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Abstract

Investment guarantees in life insurance business have generated a lot of re-
search recently due to the earlier mispricing of such products. These guar-
antees generally take the form of exotic options and are therefore difficult
to price analytically, even in a simplified setting. A possible solution to the
risk management problem of investment guarantees contingent on death and
survival is proposed through the use of a conditional lower bound approxi-
mation of the corresponding embedded option value. The derivation of the
conditional lower bound approximation is outlined in the case of regular pre-
miums with asset-based charges and the implementation is illustrated in a
Black-Scholes-Merton setting. The derived conditional lower bound approx-
imation also facilitates verifying economic scenario generator based pricing
and valuation, as well as sensitivity measures for hedging solutions.
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Abstract

Investment guarantees in life insurance business have generated a
lot of research recently due to the earlier mispricing of such products.
These guarantees generally take the form of exotic options and are
therefore difficult to price analytically, even in a simplified setting.
A possible solution to the risk management problem of investment
guarantees contingent on death and survival is proposed through the
use of a conditional lower bound approximation of the corresponding
embedded option value. The derivation of the conditional lower bound
approximation is outlined in the case of regular premiums with asset-
based charges and the implementation is illustrated in a Black-Scholes-
Merton setting. The derived conditional lower bound approximation
also facilitates verifying economic scenario generator based pricing and

valuation, as well as sensitivity measures for hedging solutions.



1 Introduction

Life insurers have traditionally concerned themselves with mainly mortal-
ity risk, which is a diversifiable risk if the insurer is able to aggregate a
large number of independent insured lives. The risks inherent to investment
guarantees, however, are largely dependent and require an approach to fair
pricing of these guarantees and a hedging programme to effectively transfer
investment risk to third parties or market. According to Hardy (2003), the
three main aspects of risk management relates to the price, the amount of

capital to hold and how to invest the capital.

Initial attempts at pricing investment guarantees were mainly of a sta-
tistical real-world approach. Significant improvements in the field of finance
with the papers by Black and Scholes (1973) and Merton (1973) led to at-
tempts to combine the fields of actuarial science and finance. Of the first
substantial attempts were the publications by Boyle and Schwartz (1977),
Brennan and Schwartz (1977) and Brennan and Schwartz (1979). The last
mentioned authors not only considered fair pricing of both single and re-
curring premium structures in a Black-Scholes-Merton framework, but also
looked at a possible delta hedging strategy and the sensitivities of the hedging

strategy to model parameters.

The martingale approach to risk-neutral pricing by Harrison and Kreps
(1979) and Harrison and Pliska (1981) further facilitated the adoption of
modern finance techniques by the actuarial profession. The standard Black-
Scholes-Merton framework under the martingale approach was applied to

minimum guarantees at death and maturity by, among others, Delbaen (1986)
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and Aase and Persson (1994). The complexity in benefits as well as in the
assumptions underlying the approaches considered in literature have grown
substantially. Bacinello and Ortu (1993a) considered endogenous minimium
guarantees, i.e. minimum guarantees that depend functionally on the pre-
mium of the policies. Bacinello and Ortu (1993b), Nielsen and Sandmann
(1995) and Nielsen and Sandmann (1996) extended existing results to in-
clude stochastic interest rate risk. Boyle and Hardy (1997) considered a
Value at Risk (VaR) methodology and a dynamic replicating portfolio ap-
proach. Mgller (1998) considered risk-minimising strategies set in a Black-
Scholes-Merton framework and Mgller (2001) proposed a more pragmatic

risk-minimising strategy in a discrete Cox-Ross-Rubinstein framework.

The policyholder contributions are usually solved for under fair value
principles. We assume that the policyholder contributions are exogenously
given, which is largely the case in practice. The payment of regular pre-
miums results in the payoff being dependent on the underlying asset price
throughout the duration of the contract and leads to an analogy with path-
dependent Asian options. Upper and lower bounds in terms of double inte-
grals for approximately valuing Asian options have been developed by Rogers
and Shi (1995) and Thompson (1999). The application of stochastic bounds
to financial products in actuarial science was introduced mainly by Simon
et al. (2000), Dhaene et al. (2002a,b), Nielsen and Sandmann (2003) and
Shrager and Pelsser (2004). The last mentioned authors use a change of
numeraire technique to derive a general pricing formula in the case of sto-

chastic interest rates in the lognormal case for rate of return guarantees in



regular premium business. Hiirlimann (2008) considers GMDB and GMAB
guarantees in regular premium unit-linked (UL) business in the lognormal
case with a two-factor fund diffusion process, consisting of a one-factor fund
price and a one-factor stochastic interest rate model with deterministic bond
price volatilities. The author considers the call-type option representation
of the guaranteed benefit and determined bounds for the premium payable
by the policyholder. In variable annuity (VA) and UL business, the contri-
bution is typically specified by the policyholder, although rider risk benefits
are mostly charged for explicitly through risk premiums before investment
of the contribution. The investment guarantee charges are levied from the
policyholder’s underlying fund in the form of asset-based charges, i.e. the
charges are expressed as a percentage of the value of the underlying fund or

sub-account.

In the following, we derive the conditional lower bound approximation
for the value of different types of embedded option and the asset-based in-
vestment guarantee charge for these options. We consider regular premium
VA business and investment guarantee rider benefits that are contingent on
death and survival, i.e. the GMDB and GMAB investment guarantee types.
We further show how the conditional lower bound approximation can be used
to validate sensitivity measures, the so-called greeks, for hedging. We assume
a Black-Scholes-Merton setting throughout, although it is important to note
that the conditional lower bound is a versatile approach and can be deter-
mined in a model dependent or model independent case. An example of the

model independent case is the recent paper by Chen et al. (2008) in which the



authors investigate static super-replicating strategies for European-type call
options written on a weighted sum of asset prices. For complex models or in
some model independent cases, the conditional lower bound might result in
an approximation that is not analytically tractable. In such cases and where

a point estimate suffices, numeric solutions can be used.

Investment guarantee offerings pose several challenges to insurance firms.
The guarantees of individual policies are largely dependent, although the
diversification benefit arising from the various underlying fund choices offsets
the dependency to some extent. Insurers will fund the initial cost of setting
up a hedging portfolio or reserving requirement at inception by recouping
the cost over the policy term through asset-based charges. This income at
risk poses an additional cost in the price of the guarantee. Finally, the
embedded options of investment guarantees take the form of exotic path-
dependent derivatives and require multiple nested simulations when valuing

across stochastic economic scenarios.

The conditional lower bound is derived in section 2 for a simplified finan-
cial product, i.e. the benefit considered is not contingent on death or survival.
In section 3, we show that the conditional lower bound theory easily extends
to more sophisticated benefits and costing structures by adding typical costs
as well as mortality to the simplied financial product considered in section 2.
The popular GMDB and GMAB / GMMB structures are covered in section
3 and in section 4, we propose a possible dynamic hedging solution for the

aforementioned structures.



2 A simple product

We first consider a simplified financial contract for ease of exposition. Con-
sider an investor who invests a regular contribution 7, £ = 0,1, ...,n,with a
firm. In exchange for these contributions, the firm guarantees the investor the
greater of a guaranteed minimum benefit of b,, and the fund value .S,, at ma-
turity of the contract, i.e. the benefit payout at time n is B,, = max (b,, S,) .
We assume that the investor, age z at inception, survives the contract with
probability 1, i.e. ,p, = 1, and we do not allow for other decrements such
as surrenders. Let F), denote the value at time £ of one unit of the fund in
which the contributions are invested by the firm. The value of the investor’s
portfolio V,_; at the end of the period (k,% + 1), before the next period’s

contribution, is given by the recursive formula:

Fii (1)

Viier = Vi + mi] 7

Equation (1) states that the value at the end of a period during the
contract term is equal to the regular contribution added to the existing value

of the fund and then accumulated to the end of the period by the fund growth

factor Fl’;—:l We assume V[;” = 0 by construction. Under the assumption that

the investor survives each period and that all contributions have been paid,

we can express equation (1) as:

_ Fra
Vi =Y J% k=0,.,n—1 (2)
7=0 J



The minimum guaranteed benefit at maturity can be written as follows:

B, = b, + max (0,V,” —b,) (3)

or:

B, =V, +max (b, — V, ,0) (4)

n

Equation (3) describes the guaranteed benefit as the value of the guaran-
tee plus a call option on the fund value at maturity with a strike price equal
to the value of the guarantee. Equation (4), on the other hand, describes the
guaranteed benefit as the fund value at maturity plus a put option on the
fund value at maturity with a strike price equal to the value of the guaran-
tee. The expressions in equations (3) and (4) naturally allow for the use of

financial economics in the pricing of the guaranteed benefit.

2.1 The concept of comonotonicity

The concept of comonotonicity, or "common monotonicity", provides the the-
oretical framework for the conditional lower bound approximation. A recent
and largely self-contained overview of comonotonicity is given by Deelstra
et al. (2010). For the purposes of this paper, the following definition of

comonotonicity suffices.

Definition 1 For any n-dimensional random vector X = (X1, Xa, ..., X,)
with multivariate cumulative distribution function (cdf) Fx () and marginal
univariate cdf’s Fx,, Fx,, ..., Fx, and for any x = (x1, 3, ..., z,) € R", there

exists a random variable Z and non-decreasing functions f;, i = 1,2,...,n,



such that:
XE(11(2).12(2) s f0(2))

The concept of comonotonicity allows the use of certain properties to
arrive at an accurate approximation of the true distribution of the underlying
fund and the contingent benefits on the underlying fund. The following

definitions will be used in the following:

Definition 2 For a comonotonic sum S¢ of the vector X¢ = (X§, X§, ..., X5),
the inverse distribution function of a sum of comonotonic random variables
1s equal to the sum of the inverse distribution functions of the marginal dis-

tributions:

e (p) = Z Fy!(p), p€[0,1] (5)

Definition 3 For a comonotonic sum S°¢ of the vector X = (X{, X5, ..., X¢),
the distribution of the comonotonic sum S¢ can be given in terms of the stop-

loss premiums of the marginal components:

E[(S°—d).] = ZE (X —d;), ] (6)
i=1
where F3.' (0) < d < Fg' (1). Thed;, fori=1,2,...,n, are given by:
d = Fy* (Fy: (d)) (7)

7

where oy € [0,1] is determined by:



For the lognormal case, the inverse distribution function is left-continuous
and strictly monotonic and the value of oy in equation (8) is therefore equal to
one. The decomposition formula in equation (6) can be interpreted financially
such that the value of an European call option on a stochastic sum S¢ of
share prices with strike price d is equal to the sum of the values of European
call options on the constituent shares with strike prices d; as determined in
equation (7). In fact, Jamshidian (1989) proved that in the case of one-
factor mean-reverting Gaussian interest rate models, a European option on
a portfolio of discount coupon-bearing bond decomposes into a portfolio of

European options on the individual discount bonds in the portfolio.

2.2 Value of the embedded option

For ease of exposition, assume that the parameters of the contract (b,, )
are given at inception of the contract, and that the investment fund price
process {F (t), t > 0} evolve according to a geometric Brownian motion
process with constant drift © and constant volatility o, i.e. assume a Black-
Scholes-Merton setting;:

dF (t)
F (1)

= pdt + odW (), t>0 (9)

with initial value F'(0) > 0, and where {W (), t > 0} is a standard

Brownian motion.

Under a unique equivalent martingale measure (), see e.g Harrison and



Pliska (1981), we have:

F(t):F(O)exp{(u—U;)HrJW(t)}, t>0 (10)

By combining the results in equation (2) and in equation (10), we find

the following expression for the fund value at maturity V,~:

Vo= nz_lﬂ'kexp{((S— %2) (n— k) + 0 (W (n) —W(k))} (11)

The contingent claims on the fund value in equation (11) are path-dependent
and take the mathematical form of an arithmetic Asian option. To show
this in the Black-Scholes-Merton setting, we use the time reversal prop-
erty of Brownian motion. This property allows us to state a new process
that maintains the probabilistic structure as the old process, i.e. W (1) =
W (n)— W (k) ,where 7 = n— k. By substituting the time reversed Brownian

motion in equation (11), we find:

2

V- zgﬂTeXp{((S—%)T—FJW(T)} :gmﬂ (12)

Assume now that the contributions are level across the policy term, so

that we have:

1 1
Wk:—Zﬂ'j:—H (13)

where £ = 0,1,...,n — 1 and II denotes the total premium paid over the

policy term. Combining the results in equation (12) and equation (13), we
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have:

i
L

Vo =11

n

F, (14)

IS
SRS

T

The result in equation (14) implies that any contingent claim on the
policyholder’s fund will take the form of a contingent claim on the arith-
metic average of the underlying fund prices across the policy term, i.e. take
the form of an arithmetic Asian option on the underlying fund. The value
of Asian options do not have analytical solutions and various approxima-
tions are available in the form of numerical methods or double integral type
bounds. Rogers and Shi (1995) suggest a conditional lower bound in the con-
tinuous averaging case. Dhaene et al. (2002a) derived comonotonic bounds
for an arithmetic Asian option and illustrated the efficacy of these bounds
in a Black-Scholes-Merton setting. In particular, the authors demonstrated
the incredible accuracy of the conditional lower bound as an approximation

to the exact value of an arithmetic Asian option.

2.3 Conditional lower bound (CLB) approximation

In the following, we approximate the distribution of a sum of partially depen-
dent random variables such that true fund value V,~ stochastically dominates
the approximation of the fund Vo in a convex order sense, but in an opti-
mal way. The conditional lower bound is defined to be the expection of V, -

conditioned on some information variable A, i.e.:

V, D =E [V, | A] (15)

Ideally, the choice of A is such that V.~ and A are as alike as possible.

11



This choice reduces to opting for a significant level of dependence between
V.- and A. In the following, we initially choose A such that it is a linear

combination of the variability of V-, i.e.:

A= 3 W)~ W) (16)

where v, is a deterministic constant. The CLB approximation is opti-
mised by selecting the appropriate value of the contant v,. The CLB ap-
proximation can also be optimised with respect to the tail of the distribu-
tion, e.g. Vanduffel et al. (2008) propose locally optimal approximations in
the sense that the relevant tail of the distribution of E'[S |A] is an accurate

approximation for the corresponding tail of the distribution of S.

The variability of the fund value in equation (12) and the conditional ran-
dom variable A in equation (16) stem from the Brownian motion differences,
Y, = W(n) — W(k), for k = 0,1,...,n — 1. The distribution of any Brown-
ian difference Y}, given A follows a conditional bivariate normal distribution.
The CLB approximation that is yet to be optimised therefore follows from

equation (15):

n—1 n—1
F
an(l) — Zﬂ-kE |: (n) ’ A:| — Zﬂ'ke((s_%oj)(n_k)E [ea‘Yk | A:|
= LFR) =
n—1
_ ZWke((?—%g%ﬂz)(n—k)—i—ark\/n—kZ (17)
k=0

where 7, is Pearson’s correlation coefficient for the pair (Y, A) and can

12



be found in the usual way:

~ Cov Yy, A

Oy, OA

Tk
where the covariance of the pair (Y, A) is given by:
n—1
Cov [Yi, A] = Z v, min(n — k,n — 1) (18)
1=0

The expression in equation (17) is not an optimal bound and the variance
of Vn_(l) needs to be maximised with respect to A in order to optimise the

CLB approximation. The variance of an(l) is given by:

3
L
3
L

Var [an(l)] _ 7Tkﬂ.lezS(ankfl) (eazrkrl\/nfk\/nfl . 1) (19)

>
I
<)
I
o

By expanding the exponential term in brackets by a first order Taylor

series, we can approximate the variance of v, by:
Var [V, V] = o*rio% (20)

where S = ZZ;& 7,e*™RY, and the correlation coefficient of the pair
(S, A) is denoted by rs. We can therefore maximise the expression for the
variance of V,, ¥ in equation (20) by maximising the correlation coefficient
rs. This is only the case if the pair (S, A) is perfectly correlated, negatively

or positively. The optimum choice of A is therefore given as:

n—1
A=S= Z T’ Ry, (21)
k=0
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Comparing our optimal choice in equation (21) to our initial choice in
equation (16), it is evident that the optimal choice remains a linear com-
bination of the Brownian differences Y; but with the constant -, defined

as:

Vi = 7, F) (22)
The correlation coefficient r; therefore becomes:

o med =D min(n — k,n — 1)

Vi ’f\/Z?;S o Tymed@ =i~ min(n — j,n —1)

(23)

Tk

2.4 Value of the embedded options

Now that we have an approximate distribution for the value of the fund V-
under the equivalent martingale measure (), we can use this distribution to
approximate the discounted payoff or value of the embedded guarantee of
our simple financial contract. From equation (17), it is evident that Vn_(l) is
a function of a multiple of the standard normal random variable Z. By using

the expression in Definition 3, we find:

E

(ni e bn) ] = ni E {(Xk — Fy! (Fvn—m (b@))J (24)
+ k=0

k=0

where Fy () and Fy'(p) denote the cumulative distribution function of
the random variable X in the value x and the inverse of the function in

the value p, respectively. We also defined the lognormal random variable

_1,2.2 _
X = ape?™ V" F where ay = 7Tk€(6 30°17) (n—h).
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By using the result of Definition 2, we find an expression for the inverse

distribution function of the CLB approximation v, .

n—1 n—1

— — orpVn—k®d~1

Flo )= Fyl () = agern/iiomo) (25)
k=0 k=0

We now have the tools needed in order to determine the value of the
discounted payoffs as given in equations (3) and (4). First, consider the call-
type payoff in equation (3). By using the results from equations (24) and

(25), we obtain:

n—1
E (Z ake”’“mz — bn> ]
k=0 +
= ( N Urkm@’l<F (l)(bn))> ]
— ZakE eImRVITRE e Vn (26)
k=0 +

The lognormal random variable X leads to the final result for the value

of the call-type payoft:

B Sy [Jrkm g1 ( Fyo (bn)ﬂ — b, [1 —F, -0 (bn)]

(27)

The put-type payoff in equation (4) is found by using put-call parity, i.e.:

El(bn=Vi0),] = B[O =b), | +b— B[O, (28)
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The result for the value of the put-type payoff is given by:

E (b =V, )]

n—1
== > w00 [—oren =k + ©7 (B0 (b)) | + by () (29)
k=0

The unknown quantity F,-a (b,) in equation (27) and equation (29) is

solved by using the expression in equation (25), i.e.:

n—1 -
Z Wke(é_%a%i)(n_k)eammfb 1(FV;(Z)(bn)> . bn -0 (30)
k=0

2.5 Asset based price of the embedded option

In the previous section, the value of the embedded options at inception was
determined. In this section, we determine the periodic price charged in re-
spect of the embedded options. An annual management fee is charged on the
value of the fund at the end of each respective year or contribution period.
The charge can be stated annually but deducted monthly or quarterly. Note
that at inception the embedded option has to be purchased by the insurer or
a replicating portfolio has to be set up in order to effectively manage the risk
of the guarantee. The management charges therefore recover the initial guar-
antee liability outgo. The annual management fee solution is a discrete case
of the continuous pricing solution, which is a deduction in the yield of the
underlying fund. Milevsky (2006) gives a structured approach to obtaining
the actual price of the guarantee when recouping the cost of the guarantee

continuously from the underlying fund.
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Consider the asset based charge e deducted annually from the fund V.

The fund value at time n is given as:

n—1
V- — Zﬂk (1— €>n7k 6(5—502)(n—k)+a(W(n)—W(k)) (31)
k=0

Comparing equation (31) above to equation (11) we see that only the
premium vector changes, i.e. the guarantee charge reduces the contribution
that participates in the fund growth. By following the same steps in deriving
the CLB approximation as in section 2.3, we find the value of the optimising

constant 7y, of the information variable A as:
e = (L= e)" el (32)

and the optimal correlation coefficient r; as:

Pl (1 —e)" e D min(n — k,n — 1)

ViR S mym (1= €)== min(n — j,n — 1)
(33)

Tk

The value of the embedded call option at inception of the contract is given

as:

Co = ni (1 —e)" " e [ark\/n — k-9 (Fv;<l> (bn))}
k=0

—e 0y, [1 ~F, o (bn)} (34)
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and the value of the embedded put option at inception of the contract as:

n—1
P = — Zwk (1-— e)”_'C e % | —orpv/n —k + &1 (Fvn—ﬂ) (bn)>]
k=0

+e =", Fy—ay (bn) (35)

Again, the unknown quantity F), - (b,) in the expressions of equations

(34) and (35) is found by using the result in equation (25), i.e.:

n—1 -1
3w (1 — o) F (0 ek T w (Fvﬁl)(b"))—bn:o (36)
k=0

The annual charge for the guarantee e can now be found by fair value
principles, i.e. equating the expected present value of the premium with the
expected present value of the benefits. For the embedded put option, we

have:

Y me ™ =e"EV, O]+ R (37)

The unknown guarantee charge e is therefore found by numerically solving

the following expression with respect to e:

n—1
e_‘snanw*(l) (bn)_z mre " [1 - (1- €)nik ® |orpVn —k— @7 (FVJ(Z) (b")>” =0
k=0
(38)

The derivation for the embedded call option follows in a similar way.
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2.6 Illustrative Example

The accuracy of the conditional lower bound approximation is illustrated
in the following by determining the value of the embedded guarantee us-
ing a Monte Carlo method as a proxy of the true value. In Table 1, we
calculated the discounted values of the embedded put options for the sim-
plified product. The accuracy of the call options follow by put-call par-
ity.Variance reduction in the form of antithetic variates was used. Simulated
results are based on 50 000 paths for each set of parameter values. We as-
sume a continuous risk-free rate of 5% per annum with volatilities of 20%,
30% or 40% per annum. The contributions 7, & = 0, ..., n, are assumed at
100 per annum and the term of the contract is taken as n = 10 years. We
also vary the guaranteed amount b,, by considering the following five values
(500, 750, 1000, 1250, 1500). The CLB column gives the conditional lower
bound approximation, while the MC and s.e. columns give the Monte Carlo

estimate with associated standard error.

The annual charge was solved for by using equation (38) and is given for
different parameter values in Table 2. The charges are given in basis points
(bps) of the fund value charged annually. Charges in excess of or approaching

100% are omitted.

It is evident from Table 2 that the charges increase substantially as the
volatility increases or as the risk-free rate decreases. The sensitivity of the
option value to these parameters and therefore of the price of the option need
to be considered in a comprehensive risk management strategy. In section 4,

we consider and test a possible hedging strategy that aims to immunise the
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Table 1: Conditional Lower Bound (CLB) estimates of the embedded put
option values with n = 10, 6 = 5% and varying volatilities, compared to
Monte Carlo (MC) estimates and their standard errors (s.e.).

o b, CLB MC s.e.

20% 500 0.2899 0.3191 0.00061

750 7.6583 7.7911 0.00368

1000  39.3632  39.5205 0.00924

1250 104.2183 104.3376 0.01103

1500 198.3930 198.5049 0.00816

30% 500 4.6067 4.9362 0.00299

750  30.2476  30.7541 0.00824

1000  84.6857  85.1418 0.01132

1250 164.6151 164.9986 0.01243

1500 264.0077 264.3668 0.00794

40% 500  15.6902  16.7220 0.00561

750  60.3649  61.5619 0.01058

1000 131.4565 132.5241 0.01172

1250 222.2414 223.1759 0.01005

1500 327.2443 328.0961 0.00796

Table 2: Charges in basis points (bps) for the embedded put options with
n = 10 and varying volatilities and risk-free rates.
b, oc=20% o=30% o=40%
=1% 500 0.3664 2.8282 7.5429
750 6.9304 18.7686  32.8233
1000  51.1506  86.5640 120.8808
d=>5% 500 0.06095 0.9881 3.4656
750 1.6931 7.1870  15.1582
1000  10.5377  25.1368  41.4655
1250  48.1448  81.8928 114.5406
d=10% 500 0.00425 0.2254 1.2115
750 0.2218 2.0356 5.7732
1000 1.7803 7.3267  15.2321
1250 6.9371  18.4198  31.8342
1500  20.2496  40.7130  61.8769
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important risk factors.

3 Life-contingent guaranteed minimum ben-

efits

In this section, we generalise the simplified pure investment product of sec-
tion 2 to allow for mortality risk by considering guaranteed death and guar-
anteed survival benefits. The premiums for ancillary risk benefits such as
dread disease, disability and premium waiver benefits are usually deducted
from the policyholder’s contributions before the contribution is invested in
the sub-account. We assume that the insurer has a risk-neutral position to
mortality risk, i.e. the VA business portfolio consists of a large enough popu-
lation of independent policyholders such that the aggregate mortality risk is
diversified. In the case where mortality risk is fully diversifiable, the random
lifetimes of policyholders can be replaced by their expected lifetimes. The
Law of Large Numbers imply that the variability in the expected value of the
independent random lifetimes of a cohort of identical policyholders tends to
zero, i.e. the expected lifetime of a cohort of policyholders becomes determin-
istic. We also assume that mortality risk is independent of investment risk,
thereby allowing us to express the real world probability of an integrated risk
event as a the product of the individual investment risk and mortality risk
events. Independence between financial and biometric risks are not neces-
sarily maintained when replacing the physical probability measure with the

equivalent martingale measure. Dhaene et al. (2010) provides an overview
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of the implications of modelling integrated risks in the combined market of
financial and biometric risks. We assume in the following that the combined
market is complete and that independence between the sub-markets holds

for the equivalent martingale measure.

Consider a VA product that is underwritten on a life aged x at time 0 and
who aims to annuitise the VA in n years. Annual premiums 7 are used to
purchase units of the opted underlying investment fund. An allocation cost
charge c is charged for when purchasing units, which implies that (1 — ¢) 7y,
worth of units are available of each contribution 7. We assume for simplic-
ity that any fractional unit of the underlying fund can be purchased. The
allocation cost typically covers the intial expenses, commission or advisory
fees and ongoing allocation expenses. The allocated premiums are used to
purchase units of the investment fund at the fund’s bid price F}, at the start
of the year (k,k + 1). We assume that the bid price of one unit of the invest-
ment fund at time ¢ is equal to the value of the fund Fy, i.e. the investment
fund prices are given net of the bid-offer spread. The insurer charges the
bid-offer spread by increasing the offer price at time k, i.e. setting the offer
price at i—’“a for some value 0 < a < 1. This means that the policyholder has
to buy the units at a higher price than the value of the fund. The premium
for ancillary mortality benefits is charged as a deduction, the risk premium
7'('](:), from the regular contribution. The savings premium or net contribution

at time k is defined by:

M =1-a)1—-c)mp— (39)
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Assuming that the policyholder is still alive at time & and that no units
have been withdrawn before time k, the fund value V,_ | at time k+1 is given
by:

k r v
Vi, = Z () ’““ — )" k=0,..,n—1 (40)

—0 .7
3.1 Guaranteed minimum maturity benefit

We assume that a sufficiently large book of independent insured lives are held
by the insurer. This means that the probability that a policyholder aged x
surviving to time ¢ is replaced by the frequency of survival of the cohort of
the population aged z:

PlT >t = 1p, (41)

where T}, denotes the random lifetime of a policyholder aged z. The CLB
approximation for the sub-account after allowing for deductions and charges

is given as:
ZW (1—e) k (5—%02)(n—k)+cr(W(n)—W(k)) (42)

By following the same steps in deriving the CLB approximation as in
section 2.3, we find the value of the optimising constant ~, of the information

variable A as:

Ve = ((1 —a)(1—c)m, — W](:)) (1- €>n—k (=)

= 21— ek ednh) (43)
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and the optimal correlation coefficient r; as:

i 7Tl(s) (1—e)" " e® D min(n — k,n —1)

Ty = -
Vi Ry S aa® (1 e b= min(n — j,n — 1)
(44)
The present value at time 0 of the embedded call option is given by:
n—1
Cy = Z npmﬂ'](:) (1-— e)nik e kP [ark\/n — k-0 (FV_(z) (bn)>]
k=0
— apze by, [1 —F o (bn)i| (45)

and the present value of the embedded put option is given by:

n—1
P, = — Z npmﬁl(:) (1— e)”_k e %k | —orpvn — k+ &1 (Fvn‘(” (bn)ﬂ
k=0

+ npxe_6nanVn—(l) (bn> (46)

In the case of the put-type option representation of the GMMB, the fair

value principle leads to the asset-based charge e to be solved from:

n—1
e = pe B[V O] 4+ p.Py
k=0
n—1
= S el (o) e e [ark\/n A (FV,(” (bn)ﬂ
k=0
+ npre b Fy ) (by) (47)

Note that the present value of contributions, left-hand side of equation
(47), excludes the contribution attributable to ancillary risk benefits and

allocation charges. For the call-type option representation of the GMMB,
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which equals a n-term bond and a call option, the application of the fair

value principle results in:

i
L

k:p:cﬂl(:)e_ék = npx€_5nbn+ npxCO

0

B
Il

n—1

= S e (- )" e or/n — k@ (Fv,m (bn)ﬂ

n

k=0
+ npxe_(snanV':(l) (bn>

It is evident from equations (47) and (48) that the solution for the guar-
antee charge e is identical for the call-type option and put-type option rep-

resentations.

3.2 Guaranteed minimum death benefit
The risk premium 7T§:) can be used to explicitly charge for the GMDB on a

periodic basis, i.e. the risk premium 7r,(f) is solved for from the expression:

7 = Az + k) e PE[Sg] (49)

where A (x + k) is the cost-loaded actuarial premium for a one-year term
insurance with death benefit equal to 1 and sold to the policyholder of age
x + k, and where:

Sk =max (byy1 — Vi, q, 0) (50)
where V,_ | contains the risk premium 7'('](:), cf. equation (39).

We assume in the following that the charge for the GMDB is recouped
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by an asset-based charge e, that forms part of the regular management fee
e, i.e. e = e, + e, where ¢, denote all other asset-based charges such as fund
management charges. The call option and put option representations remain
the same as in equations (45) and (46), but we now need to solve for the
asset-based charge e, by applying fair value principles. In the case of the
put-type option representation of the GMDB, the asset-based charge e, is

solved from the expression:

i
L

n—1
e =3 i tuae OBV 4 (e - n) |60
0 k=0

e
Il

The asset-based charge for other fees besides the investment guarantee
charge is assumed to be exogenously given. Therefore, the only unknown in

equation (51) is the GMDB asset-based charge e.

3.3 Guaranteed minimum death and survival benefits

Endowment type VA products typically offer a guaranteed minimum benefit
on both death and survival. Since these life-contingent events are mutually
exclusive, the investment guarantee benefit simplifies to being the sum of the

two life-contingent benefits, i.e.:

n—1
_ -
= Z kDz Qz+k€ M p [max <5Z+17‘/}€+(1)>+]

k=0
+ pee” " [max (V, O, 07)] (52)

n

where b}, ; denotes the guaranteed minimum death benefit and b2, denotes
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the guaranteed minimum survival benefit. By using the split of the annual
management charge, we solve for the unknown asset-based guarantee charge

eg from the expression:

i
L

wary e = Bj + By (53)

=
Il
o

Note that we assume one asset-based guarantee charge for both the death
and survival benefits. Note that should the insurer guarantee contributions
inclusive of ancillary benefit charges and allocation charges, the savings pre-
mium 7r§:) is then replaced by the full contribution 7; on the discounted

contributions side. The portion of the total guarantee charge applicable to

the death benefit can be established by:

—ey (54)

and similarly for the portion of the guarantee charge applicable to the
survival benefit:

7 G (55)

3.4 Illustrative example

In the following, we demonstrate the application of the results obtained for
solving for the asset-based guarantee charge e,. We consider the guarantee
charge for the death benefit and for the survival benefit for varied economic
assumptions. The contributions 7y, £k = 0, ...,n, are assumed at 100 per an-

num with a contract term of n = 10 years. The GMDB, b1, and GMMB,
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b,, are assumed to provide return of contributions . We also consider a ben-
efit equal to 50%, 75%, 125% and 150% of contributions. The policyholder
is assumed to be a male aged 30 at inception of the policy with mortality
according to the PMA92 mortality tables as published by the Continuous
Mortality Investigation Bureau (CMIB) of the Institute and Faculty of Ac-
tuaries, U.K. A deterministic mortality assumption can result in serious con-
sequences to an insurer’s solvency if its book of policies has few policyholders
or if the book of policies consist of largely homogeneous policyholders that
are susceptible to the same mortality shocks. In such cases, the Law of Large
Numbers does not apply and the added mortality risk implies an additional
cost, which must be charged to the policyholder for the insurer to accept
the addtional risk. This cost stems from either more aggressive reinsurance

treaties or more stringent reserving requirements.

An extreme upper bound is considered for the embedded option value in
the case of the GMMB. If the underlying fund value were to fall to zero, the
payoff becomes certain and the only randomness relates to the survival of the
policyholder. The benefit therefore becomes a pure endowment contract with
a sum assured equal to the certain payoff. It is evident from Table 3 that the
value of the embedded option in the combined market case will approach the
extreme upper bound for large values of the volatility parameter and small

values of the risk-free rate parameter, i.e. implying no time-value of money.

In Table 4, the extreme upper bound to the value of the embedded option
is also given. Similar to the GMMB example, the only randomness relates to

the mortality of the policyholder. Therefore, in this case the benefit would
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Table 3: Conditional Lower Bound (CLB) results for the discounted values

of the GMDB embedded put options with n = 10 for a policyholder aged 30.
o Pure

) b, 20% 30% 40% Endowment

1% 50% 1.9260 14.2503  36.3826 451.5138
75%  31.1084 76.2113 125.1575  677.2707

100% 120.4741 189.4874 255.4479  903.0276
125% 266.2231 340.6167 413.5743  1128.7845
150% 448.6732 516.8435 590.2473  1354.5413

5%  50% 0.2893  4.5975 15.6588 302.6587
75% 7.6430 30.1871  60.2442 453.9881

100%  39.2845 84.5163 131.1935  605.3175
125% 104.0098 164.2858 221.7969  756.6468

150% 197.9962 263.4797 326.5898  907.9762

10%  50% 0.0178  0.9375 4.9634 183.5718
5% 0.9197 8.1576  22.2728 275.3577

100% 7.0436 26.9571  53.0722 367.1436

125%  24.3388 58.5864  95.3486 458.9295

150%  55.9512 101.8676 146.7768  550.7154

be the term life death benefit with a sum assured equal to the certain payoff
in the event of death. Again, the embedded option value in the combined
market case will approach the extreme upper bound for high volatility values

and low risk-free parameter values.

4 Hedging strategies

4.1 Introduction

In the following, we derive sensitivity measures, the so-called greeks, to imple-
ment a dynamic hedging strategy. A good review of dynamic hedging strate-
gies and the various measures used can be found in Taleb (1997) and in Hull

(2008). Life companies might opt for static hedging strategies, as opposed
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Table 4: Conditional Lower Bound (CLB) results for the discounted values
of the GMMB embedded put options with n = 10 for a policyholder aged 30.
o Term Life

) b, 20%  30% 40% Benefit
1%  50%  0.0012 0.0106 0.0298 0.5309
75%  0.0265 0.0696 0.1183 0.7964

100%  0.1242 0.1943 0.2620 1.0618
125%  0.2997 0.3720 0.4451 1.3273

150%  0.5229 0.5840 0.6542 1.5927

5%  50%  0.0002 0.0038 0.0144 0.4014
75%  0.0079 0.0320 0.0650 0.6021

100%  0.0511 0.1024 0.1550 0.8028

125%  0.1487 0.2135 0.2764 1.0035

150%  0.2907 0.3547 0.4202 1.2043

10%  50% 0.00002 0.0010 0.0055 0.2871
75%  0.0014 0.0113 0.0297  0.4306

100%  0.0148 0.0437 0.0785 0.5741
125%  0.0565 0.1025 0.1497  0.7177

150%  0.1297 0.1843 0.2384 0.8612

to dynamic hedging strategies, should the investment guarantee structure
allow it, e.g. recurring premium business with a GMMB requires a portfolio
of forward-starting European put options to be hedged according to a sta-
tic hedging strategy where these might not be available in the market. In
this section, we consider approximate measures for the three greeks typically
considered by life insurance firms in their dynamic hedging programmes, i.e.

the delta, vega and rho of a portfolio.

It might be possible for an insurer to transfer its exposure to investment
risk to a third party, such as a reinsurer or an investment bank, although
these markets might prove infeasible during and following financial turmoil.
Reinsurance firms typically have a set risk appetite for investment business

and do not readily take on the investment risk, while Investment banks can
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offer a structured product to the insurer to transfer some or all of the invest-
ment risk or aid in the management of an existing hedging programme. The
application of using existing market instruments, including over the counter
instruments, to set up a static hedging portfolio is formally considered by,

for example, Chen et al. (2008).

4.2 A Proposed Hedging Solution

In order to derive the delta at time ¢ of the embedded options, we need to
express the values of the embedded options in terms of the fund price at
time ¢, where ¢ is defined on the continuous interval (0,7). In the previous
sections, we assumed that time elapses in a discrete way, i.e. that the time
variable k measures the discrete moments in time £ = 0,1,...,n — 1. In the
following, we first derive an expression for the value of the embedded option
at some instantaneous time ¢, where 0 < ¢t < n and then find the delta
measure by taking the derivative of the derived expression with respect to
the underlying fund price at time ¢, F;. In the follwing, we consider only
the put-type embedded option since the derivation for the call-type option

follows in a similar way.

In our dervivation of the CLB approximation, the initial fund value F'(0)

cancelled out. Assume now the filtration F; and k < t, we therefore have:

O I

The CLB approximation for the fund value V= is given as:
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where g (Z) is defined as follows:

F(k)
9k (Z) =
) o(6-30%r7) (n—k)+oriv/n—kZ for k >t

F(1) (5=30%8 ) (n—t)tore/n=tZ (o) p ¢
(58)

By following the same steps in deriving the CLB approximation as in

section 2.3, we find the value of the embedded put option at time ¢ as:

=1 (s)

P=-F()) ];T’(ﬂk)cp [—am/er ot (Fv;<l> (bn)ﬂ

n—1
— 3 aettg [—ark\/n i+ (Fv,m (bn)ﬂ + e, F ) (by)
k=Tt]

(59)
where the value of F|,—q) (b,) can be found in the usual way, viz.:
n—1
Foboo (B () = bu =0 (60)
k=0

The delta measure of the embedded put option of the GMMB in the

combined market is given by:

[t1-1  (s)
_ 0P _ Tk _ — -1
N ; F(k)(b[ oren — 1+ @ (Fvn_(l) (bn))] (61)

The delta measure of the GMDB embedded put option, assuming that
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the policyholder is alive at time ¢, is given as:

n—1 -1 (s)
T _
At = — | Z ]pa; qac_;'_] Z %‘b [—m}vn —t+ 0} 1 <FVJ:L(1” (b]+1)>i|
j=[t]-1 k=0
(62)
The delta measure of an embedded option in the combined market is
therefore a weighted sum of the constituent delta measures, where the weights

are determined by the probability of the event that drives the benefit, i.e.

survival or death.

The vega and rho of the embedded option aim to immunise the portfolio
with respect to the model parameters o and r, respectively, thereby mit-
igating model risk. Although the delta measure was found analytically, a
numeric finite differencing approach could have been used. A point estimate
approximation of the embedded option value allows up and down shifts in the
embedded option value to be calculated with speed and ease. The vega and
rho of the embedded option measure changes in the embedded option value
due to changes in the model parameters and are not analytically tractable.
Therefore, the vega and rho are calculated using the finite differencing ap-
proach. A common approach is to consider both an up and a down shift in
the option value, see e.g. Wilmott (2006). The vega for the put-type option

is calculated as:

on,

do

Pt(U+AU>—Pt(U—AU)
2A0

(63)

Q
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where P, () denotes the put-type option value as a function of the given
parameter value and Ao denotes the magnitude of the small shift in the

parameter value. Likewise, we find the rho for the put-type option as:

0P,

= s
P, (6 + AS) — P, (5 — AS)
I

Q

(64)

The magnitude of the shift in the parameter value depends on the firm’s
risk management framework and is usually a function of expected future

volatility.

4.3 Illustrative Example

Consider an investor who contributes a monthly contribution of 1 at times,
k=0,1,...,n, for a term of 5 years, i.e. n = 60. For simplicity, we assume
first that all payments are paid with certainty and that death is the only
decrement, i.e. no lapses or surrenders. To assist the illustration, an in-the-
money 200% return of contributions guarantee on the investment is assumed,
i.e. a strike price of b, = 120. A single market scenario was simulated from
a Black-Scholes-Merton economy with parameters ¢ = 20% and § = 5%.
A delta hedging strategy is considered by using both the analytical delta
measure of section 4.2 and the delta measure found by finite-differencing,
ie.:
BF () + AF ()] - P [F(t) — AF (1)]

Ay & A (65)

The GMMB is illustrated in Figure 1, while the GMDB is illustrated
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Figure 1: Comparison of performance of delta measures for GMMB.
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in Figure 2. In both figures, the embedded option value is illustrated by the
solid line, while the dotted line represents the approach of equations (61) and

(62) and the dashed line represents the approach of equation (65) .

5 Conclusion

The complexity of insurance contracts set in the combined market of finan-
cial risk and mortality risk pose signficant challenges to the risk management
frameworks of insurers. The conditional lower bound approximation aids in
addressing the three questions posed by Hardy (2003). It allows quick feasib-
lity studies of product structures during product development, and estimates
of the cost of capital in the case of reserving or the cost of a suitable hedg-
ing programme in the case of dynamic or static hedging. The use of the

conditional lower bound approximation further allows insurers to verify the
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Figure 2: Comparison of performance of delta measures for GMDB.
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reasonableness of estimates arising from more complex and resource intensive
pricing and reserving models. The conditional lower bound approximation
can be extended to allow for more complex asset pricing models and mortality

models.
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