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BUY-AND-HOLD STRATEGIES AND
COMONOTONIC APPROXIMATIONS

Abstract

We investigate optimal buy-and-hold strategies for terminal wealth problems in a
multi-period framework. As terminal wealth is a sum of dependent random variables,
the distribution function of final wealth cannot be determined analytically for any
realistic model. By calculating lower bounds in the convex order sense, we consider
approximations that reduce the multivariate randomness to univariate randomness.
These approximations are used to determine buy-and-hold strategies that optimize,
for a given probability level, the Value at Risk and the Conditional Left Tail Expec-
tation of the distribution function of final wealth. Finally, the accurateness of the

different approximations is investigated numerically.

Keywords: comonotonicity, lognormal variables, lower bounds, optimal portfolios, risk

measures.

1 Introduction

Optimal portfolio selection can be defined as the problem that consists in identifying the
best allocation of wealth among a basket of securities. The investor chooses an initial asset
mix and a particular investment strategy within a given set of strategies, according to
which he will buy and sell assets during the whole time period under consideration.

The simplest class of strategies are the so-called “buy-and-hold” strategies, where an
initial asset mix is chosen and no rebalancing is performed during the investment period.

In this paper, we aim at finding optimal buy-and-hold strategies for final wealth pro-
blems. Note that the case of constant mix strategies was analyzed in Dhaene et al. (2005).
Buy-and-hold strategies are an important and popular class of investment strategies. Firstly,
they do not require a dynamic follow-up and are easy to implement. Secondly, since no
intermediate trading is required, they do not involve transaction costs.

As the investment horizon that we consider is typically long, the Central Limit Theorem
provides some justification for the use of a Gaussian model for the stochastic returns, see
e.g. Cesari and Cremonini (2003) and McNeil et al. (2005).

We assume that the aim of the decision maker is to maximize the “benefit” he attracts
from the final value of his investment. Hence, we maximize a quantity related to terminal
wealth, thereby also reflecting the decision maker’s risk aversion. In this paper we do not
work within the framework of expected utility (Von Neumann & Morgenstern (1947)).

Instead, we use distorted expectations within the framework of Yaari’s dual theory of



choice under risk (Yaari (1987)). We consider strategies that maximize the quantile (or
Value-at-Risk) of the final wealth corresponding to a given probability level.

For any buy-and-hold strategy, terminal wealth is a sum of dependent random variables
(rv’s). In any realistic multiperiod asset model, the distribution function of final wealth
cannot be determined analytically. Therefore, we look for accurate analytic approximations
for the distribution function (df) or the risk measure at hand. The most direct approx-
imation is given by the so-called “comonotonic upper bound”, which is an upper bound
for the exact df in the convex order sense, see Kaas et al. (2000). However, much better
approximations can be obtained by using comonotonic lower bound approximations; see
Dhaene et al. (2002a,b), Vanduffel et al. (2005) and Vanduffel et al. (2008). The advantages
of working with these approximations are related to the fact that, for any given invest-
ment strategy, they enable accurate and easy-to-compute approximations to be obtained
for risk measures that are additive for comonotonic risks, such as quantiles, conditional tail
expectations and, more generally, distortion risk measures.

The paper is organized as follows. Section 2 gives a brief review of some important risk
measures, such as Value-at-Risk and Conditional Left Tail Expectation, and also introduces
the different comonotonic bounds for sums of rv’s used throughout the paper. In Section
3, the basic variables of the problem, such as dynamic price equations and investment
strategies are introduced, and buy-and-hold strategies are described. In Section 4, we derive
explicit expressions for upper and lower comonotonic bounds for terminal wealth when
following a buy-and-hold strategy. Section 5 is devoted to finding optimal buy-and-hold
strategies in the case where one is focusing on maximizing a Value-at-Risk or a Conditional
Left Tail Expectation. The results are investigated numerically to illustrate the level of

accurateness of the different comonotonic approximations. Section 6 concludes the paper.

2 Preliminaries

2.1 Risk measures

All rv’s considered in this paper are defined on a given filtered probability space
(Qa ]:’ {‘E}tzo ’ P)

In order to make decisions, we use risk measures. A risk measure is a mapping from a
set of relevant rv’s to the real line R. Firstly, let us consider the Value-at-Risk at level p
(also called the p-quantile) of a rv X. Tt is defined as

QP[X] = F);l(p) = inf{x €R | FX<£E) Zp} y P E (071) )
where Fy(z) = Pr(X < z) and by convention inf{(} = +oc.

We can also define the related risk measure

Qy[X] =sup{z €eR | Fx(z) <p}, p€(0,1),
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where by convention sup{f)} = —oc.

If Fiy is strictly increasing, then @Q,[X] = @, [X], for every p € (0,1).

In this paper, we also use the Conditional Left Tail Expectation at level p, which is
denoted by CLTE,[X]. It is defined as

CLTE,[X] = E[X | X < Q}[X]] . pe (0,1).
If CTE,[X]|=FE[X | X > Q,[X]] denotes the Conditional Tail Expectation,
CLTE,_,|X] = ~CTE,[-X]. (2.1)

We refer to Dhaene et al. (2006) for an overview of the properties of distortion risk

measures.

2.2 Comonotonic bounds for sums of random variables

A random vector X = (X7, X,..., X,,) is said to be comonotonic if
d ;e _ _
(X1, Xo,..., X,) = (FY[(U), FSl(U),....Fx(U)),

where U is a rv uniformly distributed on the unit interval. We refer to Dhaene et al.
(2002a,b) for an extensive overview on comonotonicity and a discussion of some of its
applications.

The risk measures (), and C' LT E, have the convenient property that they are additive
for sums of comonotonic risks, i.e., if X = (X3, Xy, ..., X,,) is a comonotonic random vector
and S = X; + Xy + -+ + X,,, then we have that

Q15 = > Q,lx

and

CLTE,[S] =) CLTE,[X,],
=1

provided all marginal distributions Fx, are continuous.

Now, let X = (X3, Xo,...,X,) be a random vector of dependent rv’s X;, i =1,...,n,
and let S = X7 + Xo + -+ + X, be the corresponding sum. In some cases the df of S can
be determined; for instance, when X is a multivariate normally or elliptically distributed
rv, but in general this a difficult exercise. Kaas et al. (2000) and Dhaene et al (2002a,b)
showed that there are situations where good and analytically tractable approximations for
the df and the risk measures of S can be found. These approximations are bounds in convex

order. A rv X is said to be convex smaller than another rv Y, denoted by X <., Y, if

EX] = E[Y],
E[(X —d);] < E[(Y—-d)], foralldeR.
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Let U be the uniform distribution on the unit interval. For any random vector
(X1, Xg,...,X,) and any rv A, we define

S°=> Fg'(U), and §' =) "E[X; | A].
=1 =1

It can be proven that S' <., S <., S¢, see Kaas et al. (2000). The bound S¢ is the so-called
comonotonic upper bound, and whilst its risk measures are often readily available they do
not provide us with good approximations for the risk measures of S in general. Essentially,
this is because the comonotonic vector (Fy!(U), Fx, (U),...,Fx'(U)) entails a maximal
correlation between the rv’s X; and X, for every ¢, 7 = 1,...,n. On the other hand, for the
lower bound S! to be of real use, we need more explicit expressions for the rv’s E [X; | A].
Fortunately, in the lognormal case such expressions are readily available, as we show below.
The challenge consists in choosing the rv A in such a way that the convex lower bound
St= E[S| A is ‘close’ to the rv S.

2.3 Sums of log-normal random variables

Consider the multivariate normal random vector (7, Z,...,Z,), and the non-negative

real numbers «;, ¢ = 1,...,n. In this case, the sum S defined by

n
S = E a; €%
i=1

is a sum of dependent lognormal rv’s.
The comonotonic upper bound S¢ for S is given by

n

8= Foa(U) = 3 aqeBlltost O, (2.2)
=1

=1

In order to obtain a lower bound S' for S, we consider a conditioning rv A which is a linear

A= Z’Yij .
j=1

After some computations (see Dhaene et al. (2002b)), we find that the lower bound S' =
St a; Ele” | A is given by

combination of the different Z;,

gt — Zai cEZilA+3Var [Zi\A}’ (2.3)
i=1
with
A—FE[A
OA
Var [ZZ | A] = (1 - TZQ) 0-%1'7



where r; is the correlation coefficient between Z; and A, o, is the standard deviation of the
rv A and ® denotes the standard normal df. If all r; are positive, then S’ is a comonotonic
sum.

In order to obtain accurate approximations for the df of S, we choose the coefficients
7, in such a way that they minimize some “distance” between S and S'. In this paper, we

use four different approaches.

1. The ‘Taylor-based’ lower bound approach. In Kaas et al. (2000) and Dhaene
et al. (2002b), the parameters 7; are chosen such that A is a linear transformation of
a first order approximation to S. After a straightforward derivation, the parameters

7; turn out to be given by

v; = a; P4l (2.4)

2. The ‘Maximal Variance’ lower bound approach. As we have that Var[S!] <
Var[S!] + E[Var[S|A]] = Var[S)], it seems reasonable to choose the coefficients ~; such
that the variance of S’ is maximized. This idea led Vanduffel et al. (2005) to maximise

an approximate expression for Var[S!]. They obtain
4202 .
")/] _ a] eE[Zj]+2 Zj — a]E |:€Z]:| . (25)
3. The ‘MV-Minimal CLTE,’ lower bound approach. The two lower bounds de-
scribed above are constructed in such a way that they lead to an overall good ap-
proximation for the distribution function for the sum S. In Vanduffel et al. (2008) a
‘locally’ optimal A was introduced such that the df of the corresponding lower bound

E[S | A] is close to the df of S in a particular upper or lower tail of the distribution.

The convex ordering that exists between the rv’s S!, S and S¢ implies that C LT E,[S°]
< CLTE,[S] < CLTE,[S"; see Dhaene et al. (2006). Then, A is optimal for measur-
ing the lower tail for the df of S in case CLTE,[S'] becomes ‘as small as possible’.
In particular, let r; denote the correlation coefficients between Z; and the rv A ob-
tained from the ‘Maximal Variance’ approach. Then, the parameters 7; minimizing

a first-order approximation for the CLT E,[S'] in a neighborhood of r; are given by

E[Zj}+%a§j

. 6_%(”021_@71(73))2 (26)

V= age

with
B S arE [ez’“} Cov [Z;, Zj]
02, >t oy ki E [eZ] E %] Cov [Zy, Z1]

Note that from relation (2.1) it follows that minimizing C LT E,[S'] is equivalent to

Ty

maximizing CT E,[S']. Therefore, the coefficients (2.6) also give rise to lower bound

approximations that provide a good fit in the upper tail.
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4. The ‘T-Minimal CLTE,’ lower bound approach. In this paper we introduce this
bound, which is similar to the previous one, but now the first order approximation
is performed in a neighborhood of the correlation coefficient r; which represents the
correlation between the Z; and the rv A obtained from the ‘Taylor’ approach. In this
case, we find that the coefficients 7; in A are given by (2.6) with

. S aweICov (2, 24 |
’ 07, Dot 2oy QnaueP P2 Cov [ Zy, Z)]

Indeed, Vanduffel et al. (2008) provided some evidence that the ‘Taylor-based’ lower
bound approach is likely to be more appropriate in the approximation of the left tail of the
distribution of S, whereas the ‘Maximal Variance’ lower bound approach is more accurate
in the case where one focuses on the right tail of S. As we illustrate numerically, the same
kind of observations also holds, as expected, for the related “T-Minimal CLTE,,” and ‘MV-
Minimal CLTE,’ lower bound approaches. Note that from the investors’ point of view, the
risk of the final wealth rv is in the left tail of its distribution, which corresponds to small

outcomes of final wealth.

3 General description of the problem

3.1 The Black & Scholes setting

We adopt the classical continuous-time framework pioneered by Merton (1971), and which
is nowadays mostly referred to as the Black and Scholes setting. Let ¢ = 0 be now and let
the time unit be equal to 1 year. We assume that there m + 1 securities available in the
financial market. One of them is a risk-free security (for instance, a cash account). Its unit

price, denoted as P°(t), evolves according to the following ordinary differential equation:

dP(t)
Po(t)

=rdt ,

where r > 0 and P°(0) = py > 0. There are also m risky assets (stock funds, for instance).
Let Pi(t), i =1,...,m, denote the price for 1 unit of the risky asset 7 at time ¢. We assume
that P'(t) evolves according to a geometric Brownian motion, described by the following

system of differential equations:

dP(t) - .
) At +odB) =1, m
where P'(0) = p; > 0, (B'(t),...,B™(t)) is a m-dimensional Brownian motion process.
The Bi(t) are standard Brownian motions with Cov (Bi(t), B/(t + s)) = —2it, for t,s > 0.

0i0;



We assume that r and the drift vector of the risky assets u = (p1, . . ., ftm) remain constant
over time, and also that u # (r,...,7).

We define the matrix ¥ = (0;), 4,7 = 1,...,m, with 0;; = o?. We assume that X is
positive definite. In particular, this implies that all o;; > 0 (all m risky assets are indeed
risky) and that ¥ is nonsingular.

Finally, let us analyze the return in one year for an amount of 1 unit that is invested

at time k — 1 in asset 7. If ;' denotes the random yearly log-return of account i in year k,
then e = — 2.
Pi(k—1) ‘
The random yearly returns Y, ¢ = 1, ..., m, are independently and normally distributed
with

. 1
B = Mi_501'27
Var[vi] = of,
o 0 if k#I
Cov [V, Yj] = ks
Oij if k=1.
Hence, ¥ is the Variance-Covariance Matrix of the one-period logarithms (Y}, ..., Y}").

3.2 Buy-and-Hold strategies and terminal wealth

In this paper, we focus on buy-and-hold strategies. We consider the following terminal
wealth problem:

e New investments are made once a year, with a; > 0 the investment at time ¢, ¢ =
0,1,...,n—1.

e The «; are invested in the m + 1 assets according to a buy-and-hold strategy char-
acterized by the vector of pre-determined proportions II(¢) =(mo(t), ..., mn(t)), for
t=0,1,...,n—1, with 377" m;(t) = 1.

e The proportions according to which the new investments are made do not vary over

time, i.e. II(t) = (mo, 71, ..., Tm)-

e The investor does not perform any other trading activity during the investment period
[0, n].

Our aim is to evaluate the random terminal wealth W, (II) for a given buy-and-hold
strategy Il = (mg, 71, ..., Tn) and a given (deterministic) vector of savings (ag, g, . . ., (p—1).
Let Z; be the total log-return, over the period [j, n] of 1 unit of capital invested at time

t=7inasseti,1=0,1,...,m:

Zi= > Y. (3.1)

k=j+1



Note that, for every asset i, i = 1,...,m, the different Zj are n dependent normally
distributed rv’s with

B(Z) = (-3 |- 507 (32)

: (3.3)

oz = (n—j)o;
whereas for the risk-free component (i = 0) we find that ZJ is given by Z) = E[Z}] =
(n — j)r. Hence, by denoting pp = r and 02 = 0, we find that expressions (3.1) also cover
the case 1 = 0.

Investing according to the buy-and-hold strategy II = (7o, 71, . .., 7 ), we find that the
terminal wealth of the investments in asset class ¢ is given by

n—1
W,,ZL(H) = Z Uraes; QZ; .
j=0

The total terminal wealth W, (II) is then given by

m m n—1
Wo(ID) =Y Wid) => "> maje’. (3.4)
i=0 i=0 j=0

4 Upper and lower bounds for the terminal wealth

From (3.4) it becomes clear that W,,(II) is the sum of m - n dependent log-normal rv’s and
a constant term which represents the final wealth of the risk free investments. In general, it
is not possible to determine the df of W, (IT) analytically. In order to obtain good analytical
approximations for risk measures related to W, (II), we determine the comonotonic bounds

described in Section 2.3.

4.1 Comonotonic upper bound

The terminal wealth for the buy-and-hold strategy II = (7, 1, ..., 7y) is given by (3.4).
From (3.2), (3.3) and (2.2), we obtain

m n—1
WC<H) = Z T aj e(n_j)(ﬂi—%U?)—ﬁ-\/nTja,-‘I)*l(U) (4 1)
n . .
i=0 j=0
Note that W¢(IT) is linear in the investment proportions 7;, i = 0,1,...,m.

4.2 The ‘Taylor-based’ lower bound

For the sum of log-normal rv’s and the constant term given by (3.4), we know from Section
2.2 that lower bounds can be obtained as W!(II) = E[W,(II) | A(I)], where A(II) is a
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linear combination of ij Following the results in Section 2.3, we choose

- Z v (1) - Z5 . (4.2)

=1 j5=0

n—

From (2.4), it follows that the coefficients 7;;(II) for the Taylor-based approach are given
by

’)/U(H) = T; Oy eE [Zﬂ . (43)
Therefore, from (3.2) we obtain
m n—1
AT = 355 0yl 12
i=1 j=0
From (2.3) we know that
m n—1 )
W) £y ma; et (4.4)
i=0 j=0
where
4 a1 -
A = BlZ]] + 500 =)o + 1Mo, & (U)
~ L, 2 P |
= (n=7) = griyIDoi | +riy()yn — jo:®(U) .
It remains to compute the correlation coefficients r;;(Il), for i = 1,...,m,

7=0,1,....,n— 1 A
Cov|[Z;, A(IT)]

Var[Zi]y/Var[A(TT)]

rij(I1) =

First, note that
Var[Z] = \/n—jo; .

Moreover, since A(II) = >~ Z;.:Ol 7i;(IT) Z3 we find that

I
—

1n

Var[A(D)] = > ) i (IT) 4 (IT) Cov [Z2, Z[] (4.5)

i=1 k=1 j=0 I

m n

I
o
Il
o

Lemma 1 For everyi,k=1,...,m, and j,l =0,1,...n — 1, it holds that

Cov [Z}, Zﬂ = (n —max(j,[))o .

10



Proof: Straightforward.

O
From relation (4.5), we obtain by using Lemma 1 that
m m n—1n-1
Var[A Z Z i (1) v (1) (n — max(j, 1)) o -
i=1 k=1 j=0 [=0
Finally note that, fort=1,...,m,
m n—1 m n—1
Cov [Z;,A0I)] = Cov |Z}, ZZV Z Yu(IT) Cov [Z] ,Z) ]
k=0 1=0 k=1 1=0
m n—1
= Z V(I (n — max(j, 1)) o - (4.6)
k=1 1=0
From (4.2)-(4.6) we arrive at the following result:
Proposition 1 The Taylor-based lower bound is determined by
m n—1
) £ S 3 m ;e (k=T M oF) 47y (MV=j o:@~1 (V) (4.7)
=0 7=0
where the correlation coefficients 7;;(11) are given by
7 (I1) = (4.8)

> e Z?;ol 7, oy (n — max(7,1)) oy o (=D [ —37]

(n—t)[ps—302]+(n—1) [ — 102

oi |[(n—7) Zz,lk:1 Z?l_:l(] Ty (n — max(t,1))oge

fori=1,...,m, j=0,...,n—1, and 7o;(II) = 0.

Note that, for a; > 0,7=0,1,...,n — 1, it holds that 7;;(II) > 0.

4.3 The ‘Maximal Variance’ lower bound

For the ‘Maximal Variance’ lower bound approach, the coefficients 7;;(II) in (4.2) are chosen
according to (2.5). Hence,

E(Zi)+}0? p

%’j(H) =Tpaje (4.9)

, 1
Since B[Z]] + 0% = (n — j) ps, see (3.2)-(3.3), we find

2

—_

m n—
E Wae(” “"Z’

=1

.
Il
=)

As before, from (4.4)-(4.9) we arrive at the following result:

11



Proposition 2 The ‘Maximal Variance’ lower bound is determined by (4.7) with the cor-

relation coefficients 7;;(I1) replaced by

m n—1 - .
fiJ'(H) Zk:l Zl:o T O (n - max(j, l)) Oik e(n=Dpk

- 172
oi [ (n—3) D ene1 Z?l_:lo Tsmpazay(n — max(t,1))osy e("—t)ﬂﬁ(”—l)uk] (4.10)

fori=1...,m,j=0,...,n—1, and 7;(II) = 0.

For a; > 0,7=0,1,...,n — 1, it holds that 7;;(II) > 0.

4.4 The ‘MV-Minimal CLTE,’ lower bound

In a similar way to the previous section, applying (2.6), we find that the coefficients ~;;(II)
in (4.2) are given by

v (1) = 7; cuj e cem 2T DV=joi=e 71 m)? (4.11)
Then we have:

Proposition 3 The ‘MV-Minimal CLTE,’ lower bound is determined by (4.7) with the

correlation coefficients 7;;(11) replaced by

ry(IT) = D ket Zz o (1) (n — max(j, 1)) o |
(V n—j 02‘) [Zs 1D ke Zl -0 " Ve (I1) s (I1) (n — max(t, 1)) O-Sk’:| 1/2(4.12)

fori=1,...,m, j=0,...,n—1, where v;;(II) are given by (4.11); and ro;(II) = 0.

For a; > 0,7=0,1,...,n — 1, it holds that r;;(II) > 0.

4.5 The ‘T-Minimal CLTE,’ lower bound

In this case, the coefficients v;;(II) in (4.2) are given by
/YZ](H) f— Wza e(n j) - e é(’"u(n)v ]UZ ( ))2 . (4.13)

In comparison with expression (4.11), note that the only difference is in the correlation

coefficient. Then we find the following result:

Proposition 4 The Taylor-based ‘Minimal CLTE,’ lower bound is determined by (4.7)
with the correlation coefficients r;;(I11) replaced by (4.12), where ~;;(I1) are given by (4.13);
and ro;(IT) = 0.

For a; > 0,7=0,1,...,n — 1, it holds that r;;(II) > 0.

12



4.6 Numerical illustration

In this section we numerically illustrate the accuracy of the analytic bounds presented in
the previous sections.

We consider a portfolio with two risky assets and one risk-free asset. Yearly drifts of
the risky assets are p; = 0.06 and pus = 0.1, whereas volatilities are given by o7 = 0.1 and
oy = 0.2, respectively.aMoreover, 012 = 0.01, hence Pearson’s correlation between these

12

assets is 7(Y,!, V%) = = 0.5. The yearly return of the risk-free asset is considered to
0102

be 0.03. Every period i, i = 0,...,n — 1, an amount of one unit (o; = 1) is invested in

the following proportions: 19% in the risk-free asset, 45% in the first risky asset, while
the remaining 36% will be invested in the second risky asset. At time ¢ = n the invested
amount «,, = 0.

The following tables comprise the results of the comparison between the simulated and
the corresponding approximated values obtained by means of the different comonotonic
approximations of the terminal wealth. The simulated results were obtained using 500,000
random paths.

First we compare quantiles of terminal wealth. For our particular problem, we are
interested in low quantiles, corresponding to relatively small outcomes of final wealth. For
any p € (0,1), Qu[W,(I)] is the (smallest) wealth that will be reached with a probability
of (at least) 1 — p.

In order to compute the different quantiles, note that the correlation coefficients r;;(II)
are all non-negative for any approximation method. Hence, W!(II) is a comonotonic sum
for the ‘Taylor based’, ‘Maximal Variance’, ‘MV-Minimal CLT'E,,” and ‘T-Minimal CLTE),’

lower bound approaches. This implies that

m n—1
Q,[WL(IT)] = Z Z o =) (=373, (D oF ) +riy (V=T i@~ (p)
i=0 j=0

where the 7;(II) are chosen according to the appropriate method (Propositions 1-4).

For n = 20, the results for the tails of the distribution function of the terminal wealth
obtained by the Monte Carlo simulation, as well as the procentual difference between the
analytic and the simulated values, are given in Table 1. We make the following notational
convention: MC denotes the result for the Monte Carlo simulation, and T, MV, MCLTE
and MCLTEy denote the results for the ‘Taylor-based’, ‘Maximal-Variance’, ‘T-Minimal
CLTE, and ‘MV-Minimal CLTE,’ lower bounds, respectively. We also include the results
for the comonotonic upper bound approach (CUB) for the sake of comparison. The per-
centage is calculated as the difference between the approximated and the simulated values,

divided by the simulated value.
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TABLE 1

Comparing the results obtained with the Monte Carlo simulation, all the lower bound
approximations seem to perform reasonably well; some of them are excellent, mainly for
high quantiles, but also for low quantiles. In order to discuss the approximations for the
left tail of the distribution (low quantiles), we calculate the tails for the case n = 30 (Table
2).

TABLE 2

When the number of years n increases, the approximations become worse. In particular,
for the left tail, the approximation given by the ‘Maximal Variance’ lower bound approach
becomes clearly worse. Except when p approaches 0, the Taylor-based approximation ap-
pears to work reasonably well. However, if we look for a better approximation, the best
one is given by the T-Minimal C'LTE, approach. A drawback of the Minimal CLTE,
approaches is that they require an additional calculation as compared to the ‘Taylor’ or
‘Maximal Variance’ approaches. Hence, when the number of years is not too high, the
approximations given by the ‘Taylor-based’ and ‘Maximal Variance’ approaches for the
left and right tails, respectively, could be used. For the problem analyzed in this paper,
this means that the Taylor lower bound can be a good choice (recall that we are mainly
interested in the lower tails of the distribution function), unless p is very small. When the
number of periods (years) become very high, the Minimal C'LT E,, approaches seem to be
an appropriate choice.

To assess the performance of the approximations when the number of assets is high, we
also consider a more realistic portfolio consisting of 30 risky assets plus one riskfree asset. In
this example, all pairs of risky assets are affected by different degrees of positive correlation.
The annualized expected returns range from 0.035 to 0.15, whereas the volatilities range
from 0.12 to 0.40. In every period, one unit of capital is evenly distributed among the
assets so that the proportions 7;, 2 = 0, ... , 30, are all equal. In the last period, nothing is

invested (agy = 0).

TABLE 3
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As can be seen in Table 3, increasing the number of assets does not affect significantly
the performance of the approximations. Contrary to the case when the number of periods
increases, raising the number of assets does not seem to deteriorate drastically the accuracy
of the analytical bounds. Only the precision of the comonotonic upper bound is deeply
affected despite the higher complexity of the model.

Finally, since in the following section we also work with an optimization criterion based
on the Conditional Left Tail Expectation, we numerically illustrate the approximated values
corresponding to the C' LT E,, in the three cases described above. Tables 4-6 summarize the

results for n = 20, n = 30 and m = 30 (n = 20) respectively.

TABLE 4
TABLE 5

TABLE 6

Clearly, the approximations are much better for the Minimal C LT E, criteria. In fact,
for n = 20, the ‘Maximal Variance’ approximation is not accurate enough, and for n = 30
only the MCLTFE criteria seem to be adequate.

5 Optimal portfolio selection

In the remainder of the paper, we look for portfolios that maximize the risk measures
Q1-p[W,(IT)] and CLTE;_,[W,(II)], respectively. A natural justification of this choice
is given by Yaari’s (1987) dual theory of choice under risk. Within this framework, the
investor chooses the optimal investment strategy as the one that maximizes the distorted

expectation of the final wealth:
IT* = arg ml%xpf[Wn(H)] = arg mﬁlx/ f(Pr(W,(II) > z)) dx ,
0

where the distortion function f is a non-decreasing function on the interval [0, 1], f(0) =0
and f(1) = 1. It is easy to prove that the risk measures Q1_,[W,, (II)] and CLT E;_,[W,,(1I)]
correspond to distorted expectations p¢[W,(m)] for appropriate choices of the distortion

funtion f. For more details, we refer to Dhaene et al.(2006).
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5.1 Maximizing the Value at Risk

For a given probability level p and a given investment strategy II, let the p-target capital
be defined as the (1 — p)-th order quantile of terminal wealth. The problem of the investor
consists in looking for the optimal target capital K obtained as the maximizer of the

quantile, whose maximization is performed over all buy-and-hold strategies II:
K, = max Q1—p[W,(ID)] .

As it is impossible to determine Q;_,[W,(II)] analytically, we first try to solve the opti-

mization problem for the comonotonic approximations W<(II) of W, (1I):
Ke = max Qu_, W (D).

Using the expression (4.1) for WS(II), it is clear that
QulWi(ID] = 3_ 3 ol bl ignaon), (5.1

Use of the comonotonic upper bound approximations is not appropriate in our buy-and-
hold context. Firstly, as we have illustrated numerically, the comonotonic upper bound
does not give an accurate approximation to terminal wealth. Secondly, as shown in (5.1),
Qp[WS(IT)] is a linear combination of the proportions m;, ¢ = 0,1,...,m. Therefore, the
solution to the optimization problem will be trivial: the investor invests all her /his capital
in only one asset. It is obvious that such an investment strategy will be far from optimal
in general.

Therefore, we address our attention to solving the approximate problem

Kl = max Qu,[WA(IT)] 52
where )
Q1_,[WL(IT)] = Z ma o (=3) (ni= 5% () 07 ) 745 ()v/n—f o1~ (1-p) 7
i=0 j=0

and the r;;(II) are chosen according to the appropriate method (Propositions 1-4).

Let us illustrate numerically the results for the approximated optimal values obtained
from (5.2) using the examples given in Section 4.6. In order to avoid corner solutions (all
the available money is allocated in the risk-free asset or in the risky assets), we impose a
(reasonable) constraint consisting in a minimal expected return. In particular, we assume
that the portfolio has an expected return not lower than 6%, and we look for the portfolio
maximizing @)1_, for p = 0.95 (and so 1 — p = 0.05) satisfying this constraint and such
that m; > 0, for i = 0,...m.

For n = 20 we obtain the results given in Table 7.
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TABLE 7

For p = 0.9 (and so 1 — p = 0.1), the results are given in Table 8.

TABLE 8

Note that the results are relatively close to each other for all the lower bound approxi-
mations.

For n = 30, we restrict our attention to the Taylor-based and the minimal CLTE,
lower bound approaches (the approximation given for the 0.05 quantile by the ‘Maximal
Variance” approach was not accurate enough). For p = 0.95 (1 — p = 0.05), the results are

given in Table 9.

TABLE 9

For p = 0.9 (1 — p = 0.1), the results are given in Table 10.

TABLE 10

5.2 Maximizing Conditional Left Tail Expectations

Now let us calculate the optimal investment strategy by maximizing the CLTE for a given

probability level p,
IT" = arg max CLTE,_,[W,(II)] . (5.3)

This optimization problem describes decisions of risk-averse investors. Recall that the con-

ditional left tail expectation has the following nice property:
CLTE, ,[WtI)] < CLTE, ,[W,(I)] < CLTE, ,[W.1I)] ,
for every p € (0,1).

17



Once again, we solve the optimization problem for the lower bound approximations of
W, (IT), since the upper comonotonic bound exhibits the same problems as those described

in the previous subsection. Indeed, from (4.1), it is clear that

NS g e L B = 97 )

p

CLTE,[Wy (7))

Therefore, we solve numerically the approximate problem
arg max CLTE, _,[W.(IT)] . (5.4)

Since W!(II) is a comonotonic sum for the ‘Taylor-based’, ‘Maximal Variance’, ‘MV-

Minimal CLTE,” and ‘Taylor-Minimal C'LT'E,’ lower bound approaches, we have

m n—1 _ — R
CLTE, WL =33 1 ay e 1—®(Vn—jri(l)oi — 2 (p))
j p

with the appropriate r;;(II) for each lower bound method.

Next, we numerically illustrate the approximated optimal portfolios obtained from (5.4)
for the same problem discussed in the previous section.

For n = 20 and 1 — p = 0.05, the optimal portfolios for the different bounds are given
in Table 11.

TABLE 11
For n =20 and 1 — p = 0.1, the optimal portfolios are given in Table 12.
TABLE 12

For n = 30, the results for the Taylor-based and the minimal CLTE, lower bound
approaches are given in Tables 13 (for 1 — p = 0.05) and 14 (for 1 —p = 0.1).

TABLE 13

TABLE 14

It is clear from the numerical results that in both cases (n = 20 and n = 30) the best
approximation for the optimal target capital K is given by the T-Minimal C' LT E,, lower

bound approximation.
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6 Conclusions

In Dhaene et al. (2005), the ‘Maximal Variance’ lower bound to the sum of log-normal
dependent variables was applied in the search for optimal portfolios within the class of
constant mix strategies. In this paper, we use a similar approach for the analysis of buy-
and-hold strategies, obtaining in this way analytic approximations of the df of terminal
wealth. An advantage of buy-and-hold strategies compared with constant mix strategies is
that much lower transactions costs are involved. However, the comonotonic bounds used in
obtaining an analytic approximation of the df of terminal wealth seem to be more sensitive
to the number of periods and assets in a buy-and-hold strategy than in a constant mix
strategy. Therefore, in this paper we calculate not only the comonotonic lower bounds for
uniform values of the conditioning variable A (the so-called ‘Taylor-based’ (Dhaene et al.
(2002b)) and ‘Maximal Variance’ (Vanduffel et al. (2005)) lower bound approaches), but
also the bounds obtained for specific choices of A approximating the tails of the sum of
log-normal variables. These new approximations were introduced in Vanduffel et al. (2008)
by using a nice property of the Conditional (Left) Tail Expectation. We call such an ap-
proximation the ‘MV-Minimal C'LTE, lower bound’. Since in our context the Taylor-based
approach works better than the ‘Maximal Variance’ one, we introduce a different version
of this comonotonic lower bound, which we call the “T-Minimal CLT'E,, lower bound’, and
which has proved to be the best analytic approximation for our particular problem. Finally,
we compare the performance of the different approximations in the problem of finding the

buy-and-hold strategy that maximizes the target capital.
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P MC T MV MCLTEr MCLTE),y CUB

0.01  21.0088 1.51% 2.44% 0.63% 0.78% -18.44%
0.025 23.0171 1.03% 1.73% 0.57% 0.68% -16.90%
0.05  25.0385 0.64% 1.14% 0.46% 0.54% -15.40%
0.1 27.7600  0.28%  0.57% 0.33% 0.38% -13.41%
0.95 86.4381 -0.11% 0.04% -0.07% -0.09% 10.93%
0.975 101.7844 -0.55% -0.17% -0.05% -0.07% 13.53%
0.99 124.4009 -1.25% -0.56% 0.03% 0.02% 16.33%

Table 1: Procentual difference between simulated and approximated values of Q,[Wao(II)].
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P MC T MV MCLTEr MCLTE),y CUB

0.01 38.2135 3.10% 5.21% 1.64% 2.14% -22.59%
0.025  42.9505 2.20% 3.82% 1.41% 1.76% -20.99%
0.05  48.0219 1.22% 2.43% 0.92% 1.17% -19.55%
0.1 55.0187 0.51% 1.27% 0.63% 0.63% -17.32%
0.95 267.6211 -0.01% 0.15% -0.06% -0.08% 10.57%
0.975 337.2806 -0.48% 0.06% 0.09% 0.07% 13.12%
0.99 4499011 -1.81% -0.72% -0.20% -0.22% 15.09%

Table 2: Procentual difference between simulated and approximated values of @Q,[Ws5o(II)].
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P MC T MV MCLTEr MCLTE),y CUB

0.01 14.2801 1.58%  3.18% 0.88% 0.97% -52.33%
0.025 16.6095 1.31% 2.53% 0.98% 1.05% -49.31%
0.05 19.0727  1.06%  1.95% 0.94% 1.00% -46.30%

0.1 22,5801 0.81% 1.35% 0.84% 0.89% -42.23%
0.95 136.2118 -0.26% -0.17% -0.36% -0.37% 26.16%
0.975 174.3170 -0.61% -0.16% -0.28% -0.30% 38.88%
0.99 237.0702 -1.87% -0.89% -0.75% -0.77% 54.33%

Table 3: Procentual difference between simulated and approximated values of @Q,[Wa(1I)]

when m = 30.
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P MC T MV  MCLTEr MCLTE,y CUB

0.01 19.4627 2.14% 3.27% 0.54% 0.66% -19.39%
0.025 21.0590 1.55% 2.47% 0.41% 0.48% -18.27%
0.05 225796 1.15% 1.90% 0.36% 0.41% -17.11%
0.1 245304 0.76% 1.31% 0.31% 0.33% -15.61%

Table 4: Procentual difference between simulated and approximated values for
CLTE,[Wy(IT)].
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P MC T MV  MCLTEr MCLTE,y CUB

0.01 34.6499 4.28% 6.80% 1.40% 1.82% -23.33%
0.025 38.3641 3.19% 5.27% 1.05% 1.32% -22.29%
0.05 42.0104 2.34% 4.05% 0.80% 0.97% -21.17%
0.1 46.8531 1.50% 2.79% 0.58% 0.67% -19.61%

Table 5: Procentual difference between simulated and approximated values for
CLTE,[W3(IT)].
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P MC T MV  MCLTEr MCLTE,y CUB

0.01 12.5704 2.34% 4.28% 1.10% 1.17% -54.12%
0.025 14.3601 1.75% 3.32% 0.95% 0.99% -51.85%
0.05 16.1374 1.43% 2.711% 0.93% 0.96% -49.53%
0.1 185524 1.16% 2.11% 0.90% 0.92% -46.45%

Table 6: Procentual difference between simulated and approximated values for
CLTE,[Wy(II)] when m = 30.
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> 6% T MV  MCLTEr MCLTE),yvy CUB

) 12.48% 12.14% 11.97% 11.82% 40.00%
T 55.04%  55.72% 56.06% 56.36% 0.00%
o 32.48%  32.14% 31.97% 31.82% 60.00%
K* 251802 25.3254 25.145 25.1703 21.3226

Table 7: Optimal portfolio weights in the case of maximizing Qo.o5[Wao(II)].
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> 6% T MV  MCLTEr MCLTE),yvy CUB

) 0.00%  0.00% 0.00% 0.00% 40.00%
T 66.25%  65.90% 66.28% 66.32% 0.00%
o 33.75%  34.10% 33.72% 33.68% 60.00%
K* 279625 28.0683  27.9847 28.0072 24.0377

Table 8: Optimal portfolio weights in the case of maximizing Qo1 [Wao(I1)].
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> 6% T MCLTEr MCLTEpy

o 11.13% 10.43% 9.92%
m 57.74% 59.14% 60.16%
e 31.13% 30.43% 29.92%
K* 488106  48.7112 48.8998

Table 9: Optimal portfolio weights in the case of maximizing Qg o5[Wso(I1)].

29



> 6% T MCLTEr MCLTEpy

o 0.00% 0.00% 0.00%
m 58.85% 59.40% 60.30%
e 41.15% 40.60% 39.70%
K*  56.7152 56.806 56.9404

Table 10: Optimal portfolio weights in the case of maximizing Qo1 [Ws0(I1)].
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> 6% T MV  MCLTEr MCLTE),yvy CUB

) 15.98% 15.08% 15.23% 15.03% 40.00%
m o 48.05% 49.85% 49.55% 49.94% 0.00%
Ty 35.97% 35.07% 35.22% 35.03% 60.00%
K* 22714  22.8947  22.5359 22.5485 19.1586

Table 11: Optimal portfolio weights in the case of maximizing C' LT Eq o5[Wao(11)].
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> 6% T MV  MCLTEr MCLTE),yvy CUB

) 13.68% 13.17% 12.86% 12.76% 40.00%
T 52.64%  53.67% 54.28% 54.48% 0.00%

o 33.68% 33.16% 32.86% 32.76% 60.00%
K* 246638 24.8168  24.5598 24.5679 20.9498

Table 12: Optimal portfolio weights in the case of maximizing C' LT Ey 1 [Wao(1I)].
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> 6% T MCLTEr MCLTEpy

o 14.35% 13.19% 12.54%
m 51.30% 53.61% 54.91%
e 34.35% 33.19% 32.54%
K* 428765  42.2428 42.3493

Table 13: Optimal portfolio weights in the case of maximizing C' LT Eq o5[W30(11)].
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> 6% T MCLTEr MCLTEpy

o 12.24% 11.01% 10.61%
m 55.52% 57.98% 58.78%
e 32.24% 31.01% 30.61%
K* 476574  47.2594 47.3327

Table 14: Optimal portfolio weights in the case of maximizing C' LT Ey1[Wso(1I)].
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