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Abstract

Investment guarantees in life insurance business have generated a

lot of research recently due to the earlier mispricing of such products.

These guarantees generally take the form of exotic options and are

therefore di¢ cult to price analytically, even in a simpli�ed setting.

A possible solution to the risk management problem of investment

guarantees contingent on death and survival is proposed through the

use of a conditional lower bound approximation of the corresponding

embedded option value. The derivation of the conditional lower bound

approximation is outlined in the case of regular premiums with asset-

based charges and the implementation is illustrated in a Black-Scholes-

Merton setting. The derived conditional lower bound approximation

also facilitates verifying economic scenario generator based pricing and

valuation, as well as sensitivity measures for hedging solutions.
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1 Introduction

Life insurers have traditionally concerned themselves with mainly mortal-

ity risk, which is a diversi�able risk if the insurer is able to aggregate a

large number of independent insured lives. The risks inherent to investment

guarantees, however, are largely dependent and require an approach to fair

pricing of these guarantees and a hedging programme to e¤ectively transfer

investment risk to third parties or market. According to Hardy (2003), the

three main aspects of risk management relates to the price, the amount of

capital to hold and how to invest the capital.

Initial attempts at pricing investment guarantees were mainly of a sta-

tistical real-world approach. Signi�cant improvements in the �eld of �nance

with the papers by Black and Scholes (1973) and Merton (1973) led to at-

tempts to combine the �elds of actuarial science and �nance. Of the �rst

substantial attempts were the publications by Boyle and Schwartz (1977),

Brennan and Schwartz (1977) and Brennan and Schwartz (1979). The last

mentioned authors not only considered fair pricing of both single and re-

curring premium structures in a Black-Scholes-Merton framework, but also

looked at a possible delta hedging strategy and the sensitivities of the hedging

strategy to model parameters.

The martingale approach to risk-neutral pricing by Harrison and Kreps

(1979) and Harrison and Pliska (1981) further facilitated the adoption of

modern �nance techniques by the actuarial profession. The standard Black-

Scholes-Merton framework under the martingale approach was applied to

minimum guarantees at death andmaturity by, among others, Delbaen (1986)
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and Aase and Persson (1994). The complexity in bene�ts as well as in the

assumptions underlying the approaches considered in literature have grown

substantially. Bacinello and Ortu (1993a) considered endogenous minimium

guarantees, i.e. minimum guarantees that depend functionally on the pre-

mium of the policies. Bacinello and Ortu (1993b), Nielsen and Sandmann

(1995) and Nielsen and Sandmann (1996) extended existing results to in-

clude stochastic interest rate risk. Boyle and Hardy (1997) considered a

Value at Risk (VaR) methodology and a dynamic replicating portfolio ap-

proach. Møller (1998) considered risk-minimising strategies set in a Black-

Scholes-Merton framework and Møller (2001) proposed a more pragmatic

risk-minimising strategy in a discrete Cox-Ross-Rubinstein framework.

The policyholder contributions are usually solved for under fair value

principles. We assume that the policyholder contributions are exogenously

given, which is largely the case in practice. The payment of regular pre-

miums results in the payo¤ being dependent on the underlying asset price

throughout the duration of the contract and leads to an analogy with path-

dependent Asian options. Upper and lower bounds in terms of double inte-

grals for approximately valuing Asian options have been developed by Rogers

and Shi (1995) and Thompson (1999). The application of stochastic bounds

to �nancial products in actuarial science was introduced mainly by Simon

et al. (2000), Dhaene et al. (2002a,b), Nielsen and Sandmann (2003) and

Shrager and Pelsser (2004). The last mentioned authors use a change of

numeraire technique to derive a general pricing formula in the case of sto-

chastic interest rates in the lognormal case for rate of return guarantees in
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regular premium business. Hürlimann (2008) considers GMDB and GMAB

guarantees in regular premium unit-linked (UL) business in the lognormal

case with a two-factor fund di¤usion process, consisting of a one-factor fund

price and a one-factor stochastic interest rate model with deterministic bond

price volatilities. The author considers the call-type option representation

of the guaranteed bene�t and determined bounds for the premium payable

by the policyholder. In variable annuity (VA) and UL business, the contri-

bution is typically speci�ed by the policyholder, although rider risk bene�ts

are mostly charged for explicitly through risk premiums before investment

of the contribution. The investment guarantee charges are levied from the

policyholder�s underlying fund in the form of asset-based charges, i.e. the

charges are expressed as a percentage of the value of the underlying fund or

sub-account.

In the following, we derive the conditional lower bound approximation

for the value of di¤erent types of embedded option and the asset-based in-

vestment guarantee charge for these options. We consider regular premium

VA business and investment guarantee rider bene�ts that are contingent on

death and survival, i.e. the GMDB and GMAB investment guarantee types.

We further show how the conditional lower bound approximation can be used

to validate sensitivity measures, the so-called greeks, for hedging. We assume

a Black-Scholes-Merton setting throughout, although it is important to note

that the conditional lower bound is a versatile approach and can be deter-

mined in a model dependent or model independent case. An example of the

model independent case is the recent paper by Chen et al. (2008) in which the
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authors investigate static super-replicating strategies for European-type call

options written on a weighted sum of asset prices. For complex models or in

some model independent cases, the conditional lower bound might result in

an approximation that is not analytically tractable. In such cases and where

a point estimate su¢ ces, numeric solutions can be used.

Investment guarantee o¤erings pose several challenges to insurance �rms.

The guarantees of individual policies are largely dependent, although the

diversi�cation bene�t arising from the various underlying fund choices o¤sets

the dependency to some extent. Insurers will fund the initial cost of setting

up a hedging portfolio or reserving requirement at inception by recouping

the cost over the policy term through asset-based charges. This income at

risk poses an additional cost in the price of the guarantee. Finally, the

embedded options of investment guarantees take the form of exotic path-

dependent derivatives and require multiple nested simulations when valuing

across stochastic economic scenarios.

The conditional lower bound is derived in section 2 for a simpli�ed �nan-

cial product, i.e. the bene�t considered is not contingent on death or survival.

In section 3, we show that the conditional lower bound theory easily extends

to more sophisticated bene�ts and costing structures by adding typical costs

as well as mortality to the simplied �nancial product considered in section 2.

The popular GMDB and GMAB / GMMB structures are covered in section

3 and in section 4, we propose a possible dynamic hedging solution for the

aforementioned structures.
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2 A simple product

We �rst consider a simpli�ed �nancial contract for ease of exposition. Con-

sider an investor who invests a regular contribution �k, k = 0; 1; :::; n;with a

�rm. In exchange for these contributions, the �rm guarantees the investor the

greater of a guaranteed minimum bene�t of bn and the fund value Sn at ma-

turity of the contract, i.e. the bene�t payout at time n is Bn = max (bn; Sn) :

We assume that the investor, age x at inception, survives the contract with

probability 1, i.e. npx = 1; and we do not allow for other decrements such

as surrenders. Let Fk denote the value at time k of one unit of the fund in

which the contributions are invested by the �rm. The value of the investor�s

portfolio V �k+1 at the end of the period (k; k + 1), before the next period�s

contribution, is given by the recursive formula:

V �k+1 = [Vk + �k]
Fk+1
Fk

(1)

Equation (1) states that the value at the end of a period during the

contract term is equal to the regular contribution added to the existing value

of the fund and then accumulated to the end of the period by the fund growth

factor Fk+1
Fk
. We assume V �0 = 0 by construction. Under the assumption that

the investor survives each period and that all contributions have been paid,

we can express equation (1) as:

V �k+1 =
kX
j=0

�j
Fk+1
Fj

; k = 0; :::; n� 1 (2)
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The minimum guaranteed bene�t at maturity can be written as follows:

Bn = bn +max
�
0; V �n � bn

�
(3)

or:

Bn = V
�
n +max

�
bn � V �n ; 0

�
(4)

Equation (3) describes the guaranteed bene�t as the value of the guaran-

tee plus a call option on the fund value at maturity with a strike price equal

to the value of the guarantee. Equation (4), on the other hand, describes the

guaranteed bene�t as the fund value at maturity plus a put option on the

fund value at maturity with a strike price equal to the value of the guaran-

tee. The expressions in equations (3) and (4) naturally allow for the use of

�nancial economics in the pricing of the guaranteed bene�t.

2.1 The concept of comonotonicity

The concept of comonotonicity, or "common monotonicity", provides the the-

oretical framework for the conditional lower bound approximation. A recent

and largely self-contained overview of comonotonicity is given by Deelstra

et al. (2010). For the purposes of this paper, the following de�nition of

comonotonicity su¢ ces.

De�nition 1 For any n-dimensional random vector X = (X1; X2; :::; Xn)

with multivariate cumulative distribution function (cdf) FX (x) and marginal

univariate cdf�s FX1 ; FX2 ; :::; FXn and for any x = (x1; x2; :::; xn) 2 Rn, there

exists a random variable Z and non-decreasing functions fi, i = 1; 2; :::; n,
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such that:

X
d
= (f1 (Z) ; f2 (Z) ; :::; fn (Z))

The concept of comonotonicity allows the use of certain properties to

arrive at an accurate approximation of the true distribution of the underlying

fund and the contingent bene�ts on the underlying fund. The following

de�nitions will be used in the following:

De�nition 2 For a comonotonic sum Sc of the vectorXc = (Xc
1; X

c
2; :::; X

c
n),

the inverse distribution function of a sum of comonotonic random variables

is equal to the sum of the inverse distribution functions of the marginal dis-

tributions:

F�1Sc (p) =
nX
i=1

F�1Xi (p) ; p 2 [0; 1] (5)

De�nition 3 For a comonotonic sum Sc of the vectorXc = (Xc
1; X

c
2; :::; X

c
n),

the distribution of the comonotonic sum Sc can be given in terms of the stop-

loss premiums of the marginal components:

E
�
(Sc � d)+

�
=

nX
i=1

E
�
(Xi � di)+

�
(6)

where F�1Sc (0) � d � F�1Sc (1) : The di; for i = 1; 2; :::; n, are given by:

di = F
�1(�d)
Xi

(FSc (d)) (7)

where �d 2 [0; 1] is determined by:

F
�1(�d)
Sc (FSc (d)) = d (8)
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For the lognormal case, the inverse distribution function is left-continuous

and strictly monotonic and the value of �d in equation (8) is therefore equal to

one. The decomposition formula in equation (6) can be interpreted �nancially

such that the value of an European call option on a stochastic sum Sc of

share prices with strike price d is equal to the sum of the values of European

call options on the constituent shares with strike prices di as determined in

equation (7). In fact, Jamshidian (1989) proved that in the case of one-

factor mean-reverting Gaussian interest rate models, a European option on

a portfolio of discount coupon-bearing bond decomposes into a portfolio of

European options on the individual discount bonds in the portfolio.

2.2 Value of the embedded option

For ease of exposition, assume that the parameters of the contract (bn; �k)

are given at inception of the contract, and that the investment fund price

process fF (t) ; t � 0g evolve according to a geometric Brownian motion

process with constant drift � and constant volatility �, i.e. assume a Black-

Scholes-Merton setting:

dF (t)

F (t)
= �dt+ �dW (t) ; t � 0 (9)

with initial value F (0) > 0; and where fW (t) ; t > 0g is a standard

Brownian motion.

Under a unique equivalent martingale measure Q, see e.g Harrison and
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Pliska (1981), we have:

F (t) = F (0) exp

��
�� �

2

2

�
t+ �W (t)

�
; t � 0 (10)

By combining the results in equation (2) and in equation (10), we �nd

the following expression for the fund value at maturity V �n :

V �n =

n�1X
k=0

�k exp

��
� � �

2

2

�
(n� k) + � (W (n)�W (k))

�
(11)

The contingent claims on the fund value in equation (11) are path-dependent

and take the mathematical form of an arithmetic Asian option. To show

this in the Black-Scholes-Merton setting, we use the time reversal prop-

erty of Brownian motion. This property allows us to state a new process

that maintains the probabilistic structure as the old process, i.e. ~W (�) =

W (n)�W (k) ;where � = n�k: By substituting the time reversed Brownian

motion in equation (11), we �nd:

V �n =

n�1X
�=0

�� exp

��
� � �

2

2

�
� + � ~W (�)

�
=

n�1X
�=0

��F� (12)

Assume now that the contributions are level across the policy term, so

that we have:

�k =
1

n

n�1X
j=0

�j =
1

n
� (13)

where k = 0; 1; :::; n � 1 and � denotes the total premium paid over the

policy term. Combining the results in equation (12) and equation (13), we
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have:

V �n = �

n�1X
�=0

1

n
F� (14)

The result in equation (14) implies that any contingent claim on the

policyholder�s fund will take the form of a contingent claim on the arith-

metic average of the underlying fund prices across the policy term, i.e. take

the form of an arithmetic Asian option on the underlying fund. The value

of Asian options do not have analytical solutions and various approxima-

tions are available in the form of numerical methods or double integral type

bounds. Rogers and Shi (1995) suggest a conditional lower bound in the con-

tinuous averaging case. Dhaene et al. (2002a) derived comonotonic bounds

for an arithmetic Asian option and illustrated the e¢ cacy of these bounds

in a Black-Scholes-Merton setting. In particular, the authors demonstrated

the incredible accuracy of the conditional lower bound as an approximation

to the exact value of an arithmetic Asian option.

2.3 Conditional lower bound (CLB) approximation

In the following, we approximate the distribution of a sum of partially depen-

dent random variables such that true fund value V �n stochastically dominates

the approximation of the fund V �(l)n in a convex order sense, but in an opti-

mal way. The conditional lower bound is de�ned to be the expection of V �n

conditioned on some information variable �; i.e.:

V �(l)n = E
�
V �n j �

�
(15)

Ideally, the choice of � is such that V �n and � are as alike as possible.
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This choice reduces to opting for a signi�cant level of dependence between

V �n and �. In the following, we initially choose � such that it is a linear

combination of the variability of V �n ; i.e.:

� =
n�1X
k=0


k [W (n)�W (k)] (16)

where 
k is a deterministic constant. The CLB approximation is opti-

mised by selecting the appropriate value of the contant 
k. The CLB ap-

proximation can also be optimised with respect to the tail of the distribu-

tion, e.g. Vandu¤el et al. (2008) propose locally optimal approximations in

the sense that the relevant tail of the distribution of E [S j�] is an accurate

approximation for the corresponding tail of the distribution of S.

The variability of the fund value in equation (12) and the conditional ran-

dom variable � in equation (16) stem from the Brownian motion di¤erences,

Yk = W (n) �W (k), for k = 0; 1; :::; n � 1: The distribution of any Brown-

ian di¤erence Yk given � follows a conditional bivariate normal distribution.

The CLB approximation that is yet to be optimised therefore follows from

equation (15):

V �(l)n =
n�1X
k=0

�kE

�
F (n)

F (k)
j �
�
=

n�1X
k=0

�ke
(�� 1

2
�2)(n�k)E

�
e�Yk j �

�
=

n�1X
k=0

�ke
(�� 1

2
�2r2k)(n�k)+�rk

p
n�kZ (17)

where rk is Pearson�s correlation coe¢ cient for the pair (Yk;�) and can
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be found in the usual way:

rk =
Cov [Yk;�]

�Yk��

where the covariance of the pair (Yk;�) is given by:

Cov [Yk;�] =
n�1X
l=0


lmin(n� k; n� l) (18)

The expression in equation (17) is not an optimal bound and the variance

of V �(l)n needs to be maximised with respect to � in order to optimise the

CLB approximation. The variance of V �(l)n is given by:

V ar
�
V �(l)n

�
=

n�1X
k=0

n�1X
l=0

�k�le
�(2n�k�l)

�
e�

2rkrl
p
n�k

p
n�l � 1

�
(19)

By expanding the exponential term in brackets by a �rst order Taylor

series, we can approximate the variance of V �(l)n by:

V ar
�
V �(l)n

�
� �2r2S�2S (20)

where S =
Pn�1

k=0 �ke
�(n�k)Yk; and the correlation coe¢ cient of the pair

(S;�) is denoted by rS. We can therefore maximise the expression for the

variance of V �(l)n in equation (20) by maximising the correlation coe¢ cient

rS: This is only the case if the pair (S;�) is perfectly correlated, negatively

or positively. The optimum choice of � is therefore given as:

� = S =

n�1X
k=0

�ke
�(n�k)Yk (21)
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Comparing our optimal choice in equation (21) to our initial choice in

equation (16) ; it is evident that the optimal choice remains a linear com-

bination of the Brownian di¤erences Yk but with the constant 
k de�ned

as:


k = �ke
�(n�k) (22)

The correlation coe¢ cient rk therefore becomes:

rk =

Pn�1
l=0 �le

�(n�l)min(n� k; n� l)
p
n� k

qPn�1
j=0

Pn�1
l=0 �j�le

�(2n�j�l)min(n� j; n� l)
(23)

2.4 Value of the embedded options

Now that we have an approximate distribution for the value of the fund V �n

under the equivalent martingale measure Q, we can use this distribution to

approximate the discounted payo¤ or value of the embedded guarantee of

our simple �nancial contract. From equation (17), it is evident that V �(l)n is

a function of a multiple of the standard normal random variable Z: By using

the expression in De�nition 3, we �nd:

E

" 
n�1X
k=0

�ke
�rk

p
n�kZ � bn

!
+

#
=

n�1X
k=0

E

��
Xk � F�1Xk

�
F
V
�(l)
n

(bn)
��

+

�
(24)

where FX (x) and F�1X (p) denote the cumulative distribution function of

the random variable X in the value x and the inverse of the function in

the value p, respectively. We also de�ned the lognormal random variable

Xk = �ke
�rk

p
n�kZ , where �k = �ke(

�� 1
2
�2r2k)(n�k):
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By using the result of De�nition 2, we �nd an expression for the inverse

distribution function of the CLB approximation V �(l)n :

F�1
V
�(l)
n

(p) =
n�1X
k=0

F�1Xk (p) =

n�1X
k=0

�ke
�rk

p
n�k��1(p) (25)

We now have the tools needed in order to determine the value of the

discounted payo¤s as given in equations (3) and (4). First, consider the call-

type payo¤ in equation (3) : By using the results from equations (24) and

(25), we obtain:

E

" 
n�1X
k=0

�ke
�rk

p
n�kZ � bn

!
+

#

=
n�1X
k=0

�kE

" 
e�rk

p
n�kZ � e

�rk
p
n�k��1

�
F
V
�(l)
n

(bn)

�!
+

#
(26)

The lognormal random variable X leads to the �nal result for the value

of the call-type payo¤:

E
h�
V �(l)n � bn

�
+

i
=

n�1X
k=0

�ke
�(n�k)�

h
�rk
p
n� k � ��1

�
F
V
�(l)
n

(bn)
�i
� bn

h
1� F

V
�(l)
n

(bn)
i
(27)

The put-type payo¤ in equation (4) is found by using put-call parity, i.e.:

E
h�
bn � V �(l)n

�
+

i
= E

h�
V �(l)n � bn

�
+

i
+ bn � E

�
V �(l)n

�
. (28)
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The result for the value of the put-type payo¤ is given by:

E
h�
bn � V �(l)n

�
+

i
= �

n�1X
k=0

�ke
�(n�k)�

h
��rk

p
n� k + ��1

�
F
V
�(l)
n

(bn)
�i
+ bnFV �(l)n

(bn) (29)

The unknown quantity F
V
�(l)
n

(bn) in equation (27) and equation (29) is

solved by using the expression in equation (25), i.e.:

n�1X
k=0

�ke
(�� 1

2
�2r2k)(n�k)e

�rk
p
n�k��1

�
F
V
�(l)
n

(bn)

�
� bn = 0 (30)

2.5 Asset based price of the embedded option

In the previous section, the value of the embedded options at inception was

determined. In this section, we determine the periodic price charged in re-

spect of the embedded options. An annual management fee is charged on the

value of the fund at the end of each respective year or contribution period.

The charge can be stated annually but deducted monthly or quarterly. Note

that at inception the embedded option has to be purchased by the insurer or

a replicating portfolio has to be set up in order to e¤ectively manage the risk

of the guarantee. The management charges therefore recover the initial guar-

antee liability outgo. The annual management fee solution is a discrete case

of the continuous pricing solution, which is a deduction in the yield of the

underlying fund. Milevsky (2006) gives a structured approach to obtaining

the actual price of the guarantee when recouping the cost of the guarantee

continuously from the underlying fund.
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Consider the asset based charge e deducted annually from the fund V �n .

The fund value at time n is given as:

V �n =
n�1X
k=0

�k (1� e)n�k e(��
1
2
�2)(n�k)+�(W (n)�W (k)) (31)

Comparing equation (31) above to equation (11) we see that only the

premium vector changes, i.e. the guarantee charge reduces the contribution

that participates in the fund growth. By following the same steps in deriving

the CLB approximation as in section 2.3, we �nd the value of the optimising

constant 
k of the information variable � as:


k = �k (1� e)
n�k e�(n�k) (32)

and the optimal correlation coe¢ cient rk as:

rk =

Pn�1
l=0 �l (1� e)

n�l e�(n�l)min(n� k; n� l)
p
n� k

qPn�1
j=0

Pn�1
l=0 �j�l (1� e)

2n�j�l e�(2n�j�l)min(n� j; n� l)
(33)

The value of the embedded call option at inception of the contract is given

as:

C0 =

n�1X
k=0

�k (1� e)n�k e��k�
h
�rk
p
n� k � ��1

�
F
V
�(l)
n

(bn)
�i

�e��nbn
h
1� F

V
�(l)
n

(bn)
i

(34)
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and the value of the embedded put option at inception of the contract as:

P0 = �
n�1X
k=0

�k (1� e)n�k e��k�
h
��rk

p
n� k + ��1

�
F
V
�(l)
n

(bn)
�i

+e��nbnFV �(l)n
(bn) (35)

Again, the unknown quantity F
V
�(l)
n

(bn) in the expressions of equations

(34) and (35) is found by using the result in equation (25), i.e.:

n�1X
k=0

�k (1� e)n�k e(��
1
2
�2r2k)(n�k)e

�rk
p
n�k��1

�
F
V
�(l)
n

(bn)

�
� bn = 0 (36)

The annual charge for the guarantee e can now be found by fair value

principles, i.e. equating the expected present value of the premium with the

expected present value of the bene�ts. For the embedded put option, we

have:
n�1X
k=0

�ke
��k = e��nE

�
V �(l)n

�
+ P0 (37)

The unknown guarantee charge e is therefore found by numerically solving

the following expression with respect to e:

e��nbnFV �(l)n
(bn)�

n�1X
k=0

�ke
��k
h
1� (1� e)n�k �

h
�rk
p
n� k � ��1

�
F
V
�(l)
n

(bn)
�ii

= 0

(38)

The derivation for the embedded call option follows in a similar way.
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2.6 Illustrative Example

The accuracy of the conditional lower bound approximation is illustrated

in the following by determining the value of the embedded guarantee us-

ing a Monte Carlo method as a proxy of the true value. In Table 1, we

calculated the discounted values of the embedded put options for the sim-

pli�ed product. The accuracy of the call options follow by put-call par-

ity.Variance reduction in the form of antithetic variates was used. Simulated

results are based on 50 000 paths for each set of parameter values. We as-

sume a continuous risk-free rate of 5% per annum with volatilities of 20%,

30% or 40% per annum. The contributions �k; k = 0; :::; n; are assumed at

100 per annum and the term of the contract is taken as n = 10 years. We

also vary the guaranteed amount bn by considering the following �ve values

(500; 750; 1000; 1250; 1500) : The CLB column gives the conditional lower

bound approximation, while the MC and s.e. columns give the Monte Carlo

estimate with associated standard error.

The annual charge was solved for by using equation (38) and is given for

di¤erent parameter values in Table 2. The charges are given in basis points

(bps) of the fund value charged annually. Charges in excess of or approaching

100% are omitted.

It is evident from Table 2 that the charges increase substantially as the

volatility increases or as the risk-free rate decreases. The sensitivity of the

option value to these parameters and therefore of the price of the option need

to be considered in a comprehensive risk management strategy. In section 4,

we consider and test a possible hedging strategy that aims to immunise the
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Table 1: Conditional Lower Bound (CLB) estimates of the embedded put
option values with n = 10, � = 5% and varying volatilities, compared to
Monte Carlo (MC) estimates and their standard errors (s.e.).

� bn CLB MC s.e.
20% 500 0.2899 0.3191 0.00061

750 7.6583 7.7911 0.00368
1000 39.3632 39.5205 0.00924
1250 104.2183 104.3376 0.01103
1500 198.3930 198.5049 0.00816

30% 500 4.6067 4.9362 0.00299
750 30.2476 30.7541 0.00824
1000 84.6857 85.1418 0.01132
1250 164.6151 164.9986 0.01243
1500 264.0077 264.3668 0.00794

40% 500 15.6902 16.7220 0.00561
750 60.3649 61.5619 0.01058
1000 131.4565 132.5241 0.01172
1250 222.2414 223.1759 0.01005
1500 327.2443 328.0961 0.00796

Table 2: Charges in basis points (bps) for the embedded put options with
n = 10 and varying volatilities and risk-free rates.

bn � = 20% � = 30% � = 40%
� = 1% 500 0.3664 2.8282 7.5429

750 6.9304 18.7686 32.8233
1000 51.1506 86.5640 120.8808

� = 5% 500 0.06095 0.9881 3.4656
750 1.6931 7.1870 15.1582
1000 10.5377 25.1368 41.4655
1250 48.1448 81.8928 114.5406

� = 10% 500 0.00425 0.2254 1.2115
750 0.2218 2.0356 5.7732
1000 1.7803 7.3267 15.2321
1250 6.9371 18.4198 31.8342
1500 20.2496 40.7130 61.8769
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important risk factors.

3 Life-contingent guaranteed minimum ben-

e�ts

In this section, we generalise the simpli�ed pure investment product of sec-

tion 2 to allow for mortality risk by considering guaranteed death and guar-

anteed survival bene�ts. The premiums for ancillary risk bene�ts such as

dread disease, disability and premium waiver bene�ts are usually deducted

from the policyholder�s contributions before the contribution is invested in

the sub-account. We assume that the insurer has a risk-neutral position to

mortality risk, i.e. the VA business portfolio consists of a large enough popu-

lation of independent policyholders such that the aggregate mortality risk is

diversi�ed. In the case where mortality risk is fully diversi�able, the random

lifetimes of policyholders can be replaced by their expected lifetimes. The

Law of Large Numbers imply that the variability in the expected value of the

independent random lifetimes of a cohort of identical policyholders tends to

zero, i.e. the expected lifetime of a cohort of policyholders becomes determin-

istic. We also assume that mortality risk is independent of investment risk,

thereby allowing us to express the real world probability of an integrated risk

event as a the product of the individual investment risk and mortality risk

events. Independence between �nancial and biometric risks are not neces-

sarily maintained when replacing the physical probability measure with the

equivalent martingale measure. Dhaene et al. (2010) provides an overview
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of the implications of modelling integrated risks in the combined market of

�nancial and biometric risks. We assume in the following that the combined

market is complete and that independence between the sub-markets holds

for the equivalent martingale measure.

Consider a VA product that is underwritten on a life aged x at time 0 and

who aims to annuitise the VA in n years. Annual premiums �k are used to

purchase units of the opted underlying investment fund. An allocation cost

charge c is charged for when purchasing units, which implies that (1� c)�k

worth of units are available of each contribution �k. We assume for simplic-

ity that any fractional unit of the underlying fund can be purchased. The

allocation cost typically covers the intial expenses, commission or advisory

fees and ongoing allocation expenses. The allocated premiums are used to

purchase units of the investment fund at the fund�s bid price Fk at the start

of the year (k; k + 1). We assume that the bid price of one unit of the invest-

ment fund at time t is equal to the value of the fund Fk, i.e. the investment

fund prices are given net of the bid-o¤er spread. The insurer charges the

bid-o¤er spread by increasing the o¤er price at time k, i.e. setting the o¤er

price at Fk
1�� for some value 0 < � < 1: This means that the policyholder has

to buy the units at a higher price than the value of the fund. The premium

for ancillary mortality bene�ts is charged as a deduction, the risk premium

�
(r)
k , from the regular contribution. The savings premium or net contribution

at time k is de�ned by:

�
(s)
k = (1� �) (1� c)�k � �(r)k (39)
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Assuming that the policyholder is still alive at time k and that no units

have been withdrawn before time k, the fund value V �k+1 at time k+1 is given

by:

V �k+1 =

kX
j=0

�
(s)
j

Fk+1
Fj

(1� e)k+1�j ; k = 0; :::; n� 1 (40)

3.1 Guaranteed minimum maturity bene�t

We assume that a su¢ ciently large book of independent insured lives are held

by the insurer. This means that the probability that a policyholder aged x

surviving to time t is replaced by the frequency of survival of the cohort of

the population aged x:

P [Tx > t] = tpx (41)

where Tx denotes the random lifetime of a policyholder aged x. The CLB

approximation for the sub-account after allowing for deductions and charges

is given as:

V �n =
n�1X
k=0

�
(s)
k (1� e)n�k e(��

1
2
�2)(n�k)+�(W (n)�W (k)) (42)

By following the same steps in deriving the CLB approximation as in

section 2.3, we �nd the value of the optimising constant 
k of the information

variable � as:


k =
�
(1� �) (1� c)�k � �(r)k

�
(1� e)n�k e�(n�k)

= �
(s)
k (1� e)n�k e�(n�k) (43)

23



and the optimal correlation coe¢ cient rk as:

rk =

Pn�1
l=0 �

(s)
l (1� e)n�l e�(n�l)min(n� k; n� l)

p
n� k

qPn�1
j=0

Pn�1
l=0 �

(s)
j �

(s)
l (1� e)2n�j�l e�(2n�j�l)min(n� j; n� l)

(44)

The present value at time 0 of the embedded call option is given by:

C0 =

n�1X
k=0

npx�
(s)
k (1� e)n�k e��k�

h
�rk
p
n� k � ��1

�
F
V
�(l)
n

(bn)
�i

� npxe
��nbn

h
1� F

V
�(l)
n

(bn)
i

(45)

and the present value of the embedded put option is given by:

P0 = �
n�1X
k=0

npx�
(s)
k (1� e)n�k e��k�

h
��rk

p
n� k + ��1

�
F
V
�(l)
n

(bn)
�i

+ npxe
��nbnFV �(l)n

(bn) (46)

In the case of the put-type option representation of the GMMB, the fair

value principle leads to the asset-based charge e to be solved from:

n�1X
k=0

kpx�
(s)
k e

��k = npxe
��nE

�
V �(l)n

�
+ npxP0

=

n�1X
k=0

npx�
(s)
k (1� e)n�k e��k�

h
�rk
p
n� k � ��1

�
F
V
�(l)
n

(bn)
�i

+ npxe
��nbnFV �(l)n

(bn) (47)

Note that the present value of contributions, left-hand side of equation

(47), excludes the contribution attributable to ancillary risk bene�ts and

allocation charges. For the call-type option representation of the GMMB,
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which equals a n-term bond and a call option, the application of the fair

value principle results in:

n�1X
k=0

kpx�
(s)
k e

��k = npxe
��nbn + npxC0

=
n�1X
k=0

npx�
(s)
k (1� e)n�k e��k�

h
�rk
p
n� k � ��1

�
F
V
�(l)
n

(bn)
�i

+ npxe
��nbnFV �(l)n

(bn) (48)

It is evident from equations (47) and (48) that the solution for the guar-

antee charge e is identical for the call-type option and put-type option rep-

resentations.

3.2 Guaranteed minimum death bene�t

The risk premium �
(r)
k can be used to explicitly charge for the GMDB on a

periodic basis, i.e. the risk premium �
(r)
k is solved for from the expression:

�
(r)
k = A (x+ k) e��E [SR] (49)

where A (x+ k) is the cost-loaded actuarial premium for a one-year term

insurance with death bene�t equal to 1 and sold to the policyholder of age

x+ k, and where:

SR = max
�
bk+1 � V �k+1; 0

�
(50)

where V �k+1 contains the risk premium �
(r)
k , cf. equation (39).

We assume in the following that the charge for the GMDB is recouped
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by an asset-based charge eg that forms part of the regular management fee

e, i.e. e = ea+ eg where ea denote all other asset-based charges such as fund

management charges. The call option and put option representations remain

the same as in equations (45) and (46), but we now need to solve for the

asset-based charge eg by applying fair value principles. In the case of the

put-type option representation of the GMDB, the asset-based charge eg is

solved from the expression:

n�1X
k=0

kpx�
(s)
k e

��k =

n�1X
k=0

kpx qx+ke
��(k+1)E

�
V
�(l)
k+1 +

�
bk+1 � V �(l)k+1

�
+

�
(51)

The asset-based charge for other fees besides the investment guarantee

charge is assumed to be exogenously given. Therefore, the only unknown in

equation (51) is the GMDB asset-based charge eg:

3.3 Guaranteed minimum death and survival bene�ts

Endowment type VA products typically o¤er a guaranteed minimum bene�t

on both death and survival. Since these life-contingent events are mutually

exclusive, the investment guarantee bene�t simpli�es to being the sum of the

two life-contingent bene�ts, i.e.:

B0 = Bq0 +B
p
0

=
n�1X
k=0

kpx qx+ke
��(k+1)E

�
max

�
bqk+1; V

�(l)
k+1

�
+

�
+ tpxe

��nE
�
max

�
V �(l)n ; bpn

��
(52)

where bqk+1 denotes the guaranteed minimum death bene�t and b
p
n denotes
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the guaranteed minimum survival bene�t. By using the split of the annual

management charge, we solve for the unknown asset-based guarantee charge

eg from the expression:

n�1X
k=0

kpx�
(s)
k e

��k = Bq0 +B
p
0 (53)

Note that we assume one asset-based guarantee charge for both the death

and survival bene�ts. Note that should the insurer guarantee contributions

inclusive of ancillary bene�t charges and allocation charges, the savings pre-

mium �
(s)
k is then replaced by the full contribution �k on the discounted

contributions side. The portion of the total guarantee charge applicable to

the death bene�t can be established by:

Bq0
B0
eg (54)

and similarly for the portion of the guarantee charge applicable to the

survival bene�t:
Bp0
B0
eg (55)

3.4 Illustrative example

In the following, we demonstrate the application of the results obtained for

solving for the asset-based guarantee charge eg: We consider the guarantee

charge for the death bene�t and for the survival bene�t for varied economic

assumptions. The contributions �k; k = 0; :::; n; are assumed at 100 per an-

num with a contract term of n = 10 years. The GMDB, bk+1; and GMMB,
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bn; are assumed to provide return of contributions : We also consider a ben-

e�t equal to 50%, 75%, 125% and 150% of contributions. The policyholder

is assumed to be a male aged 30 at inception of the policy with mortality

according to the PMA92 mortality tables as published by the Continuous

Mortality Investigation Bureau (CMIB) of the Institute and Faculty of Ac-

tuaries, U.K. A deterministic mortality assumption can result in serious con-

sequences to an insurer�s solvency if its book of policies has few policyholders

or if the book of policies consist of largely homogeneous policyholders that

are susceptible to the same mortality shocks. In such cases, the Law of Large

Numbers does not apply and the added mortality risk implies an additional

cost, which must be charged to the policyholder for the insurer to accept

the addtional risk. This cost stems from either more aggressive reinsurance

treaties or more stringent reserving requirements.

An extreme upper bound is considered for the embedded option value in

the case of the GMMB. If the underlying fund value were to fall to zero, the

payo¤becomes certain and the only randomness relates to the survival of the

policyholder. The bene�t therefore becomes a pure endowment contract with

a sum assured equal to the certain payo¤. It is evident from Table 3 that the

value of the embedded option in the combined market case will approach the

extreme upper bound for large values of the volatility parameter and small

values of the risk-free rate parameter, i.e. implying no time-value of money.

In Table 4, the extreme upper bound to the value of the embedded option

is also given. Similar to the GMMB example, the only randomness relates to

the mortality of the policyholder. Therefore, in this case the bene�t would
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Table 3: Conditional Lower Bound (CLB) results for the discounted values
of the GMDB embedded put options with n = 10 for a policyholder aged 30.

� Pure
� bn 20% 30% 40% Endowment

1% 50% 1.9260 14.2503 36.3826 451.5138
75% 31.1084 76.2113 125.1575 677.2707
100% 120.4741 189.4874 255.4479 903.0276
125% 266.2231 340.6167 413.5743 1128.7845
150% 448.6732 516.8435 590.2473 1354.5413

5% 50% 0.2893 4.5975 15.6588 302.6587
75% 7.6430 30.1871 60.2442 453.9881
100% 39.2845 84.5163 131.1935 605.3175
125% 104.0098 164.2858 221.7969 756.6468
150% 197.9962 263.4797 326.5898 907.9762

10% 50% 0.0178 0.9375 4.9634 183.5718
75% 0.9197 8.1576 22.2728 275.3577
100% 7.0436 26.9571 53.0722 367.1436
125% 24.3388 58.5864 95.3486 458.9295
150% 55.9512 101.8676 146.7768 550.7154

be the term life death bene�t with a sum assured equal to the certain payo¤

in the event of death. Again, the embedded option value in the combined

market case will approach the extreme upper bound for high volatility values

and low risk-free parameter values.

4 Hedging strategies

4.1 Introduction

In the following, we derive sensitivity measures, the so-called greeks, to imple-

ment a dynamic hedging strategy. A good review of dynamic hedging strate-

gies and the various measures used can be found in Taleb (1997) and in Hull

(2008). Life companies might opt for static hedging strategies, as opposed
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Table 4: Conditional Lower Bound (CLB) results for the discounted values
of the GMMB embedded put options with n = 10 for a policyholder aged 30.

� Term Life
� bn 20% 30% 40% Bene�t

1% 50% 0.0012 0.0106 0.0298 0.5309
75% 0.0265 0.0696 0.1183 0.7964
100% 0.1242 0.1943 0.2620 1.0618
125% 0.2997 0.3720 0.4451 1.3273
150% 0.5229 0.5840 0.6542 1.5927

5% 50% 0.0002 0.0038 0.0144 0.4014
75% 0.0079 0.0320 0.0650 0.6021
100% 0.0511 0.1024 0.1550 0.8028
125% 0.1487 0.2135 0.2764 1.0035
150% 0.2907 0.3547 0.4202 1.2043

10% 50% 0.00002 0.0010 0.0055 0.2871
75% 0.0014 0.0113 0.0297 0.4306
100% 0.0148 0.0437 0.0785 0.5741
125% 0.0565 0.1025 0.1497 0.7177
150% 0.1297 0.1843 0.2384 0.8612

to dynamic hedging strategies, should the investment guarantee structure

allow it, e.g. recurring premium business with a GMMB requires a portfolio

of forward-starting European put options to be hedged according to a sta-

tic hedging strategy where these might not be available in the market. In

this section, we consider approximate measures for the three greeks typically

considered by life insurance �rms in their dynamic hedging programmes, i.e.

the delta, vega and rho of a portfolio.

It might be possible for an insurer to transfer its exposure to investment

risk to a third party, such as a reinsurer or an investment bank, although

these markets might prove infeasible during and following �nancial turmoil.

Reinsurance �rms typically have a set risk appetite for investment business

and do not readily take on the investment risk, while Investment banks can
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o¤er a structured product to the insurer to transfer some or all of the invest-

ment risk or aid in the management of an existing hedging programme. The

application of using existing market instruments, including over the counter

instruments, to set up a static hedging portfolio is formally considered by,

for example, Chen et al. (2008).

4.2 A Proposed Hedging Solution

In order to derive the delta at time t of the embedded options, we need to

express the values of the embedded options in terms of the fund price at

time t; where t is de�ned on the continuous interval (0; n) : In the previous

sections, we assumed that time elapses in a discrete way, i.e. that the time

variable k measures the discrete moments in time k = 0; 1; :::; n � 1: In the

following, we �rst derive an expression for the value of the embedded option

at some instantaneous time t; where 0 � t � n and then �nd the delta

measure by taking the derivative of the derived expression with respect to

the underlying fund price at time t, Ft: In the follwing, we consider only

the put-type embedded option since the derivation for the call-type option

follows in a similar way.

In our dervivation of the CLB approximation, the initial fund value F (0)

cancelled out. Assume now the �ltration Ft and k < t, we therefore have:

F (n)

F (k)
=
F (t)

F (k)
exp

��
� � �

2

2

�
(n� t) + � (W (n)�W (t))

�
(56)

The CLB approximation for the fund value V �n is given as:
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V �(l)n =

n�1X
k=0

�
(s)
k gk (Z) (57)

where gk (Z) is de�ned as follows:

gk (Z) =

8><>:
F (t)
F (k)

e(��
1
2
�2r2t )(n�t)+�rt

p
n�tZ for k < t

e(��
1
2
�2r2k)(n�k)+�rk

p
n�kZ for k � t

(58)

By following the same steps in deriving the CLB approximation as in

section 2.3, we �nd the value of the embedded put option at time t as:

Pt = �F (t)
dte�1X
k=0

�
(s)
k

F (k)
�
h
��rt

p
n� t+ ��1

�
F
V
�(l)
n

(bn)
�i

�
n�1X
k=dte

�
(s)
k e

��(k�t)�
h
��rk

p
n� k + ��1

�
F
V
�(l)
n

(bn)
�i
+ e��(n�t)bnFV �(l)n

(bn)

(59)

where the value of F
V
�(l)
n

(bn) can be found in the usual way, viz.:

n�1X
k=0

F�1�kgk(Z)

�
F
V
�(l)
n

(bn)
�
� bn = 0 (60)

The delta measure of the embedded put option of the GMMB in the

combined market is given by:

�t =
@Pt
@F (t)

= � tpx

dte�1X
k=0

�
(s)
k

F (k)
�
h
��rt

p
n� t+ ��1

�
F
V
�(l)
n

(bn)
�i

(61)

The delta measure of the GMDB embedded put option, assuming that
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the policyholder is alive at time t, is given as:

�t = �
n�1X

j=dte�1
jpx qx+j

dte�1X
k=0

�
(s)
k

F (k)
�
h
��rt

p
n� t+ ��1

�
F
V
�(l)
j+1

(bj+1)
�i
(62)

The delta measure of an embedded option in the combined market is

therefore a weighted sum of the constituent delta measures, where the weights

are determined by the probability of the event that drives the bene�t, i.e.

survival or death.

The vega and rho of the embedded option aim to immunise the portfolio

with respect to the model parameters � and r, respectively, thereby mit-

igating model risk. Although the delta measure was found analytically, a

numeric �nite di¤erencing approach could have been used. A point estimate

approximation of the embedded option value allows up and down shifts in the

embedded option value to be calculated with speed and ease. The vega and

rho of the embedded option measure changes in the embedded option value

due to changes in the model parameters and are not analytically tractable.

Therefore, the vega and rho are calculated using the �nite di¤erencing ap-

proach. A common approach is to consider both an up and a down shift in

the option value, see e.g. Wilmott (2006). The vega for the put-type option

is calculated as:

V =
@Pt
@�

� Pt (� +��)� Pt (� ���)
2��

(63)
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where Pt (�) denotes the put-type option value as a function of the given

parameter value and �� denotes the magnitude of the small shift in the

parameter value. Likewise, we �nd the rho for the put-type option as:

�t =
@Pt
@�

� Pt (� +��)� Pt (� ���)
2��

(64)

The magnitude of the shift in the parameter value depends on the �rm�s

risk management framework and is usually a function of expected future

volatility.

4.3 Illustrative Example

Consider an investor who contributes a monthly contribution of 1 at times,

k = 0; 1; :::; n; for a term of 5 years, i.e. n = 60. For simplicity, we assume

�rst that all payments are paid with certainty and that death is the only

decrement, i.e. no lapses or surrenders. To assist the illustration, an in-the-

money 200% return of contributions guarantee on the investment is assumed,

i.e. a strike price of bn = 120. A single market scenario was simulated from

a Black-Scholes-Merton economy with parameters � = 20% and � = 5%.

A delta hedging strategy is considered by using both the analytical delta

measure of section 4.2 and the delta measure found by �nite-di¤erencing,

i.e.:

�t �
Pt [F (t) + �F (t)]� Pt [F (t)��F (t)]

2�F (t)
(65)

The GMMB is illustrated in Figure 1, while the GMDB is illustrated
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Figure 1: Comparison of performance of delta measures for GMMB.
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in Figure 2. In both �gures, the embedded option value is illustrated by the

solid line, while the dotted line represents the approach of equations (61) and

(62) and the dashed line represents the approach of equation (65) :

5 Conclusion

The complexity of insurance contracts set in the combined market of �nan-

cial risk and mortality risk pose sign�cant challenges to the risk management

frameworks of insurers. The conditional lower bound approximation aids in

addressing the three questions posed by Hardy (2003). It allows quick feasib-

lity studies of product structures during product development, and estimates

of the cost of capital in the case of reserving or the cost of a suitable hedg-

ing programme in the case of dynamic or static hedging. The use of the

conditional lower bound approximation further allows insurers to verify the
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Figure 2: Comparison of performance of delta measures for GMDB.
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reasonableness of estimates arising from more complex and resource intensive

pricing and reserving models. The conditional lower bound approximation

can be extended to allow for more complex asset pricing models and mortality

models.
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