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Abstract

We investigate the influence of the dependence between random losses on
the shortfall and on the diversification benefit that arises from merging these
losses.
We prove that increasing the dependence between losses, expressed in terms
of correlation order, has an increasing effect on the shortfall, expressed in
terms of an appropriate integral stochastic order. Furthermore, increasing
the dependence between losses decreases the diversification benefit.
We also consider merging comonotonic losses and show that even in this
extreme case a non-negative diversification benefit will often arise.
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1 Introduction and motivation

Consider a market of insurance portfolios with respective random losses Xi,
i = 1, 2, . . . , n, defined on a common probability space (Ω,F , Pr). We assume
that allXi have a finite mean. In order to protect the policyholders and other
debtholders against insolvency, the regulatory authority will require each of
the portfolios i to operate above a minimal solvency capital requirement
ρ [Xi], which means that for each portfolio i, the available capital Ki has to
be larger than or equal to the prescribed minimal level ρ [Xi].

The minimal capital requirement ρ : Γ → R is assumed to be a risk
measure on some set Γ of real-valued random variables (r.v.’s) defined on
(Ω,F ,P ). The set Γ contains the random losses Xi, i = 1, 2, . . . , n. We
assume that X1, X2 ∈ Γ implies that X1 +X2 ∈ Γ, and also aX1 ∈ Γ for any
a > 0 and X1 + b ∈ Γ for any real b.

We will often impose properties such as law invariance, positive homo-
geneity, translation invariance and/or subadditivity to the capital require-

ment ρ [.]. These properties are defined hereafter. The notation
d
= is used to

denote ’equality in distribution’.

• Law invariance: for any X1, X2 ∈ Γ with X1
d
= X2, ρ[X1] = ρ[X2].

• Positive homogeneity: for any X ∈ Γ and a > 0, ρ [aX] = aρ [X] .

• Translation invariance: for any X ∈ Γ and b ∈ R, ρ [X + b] = ρ [X]+b.

• Subadditivity: for any X1, X2 ∈ Γ, ρ [X1 +X2] ≤ ρ [X1] + ρ [X2] .

The shortfall of portfolio i with loss Xi and available capital Ki is defined
as

(Xi −Ki)+ = max (Xi −Ki, 0) . (1)

The insurer of portfolio i will be able to fulfill his obligations provided Xi is
smaller than Ki, whereas in case Xi exceeds Ki, the policyholders will suffer
a loss Xi −Ki. Hence, (Xi −Ki)+ reflects the shortfall risk that is faced by
policyholders and possible other debtholders of portfolio i.

The shortfall of the market is defined by

n∑

i=1

(Xi −Ki)+. (2)
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This r.v. represents the random amount that the group of all policyholders
in the market may lose due to the insolvency of one or more portfolios.

Intuitively one expects that merging portfolios will decrease the market
shortfall because within a merged portfolio the shortfall of one of the units
may be compensated by the gains of the other(s). This decrease of the market
shortfall due to merging leads to a so-called diversification benefit.

In practice, merging portfolios may change management, business strat-
egy, cost structure, and so on, and may as such have an impact on the
distribution of the losses under consideration. In this paper however, we will
only focus on the ’pure’ diversification effect caused by pooling losses. This
means that we will assume that merging does not change the distribution
function of (X1, X2).

We will investigate how the dependency structure between X1 and X2

influences the market shortfall, the diversification benefit as well as the pref-
erences of the group of policyholders. Since the shortfall is random, we will
rely on stochastic orders to compare market shortfalls and diversification
benefits for different underlying dependency structures of the losses X1 and
X2.

In Section 2 we introduce the stochastic orders that we will use through-
out the paper. In Section 3 we define two kinds of diversification benefit
and summarize some of their properties. In Section 4 we compare market
shortfalls under different dependency structures in terms of appropriate in-
tegral stochastic orders. In Section 5, we investigate the effect of increasing
the dependence between X1 and X2 on the diversification benefit. Finally in
Section 6 we show that the expected diversification benefit is strictly posi-
tive under very general conditions, which hold even when the losses under
consideration are comonotonic.

2 Integral stochastic orders

2.1 Univariate integral stochastic orders

Consider a given class D of functions f : R → R. A r.v. X is said to be
smaller than the r.v. Y in the �D-sense if E[f(X)] ≤ E[f(Y )] holds for all
functions f in D for which the expectations exist.

Taking for D the class of non-decreasing functions yields the well-known
stochastic dominance �ST.
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In case D is set equal to the class of non-decreasing convex functions
yields the increasing convex order �ICX, also known as stop-loss order �SL

in the actuarial literature.
Choosing D equal to the class of the convex functions yields the convex

order �CX. This order can be seen as a strengthening of the stop-loss order
obtained by requiring in addition that the means of the r.v.’s to be compared
are equal.

The importance of the above mentioned orders becomes apparent when
relating them to theories for decision making under risk. For instance, it holds
in both the classical utility theory from ��� N����� & M�����
����

(1947) and Y����’s (1987) dual theory of choice under risk that X �ICX

Y reflects the preferences of all risk averse decision makers when choosing
between different losses X and Y . We refer to D����� �� ��. (1999, 2005)
for more details and background on integral stochastic orders in an actuarial
context.

2.2 Multivariate integral stochastic orders

The definition of multivariate integral stochastic orders is a direct extension
of the univariate case by considering classes D of functions Rn → R. In this
paper we will mainly consider the order between random couples with equal
marginals, generated by the class of bivariate supermodular functions.

Let ei denote the i-th n-dimensional unit vector. For x = (x1, · · · , xn)
and an arbitrary function f : Rn → R, we define ∆ε

if(x) = f(x+ε ei)−f(x).

Definition 1 A function f : Rn → R is said to be supermodular if

∆δ
i∆

ε
j f(x) ≥ 0

holds for all x ∈ Rn, 1 ≤ i < j ≤ n and all δ, ε > 0.

In case f : Rn → R is twice differentiable then f is supermodular if, and
only if,

∂2

∂xi∂xj
f (x) ≥ 0

holds for every x ∈ Rn and 1 ≤ i < j ≤ n.
The bivariate supermodular order coincides with the correlation order

which was introduced in the actuarial literature by D����� �� ��. (1996,
1997).
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Definition 2 (Correlation order) Consider the random couples (X1,X2)

and (Y1, Y2) with X1
d
= Y1 and X2

d
= Y2. Then (X1, X2) is said to be less

correlated than (Y1, Y2), notation (X1,X2) �CORR (Y1, Y2), if any of the fol-
lowing equivalent conditions holds true:

(i) Cov [f(X1), g(X2)] ≤ Cov [f(Y1), g(Y2)] holds for all non-decreasing
functions f : R→ R and g : R→ R for which the covariances exist;

(ii) Pr[X1 ≤ x1, X2 ≤ x2] ≤ Pr[Y1 ≤ x1, Y2 ≤ x2] holds for all x1, x2 ∈ R;

(iii) Pr[X1 > x1,X2 > x2] ≤ Pr[Y1 > x1, Y2 > x2] holds for all x1, x2 ∈ R;

(iv) E[f(X1, X2)] ≤ E[f(Y1, Y2)] holds for all supermodular functions f :
R
2 → R for which the expectations exist.

(v) E[f(X1, X2)] ≤ E[f(Y1, Y2)] holds for all twice differentiable functions
f : R2 → R satisfying ∂2

∂x1∂x2
f ≥ 0 and such that the expectations exist.

The intuitive meaning of a ranking with respect to �CORR is clear from
Definition 2. Indeed, Pr[X1 ≤ x1, X2 ≤ x2] reads as ‘X1 and X2 are both
small’, meaning that X1 is smaller than the threshold x1, whereas X2 is
smaller than the threshold x2. A similar interpretation can be given to
Pr[Y1 ≤ x1, Y2 ≤ x2]. Hence, X �CORR Y means that the probability that
Y1 and Y2 are both small is larger than the corresponding probability for X1

and X2. Similarly, X �CORR Y ensures that the probability that X1 and
X2 are both large is smaller than the corresponding probability for Y1 and
Y2. Hence, correlation order corresponds to the intuitive meaning of ‘(Y1, Y2)
being more positively dependent than (X1, X2)’.

In D����� & G�������
 (1996) the following expression is considered
for the stop-loss premiums of a sum of two random variables:

E
[
(X1 +X2 − d)+

]
= E [X1] + E [X2]− d+

∫ +∞

−∞

FX1,X2(x, d− x) dx, (3)

which holds for any real d. Combining (3) and Definition 2(ii) they find the
following implication:

(X1,X2) �CORR (Y1, Y2) ⇒ X1 +X2 �CX Y1 + Y2, (4)

which states that more correlated random couples lead to larger stop-loss
premiums for the corresponding sums.
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A straightforward generalization of correlation order to the n-dimensional
case is the supermodular order.

Definition 3 (Supermodular order) Let X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) be two n-dimensional random vectors. Then X is said to be
smaller than Y in the supermodular order, notation X �SM Y , if any of the
following equivalent conditions holds true:

(i) E[f(X)] ≤ E[f (Y ))] holds for all supermodular functions f : Rn → R

for which the expectations exist.

(ii) E[f(X)] ≤ E[f (Y ))] holds for all twice differentiable functions f :
R
n → R satisfying ∂2

∂xi∂xj
f ≥ 0 for every 1 ≤ i < j ≤ n and such that

the expectations exist.

If X �SM Y , then Xi
d
= Yi for i = 1, 2, . . . , n. Hence, only distributions

with the same marginals can be compared in the supermodular sense.
The implication (4) can be generalized to the supermodular order in the

following way: For all non-decreasing functions φi it holds that

X �SM Y ⇒
n∑

i=1

φi (Xi) �CX

n∑

i=1

φi (Yi) , (5)

see Müller (1997). Notice that from (5) one finds in particular that

X �SM Y ⇒ var

(
n∑

i=1

φi (Xi)

)

≤ var

(
n∑

i=1

φi (Yi)

)

, (6)

holds for all non-decreasing functions φi.
Taking into account that the indicator functions y �→ I

(
y ≤ x

)
and y �→

I
(
y > x

)
are supermodular for each fixed x, we immediately find that

X �SM Y ⇒ Pr [X ≤ x] ≤ Pr [Y ≤ x] for all x ∈ Rn

and
X �SM Y ⇒ Pr [X > x] ≤ Pr [Y > x] for all x ∈ Rn.

As a consequence of these implications, we find that

X �SM Y ⇒ (Xi, Xj) �CORR (Yi, Yj) for all i 
= j.
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Furthermore, if X �SM Y then Pearson’s, Kendall’s and Spearman’s corre-
lation coefficients are smaller for any pair (Xi, Xj) compared to the corre-
sponding pair (Yi, Yj) for any i 
= j, see e.g. Denuit et al. (2005). We can
conclude that the intuitive meaning of X �SM Y is that the components of
X and Y have the same marginal behavior, whereas the components of Y
are ’more positively dependent’ than those of X.

3 Diversification

We start this section by formalizing the notion of ‘diversification benefit’.

Definition 4 (Diversification benefit D (X,K)) Consider the vector of
random lossesX = (X1, X2, . . . , Xn) with respective capitalsK = (K1, K2, . . . , Kn).
The diversification benefit D (X,K) is defined as

D (X,K) =
n∑

i=1

(Xi −Ki)+ −

(
n∑

i=1

(Xi −Ki)

)

+

. (7)

Hence the random diversification benefitD (X,K) is equal to the decrease
in the market shortfall caused by merging the n portfoliosXi and adding their
respective available capitals Ki.

It is easy to prove that the following inequality holds:

(
n∑

i=1

(Xi −Ki)

)

+

≤
n∑

i=1

(Xi −Ki)+ . (8)

Here and in the remainder of the paper, a stochastic inequality X ≤ Y has
to be understood as X(ω) ≤ Y (ω) for all ω ∈ Ω. Such inequality implies a
(P -)almost sure inequality.

From (8) and Definition 4 we find that

D (X,K) ≥ 0, (9)

regardless of the dependency structure between X1 and X2. Inequality (9)
expresses that from the viewpoint of decreasing the market shortfall, and
hence of creating a diversification benefit, it is optimal to merge portfolios,
at least when capitals are added.
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Assume that the group of policyholders expresses its preferences in terms
of a (non-decreasing) utility function u and an initial wealth w. In this case,
inequality (8) implies

u

(

w −
n∑

i=1

(Xi −Ki)

)

≥ u

(

w −
n∑

i=1

(Xi −Ki)+

)

. (10)

Inequality (10) expresses that from the viewpoint of maximizing utility, the
group of policyholders always benefit from merging when adding the stand-
alone capitals.

In the next definition, we consider the diversification benefit that arises
when the required capitals ρ [Xi] are considered instead of the available cap-
itals Ki. In this case, after a merger between the Xi has taken place, the re-
quired capital for the merged portfolios is determined by ρ [

∑n
i=1Xi], which

will in general be different from
∑n

i=1 ρ [Xi]. The capital requirement ρ [.] may
be imposed by the regulator or required by the rating agency or by internal
policy.

Definition 5 (Diversification benefit Dρ (X)) Consider the vector of ran-
dom losses X = (X1,X2, . . . ,Xn) and a capital requirement ρ. The diversifi-
cation benefit Dρ (X) is defined as

Dρ (X) =
n∑

i=1

(Xi − ρ [Xi])+ −

(
n∑

i=1

Xi − ρ

[
n∑

i=1

Xi

])

+

. (11)

Hence the random diversification benefit Dρ (X) is the decrease in short-
fall caused by merging the portfolios Xi and replacing the required capitals
ρ [Xi] of the individual portfolios by the required capital ρ [

∑n
i=1Xi] of the

merged portfolio.
It is straightforward to prove that

ρ

[
n∑

i=1

Xi

]

≤
n∑

i=1

ρ [Xi] ⇒ Dρ (X) ≤ D (X, (ρ [X1] , ρ [X2] , . . . , ρ [Xn])) ,

(12)
Hence, for subadditive risk measures, the diversification benefit Dρ (X) is
never larger than the corresponding diversification benefit
D (X, (ρ [X1] , ρ [X2] , . . . , ρ [Xn])).
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From (9), we know that the diversification benefit D(X,K) when adding
the available capitals is non-negative. Let us now consider the diversifica-
tion benefit Dρ(X) where the required capital after the merger is given
by ρ [

∑n
i=1Xi]. In order to see why Dρ(X) ≥ 0 will not hold in general

consider the situation where two companies are merged and the new re-
quired capital ρ [X1 +X2] < ρ [X1] + ρ [X2]. Now suppose that the event
’X1 > ρ [X1] and X2 > ρ [X2]’ takes place, which means that on a stand-
alone basis (before merging) both companies default. Then also the event
’X1 + X2 > ρ [X1 +X2]’ is taking place, which means that merging the
stand-alone companies could not avoid bankruptcy. After the merger, the
shortfall for the policyholders is even higher than the shortfall in the stand-
alone situation, because upon merging some capital has been released, e.g.
reimbursed to the shareholders, rather than being used to compensate poli-
cyholders. We can conclude that when the capital requirement is such that
ρ [X1 +X2] < ρ [X1] + ρ [X2], then X1 > ρ [X1] and X2 > ρ [X2] imply
Dρ(X) < 0.

Even the weaker result E [Dρ(X)] ≥ 0 will not hold in general. This fact
is illustrated in the following example.

Example 6 (Dhaene et al. (2008a)) Consider the random couple (X1, X2)
where the Xi are both uniformly distributed on the unit interval (0, 1). The
r.v. X2 is defined by

X2 =

{
0.9U if 0 < X1 ≤ 0.9,
X1 if 0.9 < X1 < 1,

where U is uniformly distributed on (0, 1) and independent of X1.
One can prove that in this case

E [DTV aR0.85(X)] < 0, (13)

where TV aR0.85 stands for the Tail Value at Risk at level 0.85:

TV aR0.85 [Xi] =
1

1− 0.85

∫ 1

0.85

F−1Xi (q)dq,

and F−1X (q) is the quantile, or the Value at Risk at level q:

F−1X (q) = inf {x ∈ R | FX(x) ≥ q} , q ∈ [0, 1] (14)
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with inf ∅ = +∞ and sup ∅ = −∞ by convention. From (13) one can con-
clude that the subadditive TV aR0.85 risk measure is ’too subadditive’ in this
particular example.
For more details, we refer to D����� �� ��. (2008a). �

Recall that the distributions of the r.v.’s Xi, i = 1, 2, . . . , n, are said to
belong to the same location-scale family of distributions if there exists a r.v.
Z, as well as positive real constants ai and real constants bi such that the
relation

Xi
d
= ai Z + bi, (15)

holds for i = 1, 2, . . . , n. Without loss of generality, we will always assume
that E [Z] = 0 and Var [Z] = 1.

As an illustration of a location-scale family of distributions, consider the
random vector X = (X1, X2, . . . , Xn) with characteristic function given by

E
[
exp

(
itXT

)]
= exp

(
itµT

)
φ
(
tΣtT

)
, t = (t1, t2, . . . , tn) , (16)

for a given scalar function φ, an n-dimensional vector µ and where Σ is of the

form Σ = AAT for some 2×m matrix A. In this case, the random vector X
is said to be elliptically distributed with characteristic generator φ. Choos-
ing the characteristic generator equal to φ(u) = exp (−u/2) gives rise to the
multivariate normal distribution. The components Xi of the multivariate
elliptically distributed random vector X belong to the same location-scale
family of distributions. Also any linear combination of the Xi belongs to
the same location scale family of distributions. A standard reference for the
theory of elliptical distributions is F���, K��� & N� (1987). For applica-
tions of elliptical distributions in insurance and finance, see L���
��� &
V����� (2003), D����� �� ��. (2008b) and V����� �� �� (2008).

The following theorem, a proof of which can be found in D����� ��
��. (2008a), states that E [Dρ(X)] ≥ 0 holds for a broad class of capital
requirements ρ, in case X1, X2 and X1 + X2 belong to the same location-
scale family of distributions.

Theorem 7 (Diversification and location-scale families) For any law
invariant, translation invariant and positively homogeneous risk measure ρ
and any random vector X = (X1, X2, . . . ,Xn) such that X1, X2, . . . , Xn and
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X1 +X2 + . . .+Xn belong to the same location-scale family of distributions
and have finite variances, one has that

E [Dρ(X)] ≥ 0. (17)

It immediately follows that the theorem holds in particular for multivari-
ate elliptical random vectors and a Value-at-Risk capital requirement.

4 Correlation order and market shortfalls

In this section, we compare two markets (X1, X2) and (Y1, Y2) with equal
marginal distributions which are ordered in the correlation order sense. We
compare both markets before as well as after a merger has taken place. In-
tuitively we would expect that increasing the positive dependence between
the losses, expressed in terms of correlation order, will decrease the expected
utility of the risk averse group of policyholders. This result is expected to
hold before as well as after merging.

Theorem 8 (Correlation order and shortfalls) Consider two random cou-

ples X = (X1,X2) and Y = (Y1, Y2) with X1
d
= Y1 and X2

d
= Y2. Furthermore,

let K = (K1, K2).
Then X �CORR Y implies

2∑

i=1

(Xi −Ki)+ �CX

2∑

i=1

(Yi −Ki)+ (18)

and
(X1 +X2 −K1 −K2)+ �SL (Y1 + Y2 −K1 −K2)+ . (19)

Proof. (a) From Xi
d
= Yi we find that (Xi −Ki)+

d
= (Yi −Ki)+ for

i = 1, 2. Taking into account Definition 2(i) one finds that (X1,X2) �CORR

(Y1, Y2) implies that

(
(X1 −K1)+ , (X2 −K2)+

)
�CORR

(
(Y1 −K1)+ , (Y2 −K2)+

)
. (20)

The convex order relation (18) follows then from (4).
(b) The assumed correlation order between (X1, X2) and (Y1, Y2) implies
that X1 + X2 �CX Y1 + Y2. This convex order relation in turn implies that
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(X1 +X2 − d)+ �SL (Y1 + Y2 − d)+ for all real d. Choosing d = K1 + K2

leads to (19).

Equation (18) can be rewritten in terms of expected utilities as

E

[

u

(

w −
2∑

i=1

(Xi −Ki)+

)]

≥ E

[

u

(

w −
2∑

i=1

(Yi −Ki)+

)]

, (21)

which has to hold for all concave functions u, see e.g. D����� �� ��. (2005).
Hence, (18) can be interpreted as follows: In a market without merged risks,
the risk averse group of policyholders wanting to maximize their expected
utility will prefer the less correlated market (X1, X2).

Similarly, equation (19) can be rewritten as

E
[
u
(
w − (X1 +X2 −K1 −K2)+

)]
≥ E

[
u
(
w − (Y1 + Y2 −K1 −K2)+

)]
,

(22)
which has to hold for all non-decreasing concave functions u. Consequently,
also in merged markets where capital requirements are added, the group of
policyholders will prefer the less correlated couple (X1, X2). Both (21) and
(22) are in correspondence with intuition.

In (19) and (22), we considered the preferences of the group of pol-
icyholders after a merger when adding the available capitals Ki. Let us
now consider their preferences after a merger, taking into account the re-
quired capitals. In general, it will not hold that (X1, X2) �CORR (Y1, Y2)
implies that (X1 +X2 − ρ [X1 +X2])+ �SL (Y1 + Y2 − ρ [Y1 + Y2])+. This
means that there may exist situations where ρ is such that after the merger,
the more correlated couple is preferred.

However, in the following theorem, we show that this situation cannot
occur in case the r.v.’s involved belong to the same location-scale family of
distributions.

Theorem 9 (Location scale families, correlation order and shorfalls)
Assume that the capital requirement ρ is law invariant, translation invariant

and positively homogeneous. Furthermore assume that X1
d
= Y1 and X2

d
= Y2

and also that their sums X1 + X2 and Y1 + Y2 belong to the same location-
scale family of distributions and have finite variances. Then one has that
(X1, X2) �CORR (Y1, Y2) implies

(X1 +X2 − ρ [X1 +X2])+ �ST (Y1 + Y2 − ρ [Y1 + Y2])+ . (23)

11



Proof. We further write var[Xj] = σ2j , j = 1, 2, var[X1 +X2] = σ2X1+X2
and var[Y1 + Y2] = σ2Y1+Y2 . Then we immediately find that

(X1 +X2 − ρ [X1 +X2])+
d
= σX1+X2 (Z − ρ [Z])+

and
(Y1 + Y2 − ρ [Y1 + Y2])+

d
= σY1+Y2 (Z − ρ [Z])+ .

From (4) it follows immediately that

σX1+X2 ≤ σY1+Y2 .

Combining these results leads to (23).
The stochastic inequality (23) can be expressed as

E
[
u
(
w − (X1 +X2 − ρ [X1 +X2])+

)]
≥ E

[
u
(
w − (Y1 + Y2 − ρ [Y1 + Y2])+

)]

(24)
which has to hold for all non-decreasing functions u. Hence, under the con-
ditions of the theorem we find that in merged markets, where the merged
capital requirements are given by ρ [X1 +X2] and ρ [Y1 + Y2], respectively,
the group of policyholders always prefers the less correlated couple of port-
folios. This result is independent of whether or not ρ is subadditive. In
particular, it holds for a Value-at-Risk risk measure in a bivariate elliptical
market.

In this section, we have interpreted the integral order relations (18), (19)
and (23) that hold between shortfalls of random couples in terms of expected
utility theory. Similarly, we can interpret these results in terms of Yaari’s
dual theory of choice under risk.

In Theorems 8 and 9 we investigated implications of the correlation order
(X1, X2) �CORR (Y1, Y2) on the market shortfall. These results can be gen-
eralized in a straightforward way to implications of the supermodular order
X �SM Y . The proof of these generalizations is based essentially on (5) and
(6).

5 Correlation order and diversification

In this section, we investigate the relation between correlation order as de-
fined in Definition 2 and the diversification benefits as defined in Definitions
7 and 11, respectively. In the following theorem we prove that increasing the
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dependence between the components of a random couple with given mar-
ginals, in terms of correlation order, decreases the expected diversification
benefit from merging.

Theorem 10 (Increasing dependence ⇒ decreasing expected benefit)
Consider two couples of random losses X = (X1,X2) and Y = (Y1, Y2) with

X1
d
= Y1 and X2

d
= Y2. Furthermore, let K = (K1, K2). Then,

X �CORR Y ⇒ E[D(X,K)] ≥ E[D(Y ,K)]. (25)

Proof. From (4) we find that for all real d it holds that

E[(X1 +X2 − d)+] ≤ E[(Y1 + Y2 − d)+].

The result now follows from Definition 4.

The result in Theorem 10 is intuitive. This result cannot be readily
generalized to the diversification benefit for the minimal capital requirement
as defined in (11). This fact is illustrated in the following example.

Example 11 Consider the random couple X = (X1, X2) and the r.v. U
as defined in Example 6. Further, consider the comonotonic random couple
Y = (U,U).
It is straightforward to prove that

X �CORR Y ,

and also that E [DTV aR0.85(Y )] = 0. Furthermore, from Example 6, we know
that E [DTV aR0.85(X)] < 0. Hence, we have found that

E [DTV aR0.85(X)] < E [DTV aR0.85(Y )] ,

which might at first sight be counterintuitive because of the above-mentioned
correlation order. �

In the following Theorem, we show that under the assumption of location-
scale distributions, correlation order will imply the appropriate order of the
expected diversification benefits.
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Theorem 12 (Location scale families and diversification) Assume that
the capital requirement ρ is law invariant, translation invariant and pos-
itively homogeneous. Furthermore, consider two couples of random losses

X = (X1, X2) and Y = (Y1, Y2) with X1
d
= Y1 and X2

d
= Y2. Assume that

their sums X1 +X2 and Y1 + Y2 belong to the same location-scale family of
distributions and have finite variances. Then one has that

X �CORR Y ⇒ E[Dρ(X)] ≥ E[Dρ(Y )]. (26)

Proof. From Theorem 9 we have that

E
[
(X1 +X2 − ρ [X1 +X2])+

]
≤ E

[
(Y1 + Y2 − ρ [Y1 + Y2])+

]
.

The implication (26) follows then from X1
d
= Y1 and X2

d
= Y2 and Definition

11 .

Theorems 10 and 12 can be generalized in a straightforward way to the
supermodular order case. The proofs for the generalized versions are based
on (5) and on the generalization of Theorem 9 to the supermodular case.

6 Strictly positive expected diversification ben-

efits

In this section, we investigate conditions for the expected diversification ben-
efit to be strictly positive. Moreover, we investigate the validity of the belief
that merging comonotonic losses cannot lead to a diversification benefit.

For simplicity reasons, throughout this section we consider a random
couple X = (X1, X2) such that its marginal cdf’s FXi are strictly increasing
and continuous on

(
F−1+Xi

(0) , F−1Xi (1)
)
, where F−1Xi (p) is defined in (14) and

F−1+Xi
(p) is defined as

F−1+Xi
(p) = sup {x ∈ R | FX(x) ≤ p} , p ∈ [0, 1] , (27)

with inf ∅ = +∞ and sup ∅ = −∞ by convention.
Let K = (K1,K2), where Ki is the available capital for portfolio i. We

assume that
F−1+Xi

(0) < Ki < F
−1
Xi

(1) , i = 1, 2. (28)
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The symbol U will be used to denote a r.v. which is uniformly distributed
on the unit interval (0, 1).

The stochastic order inequalities

(
F−1X1 (U) , F−1X2 (1− U)

)
�CORR X �CORR

(
F−1X1 (U) , F−1X2 (U)

)
, (29)

allow us to conclude that in the class of all random couples with given mar-
ginal distributions, the extremal members with respect to correlation order
correspond to the famous Fréchet-Höffding bounds: the comonotonic couple(
F−1X1 (U), F−1X2 (U

)
is largest in correlation order sense, whereas the coun-

termonotonic couple
(
F−1X1 (U), F−1X2 (1− U)

)
is smallest in correlation order

sense. For more details, we refer to D����� �� ��. (1996) and W��� ��
��. (1998).

Combining Theorem 10 and the stochastic order inequalities (29) leads
to

0 ≤ E[D(F−1X1 (U) , F−1X2 (U) , K)]

≤ E[D(X,K)] ≤ E[D(F−1X1 (U) , F−1X2 (1− U) , K)]. (30)

This means that the expected diversification benefit for a random couple of
losses with given marginals is smallest when the copula connecting the mar-
ginals is the comonotonic copula and largest when it is the countermonotonic
copula. Notice that under the assumptions stated in Theorem 12, we find a
similar result for the expected diversification benefit E[Dρ(X)].

In K��
 �� ��. (2002) it is proven that

(
F−1X1 (U) + F−1X2 (U)−K1 −K2

)
+

=
2∑

i=1

(
F−1Xi (U)− F−1Xi (p∗)

)
+

≤
2∑

i=1

(
F−1Xi (U)−Ki

)
+
, (31)

where p∗ ∈ (0, 1) is given by

p∗ = FF−1
X1
(U)+F−1

X2
(U) (K1 +K2) . (32)

From (31) we find that the diversification benefit from merging the comonotonic

15



losses F−1X1 (U) and F−1X2 (U) is given by

D
(
F−1X1 (U), F−1X2 (U),K

)
=

2∑

i=1

(
F−1Xi (U)−Ki

)
+
−

2∑

i=1

(
F−1Xi (U)− F−1Xi (p∗)

)
+
≥ 0.

(33)
In the following theorem we consider a condition that ensures the expected

diversification benefit to be strictly positive.

Theorem 13 (Strictly positive expected diversification benefit) Consider
a random couple X = (X1, X2) with strictly increasing marginal cdf’s FXi
which are continuous on

(
F−1+Xi

(0) , F−1Xi (1)
)
. Further, let K = (K1, K2) be

such that F−1+Xi
(0) < Ki < F

−1
Xi

(1) for i = 1, 2.
In this case, the condition

FX1(K1) 
= FX2(K2) (34)

implies
E [D (X,K)] > 0. (35)

Proof. (a) From (32) and the additivity property of quantiles of a
comonotonic sum we find that

F−1X1 (p∗) + F−1X2 (p∗) = K1 +K2 (36)

with p∗ defined in (32).
Without loss of generality, let us assume that

FX1(K1) < FX2(K2). (37)

Next, we define p1 and p2 ∈ (0, 1) such that

Ki = F−1Xi (pi), i = 1, 2. (38)

The inequality (37) can then be rewritten as

p1 < p2. (39)

From (36) and (38) we find that

F−1X1 (p∗) + F−1X2 (p∗) = F−1X1 (p1) + F−1X2 (p2). (40)
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From (39), (40) and the strictly increasingness of the quantile functions
F−1Xi (q) it follows that

p1 < p
∗ < p2.

In case U is such that
p1 < U < p

∗ < p2,

we find from (33) that

D
(
F−1X1 (U), F−1X2 (U)

)
, K) = F−1X1 (U)− F−1X1 (p1) > 0.

Hence, Pr
[
D
(
F−1X1 (U), F−1X2 (U)

)
,K) > 0

]
≥ p∗ − p1 > 0.

Combining this result with the fact that D
(
F−1X1 (U), F−1X2 (U)

)
,K) ≥ 0 holds

for all outcomes of U , we can conclude that (35) holds for the comonotonic
couple X ≡

(
F−1X1 (U), F−1X2 (U

)
.

(b) Let us now consider a general random couple X for which the condition

(34) holds. As Xi
d
= F−1Xi (U), we can rewrite condition (34) as

FF−1
X1
(U)(K1) 
= FF−1

X2
(U)(K2).

From (a) we can conclude that E
[
D
(
F−1X1 (U), F−1X2 (U)

)
,K)

]
> 0. Combining

this result with (30) proves (35).
Theorem 13 states that merging any random couple of losses leads to a

strictly positive expected diversification benefit, in case the non-ruin prob-
abilities FX1(K1) and FX2(K2) are different. This result holds in particular
for comonotonic losses.

The condition (34) is equivalent to the condition that there exist not any
p in (0, 1) such that K =

(
F−1X1 (p), F−1X2 (p)

)
. Hence, the condition (34) says

that both capitals Ki do not have a VaRp representation for some fixed p in
(0, 1).

Notice that the condition (34) can never be satisfied in case X1
d
= X2 and

K1 = K2.
In the following theorem we consider the case that FX1(K1) = FX2(K2)

for a comonotonic couple of losses X.

Theorem 14 (Comonotonicity and zero-diversification) Consider a comonotonic
random couple X ≡

(
F−1X1 (U), F−1X2 (U)

)
with strictly increasing marginal cdf’s

FXi which are continuous on
(
F−1+Xi

(0) , F−1Xi (1)
)
. Further, let K = (K1,K2)
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such that F−1+Xi
(0) < Ki < F

−1
Xi

(1) for i = 1, 2.
In this case, the condition

FX1(K1) = FX2(K2) (41)

implies
D (X,K) = 0. (42)

Proof. The condition (41) is equivalent to the condition that there exist
a p in (0, 1) such that

K =
(
F−1X1 (p), F−1X2 (p)

)
(43)

From (36) and (43) we find that

F−1X1 (p∗) + F−1X2 (p∗) = F−1X1 (p) + F−1X2 (p).

The strictly increasingness of F−1X1 (q)+F−1X2 (q) implies p = p∗. The result (42)
follows then from (33).

The theorem states that, under the appropriate assumptions, in a market
consisting of comonotonic losses where a quantile risk measure is used to set
capitals, merging will never lead to a diversification benefit.

Theorem 15 (Location scale families and VaR) In addition to law in-
variance, assume that the risk measure ρ is translation invariant and posi-
tively homogeneous. Further, consider a location-scale family of distributions
generated by the (cdf of) the r.v. Z. Assume that FZ is strictly increasing
and continuous, and also that F−1+Z (0) < ρ [Z] < F−1Z (1).
For any r.v. X belonging to this location-scale family, one has that

ρ [X] = F−1X [FZ (ρ [Z])] . (44)

Proof. Define p ∈ (0, 1) such that

ρ [Z] = F−1Z (p), (45)

or, equivalently,
p = FZ (ρ [Z]) . (46)

For any r.v. X belonging to the location-scale family, there exist a positive
real constant a and a real constant b such that

X
d
= aZ + b.
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Hence, it holds that
F−1X (p) = a F−1Z (p) + b (47)

and also
ρ [X] = a ρ [Z] + b. (48)

Combining (45), (46), (47) and (48) we find that ρ [X] can be expressed as
(44).

We can conclude that any risk measure ρ satisfying the requirements of
Theorem 15 can be seen as a Value-at-Risk at a fixed level p, when restricted
to a location-scale family as described in the theorem. This conclusion holds
in particular for distortion risk measures applied to the components of a
multivariate elliptical distributed random vector.

Theorem 16 (Location scale families, comonotonicity and diversification)
In addition to law invariance let us assume that the risk measure ρ is transla-
tion invariant and positively homogeneous. Further, consider a location-scale
family of distributions generated by the (cdf of) the r.v. Z. Assume that FZ is
strictly increasing and continuous, and also that F−1+Z (0) < ρ [Z] < F−1Z (1).
For any comonotonic random couple X ≡

(
F−1X1 (U), F−1X2 (U)

)
of which the

Xi belong to the location-scale family generated by Z one has that

D (X, (ρ [X1] , ρ [X2])) = 0. (49)

Moreover, in case ρ is subadditive, one has that

Dρ (X) ≤ 0. (50)

Proof. From Theorem 15, we find that

(ρ [X1] , ρ [X2]) =
(
F−1X1 (p), F−1X2 (p)

)
, (51)

with p ∈ (0, 1) given by (46). Furthermore, the assumptions imposed on FZ
and ρ imply that the cdf’s FXi are strictly increasing and continuous on(
F−1+Xi

(0), F−1Xi (1)
)

and also that F−1+Xi
(0) < ρ [Xi] < F

−1
Xi

(1), i = 1, 2.
Applying Theorem 13 leads to (49).
The inequality (50) follows immediately from (12) and (49).

Theorem 16 holds in particular for distortion risk measures applied to the
class of elliptical r.v.’s. with a given characteristic generator.

We conclude this section with an example of merging two lognormal losses.
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Example 17 Consider the lognormal losses X1 and X2 with parameters µi
and σ2i , i = 1, 2, respectively. The capital risk measure ρ is given by the Tail
Value-at-Risk at level p ∈ (0, 1):

ρ [Xi] = TVaRp [Xi] =
1

1− p

∫ 1

p

F−1Xi (q) dq

= eµi+σ
2

i /2
Φ (σi − Φ−1 (p))

1− p
, i = 1, 2. (52)

Let the pi be defined by

F−1Xi (pi) = TVaRp [Xi] .

As
F−1Xi (pi) = eµi+σiΦ

−1(pi), (53)

we find that the pi are given by

pi = Φ

(
σi
2

+
1

σi
ln

(
Φ (σi − Φ−1 (p))

1− p

))
. (54)

In general, σ1 
= σ2 implies that p1 
= p2 which means that the capitals
TVaRp [Xi], i = 1, 2, do not correspond with a unique VaRp. From Theorem
13 we can conclude that E[D(X, (TVaRp [X1] ,TVaRp [X2]))] > 0. in this
case.
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