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ABSTRACT

Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) have studied convex bounds for a sum of dependent
random variables and applied these to sums of log-normal random variables. In particular, they have shown how
these convex bounds can be used to derive closed-form approximations for several of the risk measures of such a
sum. In this paper we investigate to which extent their general results on convex bounds can also be applied to
sums of log-elliptical random variables which incorporate sums of log-normals as a special case. Firstly, we show
that unlike the log-normal case, for general sums of log-ellipticals the convex lower bound does no longer result
in closed form approximations for the different risk measures. Secondly, we demonstrate how instead the weaker
stop-loss order can be used to derive such closed form approximations. We also present numerical examples to
show the accuracy of the proposed approximations.

Keywords: comonotonicity, bounds, elliptical distributions, log-elliptical distributions.

1 Introduction

Sums of non-independent random variables (r.v.’s) occur in several situations in insurance and finance.
As a first example, consider a portfolio of n insurance risks Xi, Xo,..., X,,. The aggregate claim amount S is
defined to be the sum of these individual risks:

S=> Xy, (1)
k=1

where generally the risks are non-negative r.v.’s, i.e. X; > 0. Knowledge of the distribution of this sum pro-
vides essential information for the insurance company and can be used as an input in the calculation of premiums
and reserves.

A particularly important problem is the determination of stop-loss premiums of S. Suppose that the insur-
ance company agrees to enter into a stop-loss reinsurance contract where total claims beyond a pre-specified
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amount d, called the retention, will be covered by the reinsurer. The stop-loss premium with retention d is then
defined as

E[(S—d),]= /d T T (@) da, @)
where Fig (z) =1 — Fs(z) = Pr(S > ) and (s —d), = max (s —d,0).

In classical risk theory, the individual risks X}, are typically assumed to be mutually independent, mainly because
computation of the aggregate claims becomes more tractable in this case. For special families of individual claim
distributions, one may determine the exact form of the distribution for the aggregate claims. Several exact and
approximate recursive methods have been proposed for computing the aggregate claims in the case of discrete
marginal distributions, see e.g. Dhaene & De Pril (1994) and Dhaene & Vandebroek (1995). Approximating the
aggregate claims distribution by a Normal distribution with the same first and second moment is often unsatis-
factory for the insurance practice, where the third central moment is often substantially different from 0. In this
case, approximations based on a translated Gamma distribution or the Normal power approximation will perform
better, see e.g. Kaas, Goovaerts, Dhaene & Denuit (2002b).

It is important to note that all standard actuarial methods mentioned above for determining the aggregate
claims distribution are only applicable in case the individual risks are assumed to be mutually independent. How-
ever, there are situations where the independence assumption is questionable, for instance in a situation where
the individual risks X}, are influenced by the same economic or physical environment.

In finance, a portfolio of n investment positions may be facing potential losses Li, Lo, ..., L, over a given ref-
erence period, e.g. one month or one year. The total potential loss L for this portfolio is then given by

n

L=> L. (3)

k=1

As the returns on the different investment positions will in general be non-independent, it is clear that L will be a
sum of non-independent r.v.’s. Quantities of interest are quantiles of the distribution of (3), which in finance are
called Values-at-Risk. Regulatory bodies require financial institutions like banks and investment firms to meet
risk-based capital requirements for their portfolio holdings. These requirements are often expressed in terms of
a Value-at-Risk or some other risk measure which depends on the distribution of the sum in (3). For a recent
account on risk measures as well as some discussion on their applicability in Insurance and Finance we refer to
Dhaene et al. (2006, 2008a), amongst others.

A related problem is determining an investment portfolio’s total rate of return. Suppose Ry, Ry, ..., R,, denote the
random yearly rates of return of n different assets in a portfolio and suppose w1, ws, ..., w, denote the weights in
the portfolio. Then the total portfolio’s yearly rate of return is given by

n
R= Z wi Ry, (4)
k=1
which is clearly a sum of non-independent r.v.’s.
The interplay between actuarial and financial risks is currently gaining increasing attention. To illustrate, con-
sider random payments of X} to be made at times k for the next n periods. Further, suppose that the stochastic
discount factor over the period (0, k) is the r.v. Yj. Hence, an amount of one unit at time 0 is assumed to grow

to a stochastic amount kal at time k. The present value r.v. S is defined as the scalar product of the payment
vector (X1, Xa,- -+, X,,) and the discount vector (Y7,Ya,...,Y,):

S=> X Y (5)
k=1

The present value quantity in (5) is of considerable importance for computing reserves and capital requirements
for long term insurance business. The r.v.’s X} Yi will be non-independent not only because in any realistic
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model, the discount factors will be rather strongly positive dependent, but also because the claim amounts X
can often not be assumed to be mutually independent.

As illustrated by the examples above, it is important to be able to determine the distribution function of sums of
r.v.’s in the case that the individual r.v.’s involved are not assumed to be mutually independent. In general, this
task is difficult to perform or even impossible because the dependency structure is unknown or too cumbersome
to work with. In this paper, we develop approximations for sums involving non-independent log-elliptical r.v.’s.
Dhaene et al. (2002a, 2002b) constructed so-called convex bounds for sums of general dependent r.v.’s and applied
them to log-normal distribution. In our article we investigate if their results can be extended to sums of general
log-elliptical distributions. Firstly, we prove that unlike the log-normal case the construction of a convex lower
bound in explicit form appears to be out of reach for general sums of log-elliptical risks. Secondly, we show how
we can construct stop-loss bounds and we use these to construct mean preserving explicit approximations for
general sums of log-elliptical distributions in explicit form.

The remainder of the paper is structured as follows. In Sections 2 and 3, we introduce elliptical, spherical
and log-elliptical distributions, as in Fang et al. (1990). In order for the paper to be self-contained for the
convenience of the reader, we repeat some results from literature that will be used in later sections. In Section
4, we summarise the ideas developed in Dhaene et al. (2002a, 2002b) regarding the construction of convex upper
and lower bounds for sums of non-independent r.v.’s which were successfully applied to sums of log-normals. In
Section 5 we study these bounds for sums of log-ellipticals and we show that the convex lower bound cannot
be obtained explicitly. In Section 6 we propose new approximations that are based on stop-loss ordering and
that allow closed form calculations. In Section 7 we numerically illustrate the accuracy of these approximations.
Finally, Section 8 concludes the paper.

2 Elliptical and Spherical Distributions

2.1 Definition of elliptical distributions

Tt is well-known that a random vector Y = (Y7, ..., Yn)T is said to have a n-dimensional normal distribution if
its characteristic function is given by
E [exp (it"Y)] = exp (it" p) exp (—3t"St), th = (t1,tg, ... tn). (6)

for some fixed vector pu(n x 1) and some fixed matrix 3(n x n).
Equivalently, one can say that Y is multivariate normal if

Y L+ AZ, (7)

where Z = (74, ..., Zm)T is a random vector consisting of m mutually independent standard normal r.v.’s; A is a

n X m matrix, g is a n X 1 vector and 2 stands for “equality in distribution”.

For random vectors belonging to the class of multivariate normal distributions with parameters g and X, we will
use the notation Y ~N,, (i, X). Tt is well-known that the vector p is the mean vector and that the matrix 3 is
the variance-covariance matrix. Note that the relation between 3 and A is given by & = AA” .

The class of multivariate elliptical distributions is a natural extension of the class of multivariate normal dis-
tributions.

DEFINITION 2.1 (MULTIVARIATE ELLIPTICAL DISTRIBUTION). The random vector Y = (Y1, ...,Yn)T is said
to have an elliptical distribution with parameters the vector p(n x 1) and the matriz X(n x n) if its characteristic
function can be expressed as

Elexp (it"Y)] = exp (it"p) ¢ (t75t),  tT = (ti,t2,. . t0), (8)
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for some scalar function ¢ and where X is given by
T =AA" (9)
for some matriz A(n x m).

If Y has the elliptical distribution as defined above, we shall write Y ~FE,, (u, 3, ¢) and say that Y is elliptical.
The function ¢ is called the characteristic generator of Y.
It is well-known that the characteristic function of a random vector always exists and that there is a one-to-one
correspondence between distribution functions and characteristic functions. Note however that not every function
¢ can be used to construct a characteristic function of an elliptical distribution. Obviously, this function ¢ should
fulfil the requirement ¢ (0) = 1. A necessary and sufficient condition for the function ¢ to be a characteristic
generator of an n-dimensional elliptical distribution is given in Theorem 2.2 of Fang et al. (1990).

In the remainder of the paper, we shall denote the elements of p and 3 by

1 :(Nla"'7ﬂn)T (10)

and
Y =(og) for k,l=1,2,...,n, (11)

respectively. Note that (9) guarantees that the matrix X is symmetric, positive semidefinite and has non-negative
elements on the first diagonal. Hence, for any k and [, one has that oy = o, whereas oy > 0 which will often
be denoted by o3.

It is also known that any n-dimensional random vector Y = (Y7, ...,Yn)T is multivariate normal with param-
eters p and X if and only if for any vector b(n x 1), the linear combination b?Y of the different marginals
Y) has a univariate normal distribution with parameters b’ and variance bTSb. From (8) it follows easily
that this characterisation for multivariate normality can be extended to the class of general multivariate ellip-
tical distributions. Then, the n-dimensional random vector Y is elliptical with parameters g and 3, notation
Y ~E, (1, X, ¢), if and only if for any vector b(n x 1), one has that

bTY ~E, (bT,u, bTSb, ¢) : (12)

Invoking (8) again we also find that for any matrix B (m x n), any vector ¢ (m x 1) and any random vector
Y ~ E, (1,3, ) that

BY +c~ E,, (Bu—i—c,BEBT, ¢), (13)

see also Theorem 2.16 in Fang et al. (1990). Hence, any random vector with components that are linear
combinations of the components of a multivariate elliptical distribution is again an elliptical distribution with the
same characteristic generator. In particular it holds for k = 1,2, ..., n,

Yy ~ By (0%, ) - (14)

The marginal components of a multivariate elliptical distribution have an elliptical distribution with the same

characteristic generator.
As

S=>Yi=e"Y, (15)
k=1

where e(n x 1) =(1,1,...,1)”, it also follows that

S~ F (eTu,eTEe, gi)) (16)
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T n T n n
where " p =3 |y, and e Xe =3 > Ow-

Finally, Kelker (1970) proved the interesting result that any multivariate elliptical distribution with mutually
independent components must necessarily be multivariate normal, see also Theorem 4.11 in Fang et al. (1990).
Moments and densities of elliptical distributions, together with some member of this class, are provided in the
Appendix.

2.2 Spherical distributions

An n-dimensional random vector Z = (Zq, ..., Zn)T is said to have a multivariate standard normal distribution
if all the Z;’s are mutually independent and standard normally distributed. We will write this as Z ~ N, (0,,,1,,),
where 0,, is the n-vector with i-th element E(Z;) = 0 and I,, is the n X n covariance matrix which equals the
identity matrix. The characteristic function of Z is given by

Elexp (it"Z)] =exp (—3t"t),  tT =(ti,ta, ... tn). (17)

The class of multivariate spherical distributions is an extension of the class of standard multivariate normal
distributions.

DEFINITION 2.2 (SPHERICAL DISTRIBUTIONS). A random vector Z = (Zy,..., Zn)" is said to have an n-
dimensional spherical distribution with characteristic generator ¢ if Z ~ E,, (0,,1,,,6).

We will often use the notation Sy, (¢) for E,, (0,,1,,,¢) in the case of spherical distributions. From the definition
above, we find as a corollary that Z ~ S, (¢) if and only if

Elexp (it"Z)] = ¢ (t7t),  t7 = (t1,ta,...,ta). (18)
Consider an m-dimensional random vector Y such that
YL u+AzZ, (19)

for some vector p(n x 1), some matrix A(n x m) and some m-dimensional elliptical random vector Z ~ S,, (¢).
Then it is straightforward to prove that Y ~ FE, (u,3,4), where the variance-covariance matrix is given by
¥ =AA".

From equation (18) it immediately follows that, if they exist, the correlation matrices of members of the class of
spherical distributions are identical. That is, if we denote by Corr (Z) = (r;;) the correlation matrix, then

___Cov(Zi,Z) _{ 0, ifi#j
VVar (Z;) Var (Z;) L ifi=y

Tij )

provided that for all ¢ and j the covariances Cov(Z;, Z;) exist.

The factor —2¢’ (0) in the covariance matrix as shown in (91) enters into the covariance structure but cancels in
the correlation matrix. Note that although the correlations between different components are 0, this does not
imply that these components are mutually independent. This can only be true if the spherical vector belongs to
the family of multivariate normal distributions.

From the characteristic functions of Z and a”Z, one immediately finds that Z ~ S, (¢) if and only if for any
n-dimensional vector a, one has

~S1 (¢).- (20)
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As a special case we find that any component Z; of Z has a S (¢) distribution.

From the results concerning elliptical distributions we find that if a spherical random vector Z ~ S, (¢) has
a density fz (z), then it will have the form

fz (z) =cg (sz) , (21)

where the density generator g satisfies the condition (96) and the normalising constant ¢ satisfies (97). Further-
more, the opposite also holds: any non-negative function g (-) satisfying the condition (96) can be used to define
an n-dimensional density cg (sz) of a spherical distribution with the normalising constant ¢ satisfying (97). One
often writes S, (¢g) for the n-dimensional spherical distribution generated from the density generator g (-).

2.3 Conditional distributions

It is well-known that if (Y, A) has a bivariate normal distribution with o4 > 0 and oy > 0, then the conditional
distribution of Y, given that A = A, is normal with mean and variance given by

E(YA=X)=EY)+r(V,0) 2 A E(a)] (22)
oA
and

Var (YA =)\) = (1—r(1/,A)2) o2, (23)

where r (Y, A) is the correlation coefficient between Y and A:

Y, A
rv, Ay = G (24)
VVar (Y)Var (A)

In the following theorem it is stated that this conditioning result can be generalised to the class of bivariate
elliptical distributions. This result will be useful in Section 4 where convex bounds for sums of dependent r.v.’s
will be derived.

THEOREM 2.1 (CONDITIONAL ELLIPTICAL DISTRIBUTION). (See Fang et al. (1990), Theorem 2.18)

Let the random vector Y = (Y1, ...,Yn)T ~ E, (p, X, ¢) with density generator denoted by g, (-). Define Y and
A to be linear combinations of the variates of Y, i.e. Y =a’Y and A = ,BTY, for some o = (a1, a9, ..., ap),
BT = (81,89, -.-,8,), and op > 0, oy > 0 Then, we have that (Y, A) has an elliptical distribution:

(Y;A) ~ By (N(Y7A)7 DICINE ¢) (25)
where the respective parameters are given by
T
My a
= = s 26
Pva) ( L ) ( 8T ) (26)

o2 r(Y,A)ovoa \ _ a’Sa oa'Ep o7
r(Y,A)oyop o3 “\aTEg BTes ) (27)

Furthermore, conditionally given A = A, the r.v. Y has a univariate elliptical distribution:

v

VA=A~ By (4 (00 2 0 ), (1P () o ) (28)

where the density generator g=(-) is given by
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with a = (A — py)? /o3

If we denote by ¢ the characteristic generator of Y |[A = A, then we find from Theorem 2.1 that the charac-
teristic function of Y |A = A can be expressed as

E (eap (iVt)[A = A) = exp (i pryjay ) 0" (031an £2) (30)
where oy
Pyja=x = by +7 (Y, A) o (A= 11a) 5 (31)
and )
af/‘A:/\ = (1 —r(Y,A) ) 0%, (32)

Note that (29) and (30) can then be used to determine ¢“ but unfortunately it is often too difficult to derive ¢*
or g% explicitly. An important exception is when Y~N,, (i, X) in which case we easily find that

g (w) = 6" (w) = exp(— ). (33)

which reflects the well-known fact that for multivariate normal distributions also the conditional distributions
will be normally distributed.

3 Log-Elliptical Distributions

Multivariate log-elliptical distributions are natural generalisations of multivariate log-normal distributions.
For any n-dimensional vector x = (21, ... ,xn)T with positive components x;, we define

logx = (log 1, log x2, ...,loga:n)T

Recall that an n-dimensional random vector X has a multivariate log-normal distribution if log X has a multi-
variate normal distribution. In this case we have that logX ~ N, (i, X).

DEFINITION 3.1 (MULTIVARIATE LOG-ELLIPTICAL DISTRIBUTION). The random vector X is said to have a
multivariate log-elliptical distribution with parameters p and 3 if log X has an elliptical distribution:

logX ~ E, (/J/v 3, ¢) : (34)

In the remainder of the paper we shall denote log X ~ E,, (i, X, ¢) as X ~ LE,, (1,2, ¢) . When g = 0,, and
3 =1, we shall write X ~ LS, (¢). Clearly, f Y ~ E,, (u, X, ¢) and X = exp (Y), then X ~ LE,, (i, X, ¢).

If the density of Y = logX ~ E, (u,3,¢) exists, then the density of X ~ LE, (u, X, ¢) also exists. From
(95), it follows that the density of X must be equal to

fx (x) = \/% <k1f[1 xk1> g {(logx — H)T ! (logx — u)} , (35)

see Fang et al. (1990). The density of the multivariate log-normal distribution with parameters g and X follows
from (100) and (35). Furthermore, any marginal distribution of a log-elliptical distribution is again log-elliptical.
This immediately follows from the properties of elliptical distributions.
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THEOREM 3.1 (SOME PROPERTIES FOR LOG-ELLIPTICAL DISTRIBUTIONS). Let X ~ LE, (u,3,¢). If the
mean of Xy exists, then it is given by
B (Xy) = exp (uy) ¢ (—0%) - (36)

Provided the covariances exist, they are given by

Cov (X, X1) = exp (1 + ) {$(— (0% + 07 +20)) — ¢ (—0}) & (~07) } - (37)

Proof. Define the vector a; = (0,0, ...,0,1,0, ...,O)T to consist of all zero entries, except for the k-th entry
which is 1. Thus, for k =1, 2,...,n, we have

E(Xy) = E(exp(Vy)) = E (exp(ayY)) = ¢ary (i)

= exp (agu) 0] (—agEak)

= exp () ¢ (—0})
and the result for the mean immediately follows. For the covariance, first define the vector by; = (0,0, ...,1,0,...0,1
to consist of all zero entries, except for the k-th and I-th entries which are each 1. Note that vy =E(XX;) —E(X)
where

E(XkX;) = E(exp(blY))= P71y (—1)
= exp (bklﬂ) (— klzbkl)

exp (puy, + ) (= (03 + of + 2041))

and the result should now be obvious. O

Note that for the different means and covariances of X ~ LE, (u,¥,¢) to exist it will be required that
the characteristic generator ¢(u), which is defined on [0, 00), can be positively extended to intervals of the type
[—d,00) for some § > 0 sufficiently large but this is no clear cut case in all instances. For example, from (109)
we see that, since the modified Bessel function of the third kind is only defined on the positive interval, the
characteristic generator for a Student-¢ distribution is not extendable to the negative interval at all. Some risk
measures for log-elliptical distributions are derived in the next theorem.

THEOREM 3.2 (RISK MEASURES FOR LOG-ELLIPTICAL DISTRIBUTIONS). Let X ~ LE; (u,az,qb) and Z ~
St (¢) with density fz(x) and survival function Sz (x). Then we find that

Fx'(p) =exp(p+oF;'(p), 0<p<l, (38)

Moreover, if E[X] and ¢ (702) > 0 are well defined then we also find that

E[X -d).] = emwp(n)o(-02) Sz (‘Elr) —asy (=), d>o,
E[X|X>Fi'(p)] = efp_(g)¢ (—0%) Sz (S;*(1-p)), 0<p<1, (39)
where the density of Z* is given by
o @) = L220E10%) ((Z )(6_5652()033)~ (40)

Proof. (1) The quantiles of X follow immediately from log X 4 uw+oZ.
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logx —

, and substituting = by t = , we find that

() Using o) = 2 f (“E2H)

& logd —
/ zfx(z)dr = exp (u) @ (—02) Sz« (gaﬂ> ,
d
where Sz« refers to the survival function of Z*. The stated result then follows from

w—logd
—Q )

E[(X—d),] :/dooxfx(x) da;—dFZ(

(3) The expression for the tail conditional expectation follows from

E[X|X > Fg'(p)] = Fx'(p) + ﬁE [(X - Fgl(p))+] .

Note that the density of Z* in the theorem above can be interpreted as the Esscher transform with parameter
o of Z. Furthermore, note that the expression for the quantiles holds for any one-dimensional elliptical distri-
bution, whereas the expressions for the stop-loss premiums and tail conditional expectations were only derived
for continuous elliptical distributions under some suitable restrictions. We also have that if g is the normalised
density generator of Z ~ S (¢), then

4 Convex Order Bounds for Sums of Random Variables

This section describes convex bounds for (the distribution function of) sums of r.v.’s as presented in Dhaene et
al. (2002a, 2002b). We first introduce some well-known actuarial ordering concepts which are essential ingredients
for developing the bounds.

4.1 Actuarial Orderings

In the remainder of the paper we assume all r.v.’s to have a finite mean. In this case, we find

oo 0
E(X):/O Fx (ac)dac—/_ Fx (z)dzx. (41)

and also that the stop-loss premium E[(X — d)_ ] can be written as:

E[(X—-d),] = /d TPy (2) da, (42)

which can be interpreted as a measure for the weight of the upper-tail of the distribution for X from d on. In
actuarial science, it is common to replace a r.v. by another one which is “less attractive”, hence “more save”, and
with a simpler structure so that the distribution function is easier to determine. The notion of “less attractive”
can be translated in terms of stop-loss and convex orders, as defined below.

DEFINITION 4.1 (STOP-LOSS ORDER). A r.v. X is said to precede another r.v. Y in stop-loss order, written
as X 2q Y, if
E[(X—-d), | <E[(Y —d),], foralld. (43)
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It can be proven that
X=2aY e Ep(X)]<Ep(Y)], (44)

holds for all increasing convex functions v(z), which also explains why stop-loss order is also called increasing
convex order, denoted by =<;... If in addition the r.v.’s X and Y have equal means we obtain the convex order.

DEFINITION 4.2 (CONVEX ORDER). A r.w. X is said to precede another r.v. Y in convex order, written as
X=2aY, f X=24Y and E(X)=E(Y).

It can be proven that
XZuY @ EpX)]<EpY) (45)

for all convex functions v(x). The convex ordering reflects the common preferences of all risk adverse decision
makers when choosing between r.v.’s with equal mean. This holds in both the classical utility theory from von
Neuman & Morgenstern as in Yaari’s dual theory for decision making under risk; see for instance Denuit et al.
(1999) for more details.

4.2 Comonotonicity

Consider an n-dimensional random vector X = (X7, ...,Xn)T with multivariate distribution function given
by Fx (x) = Pr(X; < a1,...,X, <), for any x = (a1, -- ,a:n)T. It is well-known that this multivariate
distribution function satisfies the so called Fréchet bounds:

max <Z Fy (zg) —(n— 1),0) < Fx (x) < min (FX1 (x1),-  Fy, (zn)),

k=1

see Hoeffding (1940) or Fréchet (1951).

DEFINITION 4.3 (COMONOTONICITY). A random vector X is said to be comonotonic if its joint distribution
is given by the Fréchet upper bound, i.e.,

Fx (x) =min (Fy (21),---, Fy, (2,)).

1T X

Alternative characterisations of comonotonicity of a random vector are given in the following theorem, the
proof of which can be found in Dhaene et al. (2002a).

THEOREM 4.1 (CHARACTERISATION OF COMONOTONICITY). Suppose X is an n-dimensional random vector.
Then the following statements are equivalent:

1. X is comonotonic.

2. X 2 (F)zl1 ), ... ng (U)) for U ~ Uniform(0,1) where F);kl () denotes the quantile function defined by
Fil(g)=inf{z e R|Fx () >¢},0<q<1.
3. There exists a r.v. Z and non-decreasing functions hy, ..., hy, such that

X L(hi(Z), . hn (2)).
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In the sequel, we shall use the superscript ¢ to denote comonotonicity of a random vector. Hence, the vector
X¢ = (X{,...,X5) is a comonotonic random vector with the same marginals as the vector (X7, ..., X,,). The former
vector is called the comonotonic counterpart of the latter.

Consider the comonotonic random sum
SC=X{+---+X,. (46)

In Dhaene et al. (2002a), it is proven that each quantile of S¢ is equal to the sum of the corresponding quantiles
of the marginals involved:

Fgl(g) =) Fxl(a), 0<g<1 (47)
k=1

Furthermore, they showed that in case all marginal distributions Fx, are strictly increasing, the stop-loss premi-
ums of a comonotonic sum S¢ can easily be computed from the stop-loss premiums of the marginals:

E[(5°—d),]=> E[(Xx—di),], (48)

k=1

n

where the dji’s are determined by
dp = F_' (Fse (d)). (49)

%
This result can be extended to the case of marginal distributions that are not necessarily strictly increasing, see
Dhaene et al. (2002a).

4.3 Convex Order Bounds

In this subsection, we present convex upper and lower bounds for the sum
S=X1+-- -+ X,. (50)
Proofs for these bounds can be found in Kaas, Dhaene and Goovaerts (2000) or Dhaene et al. (2002a).

It can be shown that
S <ew 8¢, (51)

which implies that S€¢ is indeed a convex order upper bound for S.

Let us now suppose that we have additional information available about the dependency structure of X, in
the sense that there is some r.v. A with a known distribution function and such that we also know the distri-

butions of the r.v.’s X |A = X for all outcomes A\ of A and for all k = 1,...,n. Let F;;‘A(U) be a notation for

the r.v. fi(U,A), where the function fj is defined by fi(u,\) = FJ;:\A:/\(U)' Now, consider the random vector
Xt = (X¥ ..., X")" | where X} is given by
X =Fyl, (U). (52)
The improved upper bound (corresponding to A) of the sum S is then defined as
SY=X{"+---+ X (53)

Notice that the random vectors X¢ and X" have the same marginals. It can be proven that

S <cz S <cz ch (54)
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which means that the sum S is indeed an improved upper bound (in the sense of convex order) for the original
sum S. For the prove please refer to Dhaene et al. (2002a).

Finally, consider the random vector X! = (X{, . XfL)T, where X,lC is given by
XL =E(Xg|A). (55)
Using Jensen’s inequality, it is straightforward to prove that the sum
St=X{ 4+ + X}, (56)

is a convex order lower bound for S:
St <., S. (57)

For the proof we refer to Dhaene et al. (2002a).

5 Convex Order Bounds for log-Elliptical Sums

In this section we develop convex lower and upper bounds for sums involving log-elliptical r.v.’s. It generalises
the results for the log-normal case as obtained in Kaas, Dhaene & Goovaerts (2000). Consider a series of
deterministic non-negative payments aq, ..., &y, that are due at times 1, ..., n respectively. The present value r.v.
S is defined by

SzZaiexp[—(Y1+~-+Yi)], (58)
i=1
where the r.v. Y; represents the continuously compounded rate of return over the period (i — 1,4),i=1,2,...,n.

Furthermore, define Y (i) = Y7 + - - - + Y}, the sum of the first 7 elements of the random vector Y = (Y71, ..., Yn)T,
and X; = exp[-Y (7)]. Using these notations, we can write the present value r.v. in (58) as

§=as eon (Y (i) = in. (59)

We will assume that the return vector Y = (Y7, ..., Yn)T belongs to the class of multivariate elliptical distri-
butions, i.e. Y ~ E,, (u, X, ¢), with parameters g and 3 given by

w= (g, ...,,un)T7 Y =(ok) for k,l=1,2,....n. (60)

Thus, the random vector X = (Xi,..., X,,)” is a log-elliptical random vector. From (16), we find that Y (i) ~
By (p(q), 0% (i), ¢) with

p(i) = D e (61)
k=1

zz:zz:dkl. (62)

k=11=1

Q
[ V)
—
BN
~

Il

In order to develop lower and improved upper bounds for S, we define the conditioning r.v. A as a linear
combination of the r.v.’s Y;, i =1,2,....n:
n
= ea
i=1
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Using the property of elliptical distributions described in (12), we know that A ~ E; (,u AT (;5) where

Ba = Z Vil (63)
i=1

and .
oy = Z YiVj0ij- (64)
i,.=1

Note that if the mean and variance of A exist, then they are given by E(A) = u, and Var (A) = —2¢' (0) o3,

respectively.

THEOREM 5.1 (CONVEX BOUNDS). Let S be the present value sum as defined in (58), with a;, i =1,...,n,
non-negative real numbers and Y ~ E,, (i, X, ¢). Let the conditioning r.v. A be defined by

A:ﬁi%n, (65)
i=1

and let r; denote the correlation between Y; and A. Then the comonotonic upper bound S€ is given by

Za exp [—p (i) + o (i) F, (U)], (66)

where U is a uniformly distributed r.v. on (0,1) and Z ~ Sy (¢).
Furthermore, provided all E(X;) and ¢* (—o? (i) (1 —r?)) > 0 are well defined, we find that the convez lower
bound S* will be given by

Zazezp [ —r; o(i) m o (702 (4) (1 - 7'12)) , (67)

oA

Proof. From
X (i) £ azeap (—p(i) — 0(i)2),

and because the quantile of a comonotonic sum is the sum of the component quantiles, we find that

qu Zaew () +oF;'\0), 0<p<l,

Hence, the comonotonic upper bound S¢ of S is given by (66).

In order to derive the lower bound S!, we first determine the characteristic function of the bivariate random
vector (Y (i), A) for i =1,...,n. For any 2-vector (t1,t2)", we find
E [eap (i (1Y (1) + t2A))] = E [exp (is7Y)]

with
o — ty+tef, k=1,...,4,
P 2B ck=i+1,...,n

AsY ~ E, (u, X, ¢), this leads to
Elexp (i (1Y (i) + t2A)] = exp(is"p) - ¢ (s"Ts)
= exp (itTu*) 0 (tTZ*t)
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with
woo= ().’
% (i)

. *

s <0’ 0112)
- * 2
021 OA

019 =051 =1i0(i)oA.

and

Hence, we can conclude that the bivariate random vector (Y (i), A) is elliptical:
(Y (i), M) ~ By (n", 5%, 6).
Thus, from Theorem (2.1), we know that (Y (I)|A = \) ~ E4 (uy(i)lA , U%(i)m 7 ¢a) with

o (i)

py @ = E Y @) A= A) = p(i)+r o (A= pa) (68)

and
oy @y = Var (Y (i) [A=X) =0 (i) (1—77). (69)

Consequently, using the moment generating function of an elliptical distribution and the results in Section 2.5 we
have that

E(agexp (=Y (1)) [A=X) = a;E(exp(=Y (i) |[A=X) = a;My@)a (=1)

a;erp (*My(i)m) ot (7‘7%’(1'”/\) ‘

Hence, we find that a lower bound for the present value random sum in (58) can be written as S! = X! 4.+ X!
with

X{ = E(aexp (=Y (i)[A)
— aveap (u (i) = 110 (3) AUA“A) L8 (=02 () (1= 12)).
(70)
Note that 242 ~ Sy (¢) O
The quantile of S° is defined as:
QS = En% azexp (p(i) + o()® ' (p)), O0<p<l, (71)

While expression (67) for the convex lower bound is elegant it needs to be observed that it involves the charac-
teristic generator ¢“, function of a, that is dependent on the unknown parameter A. For example, in case of the
multivariate normal family we find from (33) that (67) can be expressed in closed-form as

St = Zaiemp(—y (1) + %(72 (i) (1 —7r7) —r; o (4) M) (72)
i=1

OA

Apart from the multivariate normal family we are not aware of another multivariate elliptical distribution where
¢% can be readily obtained, and this limits the practical applicability of the convex lower bound for general sums
of log-elliptical risks. This is the reason why we will proceed with developing other approximations.
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6 Closed-Form Approximations for log-Elliptical Sums

6.1 Approximations based on stop-loss order

As mentioned in the previous section, ¢* cannot be readily obtained, and this limits the practical applicability
of the convex lower bound. This is the reason why in this section we will present approximations that allow
closed-form calculations.

THEOREM 6.1. Using the notation introduced above let us consider the r.v.
SSL =5 azexp (E[-Y (i) | A]). We find that SST is given by:

SL _ ) (i) — 7 ; A
S —izzlalexp( w(i) —r; o(i) _- ), (73)
and
S5l <., S (74)
Furthermore, we also define a r.v. S given by
B_N~, . 00t@) o A
s f;az S o7 () P () =i o i) =58, (75)

where it is tacitly assumed that ¢ (702 (Z)) erists and also that ¢ (702 (Z)) > 0 for all i, and we find that

E[SP) = B[S (76)
Finally, let us also consider the r.v. SYN given by
LN - N ] 2y 2 N A=y
SN =N aseap(—p (i) + 5 - (1=17) - 0*(0)] =1y 0 () —2). (77)
i=1 2 A
Then, in case Y ~ N (u,X) we have that
§B = gIN — gt (78)

Proof. Since
o (i)

B @IA=2)=u@+nZt

()‘ - MA) ) (79)
we immediately find that

gSL _ Zaiexp (E(-Y (i)|A)) = Zaiexp(_ﬂ(i) AQ)

[A = E(A)]). (80)
oA

Moreover, since the exponential function is convex we find from (44) that S°% <; S.

Furthermore, we also find easily that

E[S] =) aexp (EYi]) (0 (1)), (81)
i=1
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and

E[S%] = Z azexp (E[Y;]) o(—rZo? (i), (82)
from which it follows that E[SZ] =E[S].

Finally, when Y ~ N (u,X) we find from (33) that

A —ng (=20, (59)

and hence SP = SN = §! will follow immediately in this case. O

The quantiles of the S, STV and S5 are given by

Zaz l p(p (i) =i 0 (i) Fz'(p)), (84)
(D))"

o(SENY = Za exp(p ; (1 =12)-0%G) =1 0 (i) F; () - (85)

p(S57) = Zalea:p ) =i 0 (i) Fy ' (p)), (86)

where F, !(p) is the p—quantile of the spherical distribution Z ~ S; (¢)

In the remainder of the paper we will say that approximations for the risk measures of S that are based on the r.v.
5S¢ and S! are “convex upper bound approximations” and “convex lower bound approximations”, respectively. The
approximations based on S will be called “stop-loss lower bound approximations”. Finally, when using S? and
SN we will use the term “mean preserving approximations” and “normal based approximations”, respectively.
Note that apart from the fact that in the multivariate normal case SV coincides with the convex lower bound
5!, there is no other compelling theoretical reason that supports it use.

6.2 Optimal choice of A

In case of approximations based on the r.v. S' = E(S|A), Kaas et al. (2000) have proposed to take the
conditioning r.v. A as

A= Z aexp (E[-Y (1)) Y (i), (87)

Indeed, this choice makes A a linear transformation of a first-order approximation of the sum S so that S! =
E(S|A) = S. This follows from:

S = Z aexp (E[-Y ()])exp (=Y () + E[Y (4)])) = C + Z aexp (E[-Y (D)) Y (4), (88)

i=1

where C' is some appropriate constant.

We note that the reasoning to support the choice (87) for A, initially developed in a log-normal context, is
also valid in a log-elliptical world. Furthermore, since it holds as a first approximation that S! is equal to S°%,
we will suggest the choice (87) also for the approximations based on %%, SB and SVV. For a detailed account
on how to choose A appropriately in a log-normal context, we refer to Vanduffel et al. (2004) and Vanduffel et
al. (2008).
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7 Numerical Illustrations

In order to compare the performance of the different approximations presented above, we will consider a r.v.
S which is defined as the random present value of a series of n deterministic unit payment obligations due at
times 1,2, ..., n respectively:

n n
S = exp(—(Y1+Ya+... +Y5)) défZexp(Zi).

i=1 i=1
where (Y1,...,Y,) ~ E, (@, 3, ¢), the r.v. Y; is the random return over the year [i—1,¢] and exp (—(Y1 + Yo + ... + ¥7))
is the random discount factor over the period [0,4]. Let us assume that the yearly returns Y; are identically dis-
tributed and uncorrelated with mean (u — %2) and variance o2. We will compute provisions set up at time 0 and
determined as @, (), for some sufficiently high probability value, such that future unit payments can be met.
A provision equal to Q.95(5), for instance, will guarantee that all payments can be made with a probability of

0.95, see also Vanduffel, Dhaene, Goovaerts & Kaas (2003) for a similar problem setting .

We will use Monte Carlo simulation results as the benchmark and these are based on generating 500.000
random paths. The tables show the results obtained by Monte Carlo simulation (MC') for Qp.95(S) as well as
the deviation of the different approximation methods relative to these Monte Carlo results. These deviations are
defined as:

Qp(smethod) _ QP(SMC)
Qp ( SMC )
where §™¢thod corresponds to the approximated results using one of the approximations methods based on S,

SSL 8B or SN The numbers displayed in bold represent the best approximation result, i.e. when there is the
smallest deviation from the simulated result.

-100%

For many years, empirical literature in finance has been discussing which distribution is most suitable to model
stochastic rate of returns. It is well-known that short term returns (daily, weekly, monthly) are sharply peaked
and heavy tailed (Rama Cont. (2001), Doyne Farmer.(1999)) and cannot be described by Gaussian distributions.
In literature many parametric models for modelling short-term returns have been proposed, including stable
distributions (Mandelbrot (1963)), the Student-t distribution (Blattberg (1974)) and hyperbolic distributions
(Eberlein (1998)) amongst others. Some empirical studies indicate that as soon as the periodicity of the returns is
longer than 1 year the assumption of a Gaussian model for the returns are appropriate (Cesari & Cremoni (2003),
McNeil(2005)). However, several authors claim that even when the conditions for the Central Limit Theorem
hold, the convergence in the tails may be very slow (Bradley and Tagqu (2003), and the hypothesis of a normal
model may then be valid in the central part of the return distribution only. Hence, we will suggest Student-t and
Laplace distributions as suitable alternatives for the classical Gaussian framework to model the returns. We refer
to Kotz et al. (2004) and Kotz et al. (2000) for algorithms that allow an efficient simulation for a Student-¢ and
Laplace distribution respectively.

Method c=0,05]0=0,15[ 0= 0,25
S¢ 3.26% 7.77% 9.82%
ST (=88 =8N) | 0,00% -0,25% 0,31%
SSL -0,26% -2,77% -6,97%
MC(£s.e.) 12,194 20,506 41,409
(0.04%) | (0.10%) | (0.25%)
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Table 1: Approximations for the 0.95-quantile of S for different volatilities in case of normally distributed
logreturns. (p = 0.075; 20 yearly payments of 1). The table show the results obtained by Monte Carlo simulation
(MC) as well as the deviation of the different approximation methods relative to these Monte Carlo results. The
figure between brackets represents the standard error on the Monte-Carlo result.

Method c=0,05] 0c=0,15[ 0 = 0,25
Se 3.38% 7.88% 8.18%
St N.A. N.A. N.A.
ST -0.31% -3.15% -9.08%
SB N.A. N.A. N.A.
SN -0.05% | -0.63% | -1.92%
MC(£s.e.) | 12.311 21.229 44.846
(0.8%) | (0.11%) | (0.26%)

Table 2: Approximations for the 0.95-quantile of S for different volatilities in case of Student—t¢ distributed
logreturns with 20 degrees of freedom (p = 0.075; 20 yearly payments of 1). The table show the results obtained
by Monte Carlo simulation (M C') as well as the deviation of the different approximation methods relative to these
Monte Carlo results. The figure between brackets represents the standard error on the Monte-Carlo result.

Method c=0.05 | 0=0.15| 0 = 0.25
S¢ 8.73% 25.89% 43.61%
St N.A. N.A. N.A.
S -0.40% -4.45% -11.18%
SB -0.14% -1.60% 1.31%
SIN -0.15% -1.98% -3.35%
MC(xs.e.) 12.187 20.734 42.862
0.8%) | (0.14%) | (0.25%)

Table 3: Approximations for the 0.95-quantile of S for different volatilities in case of Laplace-distributed
logreturns (u = 0.075; 20 yearly payments of 1). The table show the results obtained by Monte Carlo simulation
(MC) as well as the deviation of the different approximatin methods relative to these Monte Carlo results. The
figure between brackets represents the standard error on the Monte-Carlo result.

In Table 1 we compare different lower bound approximations for the 95% quantiles of S for different levels
of the yearly volatility where the returns are log-normally distributed. The comonotonic upper bound performs
reasonably in this case but the approximations based on S!, which coincide with the ones based on SB and STV,
turn out to fit the quantile the best for all values of the parameters o.

Table 2 compares the approximations for 95% quantile when the logreturns are t-distributed with 20 degrees
of freedom. Note that for the Student-¢ distribution the characteristic generator is not available and consequently
the moment matching approximation based on S? is out of reach. It is interesting to observe that the (naive)
approximation based on STV seems to outperform the other methods.

Next in Table 3 we see that in case of Laplace distributed logreturns the approximations based on S? outperform
the other approximations.
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Method p=0995 | p=099  p=095 | p=090 | p=0.75 | p=0.50 | p=0.25
Se 13.42% 11.97% 7.81% 5.50% 1.87% -2.31% -6.35%
ST (=88 =8I [ -0.79% -0.56% | -0.22% | -0.17% 0.02% -0.03% | -0.01%
SSL -3.96% -2.73% -0.26% 0.53% 1.30% 0.85% -0.67%
MC(%s.¢.) 29.7787 26.8748 20.4991 17.8418 14.2264 11.2057 8.9218
(0.15%) (0.12%) (0.10%) (0.06%) (0.05%) (0.01%) (0.04%)

Table 4: Approximations for some selected quantiles of S in case of normally distributed returns (o = 0.15;
1 = 0.075; 20 yearly payments of 1). The table show the results obtained by Monte Carlo simulation (MC) as
well as the deviation of the different approximation methods relative to these Monte Carlo results. The figure
between brackets represents the standard error on the Monte-Carlo result.

Method p=0995 | p=099 [p=095 | p=090 | p=0.75 | p=0.50 | p=0.25

S¢ 13.61% 12.08% 7.88% 5.57% 1.83% -2.38% -6.64%
S5L -4.89% -4.28% -3.15% -2.84% -2.48% -2.38% -2.49%
SLN -2.26% -1.68% -0.63% -0.37% -0.1% -0.099% | -0.24%

MC(xs.e.) 33.7305 29.4721 21.2288 18.1762 14.3077 11.2136 8.9053
0.23%) | (0.20%) | (0.11%) | (0.11%) | (0.07%) | (0.062%) | (0.67%)

Table 5: Approximations for some selected quantiles of S in case of t-distributed logreturns (df = 20, ¢ = 0.15;
1 = 0.075; yearly payments of 1; n=20). The table show the results obtained by Monte Carlo simulation (MC)
as well as the deviation of the different approximation methods relative to these Monte Carlo results. The figure
between brackets represents the standard error on the Monte-Carlo result.

Method p=0995 | p=099 | p=095 | p=0.90 | p=0.75|p =0.50 | p=0.25

se 12,19% 10,21% 6,26% 3,90% 1,11% -1,19% -4.87%
SST -8,28% -1.72% -4.27% -3,22% -2,07% -1,17% -1,82%
SB -5,26% -4,76% -1,42% -0,44% 0,63% 1,45% 0,69%

MC(Es.c) | 41,4289 33,6582 20,695 17,0119 | 132745 | 11,0764 | 9,4446
(0.48%) (0.29%) | (0.14%) | (0.01%) | (0.06%) | (0.02%) | (0.05%)

Table 6: Approximations for some selected quantiles of S in case of Laplace distributed logreturns (o = 0.15;
@ = 0.075; 20 yearly payments of 1). The table show the results obtained by Monte Carlo simulation (MC) as
well as the deviation of the different approximation methods relative to these Monte Carlo results. The figure
between brackets represents the standard error on the Monte-Carlo result.

Tables 4, 5 and 6 compare the different approximations for some selected quantiles of S, with a fixed volatility
o = 0.15 and parameter p = 0.075, for normal, Student-t, and Laplace distributed logreturns respectively. We
observe that in case of normal or Laplace distributed logreturns the mean-preserving approximations based on
SB outperform the other approximations almost always. When the logreturns are t-distributed, we observe from
Table 6 that the approximation based on SV appears to produce the most accurate results.

8 Concluding Remarks

In this paper we first focus on developing upper and lower convex order bounds for the distribution function
of a sum of non-independent log-elliptical r.v.’s. We have extended results of Dhaene, Denuit, Kaas, Goovaerts
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& Vyncke (2002a, 2002b), who constructed general bounds for sums of dependent r.v.’s and applied these in the
lognormal case.

The extension to the class of elliptical distributions makes sense because it makes the ideas developed in Kaas,
Dhaene & Goovaerts (2000) also applicable in situations where the shape of log-normal distributions is not fitted,
but heavier tailed distributions such as Student-t are required. As multivariate log-elliptical distributions share
many of the tractable properties of multivariate log-normal distributions, it is not surprising to find that the
bounds developed for the log-elliptical case are very similar in form to those developed for the log-normal case.
The convex upper bound is based on the sum of comonotonic r.v.’s while convex lower and improved upper
bounds can be constructed from conditioning on some additional available random variable. We have shown that
unfortunately the convex lower bound can not be obtained in explicit form in general.

Finally we show how the weaker stop-loss order can be used to develop more explicit approximations and
we propose three new approximations. We also numerically show that these newly proposed approximations are
useful to to measure satisfactorily the risk of discounted or compounded sums in case the stochastic returns are
elliptically distributed.
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APPENDIX

A Moments of elliptical distributions

Suppose that for a random vector Y, the expectation E([],_, Y;/*) exists for some set of non-negative integers

71,T9,...,Tn. Then this expectation can be found from the relation
n 1 87"1+7"2+--~+7"n
E Y7F | = - { - —E [exp (itTY } (89)
(1173 ) = e (i Elomwl )

where 0 (n x 1) =(0,0, ..., O)T.

The moments of Y ~FE,(u, X, ¢) do not necessarily exist. However, from (8) and (89) we deduce that if E (Y})

exists, then it will be given by
E(Yy) = (90)

so that E(Y) = p, if the mean vector exists. Moreover, if Cov (Y%,Y;) and/or Var (Yy) exist, then they will be
given by
Cov (Yk, Yl) = —2¢)/ (0) Okl (91)

and/or
Var (Yy) = —2¢' (0) o2, (92)

where ¢ denotes the first derivative of the characteristic generator. In short, if the covariance matrix of Y exists,
then it is given by
Cov (Y) = —2¢' (0) Z. (93)

A necessary condition for this covariance matrix to exist is
|6 (0)] < oo, (94)

see Cambanis et al. (1981).

B Multivariate densities of elliptical distributions

An elliptically distributed random vector Y ~FE,, (u, 3,¢) does not necessarily possess a multivariate density
function fy (y). A necessary condition for Y to possess a density is that rank (¥) = n. For elliptical distributions,
one can prove that if Y ~F,,(u, X,¢) has a density, then it will be of the form

)= =gy -w" 5" (v - ) (95)

N

for some non-negative function g satisfying the condition

0< /0 227 g(2)dz < 0o (96)
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and a normalising constant ¢ given by
-1

_ (/2 [ /0 ” Zn/ﬂg(z)dz} . (97)

n/2
Also, the opposite statement holds: Any non-negative function g satisfying the condition (96) can be used to define
\/%9 [(y —mw) = (y - u)] of an elliptical distribution, with ¢ given by (97). The

function g is called the density generator. One sometimes writes Y ~E,, (u, X,g) for the n-dimensional elliptical
distributions generated from the function g. A detailed proof of these results, using spherical transformations of
rectangular coordinates, can be found in Landsman & Valdez (2003).

an n-dimensional density

Note that for a given characteristic generator ¢, the density generator g and/or the normalising constant ¢
may depend on the dimension of the random vector Y. Often one considers the class of elliptical distributions
of dimensions 1,2, 3, ..., all derived from the same characteristic generator ¢. In case these distributions have a
density, we will denote their respective density generators and normalising coefficients by g, and ¢, respectively,
where the subscript n denotes the dimension of the random vector Y.

In the following example we consider in more detail multivariate normal distributions which are the best known
subclass of elliptical distributions.

EXAMPLE B.1 (MULTIVARIATE NORMAL DISTRIBUTION). The n-dimensional random vector Y has the mul-
tivariate normal distribution with parameters p and 3, notation Y ~N,, (u, X), if its characteristic function is
given by

E [exp (@'tTY)] = exp (itTu) exp (—%tTEt) . (98)
From (8) we see that Ny, (pn,X) has an elliptical distribution with characteristic generator ¢ given by
t
o(1) = exp(~1). (99)
Since ¢'(0) = —3 the matriz  in (98) is the covariance matriz of Y.

In case X is positive definite, the random vector Y ~N,, (u, X) has a density which is given by
1 T -1
K@) = e [y - = v - )] (100)
(2m)> VIZ|

Comparing (95) and (100) we find that the density generator g, and the normalising constant ¢, of Ny (pu,X)
are given by

U
gn(u) = exp(—§), (101)
and )
Cn = — (102)
(2m)>
respectively.

Next, we study multivariate Student—t distributions.

EXAMPLE B.2 (MULTIVARIATE STUDENT-T DISTRIBUTION). let us consider the elliptical Student-t distribu-
—(n+m)/2
tion B, (@, X,95) , where the density generator g, () is given by gy, (u) = (1 + g)
m

this multivariate distribution (with m degrees of freedom) by ¢lm) (u, X). Its multivariate density is given by

—(n+m)/2
e -3 (y—n

. We will also denote
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In order to determine the normalising constant, first note from (97) that
o n+m -1
(n/2) [/ 2 (14 %) (/2 Z}
O m

L(n/2) [/OOO z"/Q_lg(z)dz} o

ﬂ-n/Q

Cn = ﬂ-n/Q
Performing the substitution u = 1+ (z/m), we find
o0 —(n+m)/2 o0 -
/ 221 (1 ) dz = m"/z/ (1 )n/Q Lumm/21gy,
0 m 1
Making one more substitution v =1 —u~"!, we get
/oo - (1 N i) (n+m)/ _ nel (n/2)T (m/2)
0 m I'((n+m)/2)’
(104)

_ Tn+m)/2)
(mm)""* T (m/2)

from which we find
Furthermore, the marginals of the multivariate elliptical Student-t distribution are again Student-t distributions
k=1,2,...n, (105)

)

‘|—(m+1)/2

L‘H) 1
Ok

_ (%
 (mm)' 2T () ok
(106)

fYk (y) m
which is indeed the well-known density of a univariate Student-t random variable with m degrees of freedom. Its

hence, Y}, ~ tgm) (pn,X). The results above lead to
[ 1 (y - Mk)

(107)

mean 1S
m 2

whereas it can be verified that its variance is given by
Var (Yy) = ——o3,
( k) m—2 F
2¢ ( ), where ¢ is the characteristic generator of the

provided the degrees of freedom m > 2. Note that
dz

family of Student-t distributions with m degrees of freedom. In order to derive the characteristic function of Yy,
0o —(m+1)/2
exp (iogtz) (1 + 22>
m

note that
; — ( ) exp (1
E (exp (itYy)) (ZI) p( ﬂkt)[
( z - (”L(’ﬂn/z / cos (t2) (mof +22) " dz (108)

Hence, from Gradshteyn & Ryzhik (2000, p. 907), we find that the characteristic function of Yy ~ ¢l (n, %)
) . 1 m
E (exp (itYy)) = exp (iu,t) m (tvmoy) /2 Koo (tv/moy) (109)
2

given by
where K, () is the Bessel function of the second kind. For a similar derivation, see Witkovsky (2001). Observe
that equation (109) can then be used to find the characteristic generator for the family of Student-t distributions

v\’ )
Next, we consider multivariate Laplace distributions which provide another subclass of elliptical distributions
The random vectorY is said to have a Multivariate

EXAMPLE B.3 (MULTIVARIATE LAPLACE DISTRIBUTION)
Laplace density with parameters p and positive definite variance-covariance matrix 3 if the density has the form
2 T «—— v/2 1 T
m[é(yu) Y 1(.Vﬂu)] Kv<2\/2(yu) Sy -m) |- (110)

fY( ) (27_‘_)%
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Here, v = (2 —n)/2, while K,(u) is the modified Bessel function of the 3" kind, see also Abramovich & Stegun
(1965, p. 376). We write Y ~Lay, (1, X) . Furthermore, comparing (95) and (110) we find that Y is elliptically
distributed with density generator g, and normalising constant c,, given by

() =2 (g)”/2 K,(V2u), u>0 (111)

and 1
Cn = . 112
@) (112)

Kyjs(r) = \/Zexp(x), x>0 (113)

and we obtain the Laplace (or double exponential) density:

N3

When n = 1 we have that

fx(z) =

\/150 exp(—\/§|$;“|). (114)

The characteristic function of Y ~La, (u, %) is given by
1
E [exp (it"Y)] = exp (it" ) (14 5t"3¢) 7, (115)

which implies that the characteristic generator ¢ is given by

_ 1
T

(t) (116)

Note that since ¢'(0) = —3 the matriz X in (110) is indeed a covariance matriz.

We remark that some actuarial applications of elliptical distributions are considered in Landsman & Valdez
(2003) and Dhaene et al (2008b).



