Since expression (15) requires the correlations ri to be non-negative we expect that the
choice (41) for the parameters λj will only perform well in case the true but unknown
optimal Λ, i.e. the one that maximises CTEp

[
Sl
]
, has non-negative correlations ri.

One can expect that this will hold true in case all r
(p)
i in (46) are non-negative. The

accuracy of the approximations based on E[S|Λ(p)] will be addressed in Sections 5
and 6.

Note that in (42) the Taylor expansion of CTEp
[
Sl
]
is performed around the

correlations rMVi (i = 1, 2, ...n). It can be easily verified that a naive expansion of
CTEp

[
Sl
]
around zero correlations would have provided ΛMV as an optimal choice.

This gives some more indication that the CTEp-based approximation is likely to
provide a better fit than the Taylor-based or maximal variance lower bound approx-
imations.

Since the construction of Λ(p) involves a first order approximation of CTEp
[
Sl
]
it

remains an approximation to the ‘optimal’ Λ. Using numerical techniques to optimise
CTEp

[
Sl
]
instead of its first order approximation (42) would undoubtedly provide

better choices for Λ, but this would be at the expense of losing a full analytical
solution. Having a readily available approximation that can be implemented easily is
important from a practical point of view.

4.2 An ‘asymptotically optimal’ approximation

In the previous section we argued that the best convex lower bound to measure the
upper tail arises when Λ is such that CTEp

[
Sl
]
is maximised. Unfortunately, it ap-

pears that it is not possible to find an analytical solution for this optimisation problem
in general. Therefore, we considered the maximisation of a first order approximation
to CTEp

[
Sl
]
and this gave rise to the CTEp-based approximation. However, in the

asymptotic case, when p tends to 1, the solution for the maximisation of CTEp
[
Sl
]

can be derived analytically.
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In addition to the assumption of non-negative αi made throughout this paper, in
this section we will also assume that all Zi in (1) are positively correlated:

cov [Zi, Zj ] ≥ 0, i, j = 1, 2, ..., n. (48)

In many applications this assumption will hold true, see Sections 5 and 6. In order
to prove the asymptotic results of this section, we will need the following lemma.

Lemma 1 If c1 and c2 are real numbers such that 0 ≤ c1 < c2, then we have

lim
p→1

Φ
(
c2 −Φ

−1(p)
)

Φ(c1 −Φ−1(p))
=∞. (49)

Proof. This follows by substituting z for Φ−1(p) and then applying de L’Hôpital’s
rule.

Without loss of generality, in this section we assume that the Zi are ranked such
that

σZ1 ≥ σZ2 ≥ ... ≥ σZn. (50)

Furthermore, we assume that the ranking of the Zi is such that

σZi = σZi+1 for some i⇒ αie
E[Zi] ≥ αi+1e

E[Zi+1]. (51)

The following theorem provides results regarding the lower bound approximations
that are asymptotically optimal.

Theorem 1 For any conditioning r.v. Λ of the form (8) with correlations ri defined
in (10) such that ri ≥ 0, i = 1, 2, ..., n, we have that

(a) lim
p→1

CTEp [E[S | Z1]]

CTEp [E[S | Λ]]
≥ 1 (52)

(b) lim
p→1

CTEp [E[S | Z1]]

CTEp[α1eZ1 ]
= 1 (53)

In case σZ1 > σZi for all i = 2, ..., n, we also have

(c) lim
p→1

CTEp [Sc]

CTEp[α1eZ1 ]
= 1 (54)

(d) lim
p→1

CTEp [S]

CTEp[α1eZ1]
= 1 (55)

Proof. We first prove (a).
From (15) we find that

CTEp [E[S | Z1]] =
1

1− p

n∑

i=1

αi E
[
eZi
]
Φ
(
corr [Zi, Z1] σZi −Φ

−1(p)
)
, 0 < p < 1.

(56)

11



Next, from (56) and (15) we obtain

CTEp [E[S | Z1]]

CTEp [E[S | Λ]]
=

α1E[e
Z1 ] Φ

(
σZ1 −Φ

−1(p)
)

αjE[eZj ] Φ
(
rjσZj −Φ

−1(p)
)
1 +

∑n
i=2

αiE[eZi ] Φ(corr[Zi,Z1] σZi−Φ
−1(p))

α1E[eZ1 ] Φ(σZ1−Φ−1(p))

1 +
∑n
i�=j

αiE[e
Zi ] Φ(ri σZi−Φ−1(p))

αjE[e
Zj ] Φ

(
rjσZj−Φ−1(p)

)
,

(57)

where we have chosen j ∈ {1, 2, ...n} such that rj σZj ≥ ri σZi ≥ 0 for all i = 1, 2, ..., n.
From the positive definiteness of the variance-covariance matrix Σ it follows that
corr[Zi, Z1] < 1 for i = 2, ..., n. Indeed, suppose that corr[Zi, Z1] = 1 for a particular
i > 2, then Var[−σZ1Zi + σZiZ1] = 0, which contradicts the assumption of positive
definiteness. Hence, corr[Zi, Z1] .σZi < σZ1 , and from (57) and Lemma 1 it follows
that

lim
p→1

CTEp [E[S | Z1]]

CTEp [E[S | Λ]]
= lim
p→1

α1E[eZ1 ] Φ
(
σZ1 −Φ

−1(p)
)

αjE[eZj ] Φ
(
rjσZj −Φ

−1(p)
) 1

1 +
∑n
i�=j αiE[e

Zi ] Φ(ri σZi−Φ−1(p))
αjE[e

Zj ] Φ
(
rjσZj−Φ−1(p)

)

(58)

From our previously stated assumptions it follows that ri σZi ≤ rj σZj ≤ σZ1 holds
for all i = 1, 2, ..., n.
Let us first investigate the case where rj σZj < σZ1. In this case (a) follows as an
application of Lemma 1 to expression (58).
On the other hand, when rj σZj = σZ1 , it follows from (50) that rj = 1 and σZ1 = σZj .
In this case we find that

lim
p→1

CTEp [E[S | Z1]]

CTEp [E[S | Λ]]
=

α1E[e
Z1]

αjE[eZj ]
lim
p→1

1

1 +
∑n
i�=j

αiE[eZi ] Φ(ri σZi−Φ−1(p))
αjE[e

Zj ] Φ(σZ1−Φ−1(p))

(59)

By analogous reasoning the positive definiteness of Σ will imply that for all i �= j we
have that ri < rj = 1. Taking into account (50), this implies that ri σZi < σZ1 holds
for all i �= j. Inequality (a) will then follow from Lemma 1 and (51), which implies
that α1E[eZ1] ≥ αjE[eZj ].
Next, we prove (b).
As α1e

Z1 = E[α1e
Z1|Z1], we have that CTEp[α1e

Z1] can be found as a special case of
(56):

CTEp[α1e
Z1 ] =

1

1− p
α1 E

[
eZ1
]
Φ
(
σZ1 −Φ

−1(p)
)
, 0 < p < 1. (60)

Combining (56) and (60), we find

CTEp [E[S | Z1]]

CTEp[α1eZ1]
= 1+

n∑

i=2

αi E[e
Zi ] Φ

(
corr [Zi, Z1] σZi −Φ

−1(p)
)

α1E[eZ1 ] Φ (σZ1 −Φ
−1(p))

, 0 < p < 1.

(61)

As we have that 0 ≤ corr[Zi, Z1] < 1, i = 2, 3, ..., n, statement (b) follows as a
straightforward application of Lemma 1.

12



We will now prove (c). Using the expressions (26) and (60) for the relevant conditional
tail expectations, we obtain

CTEp [S
c]

CTEp[α1eZ1 ]
= 1 +

n∑

i=2

αi E[e
Zi ] Φ

(
σZi −Φ

−1(p)
)

α1 E[eZ1] Φ (σZ1 −Φ
−1(p))

, 0 < p < 1. (62)

Since σZ1 > σZi for all i = 2, ..., n, statement (c) follows as a direct consequence of
Lemma 1.
Finally, from (27) we have

CTEp [E[S | Z1]]

CTEp[α1eZ1 ]
≤

CTEp [S]

CTEp[α1eZ1 ]
≤

CTEp [Sc]

CTEp[α1eZ1 ]
, 0 < p < 1.

Taking into account (b) and (c), these inequalities imply (d).

In the remainder of this section we will assume that

σZ1 > σZi for i = 2, .., n. (63)

From (52) we can conclude that in an asymptotic sense, the largest, and hence the
best approximation CTEp [E[S | Λ]] for CTEp [S] is obtained by choosing Λ equal to
Z1. Results (53), (54) and (55) state that the upper tail of the sum S, as well as the
upper tail of its approximations E[S | Z1] and Sc, all measured by their respective
CTE’s, will asymptotically behave in the same way as the upper tail of the first term
α1e

Z1 of S.
From the inequalities (27) and the relation

CTEp [X] =
1

1− p

∫ 1

p

Qq [X] dq, p ∈ (0, 1) , (64)

which holds for continuously distributed r.v.’s, it follows that

lim
p→1

Qp [E[S | Z1]]

Qp [Sc]
≤ lim
p→1

Qp [S]

Qp [Sc]
≤ 1. (65)

provided these limits exist. The proof of these inequalities follows by showing that
the opposite inequality leads to a contradiction with (27). Now, from (14) and (25)
we immediately obtain that

lim
p→1

Qp [E[S | Z1]]

Qp [Sc]
= lim

p→1

∑n
i=1 αi e

E[Zi]+
1
2
(1− corr[Zi,Z1])σ2Zi

+ corr[Zi,Z1] σZiΦ
−1(p)

∑n
i=1 αi e

E[Zi]+σZiΦ
−1(p)

= lim
p→1

1 +
∑n
i=2

αi e
E [Zi]+

1
2 (1− corr[Zi,Z1])σ

2
Zi
+ corr[Zi,Z1] σZiΦ

−1(p)

α1 e
E [Z1]+σZ1

Φ−1(p)

1 +
∑n
i=2

αi e
E [Zi]+σZiΦ

−1(p)

α1 e
E [Z1]+σZ1

Φ−1(p)

= 1. (66)

Combining (65) and (66) it follows that

lim
p→1

Qp [E[S | Z1]]

Qp [Sc]
= lim
p→1

Qp [S]

Qp[Sc]
= 1. (67)
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Furthermore, we have that

lim
p→1

Qp[S
c]

Qp[α1eZ1 ]
= lim
p→1

(

1 +
n∑

i=2

αi e
E[Zi]+σZiΦ

−1(p)

α1 eE[Z1]+σZ1Φ
−1(p)

)

= 1. (68)

From (67) and (68) we can conclude that

lim
p→1

Qp[S]

Qp[α1eZ1 ]
= 1. (69)

The results derived above mean that asymptotically the exact quantiles Qp [S] and
their approximations Qp [E[S | Z1]] and Qp[S

c] all coincide with the quantiles of the
first term of S.

Asmussen & Royas-Nandayapa (2005) investigate sums of lognormals in a more
general setting. In particular, they have proven that under condition (63) similar
asymptotic behaviour is found for the tail probabilities:

lim
x→∞

Pr[S > x]

Pr[α1eZ1 > x]
= 1. (70)

Hence, both in (69) and (70), the sum S asymptotically behaves like the component
αie

Zi with the largest value for σZi .
In the following theorem, we prove (70) by using the results on convex ordering.

Theorem 2 Under the condition (63) we have that

lim
x→∞

Pr[S > x]

Pr[α1eZ1 > x]
= 1 (71)

Proof. From (6) and the stop loss ordering relation (29) it follows that

lim
x→∞

Pr[S > x]

Pr[α1eZ1 > x]
≤ lim
x→∞

Pr[Sc > x]

Pr[α1eZ1 > x]
, (72)

provided these limits exist. The proof of this inequality follows by showing that the
opposite inequality leads to a contradiction with (29).
Because of (50) we have that for any i ≥ 2 it holds that

αi e
E[Zi]+σZiΦ

−1(U) ≤ α2 eE[Z2]+σZ2Φ
−1(U),

provided U is sufficiently large. This implies that for x sufficiently large, we have that

Pr [Sc > x] ≤ Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) + (n− 1)α2e

E[Z2]+σZ2Φ
−1(U) > x

]
. (73)

From the Law of Total Probability it follows that the right hand side of this inequality
can be written as

Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) + (n− 1)α2e

E[Z2]+σZ2Φ
−1(U) > x

]

= Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) + (n− 1)α2e

E[Z2]+σZ2Φ
−1(U) > x, α1e

E[Z1]+σZ1Φ
−1(U) > x

]

+Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) + (n− 1)α2e

E[Z2]+σZ2Φ
−1(U) > x, α1e

E[Z1]+σZ1Φ
−1(U) ≤ x

]
.

(74)
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On the one hand, we have that

Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) + (n− 1)α2e

E[Z2]+σZ2Φ
−1(U) > x, α1e

E[Z1]+σZ1Φ
−1(U) > x

]

= Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) > x

]
. (75)

On the other hand, since

α1e
E[Z1]+σZ1Φ

−1(U) ≤ x⇔ (n− 1)α2e
E[Z2]+σZ2Φ

−1(U) ≤ γxβ (76)

where β =
σZ2
σZ1

and γ = (n− 1)α2e
E[Z2]( 1α1 e

−E[Z1])β, we find that.

Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) + (n− 1)α2e

E[Z2]+σZ2Φ
−1(U) > x, α1e

E[Z1]+σZ1Φ
−1(U) ≤ x

]

≤ Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) > x− γxβ, α1e

E[Z1]+σZ1Φ
−1(U) ≤ x

]
, (77)

Combining (73), (75) and (77) we find for x sufficiently large that

Pr [Sc > x] ≤ Pr
[
α1e

E[Z1]+σZ1Φ
−1(U) > x− γxβ

]
,

and therefore we obtain that

lim
x→∞

Pr[Sc > x]

Pr[α1eZ1 > x]
≤ lim

x→∞
Pr[α1eZ1 > x− γxβ ]

Pr[α1eZ1 > x]

= 1, (78)

where the last equality can be be proven using de L’Hôpital’s rule and the fact that
β < 1.
Obviously we also have that

lim
x→∞

Pr[S > x]

Pr[α1eZ1 > x]
≥ 1. (79)

The stated result (71) follows then from (72), (78) and (79).

4.3 The ‘CLTEp-based’ approximation

In practice, there are also applications where one focuses on the lower tails of the
distribution function of a sum of lognormal random variables as defined in (1). An
example is the determination of put option prices of arithmetic Asian options. In
this case, a ‘locally optimal’ approximation E[S | Λ] can be defined as the one for
which CLTEp [E[S | Λ]] is ‘as close as possible’ to CLTEp [S]. From (22), it follows
that Λ should be chosen such that CLTEp [E[S | Λ]] is minimised in order to obtain
the optimal approximation for the exact CLTEp [S]. As

E [S] = E[S | Λ] = p CLTEp [E[S | Λ] ] + (1− p) CTEp [E[S | Λ] ] , (80)

it follows that minimising CLTEp [E[S | Λ] ] provides the same solution for Λ as max-
imising CTEp [E[S | Λ] ] . Therefore, the choice (41) for the parameters λi minimises
a first order approximation for CLTEp [E[S | Λ]].
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5 Application to Discounting and Compounding

5.1 Discounted sums

Let us consider the random variable Sdn which represents the random present value
of a series of n deterministic unit cash flows:

Sdn =
n∑

i=1

e−Y1−Y2−···−Yi
def
=

n∑

i=1

eZ
d
i . (81)

Here the r.v.’s Yi denote the random return over the period [i−1, i], and e−(Y1+Y2+···+Yi)

= eZ
d
i is the random discount factor over the period [0, i]. We will assume that the

periodic returns Yi’s are i.i.d. normally distributed random variables with mean µ− σ2

2
and variance σ2.

Notice that Sdn is a r.v. of the general type defined in (1) with E[Zdi ], σ2
Zdi

and

Cov[Zdi , Z
d
j ] given as

E[Zdi ] = −i(µ−
σ2

2
),

σ2
Zdi

= i σ2,

Cov[Zdi , Z
d
j ] = Min(i, j)σ2. (82)

In Table 1 we compare the different approximations for the 0.95-conditional tail
expectation of Sdn for different levels of the yearly volatility σ using the result of
Monte Carlo simulations as the benchmark. We fixed the number of yearly payments
to n = 20 and the yearly expected return µ has been set equal to 0.075. Note that we
do not mention the results of the ‘asymptotically optimal approximations’ explicitly.
The reason for this is that more detailed numerical investigations revealed that in
a financial context these underperform the other approximations significantly for all
reasonable values for σ and p, also indicating that the convergence speed is low in
these instances.

Then the CTEp-based approximation which corresponds to the use of the condi-
tioning r.v. Λ = Λ(p) in the approximations based on E[Sdn | Λ], turns out to provide
the best for the conditional tail expectations for all values of the parameter σ whereas
the maximal variance approximation (ΛMV ) outperforms the Taylor-based approxi-
mation (ΛTB).

n Method using σ = 0.15 σ = 0.25 σ = 0.35
ΛTB 24.39 59.02 193.69

20 ΛMV 24.42 59.45 196.85

Λ(p) 24.46 59.64 197.28

MC (±s.e)
24.48
(0.029)

59.84
(0.126)

198.23
(0.833)

Table 1: Approximations for the 0.95-conditional tail expectation of the discounted
sum Sdn for different volatilities (µ=0.075; yearly payments of 1). The figures in brack-
ets represent the standard error on the Monte Carlo results.
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5.2 Compounded sums

We consider the random variable Scn defined as the random compounded value of a
series of n deterministic unit cash flows:

Scn =
n∑

i=1

eYi+Yi+1+···+Yn
def
=

n∑

i=1

eZ
c
i , (83)

where the Zci (i = 1, 2, ..., n) now represent cumulative log-returns over the period
[i− 1, n] .Note that Scn is a r.v. of the general type defined in (1) with E[Zci ], σ

2
Zci

and

Cov[Zci , Z
c
j ] given as

E[Zci ] = (n− i+ 1)(µ−
σ2

2
), (84)

σ2Zci
= (n− i+ 1) σ2, (85)

Cov[Zci , Z
c
j ] = (n−Max(i− 1, j − 1))σ2. (86)

Table 2 compares the different approximations for the 0.05-conditional left tail ex-
pectation of Scn again for different levels of the yearly volatility σ whilst taking n = 20
and µ = 0.075. The results are also compared with Monte Carlo simulations. Keep-
ing in mind (22) we find that also in this case the CTEp-based approximation, which
coincides with the CLTEp-based approximation, provides the best results. Moreover,
the relative increase in accuracy as compared to the maximal variance and Taylor-
based approximation is significant. It is interesting to observe that as far as these
global choices for Λ are concerned the maximal variance approximation appears to
be less accurate than the Taylor-based approximation in this example. The reason
for this is that the maximal variance approximation is more sensitive to the right,
unbounded, tail of Scn, and this is at the expense of losing some accuracy in the left
tail of Scn.

This suggests that when choosing between the Taylor-based and maximal variance
approximation, the former one is often more appropriate in case of risk measures that
focus on the left tail of the distribution such as the CLTE whereas the latter is better
in case one focuses on the right tail of the distributions.

n Method σ = 0.15 σ = 0.25 σ = 0.35
ΛTB 17.80 9.35 5.22

20 ΛMV 17.82 9.48 5.51

Λ(p) 17.75 9.21 5.09

MC (±s.e)
17.73
(0.028)

9.16
(0.019)

4.94
(0.01)

Table 2: Approximations for the 0.05-conditional left tail expectation of the com-
pounded sum Scn for different volatilities (µ=0.075; yearly saving of 1). The figures
in brackets represent the standard error on the Monte Carlo results.

6 Application to the Pricing of Asian Options

In this section we will assess the accuracy of the different approximations for discrete
arithmetic Asian option prices. We refer to Dhaene et al (2002b) or Vanmaele et al
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(2006) for extensive reviews on how the prices of these instruments can be approxi-
mated using the theory on comonotonicity and convex ordering.

Consider a risky asset with a known price P (0) at time i = 0 and unknown prices
P (i) at times i = 1, 2, ..., n. A discrete Asian option with maturity n, strike K and
n− j averaging dates is a financial instrument that generates at maturity n a pay-off
that is equal to ( 1

n−j
∑n
i=j+1 P (i)−K)+. When averaging is carried out during the

entire period [0, n] at equidistant intermediate times i = 1, 2, ..., n, we find that the
pay-off can also be represented by

(
1
n
P (0)San −K

)
+
with San given by

San =
n∑

i=1

eY1+Y2+···+Yi
def
=

n∑

i=1

eZ
a
i , (87)

where the Zai (i = 1, 2, ..., n), are cumulative log-returns over the period [0, i] . Note
that San is a r.v. of the general type defined in (1). Furthermore, in the absence of
arbitrage opportunities and assuming a Black & Scholes market, the cost for an Asian
option with strike K will be denoted by CK and is given as

CK = e−rnE[(
1

n
P (0)San −K)+], (88)

with r the risk free rate. Here, E[Zai ], σ
2
Zai

and Cov[Zai , Z
a
j ] are given as

E[Zai ] = i(r −
σ2

2
),

σ2Zai
= i σ2. (89)

Cov[Zai , Z
a
j ] = Min(i, j)σ2. (90)

In fact, for arbitrage-free pricing purposes the expectation in (88) will be taken with
respect to the risk neutral measure, and in this case we will explicitly denote the
expectations operator by Er whereas the notation Eµ will be used when expecta-
tions are taken with respect to the initial (physical) probability measure; We refer
to e.g. Harrison & Kreps (1979) or Harrison & Pliska (1981) for extensive theory on
arbitrage-free pricing.

We will now assess the quality of the different lower bounds using the parameter
setting from Vanmaele et al (2006, p.29); see also Brückner (2007). The time-unit is
assumed to be one month, and averaging is done over the whole period taking into
account the monthly end prices of the underlying stock. Furthermore, the monthly
volatility σ is given by σ = 0.25√

12
whereas for the monthly risk free rate r we have

that r = 0.04
12 . In Table 3 we compare lower bound approximations for the prices

of Asian call options for different strike prices K. The other parameters are fixed
and are stated in the table. The last column, indicated by ΛGA, corresponds to
the case that the approximation is based on the conditioning r.v. Λ taken as the

standardised logarithm of the geometric average n

√√√√
n∏

i=1

eZi . The probability ‘p’ in the

CTEp-based approximation is determined as the root of Qp
[
(San)

l
]
= n K

P (0) . In line
with the previous results we find that the newly proposed CTEp-based approximation
will always outperform the other approximations, and we also find that the relative
increase in accuracy is quite significant for out-of-the money call options when the
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σ K MC(±s.e) Λ(p) ΛMV ΛTB ΛGA

0.25 50
50.0481
(0.0069)

50.0475 50.0472 50.0473 50.0473

80
24.7507
(0.0099)

24.7478 24.7443 24.7457 24.7461

90
17.9358
(0.0119)

17.9319 17.9298 17.9311 17.9314

100
12.4802
(0.0132)

12.4758 12.4754 12.4759 12.4759

110
8.3909
(0.0127)

8.3864 8.3864 8.3860 8.3857

150
1.3797
(0.0062)

1.3770 1.3736 1.3717 1.3711

180
0.3223
(0.0034)

0.3212 0.3182 0.3171 0.3168

200
0.1214
(0.0022)

0.1209 0.1189 0.1183 0.1181

Table 3: Different approximations for Asian call option prices for different strikes
K (σ=0.25; r=0.04; P(0)=100; T=3; n=36). The figures in brackets represent the
standard error on the Monte Carlo results.

strikeK is larger than the current stock price. Since we focus on the right tail, also the
maximal variance approximation will outperform the Taylor-based approximation.
We notice that the quality of the approximation that uses ΛGA as the conditioning
r.v. decreases as K increases.

We will now further investigate the case of an Asian option with strike K equal
to zero. More specifically, we will compare the zero-strike pay-off 1

nP (0)S
a
n with its

conditional expectation Eµ[
1
n
P (0)San | Λ] where Λ is taken to be equal to Zan. Note

that the expectation is taken with respect to the initial probability measure. We find
that Eµ[

1
n
P (0)San | Z

a
n] is given by

Eµ[
1

n
P (0)San | Z

a
n] =

n∑

i=1

1

n
e
1
2(1−

i
n)i σ

2+ i
n
Λ. (91)

It is important to note that the r.v. Eµ[
1
nP (0)S

a
n | Z

a
n] does not depend on µ. Its

arbitrage free price C is given by:

C = e−rnEr[Eµ[
1

n
P (0)San | Z

a
n]]

= e−rnEr[Er[
1

n
P (0)San | Z

a
n]] (92)

= e−rnEr[
1

n
P (0)San]

= C0 (93)

Although the price of the zero-strike payoff 1
n
P (0)San will coincide with its conditional

expectation Eµ[
1
n
P (0)San | Z

a
n] the latter is convex smaller, and will be preferred by

all risk averse decision makers. Note that the latter pay-off, as it only depends on the
final state value Zan of the underlying return process, is path independent whereas
the former pay-off depends on the intermediate states and is path-dependent.

19



The sub-optimality of path dependent structures was already discussed in Cox &
Leland (1982); see also Dybvig (1988). However, in this paper we present a short and
elegant proof regarding the sub-optimality for a particular choice of path dependent
pay-offs. We believe that these results can be generalised to other path dependent
structures and other asset return processes but this will be the topic of a subsequent
paper.

7 Concluding remarks

The stochastically discounted or compounded value of a series of cash flows is often
a key quantity in finance and actuarial science. Yet even for most realistic stochastic
return models, it is often difficult to obtain analytic expressions for the risk measures
involving these discounted sums. Following the works of Kaas et al. (2000), Dhaene
et al. (2002a, 2002b) and Vanduffel et al. (2005a) we show in this paper how to
improve the so-called convex lower bound approximations by suitably choosing the
conditioning variable Λ. It has already been documented in literature that choosing
this conditioning variable using either a Taylor-based or a maximal variance approx-
imation provides in some sense an overall goodness of fit. However, we can further
improve the approximations if we concentrate on a local neighborhood of the dis-
tribution function such as the lower or upper tails. In these instances, we find that
the approximations for various risk measures can be improved significantly if we use
conditioning variables on the basis of a first-order approximation of the conditional
tail expectation, if upper tails are concerned, and on a first-order approximation of
the conditional left tail expectation, if lower tails are concerned. We also present some
asymptotic results regarding the optimality of the approximations which show that
these do not perform arbitrarly bad in case p approaches 1 (or zero). We provide nu-
merical illustrations that show that the newly proposed CTEp-based approximation
usually provides better fits in the tail, and we briefly address the sub-optimality of
path dependent pay-offs in a restricted setting.
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