
BUY-AND-HOLD STRATEGIES AND

COMONOTONIC APPROXIMATIONS1
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BUY-AND-HOLD STRATEGIES AND

COMONOTONIC APPROXIMATIONS

Abstract

We investigate optimal buy-and-hold strategies for terminal wealth problems in a

multi-period framework. As terminal wealth is a sum of dependent random variables,

the distribution function of final wealth cannot be determined analytically for any

realistic model. By calculating lower bounds in the convex order sense, we consider

approximations that reduce the multivariate randomness to univariate randomness.

These approximations are used to determine buy-and-hold strategies that optimize,

for a given probability level, the Value at Risk and the Conditional Left Tail Expec-

tation of the distribution function of final wealth. Finally, the accurateness of the

different approximations is investigated numerically.

Keywords: comonotonicity, lognormal variables, lower bounds, optimal portfolios, risk

measures.

1 Introduction

Optimal portfolio selection can be defined as the problem that consists in identifying the

best allocation of wealth among a basket of securities. The investor chooses an initial asset

mix and a particular investment strategy within a given set of strategies, according to

which he will buy and sell assets during the whole time period under consideration.

The simplest class of strategies are the so-called “buy-and-hold” strategies, where an

initial asset mix is chosen and no rebalancing is performed during the investment period.

In this paper, we aim at finding optimal buy-and-hold strategies for final wealth pro-

blems. Note that the case of constant mix strategies was analyzed in Dhaene et al. (2005).

Buy-and-hold strategies are an important and popular class of investment strategies. Firstly,

they do not require a dynamic follow-up and are easy to implement. Secondly, since no

intermediate trading is required, they do not involve transaction costs.

As the investment horizon that we consider is typically long, the Central Limit Theorem

provides some justification for the use of a Gaussian model for the stochastic returns, see

e.g. Cesari and Cremonini (2003) and McNeil et al. (2005).

We assume that the aim of the decision maker is to maximize the “benefit” he attracts

from the final value of his investment. Hence, we maximize a quantity related to terminal

wealth, thereby also reflecting the decision maker’s risk aversion. In this paper we do not

work within the framework of expected utility (Von Neumann & Morgenstern (1947)).

Instead, we use distorted expectations within the framework of Yaari’s dual theory of
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choice under risk (Yaari (1987)). We consider strategies that maximize the quantile (or

Value-at-Risk) of the final wealth corresponding to a given probability level.

For any buy-and-hold strategy, terminal wealth is a sum of dependent random variables

(rv’s). In any realistic multiperiod asset model, the distribution function of final wealth

cannot be determined analytically. Therefore, we look for accurate analytic approximations

for the distribution function (df) or the risk measure at hand. The most direct approx-

imation is given by the so-called “comonotonic upper bound”, which is an upper bound

for the exact df in the convex order sense, see Kaas et al. (2000). However, much better

approximations can be obtained by using comonotonic lower bound approximations; see

Dhaene et al. (2002a,b), Vanduffel et al. (2005) and Vanduffel et al. (2008). The advantages

of working with these approximations are related to the fact that, for any given invest-

ment strategy, they enable accurate and easy-to-compute approximations to be obtained

for risk measures that are additive for comonotonic risks, such as quantiles, conditional tail

expectations and, more generally, distortion risk measures.

The paper is organized as follows. Section 2 gives a brief review of some important risk

measures, such as Value-at-Risk and Conditional Left Tail Expectation, and also introduces

the different comonotonic bounds for sums of rv’s used throughout the paper. In Section

3, the basic variables of the problem, such as dynamic price equations and investment

strategies are introduced, and buy-and-hold strategies are described. In Section 4, we derive

explicit expressions for upper and lower comonotonic bounds for terminal wealth when

following a buy-and-hold strategy. Section 5 is devoted to finding optimal buy-and-hold

strategies in the case where one is focusing on maximizing a Value-at-Risk or a Conditional

Left Tail Expectation. The results are investigated numerically to illustrate the level of

accurateness of the different comonotonic approximations. Section 6 concludes the paper.

2 Preliminaries

2.1 Risk measures

All rv’s considered in this paper are defined on a given filtered probability space

(Ω,F , {Ft}t≥0 ,P).

In order to make decisions, we use risk measures. A risk measure is a mapping from a

set of relevant rv’s to the real line R. Firstly, let us consider the Value-at-Risk at level p

(also called the p-quantile) of a rv X. It is defined as

Qp[X] = F−1
X (p) = inf{x ∈ R | FX(x) ≥ p} , p ∈ (0, 1) ,

where FX(x) = Pr(X ≤ x) and by convention inf{∅} = +∞.

We can also define the related risk measure

Q+
p [X] = sup{x ∈ R | FX(x) ≤ p} , p ∈ (0, 1) ,

3



where by convention sup{∅} = −∞.

If FX is strictly increasing, then Qp[X] = Q+
p [X], for every p ∈ (0, 1).

In this paper, we also use the Conditional Left Tail Expectation at level p, which is

denoted by CLTEp[X]. It is defined as

CLTEp[X] = E
[
X | X < Q+

p [X]
]
, p ∈ (0, 1) .

If CTEp[X] = E [X | X > Qp[X]] denotes the Conditional Tail Expectation,

CLTE1−p[X] = −CTEp[−X] . (2.1)

We refer to Dhaene et al. (2006) for an overview of the properties of distortion risk

measures.

2.2 Comonotonic bounds for sums of random variables

A random vector X = (X1, X2, . . . , Xn) is said to be comonotonic if

(X1, X2, . . . , Xn)
d
= (F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn
(U)) ,

where U is a rv uniformly distributed on the unit interval. We refer to Dhaene et al.

(2002a,b) for an extensive overview on comonotonicity and a discussion of some of its

applications.

The risk measures Qp and CLTEp have the convenient property that they are additive

for sums of comonotonic risks, i.e., if X = (X1, X2, . . . , Xn) is a comonotonic random vector

and S = X1 +X2 + · · ·+Xn, then we have that

Qp[S] =
n∑
i=1

Qp[Xi]

and

CLTEp[S] =
n∑
i=1

CLTEp[Xi] ,

provided all marginal distributions FXi
are continuous.

Now, let X = (X1, X2, . . . , Xn) be a random vector of dependent rv’s Xi, i = 1, . . . , n,

and let S = X1 +X2 + · · ·+Xn be the corresponding sum. In some cases the df of S can

be determined; for instance, when X is a multivariate normally or elliptically distributed

rv, but in general this a difficult exercise. Kaas et al. (2000) and Dhaene et al (2002a,b)

showed that there are situations where good and analytically tractable approximations for

the df and the risk measures of S can be found. These approximations are bounds in convex

order. A rv X is said to be convex smaller than another rv Y , denoted by X ≤cx Y , if

E [X] = E [Y ] ,

E [(X − d)+] ≤ E [(Y − d)+] , for all d ∈ R .
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Let U be the uniform distribution on the unit interval. For any random vector

(X1, X2, . . . , Xn) and any rv Λ, we define

Sc =
n∑
i=1

F−1
Xi

(U), and Sl =
n∑
i=1

E [Xi | Λ] .

It can be proven that Sl ≤cx S ≤cx Sc, see Kaas et al. (2000). The bound Sc is the so-called

comonotonic upper bound, and whilst its risk measures are often readily available they do

not provide us with good approximations for the risk measures of S in general. Essentially,

this is because the comonotonic vector (F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)) entails a maximal

correlation between the rv’s Xi and Xj, for every i, j = 1, . . . , n. On the other hand, for the

lower bound Sl to be of real use, we need more explicit expressions for the rv’s E [Xi | Λ].

Fortunately, in the lognormal case such expressions are readily available, as we show below.

The challenge consists in choosing the rv Λ in such a way that the convex lower bound

Sl = E [S | Λ] is ‘close’ to the rv S.

2.3 Sums of log-normal random variables

Consider the multivariate normal random vector (Z1, Z2, . . . , Zn), and the non-negative

real numbers αi, i = 1, . . . , n. In this case, the sum S defined by

S =
n∑
i=1

αi e
Zi

is a sum of dependent lognormal rv’s.

The comonotonic upper bound Sc for S is given by

Sc =
n∑
i=1

F−1
αi eZi

(U) =
n∑
i=1

αi e
E [Zi]+σZi

Φ−1(U) . (2.2)

In order to obtain a lower bound Sl for S, we consider a conditioning rv Λ which is a linear

combination of the different Zi,

Λ =
n∑
j=1

γjZj .

After some computations (see Dhaene et al. (2002b)), we find that the lower bound Sl =∑n
i=1 αiE [eZi | Λ] is given by

Sl =
n∑
i=1

αi e
E [Zi|Λ]+ 1

2
V ar [Zi|Λ], (2.3)

with

E [Zi | Λ] = E [Zi] + riσZi

Λ− E[Λ]

σΛ

V ar [Zi | Λ] =
(
1− r2

i

)
σ2
Zi
,
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where ri is the correlation coefficient between Zi and Λ, σΛ is the standard deviation of the

rv Λ and Φ denotes the standard normal df. If all ri are positive, then Sl is a comonotonic

sum.

In order to obtain accurate approximations for the df of S, we choose the coefficients

γj in such a way that they minimize some “distance” between S and Sl. In this paper, we

use four different approaches.

1. The ‘Taylor-based’ lower bound approach. In Kaas et al. (2000) and Dhaene

et al. (2002b), the parameters γj are chosen such that Λ is a linear transformation of

a first order approximation to S. After a straightforward derivation, the parameters

γj turn out to be given by

γj = αj e
E [Zj ] . (2.4)

2. The ‘Maximal Variance’ lower bound approach. As we have that Var[Sl] ≤
Var[Sl] + E[Var[S|Λ]] = Var[S], it seems reasonable to choose the coefficients γj such

that the variance of Sl is maximized. This idea led Vanduffel et al. (2005) to maximise

an approximate expression for Var[Sl]. They obtain

γj = αj e
E [Zj ]+ 1

2
σ2
Zj = αjE

[
eZj
]
. (2.5)

3. The ‘MV-Minimal CLTEp’ lower bound approach. The two lower bounds de-

scribed above are constructed in such a way that they lead to an overall good ap-

proximation for the distribution function for the sum S. In Vanduffel et al. (2008) a

‘locally’ optimal Λ was introduced such that the df of the corresponding lower bound

E [S | Λ] is close to the df of S in a particular upper or lower tail of the distribution.

The convex ordering that exists between the rv’s Sl, S and Sc implies that CLTEp[S
c]

≤ CLTEp[S] ≤ CLTEp[S
l]; see Dhaene et al. (2006). Then, Λ is optimal for measur-

ing the lower tail for the df of S in case CLTEp[S
l] becomes ‘as small as possible’.

In particular, let ri denote the correlation coefficients between Zi and the rv Λ ob-

tained from the ‘Maximal Variance’ approach. Then, the parameters γj minimizing

a first-order approximation for the CLTEp[S
l] in a neighborhood of ri are given by

γj = αj e
E[Zj ]+ 1

2
σ2
Zj · e−

1
2

(rjσZj
−Φ−1(p))2 (2.6)

with

rj =

∑n
k=1 αkE

[
eZk
]

Cov [Zj, Zk]

σZj
·
√∑n

k=1

∑n
l=1 αkαlE [eZk ]E [eZl ] Cov [Zk, Zl]

.

Note that from relation (2.1) it follows that minimizing CLTEp[S
l] is equivalent to

maximizing CTEp[S
l]. Therefore, the coefficients (2.6) also give rise to lower bound

approximations that provide a good fit in the upper tail.
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4. The ‘T-Minimal CLTEp’ lower bound approach. In this paper we introduce this

bound, which is similar to the previous one, but now the first order approximation

is performed in a neighborhood of the correlation coefficient ri which represents the

correlation between the Zi and the rv Λ obtained from the ‘Taylor’ approach. In this

case, we find that the coefficients γj in Λ are given by (2.6) with

rj =

∑n
k=1 αke

E[Zk]Cov [Zj, Zk]

σZj
·
√∑n

k=1

∑n
l=1 αkαle

E[Zk]eE[Zl]Cov [Zk, Zl]
.

Indeed, Vanduffel et al. (2008) provided some evidence that the ‘Taylor-based’ lower

bound approach is likely to be more appropriate in the approximation of the left tail of the

distribution of S, whereas the ‘Maximal Variance’ lower bound approach is more accurate

in the case where one focuses on the right tail of S. As we illustrate numerically, the same

kind of observations also holds, as expected, for the related ‘T-Minimal CLTEp’ and ‘MV-

Minimal CLTEp’ lower bound approaches. Note that from the investors’ point of view, the

risk of the final wealth rv is in the left tail of its distribution, which corresponds to small

outcomes of final wealth.

3 General description of the problem

3.1 The Black & Scholes setting

We adopt the classical continuous-time framework pioneered by Merton (1971), and which

is nowadays mostly referred to as the Black and Scholes setting. Let t = 0 be now and let

the time unit be equal to 1 year. We assume that there m + 1 securities available in the

financial market. One of them is a risk-free security (for instance, a cash account). Its unit

price, denoted as P 0(t), evolves according to the following ordinary differential equation:

dP 0(t)

P 0(t)
= rdt ,

where r > 0 and P 0(0) = p0 > 0. There are also m risky assets (stock funds, for instance).

Let P i(t), i = 1, . . . ,m, denote the price for 1 unit of the risky asset i at time t. We assume

that P i(t) evolves according to a geometric Brownian motion, described by the following

system of differential equations:

dP i(t)

P i(t)
= µidt+ σidB

i(t) , i = 1, . . . ,m ,

where P i(0) = pi > 0, (B1(t), . . . , Bm(t)) is a m-dimensional Brownian motion process.

The Bi(t) are standard Brownian motions with Cov (Bi(t), Bj(t+ s)) =
σij
σiσj

t, for t, s ≥ 0.

7



We assume that r and the drift vector of the risky assets µ = (µ1, . . . , µm) remain constant

over time, and also that µ 6= (r, . . . , r).

We define the matrix Σ = (σij), i, j = 1, . . . ,m, with σii ≡ σ2
i . We assume that Σ is

positive definite. In particular, this implies that all σii > 0 (all m risky assets are indeed

risky) and that Σ is nonsingular.

Finally, let us analyze the return in one year for an amount of 1 unit that is invested

at time k − 1 in asset i. If Y i
k denotes the random yearly log-return of account i in year k,

then eY
i
k =

P i(k)

P i(k − 1)
.

The random yearly returns Y i
k , i = 1, ...,m, are independently and normally distributed

with

E [Y i
k ] = µi −

1

2
σ2
i ,

Var [Y i
k ] = σ2

i ,

Cov [Y i
k , Y

j
l ] =

{
0 if k 6= l

σij if k = l .

Hence, Σ is the Variance-Covariance Matrix of the one-period logarithms (Y 1
k , . . . , Y

n
k ).

3.2 Buy-and-Hold strategies and terminal wealth

In this paper, we focus on buy-and-hold strategies. We consider the following terminal

wealth problem:

• New investments are made once a year, with αi ≥ 0 the investment at time i, i =

0, 1, . . . , n− 1.

• The αi are invested in the m + 1 assets according to a buy-and-hold strategy char-

acterized by the vector of pre-determined proportions Π(t) =(π0(t), . . . , πm(t)), for

t = 0, 1, . . . , n− 1, with
∑m

j=0 πj(t) = 1.

• The proportions according to which the new investments are made do not vary over

time, i.e. Π(t) = (π0, π1, . . . , πm).

• The investor does not perform any other trading activity during the investment period

[0, n].

Our aim is to evaluate the random terminal wealth Wn(Π) for a given buy-and-hold

strategy Π = (π0, π1, . . . , πm) and a given (deterministic) vector of savings (α0, α1, . . . , αn−1).

Let Zi
j be the total log-return, over the period [j, n] of 1 unit of capital invested at time

t = j in asset i, i = 0, 1, . . . ,m:

Zi
j =

n∑
k=j+1

Y i
k . (3.1)
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Note that, for every asset i, i = 1, . . . ,m, the different Zi
j are n dependent normally

distributed rv’s with

E [Zi
j] = (n− j)

[
µi −

1

2
σ2
i

]
, (3.2)

σ2
Zi
j

= (n− j)σ2
i , (3.3)

whereas for the risk-free component (i = 0) we find that Z0
j is given by Z0

j = E [Zi
j] =

(n− j)r. Hence, by denoting µ0 = r and σ2
0 = 0, we find that expressions (3.1) also cover

the case i = 0.

Investing according to the buy-and-hold strategy Π = (π0, π1, . . . , πm), we find that the

terminal wealth of the investments in asset class i is given by

W i
n(Π) =

n−1∑
j=0

πi αj e
Zi
j .

The total terminal wealth Wn(Π) is then given by

Wn(Π) =
m∑
i=0

W i
n(Π) =

m∑
i=0

n−1∑
j=0

πi αj e
Zi
j . (3.4)

4 Upper and lower bounds for the terminal wealth

From (3.4) it becomes clear that Wn(Π) is the sum of m ·n dependent log-normal rv’s and

a constant term which represents the final wealth of the risk free investments. In general, it

is not possible to determine the df of Wn(Π) analytically. In order to obtain good analytical

approximations for risk measures related to Wn(Π), we determine the comonotonic bounds

described in Section 2.3.

4.1 Comonotonic upper bound

The terminal wealth for the buy-and-hold strategy Π = (π0, π1, . . . , πm) is given by (3.4).

From (3.2), (3.3) and (2.2), we obtain

W c
n(Π) =

m∑
i=0

n−1∑
j=0

πi αj e
(n−j)(µi− 1

2
σ2
i )+
√
n−jσiΦ−1(U) . (4.1)

Note that W c
n(Π) is linear in the investment proportions πi, i = 0, 1, . . . ,m.

4.2 The ‘Taylor-based’ lower bound

For the sum of log-normal rv’s and the constant term given by (3.4), we know from Section

2.2 that lower bounds can be obtained as W l
n(Π) = E[Wn(Π) | Λ(Π)], where Λ(Π) is a
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linear combination of Zi
j. Following the results in Section 2.3, we choose

Λ(Π) =
m∑
i=1

n−1∑
j=0

γij(Π) · Zi
j . (4.2)

From (2.4), it follows that the coefficients γij(Π) for the Taylor-based approach are given

by

γij(Π) = πi αj e
E [Zi

j ] . (4.3)

Therefore, from (3.2) we obtain

Λ(Π) =
m∑
i=1

n−1∑
j=0

πi αj e
(n−j)[µi− 1

2
σ2
i ]Zi

j .

From (2.3) we know that

W l
n(Π)

d
=

m∑
i=0

n−1∑
j=0

πi αj e
Ai

j(Π) , (4.4)

where

Aij(Π) = E[Zi
j] +

1

2
(1− r2

ij(Π))σ2
Zi
j

+ rij(Π)σZi
j
Φ−1(U)

= (n− j)
(
µi −

1

2
r2
ij(Π)σ2

i

)
+ rij(Π)

√
n− jσiΦ−1(U) .

It remains to compute the correlation coefficients rij(Π), for i = 1, . . . ,m,

j = 0, 1, . . . , n− 1:

rij(Π) =
Cov[Zi

j,Λ(Π)]√
Var[Zi

j]
√

Var[Λ(Π)]
.

First, note that √
Var[Zi

j] =
√
n− j σi .

Moreover, since Λ(Π) =
∑m

i=0

∑n−1
j=0 γij(Π)Zi

j we find that

Var[Λ(Π)] =
m∑
i=1

m∑
k=1

n−1∑
j=0

n−1∑
l=0

γij(Π) γkl(Π) Cov
[
Zi
j, Z

k
l

]
. (4.5)

Lemma 1 For every i, k = 1, . . . ,m, and j, l = 0, 1, . . . n− 1, it holds that

Cov
[
Zi
j, Z

k
l

]
= (n−max(j, l))σik .
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Proof: Straightforward.

2

From relation (4.5), we obtain by using Lemma 1 that

Var[Λ(Π)] =
m∑
i=1

m∑
k=1

n−1∑
j=0

n−1∑
l=0

γij(Π) γkl(Π) (n−max(j, l))σik .

Finally note that, for i = 1, . . . ,m,

Cov
[
Zi
j,Λ(Π)

]
= Cov

[
Zi
j,

m∑
k=0

n−1∑
l=0

γkl(Π)Zk
l

]
=

m∑
k=1

n−1∑
l=0

γkl(Π) Cov
[
Zi
j, Z

k
l

]
=

m∑
k=1

n−1∑
l=0

γkl(Π)(n−max(j, l))σik . (4.6)

From (4.2)-(4.6) we arrive at the following result:

Proposition 1 The Taylor-based lower bound is determined by

W l
n(Π)

d
=

m∑
i=0

n−1∑
j=0

πi αj e
(n−j)(µi− 1

2
r̄2ij(Π)σ2

i )+r̄ij(Π)
√
n−j σiΦ−1(U) , (4.7)

where the correlation coefficients r̄ij(Π) are given by

r̄ij(Π) = (4.8)∑m
k=1

∑n−1
l=0 πk αl (n−max(j, l))σik e

(n−l)[µk− 1
2
σ2
k]

σi

[
(n− j)

∑m
s,k=1

∑n−1
t,l=0 πsπkαtαl(n−max(t, l))σske

(n−t)[µs− 1
2
σ2
s]+(n−l)[µk− 1

2
σ2
k]
]1/2

for i = 1, . . . ,m, j = 0, . . . , n− 1, and r̄0j(Π) = 0.

Note that, for αi ≥ 0, i = 0, 1, . . . , n− 1, it holds that r̄ij(Π) ≥ 0.

4.3 The ‘Maximal Variance’ lower bound

For the ‘Maximal Variance’ lower bound approach, the coefficients γij(Π) in (4.2) are chosen

according to (2.5). Hence,

γij(Π) = πi αj e
E [Zi

j ]+ 1
2
σ2
Zi
j . (4.9)

Since E[Zi
j] +

1

2
σ2
Zi
j

= (n− j)µi, see (3.2)-(3.3), we find

Λ(Π) =
m∑
i=1

n−1∑
j=0

πi αje
(n−j)µi Zi

j .

As before, from (4.4)-(4.9) we arrive at the following result:
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Proposition 2 The ‘Maximal Variance’ lower bound is determined by (4.7) with the cor-

relation coefficients r̄ij(Π) replaced by

r̃ij(Π) =

∑m
k=1

∑n−1
l=0 πk αl (n−max(j, l))σik e(n−l)µk

σi

[
(n− j)

∑m
s,k=1

∑n−1
t,l=0 πsπkαtαl(n−max(t, l))σske(n−t)µs+(n−l)µk

]1/2

(4.10)

for i = 1, . . . ,m, j = 0, . . . , n− 1, and r̃0j(Π) = 0.

For αi ≥ 0, i = 0, 1, . . . , n− 1, it holds that r̃ij(Π) ≥ 0.

4.4 The ‘MV-Minimal CLTEp’ lower bound

In a similar way to the previous section, applying (2.6), we find that the coefficients γij(Π)

in (4.2) are given by

γij(Π) = πi αj e
(n−j)µi · e−

1
2

(r̃ij(Π)
√
n−jσi−Φ−1(p))2 . (4.11)

Then we have:

Proposition 3 The ‘MV-Minimal CLTEp’ lower bound is determined by (4.7) with the

correlation coefficients r̄ij(Π) replaced by

rij(Π) =

∑m
k=1

∑n−1
l=0 γkl(Π) (n−max(j, l))σik(√

n− j σi
) [∑m

s=1

∑m
k=1

∑n−1
t=0

∑n−1
l=0 γst(Π) γkl(Π) (n−max(t, l))σsk

]1/2 ,
(4.12)

for i = 1, . . . ,m, j = 0, . . . , n− 1, where γij(Π) are given by (4.11); and r0j(Π) = 0.

For αi ≥ 0, i = 0, 1, . . . , n− 1, it holds that rij(Π) ≥ 0.

4.5 The ‘T-Minimal CLTEp’ lower bound

In this case, the coefficients γij(Π) in (4.2) are given by

γij(Π) = πi αj e
(n−j)µi · e−

1
2

(r̄ij(Π)
√
n−jσi−Φ−1(p))2 . (4.13)

In comparison with expression (4.11), note that the only difference is in the correlation

coefficient. Then we find the following result:

Proposition 4 The Taylor-based ‘Minimal CLTEp’ lower bound is determined by (4.7)

with the correlation coefficients rij(Π) replaced by (4.12), where γij(Π) are given by (4.13);

and r0j(Π) = 0.

For αi ≥ 0, i = 0, 1, . . . , n− 1, it holds that rij(Π) ≥ 0.
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4.6 Numerical illustration

In this section we numerically illustrate the accuracy of the analytic bounds presented in

the previous sections.

We consider a portfolio with two risky assets and one risk-free asset. Yearly drifts of

the risky assets are µ1 = 0.06 and µ2 = 0.1, whereas volatilities are given by σ1 = 0.1 and

σ2 = 0.2, respectively. Moreover, σ12 = 0.01, hence Pearson’s correlation between these

assets is r(Y 1
k , Y

2
k ) =

σ12

σ1σ2

= 0.5. The yearly return of the risk-free asset is considered to

be 0.03. Every period i, i = 0, ..., n − 1, an amount of one unit (αi = 1) is invested in

the following proportions: 19% in the risk-free asset, 45% in the first risky asset, while

the remaining 36% will be invested in the second risky asset. At time i = n the invested

amount αn = 0.

The following tables comprise the results of the comparison between the simulated and

the corresponding approximated values obtained by means of the different comonotonic

approximations of the terminal wealth. The simulated results were obtained using 500,000

random paths.

First we compare quantiles of terminal wealth. For our particular problem, we are

interested in low quantiles, corresponding to relatively small outcomes of final wealth. For

any p ∈ (0, 1), Qp[Wn(Π)] is the (smallest) wealth that will be reached with a probability

of (at least) 1− p.
In order to compute the different quantiles, note that the correlation coefficients rij(Π)

are all non-negative for any approximation method. Hence, W l
n(Π) is a comonotonic sum

for the ‘Taylor based’, ‘Maximal Variance’, ‘MV-Minimal CLTEp’ and ‘T-Minimal CLTEp’

lower bound approaches. This implies that

Qp[W
l
n(Π)] =

m∑
i=0

n−1∑
j=0

πi αj e
(n−j)(µi− 1

2
r2ij(Π)σ2

i )+rij(Π)
√
n−j σiΦ−1(p) ,

where the rij(Π) are chosen according to the appropriate method (Propositions 1-4).

For n = 20, the results for the tails of the distribution function of the terminal wealth

obtained by the Monte Carlo simulation, as well as the procentual difference between the

analytic and the simulated values, are given in Table 1. We make the following notational

convention: MC denotes the result for the Monte Carlo simulation, and T, MV, MCLTET

and MCLTEMV denote the results for the ‘Taylor-based’, ‘Maximal-Variance’, ‘T-Minimal

CLTEp’ and ‘MV-Minimal CLTEp’ lower bounds, respectively. We also include the results

for the comonotonic upper bound approach (CUB) for the sake of comparison. The per-

centage is calculated as the difference between the approximated and the simulated values,

divided by the simulated value.
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TABLE 1

Comparing the results obtained with the Monte Carlo simulation, all the lower bound

approximations seem to perform reasonably well; some of them are excellent, mainly for

high quantiles, but also for low quantiles. In order to discuss the approximations for the

left tail of the distribution (low quantiles), we calculate the tails for the case n = 30 (Table

2).

TABLE 2

When the number of years n increases, the approximations become worse. In particular,

for the left tail, the approximation given by the ‘Maximal Variance’ lower bound approach

becomes clearly worse. Except when p approaches 0, the Taylor-based approximation ap-

pears to work reasonably well. However, if we look for a better approximation, the best

one is given by the T-Minimal CLTEp approach. A drawback of the Minimal CLTEp

approaches is that they require an additional calculation as compared to the ‘Taylor’ or

‘Maximal Variance’ approaches. Hence, when the number of years is not too high, the

approximations given by the ‘Taylor-based’ and ‘Maximal Variance’ approaches for the

left and right tails, respectively, could be used. For the problem analyzed in this paper,

this means that the Taylor lower bound can be a good choice (recall that we are mainly

interested in the lower tails of the distribution function), unless p is very small. When the

number of periods (years) become very high, the Minimal CLTEp approaches seem to be

an appropriate choice.

To assess the performance of the approximations when the number of assets is high, we

also consider a more realistic portfolio consisting of 30 risky assets plus one riskfree asset. In

this example, all pairs of risky assets are affected by different degrees of positive correlation.

The annualized expected returns range from 0.035 to 0.15, whereas the volatilities range

from 0.12 to 0.40. In every period, one unit of capital is evenly distributed among the

assets so that the proportions πi, i = 0, . . . , 30, are all equal. In the last period, nothing is

invested (α20 = 0).

TABLE 3
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As can be seen in Table 3, increasing the number of assets does not affect significantly

the performance of the approximations. Contrary to the case when the number of periods

increases, raising the number of assets does not seem to deteriorate drastically the accuracy

of the analytical bounds. Only the precision of the comonotonic upper bound is deeply

affected despite the higher complexity of the model.

Finally, since in the following section we also work with an optimization criterion based

on the Conditional Left Tail Expectation, we numerically illustrate the approximated values

corresponding to the CLTEp in the three cases described above. Tables 4-6 summarize the

results for n = 20, n = 30 and m = 30 (n = 20) respectively.

TABLE 4

TABLE 5

TABLE 6

Clearly, the approximations are much better for the Minimal CLTEp criteria. In fact,

for n = 20, the ‘Maximal Variance’ approximation is not accurate enough, and for n = 30

only the MCLTE criteria seem to be adequate.

5 Optimal portfolio selection

In the remainder of the paper, we look for portfolios that maximize the risk measures

Q1−p[Wn(Π)] and CLTE1−p[Wn(Π)], respectively. A natural justification of this choice

is given by Yaari’s (1987) dual theory of choice under risk. Within this framework, the

investor chooses the optimal investment strategy as the one that maximizes the distorted

expectation of the final wealth:

Π∗ = arg max
Π

ρf [Wn(Π)] = arg max
Π

∫ ∞
0

f(Pr(Wn(Π) > x)) dx ,

where the distortion function f is a non-decreasing function on the interval [0, 1], f(0) = 0

and f(1) = 1. It is easy to prove that the risk measures Q1−p[Wn(Π)] and CLTE1−p[Wn(Π)]

correspond to distorted expectations ρf [Wn(π)] for appropriate choices of the distortion

funtion f . For more details, we refer to Dhaene et al.(2006).
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5.1 Maximizing the Value at Risk

For a given probability level p and a given investment strategy Π, let the p-target capital

be defined as the (1− p)-th order quantile of terminal wealth. The problem of the investor

consists in looking for the optimal target capital K∗p obtained as the maximizer of the

quantile, whose maximization is performed over all buy-and-hold strategies Π:

K∗p = max
Π

Q1−p[Wn(Π)] .

As it is impossible to determine Q1−p[Wn(Π)] analytically, we first try to solve the opti-

mization problem for the comonotonic approximations W c
n(Π) of Wn(Π):

Kc∗
p = max

Π
Q1−p[W

c
n(Π)] .

Using the expression (4.1) for W c
n(Π), it is clear that

Q1−p[W
c
n(Π)] =

m∑
i=0

n−1∑
j=0

πi αj e
(n−j)(µi− 1

2
σ2
i )+
√
n−jσiΦ−1(1−p) . (5.1)

Use of the comonotonic upper bound approximations is not appropriate in our buy-and-

hold context. Firstly, as we have illustrated numerically, the comonotonic upper bound

does not give an accurate approximation to terminal wealth. Secondly, as shown in (5.1),

Qp[W
c
n(Π)] is a linear combination of the proportions πi, i = 0, 1, . . . ,m. Therefore, the

solution to the optimization problem will be trivial: the investor invests all her/his capital

in only one asset. It is obvious that such an investment strategy will be far from optimal

in general.

Therefore, we address our attention to solving the approximate problem

K l∗
p = max

Π
Q1−p[W

l
n(Π)] , (5.2)

where

Q1−p[W
l
n(Π)] =

m∑
i=0

n−1∑
j=0

πi αj e
(n−j)(µi− 1

2
r2ij(Π)σ2

i )+rij(Π)
√
n−j σiΦ−1(1−p) ,

and the rij(Π) are chosen according to the appropriate method (Propositions 1-4).

Let us illustrate numerically the results for the approximated optimal values obtained

from (5.2) using the examples given in Section 4.6. In order to avoid corner solutions (all

the available money is allocated in the risk-free asset or in the risky assets), we impose a

(reasonable) constraint consisting in a minimal expected return. In particular, we assume

that the portfolio has an expected return not lower than 6%, and we look for the portfolio

maximizing Q1−p for p = 0.95 (and so 1 − p = 0.05) satisfying this constraint and such

that πi ≥ 0, for i = 0, . . .m.

For n = 20 we obtain the results given in Table 7.
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TABLE 7

For p = 0.9 (and so 1− p = 0.1), the results are given in Table 8.

TABLE 8

Note that the results are relatively close to each other for all the lower bound approxi-

mations.

For n = 30, we restrict our attention to the Taylor-based and the minimal CLTEp

lower bound approaches (the approximation given for the 0.05 quantile by the ‘Maximal

Variance’ approach was not accurate enough). For p = 0.95 (1− p = 0.05), the results are

given in Table 9.

TABLE 9

For p = 0.9 (1− p = 0.1), the results are given in Table 10.

TABLE 10

5.2 Maximizing Conditional Left Tail Expectations

Now let us calculate the optimal investment strategy by maximizing the CLTE for a given

probability level p,

Π∗ = arg max
Π

CLTE1−p[Wn(Π)] . (5.3)

This optimization problem describes decisions of risk-averse investors. Recall that the con-

ditional left tail expectation has the following nice property:

CLTE1−p[W
c
n(Π)] ≤ CLTE1−p[Wn(Π)] ≤ CLTE1−p[W

l
n(Π)] ,

for every p ∈ (0, 1).
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Once again, we solve the optimization problem for the lower bound approximations of

Wn(Π), since the upper comonotonic bound exhibits the same problems as those described

in the previous subsection. Indeed, from (4.1), it is clear that

CLTEp[W
c
n(π)] =

m∑
i=0

n−1∑
j=0

πi αj e
µi(n−j) 1− Φ(

√
n− jσi − Φ−1(p))

p
.

Therefore, we solve numerically the approximate problem

arg max
Π

CLTE1−p[W
l
n(Π)] . (5.4)

Since W l
n(Π) is a comonotonic sum for the ‘Taylor-based’, ‘Maximal Variance’, ‘MV-

Minimal CLTEp’ and ‘Taylor-Minimal CLTEp’ lower bound approaches, we have

CLTEp[W
l
n(Π)] =

m∑
i=0

n−1∑
j=0

πi αj e
µi(n−j) 1− Φ(

√
n− j rij(Π)σi − Φ−1(p))

p

with the appropriate rij(Π) for each lower bound method.

Next, we numerically illustrate the approximated optimal portfolios obtained from (5.4)

for the same problem discussed in the previous section.

For n = 20 and 1− p = 0.05, the optimal portfolios for the different bounds are given

in Table 11.

TABLE 11

For n = 20 and 1− p = 0.1, the optimal portfolios are given in Table 12.

TABLE 12

For n = 30, the results for the Taylor-based and the minimal CLTEp lower bound

approaches are given in Tables 13 (for 1− p = 0.05) and 14 (for 1− p = 0.1).

TABLE 13

TABLE 14

It is clear from the numerical results that in both cases (n = 20 and n = 30) the best

approximation for the optimal target capital K∗p is given by the T-Minimal CLTEp lower

bound approximation.
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6 Conclusions

In Dhaene et al. (2005), the ‘Maximal Variance’ lower bound to the sum of log-normal

dependent variables was applied in the search for optimal portfolios within the class of

constant mix strategies. In this paper, we use a similar approach for the analysis of buy-

and-hold strategies, obtaining in this way analytic approximations of the df of terminal

wealth. An advantage of buy-and-hold strategies compared with constant mix strategies is

that much lower transactions costs are involved. However, the comonotonic bounds used in

obtaining an analytic approximation of the df of terminal wealth seem to be more sensitive

to the number of periods and assets in a buy-and-hold strategy than in a constant mix

strategy. Therefore, in this paper we calculate not only the comonotonic lower bounds for

uniform values of the conditioning variable Λ (the so-called ‘Taylor-based’ (Dhaene et al.

(2002b)) and ‘Maximal Variance’ (Vanduffel et al. (2005)) lower bound approaches), but

also the bounds obtained for specific choices of Λ approximating the tails of the sum of

log-normal variables. These new approximations were introduced in Vanduffel et al. (2008)

by using a nice property of the Conditional (Left) Tail Expectation. We call such an ap-

proximation the ‘MV-Minimal CLTEp lower bound’. Since in our context the Taylor-based

approach works better than the ‘Maximal Variance’ one, we introduce a different version

of this comonotonic lower bound, which we call the ‘T-Minimal CLTEp lower bound’, and

which has proved to be the best analytic approximation for our particular problem. Finally,

we compare the performance of the different approximations in the problem of finding the

buy-and-hold strategy that maximizes the target capital.
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p MC T MV MCLTET MCLTEMV CUB

0.01 21.0088 1.51% 2.44% 0.63% 0.78% -18.44%

0.025 23.0171 1.03% 1.73% 0.57% 0.68% -16.90%

0.05 25.0385 0.64% 1.14% 0.46% 0.54% -15.40%

0.1 27.7600 0.28% 0.57% 0.33% 0.38% -13.41%

0.95 86.4381 -0.11% 0.04% -0.07% -0.09% 10.93%

0.975 101.7844 -0.55% -0.17% -0.05% -0.07% 13.53%

0.99 124.4009 -1.25% -0.56% 0.03% 0.02% 16.33%

Table 1: Procentual difference between simulated and approximated values of Qp[W20(Π)].
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p MC T MV MCLTET MCLTEMV CUB

0.01 38.2135 3.10% 5.21% 1.64% 2.14% -22.59%

0.025 42.9505 2.20% 3.82% 1.41% 1.76% -20.99%

0.05 48.0219 1.22% 2.43% 0.92% 1.17% -19.55%

0.1 55.0187 0.51% 1.27% 0.63% 0.63% -17.32%

0.95 267.6211 -0.01% 0.15% -0.06% -0.08% 10.57%

0.975 337.2806 -0.48% 0.06% 0.09% 0.07% 13.12%

0.99 449.9011 -1.81% -0.72% -0.20% -0.22% 15.09%

Table 2: Procentual difference between simulated and approximated values of Qp[W30(Π)].
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p MC T MV MCLTET MCLTEMV CUB

0.01 14.2801 1.58% 3.18% 0.88% 0.97% -52.33%

0.025 16.6095 1.31% 2.53% 0.98% 1.05% -49.31%

0.05 19.0727 1.06% 1.95% 0.94% 1.00% -46.30%

0.1 22.5801 0.81% 1.35% 0.84% 0.89% -42.23%

0.95 136.2118 -0.26% -0.17% -0.36% -0.37% 26.16%

0.975 174.3170 -0.61% -0.16% -0.28% -0.30% 38.88%

0.99 237.0702 -1.87% -0.89% -0.75% -0.77% 54.33%

Table 3: Procentual difference between simulated and approximated values of Qp[W20(Π)]

when m = 30.
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p MC T MV MCLTET MCLTEMV CUB

0.01 19.4627 2.14% 3.27% 0.54% 0.66% -19.39%

0.025 21.0590 1.55% 2.47% 0.41% 0.48% -18.27%

0.05 22.5796 1.15% 1.90% 0.36% 0.41% -17.11%

0.1 24.5304 0.76% 1.31% 0.31% 0.33% -15.61%

Table 4: Procentual difference between simulated and approximated values for

CLTEp[W20(Π)].
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p MC T MV MCLTET MCLTEMV CUB

0.01 34.6499 4.28% 6.80% 1.40% 1.82% -23.33%

0.025 38.3641 3.19% 5.27% 1.05% 1.32% -22.29%

0.05 42.0104 2.34% 4.05% 0.80% 0.97% -21.17%

0.1 46.8531 1.50% 2.79% 0.58% 0.67% -19.61%

Table 5: Procentual difference between simulated and approximated values for

CLTEp[W30(Π)].
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p MC T MV MCLTET MCLTEMV CUB

0.01 12.5704 2.34% 4.28% 1.10% 1.17% -54.12%

0.025 14.3601 1.75% 3.32% 0.95% 0.99% -51.85%

0.05 16.1374 1.43% 2.71% 0.93% 0.96% -49.53%

0.1 18.5524 1.16% 2.11% 0.90% 0.92% -46.45%

Table 6: Procentual difference between simulated and approximated values for

CLTEp[W20(Π)] when m = 30.
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≥ 6% T MV MCLTET MCLTEMV CUB

π0 12.48% 12.14% 11.97% 11.82% 40.00%

π1 55.04% 55.72% 56.06% 56.36% 0.00%

π2 32.48% 32.14% 31.97% 31.82% 60.00%

K∗ 25.1802 25.3254 25.145 25.1703 21.3226

Table 7: Optimal portfolio weights in the case of maximizing Q0.05[W20(Π)].

27



≥ 6% T MV MCLTET MCLTEMV CUB

π0 0.00% 0.00% 0.00% 0.00% 40.00%

π1 66.25% 65.90% 66.28% 66.32% 0.00%

π2 33.75% 34.10% 33.72% 33.68% 60.00%

K∗ 27.9625 28.0683 27.9847 28.0072 24.0377

Table 8: Optimal portfolio weights in the case of maximizing Q0.1[W20(Π)].
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≥ 6% T MCLTET MCLTEMV

π0 11.13% 10.43% 9.92%

π1 57.74% 59.14% 60.16%

π2 31.13% 30.43% 29.92%

K∗ 48.8106 48.7112 48.8998

Table 9: Optimal portfolio weights in the case of maximizing Q0.05[W30(Π)].
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≥ 6% T MCLTET MCLTEMV

π0 0.00% 0.00% 0.00%

π1 58.85% 59.40% 60.30%

π2 41.15% 40.60% 39.70%

K∗ 56.7152 56.806 56.9404

Table 10: Optimal portfolio weights in the case of maximizing Q0.1[W30(Π)].
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≥ 6% T MV MCLTET MCLTEMV CUB

π0 15.98% 15.08% 15.23% 15.03% 40.00%

π1 48.05% 49.85% 49.55% 49.94% 0.00%

π2 35.97% 35.07% 35.22% 35.03% 60.00%

K∗ 22.714 22.8947 22.5359 22.5485 19.1586

Table 11: Optimal portfolio weights in the case of maximizing CLTE0.05[W20(Π)].
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≥ 6% T MV MCLTET MCLTEMV CUB

π0 13.68% 13.17% 12.86% 12.76% 40.00%

π1 52.64% 53.67% 54.28% 54.48% 0.00%

π2 33.68% 33.16% 32.86% 32.76% 60.00%

K∗ 24.6638 24.8168 24.5598 24.5679 20.9498

Table 12: Optimal portfolio weights in the case of maximizing CLTE0.1[W20(Π)].
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≥ 6% T MCLTET MCLTEMV

π0 14.35% 13.19% 12.54%

π1 51.30% 53.61% 54.91%

π2 34.35% 33.19% 32.54%

K∗ 42.8765 42.2428 42.3493

Table 13: Optimal portfolio weights in the case of maximizing CLTE0.05[W30(Π)].
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≥ 6% T MCLTET MCLTEMV

π0 12.24% 11.01% 10.61%

π1 55.52% 57.98% 58.78%

π2 32.24% 31.01% 30.61%

K∗ 47.6574 47.2594 47.3327

Table 14: Optimal portfolio weights in the case of maximizing CLTE0.1[W30(Π)].
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