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Abstract

In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed,
using an analytical approach to find optimal constant mix investment strategies in
a provisioning or savings context. In this paper we extend some of these results,
investigating some specific, real-life situations. The problems that we consider in
the first section of this paper are general in the sense that they allow for liabilities
that can be both positive or negative, as opposed to Dhaene et al. (2005), where
all liabilities have to be of the same sign. Secondly, we generalize portfolio selection
problems to the case where a minimal return requirement is imposed. We derive
an intuitive formula that can be used in provisioning and terminal wealth problems
as a constraint on the admissable investment portfolios, in order to guarantee a
minimal annualized return. We apply our results to optimal portfolio selection.
JEL code: G11, Subject Category: IM10
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1 Introduction

In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an
analytical approach to find optimal constant mix investment strategies in a provisioning
or savings context. In this paper we extend some of these results, investigating some
specific, real-life situations.



Determining the distribution function of a sum of random variables which describes
a series of future payments, is important when solving several problems in a general in-
surance or finance context. In Dhaene et al. (2005), solutions are provided, both in a
provisioning and saving context, in case all payments are of the same sign. In Vanduffel
et al. (2005a), a so-called saving-consumption plan is considered, where a series of posi-
tive payments (savings) is followed by a series of negative ones (consumptions). In this
paper we extend the solution of Vanduffel et al. (2005a) to the more general contexts of
provisioning and saving as described in Dhaene et al. (2005), allowing for more arbitrary
cash flows patterns. We show that considering cash flows of mixed signs does not nec-
essarily mean that comonotonic approximations can not be used anymore. As a result
we significantly expand the scope of problems for which the distribution function can be
accurately approximated using comonotonic approximations. A lot of practical situations
exist where sporadic negative payments occur. For instance, when determining the liabil-
ities of a pension fund, outgoing and incoming cash flows are typically compared. It may
happen that in some years the incoming cash flows are larger than the outgoing, leading
to negative liabilities in these years.

Furthermore, we generalize portfolio selection problems to the case where a minimal
return requirement is imposed. We derive an intuitive formula that can be used as a
constraint on the admissable investment portfolios, in order to guarantee a minimal an-
nualized return, with a related probability level over a specified time period. This formula
can be used in provisionig as well as terminal wealth problems.

We apply our results to optimal portfolio selection problems, and illustrate with nu-
merical examples. In the following section a short description is given of the framework
of optimal portfolio selection in which we work. For more details and practical examples
we refer to Dhaene et al. (2005).

1.1 Lognormal Framework and Optimal Portfolio Selection

When discussing optimal portfolio selection problems, we assume throughout this paper
the classical continuous-time framework of Merton (1971), also known as the Black &
Scholes (1973) setting. We suppose there are m risky assets available. We restrict to
constant mix strategies: the fractions invested in the different assets remain constant over
time. We denote the vector describing the portfolio as 77 = (71, ..., m,,), where 7; is the
proportion invested in risky asset ¢, with > ;" m; = 1. In our examples we assume there
is no risk-free asset class available. Although our results also hold in the general case,
we assume short-selling is not allowed, which means 0 < m; < 1 for all 7. See e.g. Bjork
(1998) for more details on the Black & Scholes setting. Throughout this paper we use the
same notations and terminology as in Dhaene et al. (2005).

As both the time period and the investment horizon that we consider are typically
long, the use of a Gaussian model for the stochastic returns can be justified by Central
Limit Theorem arguments, see e.g. Cesari & Cremonini (2003) and Levy (2004) for some
empirical evidence.

Investing an amount of 1 at time k — 1 in asset ¢ will grow to e¥* at time k. For a



fixed asset i, the random variables Y}’ are assumed i.i.d., normally distributed with mean

1.2 : 2
p; — 50; and variance o7

We denote the drift vector and the variance-covariance matrix of the risky assets by
HT = ({1, ..., fm), and X respectively. The drift vector and volatility corresponding to

an investment portfolio 7 are written as p(x) and o?(x). We have that

p(r) =a'pand o(z) = 7" - - 7. (1)

The yearly returns Y;(7) of an investment portfolio m are independent and normally
distributed random variables, with expected value E[Y;(r)] = p(x) — 0*(x) and variance
Var[Y;(x)] = o*(x).

When no confusion is possible, we omit the dependence on the investment portfolio
in the notations. Hence the yearly returns are modelled by the i.i.d., normally distributed
random variables Y;, with mean p — %02 and standard deviation o.

2 Comonotonic Approximations in case of Cash-Flows
of Mixed Signs

2.1 Problem description

Consider the sum .
S = Z a; e (2)
i=0

where the «; are deterministic constants, and the Z; are linear combinations of the com-
ponents of the multivariate normal random vector (Y7, Y5, ..., Y,):

Zi=>Y MY (3)
j=1

As the random variable S is a sum of non-independent lognormal variables, it is impossible
to determine the distribution function of S analytically. Several approximation techniques
have been proposed throughout the literature, see e.g. Asmussen & Rojas (2005), Dufresne
(2004), Milevsky & Posner (1998) and Milevsky & Robinson (2000). In this paper we will
use convex upper and lower bounds based on comonotonicity, see e.g. Kaas et al. (2000).
See also Huang et al. (2004) or Vanduffel et al. (2005b) for a comparison of some of these
approximation techniques.

In Dhaene et al. (2002b) the following bounds for S are derived:

50 =3 ay eFlaltor ) (4)
=0



and .
S = BS|A] = Y anel 30t tn oz 07 ), (5)

i=0
with U uniformly distributed on the unit interval, & the standard normal cdf, r; the
correlations between the random variables Y; and

A=) B (6)
j=1

S! and S°¢ are a lower and upper bound for S in convex order:
S <ew S <ea 5. (7)

For more details on e.g. the correlation coefficients 7; and the choice of the coefficients j3;
in (6) we refer to Dhaene et al. (2005). For more details about these approximations, its
relation with the concept of comonotonicity and its applications in insurance and finance,
see e.g. Dhaene et al. (2002 a,b). For more details on ordering of random variables see
e.g. Kaas et al. (2008) or Denuit et al. (2005).

If all the amounts «; are of the same sign, (4) and (5) are comonotonic sums, which
implies that distortion risk measures related to these bounds can be obtained by simply
summing the individual terms in the sum, see e.g. Dhaene et al. (2006). However, in case
of payments «; with changing signs, S’ and S¢ are not necessarily comonotonic sums. The
upper bound approximation (4) can be adapted easily as follows:

SC = Z o eE[ZZ]+SZgn(a1)UZ7(I>71(U)’ (8)
=0

with sign(z) = 1 for z > 0, and sign(x) = —1 for x < 0 (see e.g. Dhaene et al. (2002a,b)).
We have that (8) is a comonotonic sum. However, the upper bound does in general not
give a very accurate approximation of the distribution function of S, the accuracy of the
lower bound (5) is usually much higher. For this lower bound, the problem is that it is not
possible to find a conditioning random variable A, leading to an accurate approximation
of S, such that S! is a sum of non-decreasing functions of A (and hence such that S’ is a
comonotonic sum) in case the «;’s have changing signs. This would mean that distortion
risk measures related to S' can not be obtained by simply summing the individual terms
in the sum, which would make the lower bound approximations useless in practice.

In this paper however we show that it is possible, under some mild conditions, to allow
for more arbitrary cash flows patterns. We show that allowing some of the cash flows to
be negative does not necessarily imply comonotonic lower bound approximations can not
be used. As a result we significantly expand the scope of problems and cash flow patterns
for which the distribution function can be accurately approximated. A lot of practical
situations exist where sporadic negative payments occur. For instance, when determining
the liabilities of a pension fund, outgoing and incoming cash flows are typically compared.
It may happen that in some years the incoming cash flows are larger than the outgoing
ones, leading to negative liabilities in those years.
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In Section 2.2 we look at the problem of allowing negative savings (or withdrawals)
when using a comonotonic lower bound approximation in a saving and terminal wealth
context. We generalize the problem described in Vanduffel et al. (2005a), where a so-called
“saving-consumption” plan is considered, in which a series of positive payments (savings)
is followed by a series of negative ones (consumptions). In Section 2.3 we discuss allowing
negative liabilities (hence contributions) in a context of reserving. In both sections we
work in the lognormal framework as described in Section 1.1.

2.2 Saving and terminal wealth
2.2.1 General Results

In this section, we consider the problem of how to invest periodic amounts in order to
reach some target capital at a predetermined future time n. Consider a set of deterministic
amounts ag, aq, - -+, a1 with n > 1. It will follow from our main result that g has to be
positive. The amounts «; with 0 < ¢ < n can take any value, positive or negative. This
is a generalization of the problem described in Vanduffel et al. (2005a), where a so-called
'saving-consumption’ plan is considered, in which a series of positive payments (savings)
is followed by a series of negative ones (consumptions).

Notations and terminology used in this section are based on Vanduffel et al. (2005a).
We assume the return on the account is generated by a geometric Brownian motion
process, as explained in Section 1.1. Let V}, denote the surplus at time k. By convention,
the surplus at time k£ has to be understood as the surplus just after saving or withdrawal.
Starting from the initial value Vj = «y, the surplus V} available at time k is given by the
following recursive relation:

Ve=Vin e +ap,  k=1-- n—-1 (9)

The surplus at time n is then equal to V,, = V,,_; e¥»~1. Solving recursion (9), we can
rewrite V} in the form of (2) as

VkIZaieZﬂ k=0,---,n—1, (10)

=0

k

with Z; = Zk Y;, for i = 0,--- k. By convention ) Y; = 0. The surplus at

j=i+1*J> j=k+1
time n equals
n—1 n
V, = Zai eZi, with Z; = Z Y;. (11)
i=0 j=it+1

Note that this surplus can become negative, which would imply shortselling of units of
the investment portfolio. Our goal is to determine the distribution of the final surplus V;,.
To avoid allowing for shortselling we only look at the distribution of the final wealth W,
which we define as:

W,, = max[V,,, 0]. (12)



As explained in the previous section, we focus on the comonotonic lower bound (5),
which we denote here as V!. We approximate the distribution of the final wealth W,, by
W! = max[V! 0].

Choosing A such that the variance of V! is maximized, and hence as close as possible
to Var[V},], results in the optimal conditioning random variable A of the form (6), with
coefficients 3; equal to:

j—1
Bi = ael (13)

i=0
for j =1,...,n, with p the drift of the yearly return Y}, as explained in Section 1.1. The

procedure to determine this optimal A is explained in detail in Vanduffel et al. (2005a).

From (5) we find that the random variable V! with A chosen as (6) with coefficients
(13) is distributed as

Vé 4 Za‘e(n—i)u—%r%(n—i)aQ-ﬁ-riJm@’l(U) (14)

7 Y

where < stands for ‘equality in distribution’, U is uniformly distributed on (0, 1), and the
coefficients r; are given by

:cov(Zi,A) _ 2 =i P i=0---,n—1 (15)

N o

Throughout the remainder of this section we use the notation f for the following
function

T

and r,, = 0.

n—1
flp) = Z aie(n—i)u—%T?(n—i)vz-ﬁ-novn—i‘f”l(p)7 pe(0,1). (16)
i=0

Combining (12) and (14) leads to V! £ f(U) and W £ max][f(U),0].

In order to proof the main result of this section, we state the following lemma, of
which a proof can be found in Vanduffel et al. (2005a):

Lemma 1 Let f be defined by (16) and §; by (13). If B; > 0 for j =1, 2,..., n, then
for any p in the unit interval (0,1), f(p) > 0 implies f'(p) >0 .

The main result of this section is stated in the following Theorem.

Theorem 1 If the conditioning random variable A is chosen as (6) with coefficients (13),
and if
E[Vi]>0, j=0-,n—1, (17)



then the quantiles of W' are given by
Qp[W,] = max[f(p),0] 0<p<1, (18)
whereas the distribution function of W' follows from
f(Fyy(2) =2, 220, (19)
with f(p) defined by (16).

Proof. It follows from (13) that for j = 1,2,...,n,

7j—1
By = "IN a0 = TRV (20)
=0

In other words, condition (17) implies that §; > 0 for j = 1,2,...,n. Since all j3; are
strictly positive, we find from Lemma 1 that the function max [f(p), 0] is non-decreasing
(and continuous) on the interval (0, 1). As stated in Vanduffel et al. (2005a), the quantiles
of W! can easily be determined analytically in this case:

QpWy] = max[f(p),0],  pe(0,1). (21)

Vanduffel et al. (2005a) also show that, under the conditions of Lemma 1, the d.f. of W}
can be determined from
f(Fwy(z)) ==, x 20, (22)

which completes the proof. [

It is clear that any reasonable plan should fulfill condition (17), which states that the
average surplus E[V}] should be non-negative at any time. Note that for j = 0, condition
(17) can be rewritten as ag > 0.

For a given series of cash flows a;, i = 1,...,n — 1, we have that E[V;] = Z;:o aeli=in
is an increasing function of p. In other words, for given cash flows «;, conditions (17) can
be rewritten as a single condition on p as follows:

(> p* = max <min {,u| Zaje(i_j)“>0; i—l,...,n—l},()) (23)

=0

Theorem 1 is a generalization of the main result of Vanduffel et al. (2005a), which stated
that in case of a ’saving-consumption’ plan the average final surplus had to be non-
negative for (18) and (19) to hold.

Our result shows that allowing some of the cash flows to be negative does not neces-
sarily mean that comonotonic lower bound approximations can not be used. As explained
in the previous section, this result significantly expands the scope of problems and cash
flow patterns for which the distribution function of the final wealth can be accurately
approximated. An example is the situation where one has a relatively small fixed income
(e.g. yearly), and relatively large periodical expenses (e.g. every 5 years). This particular
situation is studied in the next paragraph.



2.2.2 Special case: constant savings and consumptions

In this section we consider a deterministic cash flow stream where

C(a-1ifi=jm =1,k . B
ai_{ o otherwise, 0 < i < n. » With km =n —1. (24)

We have a fixed yearly income «, for some o > 0, for a period of n years. Furthermore
we have fixed liabilities: a fixed amount 1 is to be paid every m years (with m > 1). In
case o > 1, the results from Dhaene et al. (2005) can be used. Here we assume a < 1,
which means there is a negative cash flow every m years.

To start we investigate when conditions (17) are satisfied in this special case. First
note that the conditions are fulfilled in case E[V;,,] > 0 for i = 0,..., k, as these are the
only years in which a negative cash flow is involved. Condition (17) for E[V;,,] can be

rewritten as: ,
1—e™™m  e7H -1

E[Vin] >0 a>e | — o —mi o GmiDn ]

(25)

As the right-hand side of the latter inequality is increasing in 4, conditions (17) hold in
case E[Vi,] =E[V,,_1] > 0, or, in terms of a:

T
* __ _—mp
a>a"=e Pp=—aer— (26)

Example 1 Suppose we have to pay an amount of 1 every 5 years over a period of 25
years (or m =k =5, n = 26). Also suppose u = 0.07. Condition (26) indicates we can
apply the results from Theorem 1 if we have a yearly income « larger than o = 0.1591.

If condition (26) is satisfied, we find from Theorem 1 that the approximated quantiles
Qp[W}] and the approximated probabilities Fyy () follow from (18) and (19) with f(p) =

fa(p) given by

n—1 k
falp) = a E 6('”72')“7%T?U%i+’l”i0'zi¢’71(p) _ § :e(nfim)/x*%r?ma%im+rimozim<I>*1(p). (27)
1=0 i=1

Let W, (a, k,m) and W!(a, k,m) denote the (approximated) final wealth for the afore-
mentioned plan, with a yearly income of «, and a liability of 1 every m years over a period
of km =n — 1 years.

Next, we determine the minimal yearly income « such that the probability of a short-
fall, Fi, (0)(0), is at most equal to a certain e. In other words, we determine a(e) as

a(e) = inf{a|Fw, (akm)(0) < €} (28)

Since Fw, (a,k,m)(0) is strictly decreasing and continuous in «, we have that «(e) follows
from the equation

Fw, (a(e)e;m)(0) = €. (29)
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This a(e) can be approximated by a!(¢), which can be determined by solving the equation

Fyt (at(e) m) (0) = €. (30)

As stated before, we can apply the results of Theorem 1 in case € is such that a'(e) > a*.
Hence, it follows from (19) and (30) that the approximated minimal savings effort a!(e)

can be found from
fate)(€) =0 if a'(e) > a”. (31)

Numerical illustration. Assume the yearly returns Y; have expectation and variance
given by pu — é and o2, with g = 0.07 and ¢ = 0.15. As in Example 1, consider a plan
with a fixed liability of 1 every 5 years over a period of 25 years (m = k = 5, and n = 26).
As seen in Example 1, condition (26) is equivalent to a > 0.1591. Using (19), we can
approximate the probability of shortfall Pr[Ws = 0]'. In Table 1 this probability is given

for a range of yearly incomes «.

Using (31), we can also determine the minimal yearly income « such that the probabil-
ity of shortfall is less than a given €. For instance, the approximated minimal yearly income
a!(0.05), which guarantees that the probability of shortfall is less than or equal to 5%, is
given by 0.1910. Alternatively, suppose we want a yearly survival probability of 99.5%,
which corresponds to a long term survival probability of approximately 0.995% = (.8822.
In this case we find a minimal yearly income a!(0.1178) equal to 0.1845.

a Pr[Wis = 0]
0.1591 63.72%
0.1600 61.94%
0.1700 40.18%
0.1800 18.81%
0.1900 5.85%
0.2000 1.19%

Table 1: Approximated probability of shortfall.

To illustrate the accuracy of the lower bound approximation W5, we compare the ap-
proximated quantiles Q,[W}s], calculated using (21), with simulated quantiles *Q,[Was)’,
obtained through Monte Carlo simulation. The simulation was performed by generating
1,000 % 10,000 sample paths. Note that simulation is much more time-consuming compared
to our analytical approximations. We compute the quantiles for the optimal strategy ob-
tained earlier, with a = !(0.05) = 0.1910. The results are given in Table 2. We see for
instance that there is a 10% probability that the final wealth at time 25 will exceed 5.5337
(simulated value). The approximated value for this final wealth is equal to 5.5375.

! All numerical results in our paper are obtained using Matlab.



p | @ [W2l6] 'Qp[Wae]”  s.e.
0.99 | 13.0510 | 13.1035 0.18
0.95 | 7.5174 7.5196  0.09
0.90 | 5.5375 5.5337  0.03
0.75 | 3.2299 3.2315 0.03
0.50 | 1.6520 1.6602  0.02
0.25 | 0.7142 0.7191  0.01
0.10 | 0.2051 0.1914  0.01
0.05 0 0 0.00

Table 2: Approximated and simulated values for the quantiles of Was.

2.2.3 Application to Optimal Portfolio Selection

To be able to apply the results of Section 2.2.1 to optimal portfolio selection problems,
we slightly adapt notations. The surplus Vi (see (10)) and wealth W} (see (12)) are in
this setting a function of an investment portfolio 7, which we denote as:

k k
Vi(m) = Z oeZi® — Z ajesizi Yim E=0,...,n—1, (32)
i=0 i=0
with
Va(m) = Vo (z) €, (33)
and
Wi(x) = max[Vi(x), 0], k=0,...,n. (34)

As follows from Theorem 1, we should only look at the portfolios 7= for which conditions
(17), or, equivalently, condition (23), is fulfilled. In other words, we have to restrict any
optimization to the following set of admissable portfolios O:

©={r |E[Vi(x)] >0; i=0,....n—1} ={x | p(x) > p"}, (35)

with p* given by (23).

This means that, whenever some cash flows «; are negative, the optimization proce-
dures described in the following paragraphs will not always take into account all possible
investment portfolios. However, restricting optimization to © is intuitive, as in most situ-
ations it will be desirable to obtain a portfolio for which the expected value of the future
available assets is positive at any time.

Maximizing the probability level for a given target wealth. For a given invest-
ment portfolio 7, the probability that the final wealth W, (7) exceeds some positive value
x is given by

p=Pr[W,(x) > 2] =1 —Fw,xn(z) = Fw, (). (36)
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We determine the portfolio 7*, for which the probability p of reaching at least a certain
amount z at time n is maximal. Denoting this probability by p*, we have:

p" = maxFw, @ (), (37)
with © given by (35). Consider two portfolios, 7; and m,, with o(z;) = o(m,) and
p(my) < p(my). As shown in Dhaene et al. (2005), we have that Fyy, x,)(7) < Fu, (r,)(2).
Therefore, to solve optimization problem (37), we only have to consider, for each o, the
admissable portfolio 77 that has a maximal drift:

(o)

7 = argmax pu(m) (38)

B €O, o(m)=0

Using this result we can reduce (37) to the following one-dimensional optimization
problem: B
p = maxFu, o) (x). (39)

Finally, we approximate the optimal investment strategy 7* by 7!, using the comonotonic
lower bound approximation W!(r). This results in the approximated optimal probability
level p':

P = moaxﬁwé(la)<x) ~pt. (40)

Maximizing the target capital for a given probability level. For a given invest-
ment strategy m, we define the p-target capital K as the (1 — p)-th order quantile of the
final wealth:

K = Q1-p[Wn(x)]. (41)

This target capital can be interpreted as the maximal amount that will be available at time
n, with a probability of at least p. We determine the optimal portfolio 7*, by maximizing
the target capital that can be reached for a given probability level p. We have

K* = max Q1_,[W,(7)], (42)

€O

with © given by (35). Following a similar reasoning as in the previous paragraph, we can
rewrite optimization problem (42) as

K* = max Qi [Wa ()], (43)

with 77 given by (38).

As in Section 2.2.3, we approximate the optimal investment strategy ©* by 7', using
the comonotonic lower bound approximation W! (). This results in the approximated
maximal target capital K':

K'=max Q, ,[W!(z%)] ~ K*. (44)

11



Numerical Illustration. Suppose n = 31, o; = 10 if 7 is not a multiple of 5, and as;, =
—45 for k = 1,...,6. Furthermore, suppose there are three risky asset classes available,
with drift vector pu? = (0.02,0.05,0.075), standard deviations ¢’ = (0.01,0.1,0.18) and
correlations pi o :_—0.1(), p13 = 0.03 and py 3 = 0.50. Determining the set of admissable
portfolios © leads to:

O={r| EVi(m)]>0; i=1,....,n—1} ={x | u(x) > 0.0242} (45)

Hence we can use the comonotonic lower bound approximations for all portfolios with
drift bigger than 2.42%. As a first application, assume a target wealth x equal to 0. Using
our lower bound approximation leads to a maximal survival probability

p= maécFWl (zo)(0) = 0.87 = (0.9954), (46)
Ee n\—
with the corresponding optimal investment strategy m' equal to (z!)f =

(0.1808, 0.5167,0.3025), with drift u(z') = 0.0521 and standard deviation o (z!) = 0.0920.
Note that this optimal strategy indeed satisfies condition (45).

As a second application we compute the maximal target wealth K! and corresponding
optimal investment strategy 7' for a range of probability levels p. The results are given
in Table 3.

Note that for p = 0.90 en p = 0.95 we find K' = 0. Since we are maximizing the
quantiles of W! = max(V!,0), this result means that we can not reach a positive target
wealth with the given probabilities. Hence the maximal surplus V! that can be reached
is negative. In fact, as can be seen from (46), it is not possible to find a strategy leading
to a positive surplus for any probability level above 0.87.

p
70% 75% 80% 85% 90% 95%

7 170.00% 0.00% 0.00% 5.54% 43.76% 80.75%
mh | 45.82% 53.07% 58.05% 59.51% 35.88% 13.14%
mh | 54.18% 46.93% 41.95% 34.95% 20.36% 6.11%
w(@) | 6.35%  6.17% 6.05% 5.71%  4.20%  2.73%
o(xl) | 12.68% 12.01% 11.60% 10.60% 6.28%  2.21%
K' | 2773 1940 1154  3.84  0.00  0.00

Table 3: Maximal target wealth K’ and optimal strategy 7' for survival probabilities p.

2.3 Reserves for future obligations

In this section we discuss the reserving problem, which is in some sense the dual problem of
the terminal wealth problem as described in Section 2.2. Consider a series of deterministic
obligations «y, ..., a,,, due at time 1, ..., n respectively. In order to be able to meet these
obligations we suppose that a reserve has to be set up at time 0. In Dhaene et al. (2005)

12



the reserving problem is discussed in detail, with the restriction that all obligations «
are positive. It will follow from our main result that «,, has to be positive. However, «;
for i =1,...,n — 1 can take any value, positive or negative. A negative obligation can be
interpreted as adding an amount to the reserve on the account.

As explained in Dhaene et al. (2005), the variables of interest in this setting, of which
we would like to describe the distribution, are the so-called stochastic future obligations.
These random variables Ry are defined as:

Rk:ZaieZ", k=0,---,n—1, (47)

i=k+1

with Z; = — Z;:kﬂ Y;, for i = k+1,...,n. Note that Ry in (47) has the same general

form as (2). For a given k, Ry is the stochastically discounted value at time & of all future
obligations from time £ on.

Our goal is to approximate the distribution function of Ry. As for the surplus in the
previous section, we see that Ry can become negative. To avoid this we only look at the
stochastic provision Sy available at time 0, which we define as:

SO = IIla,X[Ro, 0] (48)

As explained in Section 2.1, we focus on the lower bound approximation, which we denote
as R) and S} respectively. The amount of money that has to be set aside to meet future
liabilities can then be determined by applying an appropriate distortion risk measure to
this approximation.

As derived in Dhaene et al. (2005), the optimal conditioning random variable A of the
form (6) has coefficients (; given by:

== apetlmte?), (49)
k=j

for j = 1,...n. This leads to the following lower bound approximation R):

Ré i Zaiefiu+<1f%r%)iaQJrria\ﬁ(b*l(U)7 (50)
=1

where < stands for ‘equality in distribution’, U is uniformly distributed on (0, 1), and the
coefficients r; are given by

rizﬂ i=0,---,n. (51)

v

Throughout the remainder of this section we use the notation f to denote the function

f(p) _ ZOéie—i,u-i-(l—%r?)z‘UQ—I—na\ﬁtI)*l(p), pE (O, 1) (52)

=1
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Combining (48) and (50) we see that S}, < max|[f(U),0].

In order to proof the main result of this section, we state the following Lemma, which
is similar to Lemma 1:

Lemma 2 Let f(p) be defined by (52) and B; by (49). If B; <0 forj=1,2,.., n, then,
for any p in the unit interval (0,1), f(p) > 0 implies f'(p) >0 .

Proof. Since §; < 0 for j =1, 2,..., n we see from (51) that r, > 0 for i = 0,...,n.
Furthermore we see that

23‘:1 Bj

10y = —0—————, i=0,---,n,
2515
=1
since 07, = Vio. Hence the sequence {r;0z },;<, i strictly decreasing and strictly

positive.

From (52) we find, by application of the chain rule, that
f (p) = ; ia,e—i#-i-(l—;r?)ich—l—rq;a\ﬁcI)_l(p) T 0z
Q' [D-1(p)] — g i 07,.

Assume f(p) > 0 for some p in the unit interval. Since also m > 0 we find that

!

o - —1 +(1—lr2)i02+7’i0\ﬁ<1>*1(p)
f (p> Dy e WARY ae” " 20
]

= Wﬂp) >0,

which completes the proof. [

The proof of Lemma 2 is analogous to the proof of Lemma 1 (see Vanduffel et al. (2005)).

The main result of this section is stated in the following Theorem.

Theorem 2 If the conditioning random variable A is chosen as in (6) with coefficients

(49), and if
E[R]>0, j=0,---,n—1, (53)

then the quantiles of S4 are given by
Qp[So] = max[f(p),0]  0<p<1, (54)
whereas the distribution function of Si follows from
f(Fgi(z)) ==, x>0, (55)
with f(p) defined by (52).
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Proof. This proof is analogous to the reasoning in Section 3 of Vanduffel et al. (2005a).
It follows from (49) that for j = 1,2,...,n,

By = —e U DR [R; ], (56)

In other words, condition (53) implies that §; < 0 for j =1,2,...,n. It is easy to show
that this implies

lim f(p) =0 and lim f(p) = +oo. (57)

We find from Lemma 2 that the function max [f(p), 0] is non-decreasing (and continuous)

on the interval (0,1). Using S} < max|f(U),0] and the fact that Q, (¢(X)) = g (Q,[X])
and Qf[9(X)] = ¢ (Qf[X]) for any non-decreasing function g and any p € (0,1), we see
that the quantiles of S} can easily be determined analytically in this case:

Qp[S0] = @y[Sp) = max[f(p),0],  pe(0,1). (58)
It is easy to proof that

Fo(x) =sup{p € (0,1) | f(p) < z}. (59)

Using this last equation (59), together with (57), Lemma 2 and the fact that f is contin-
uous on (0, 1), we see that the d.f. of S} can be determined from

f(Fg(z) =z, x>0, (60)

This completes the proof. [

It is clear that conditions (53) will be satisfied in a lot of practical situations. When
working in a provisioning context, it is natural to suppose that the expected present value
of future obligations will be positive at any time.

For given cash flows a;, we have E[R;] = >, .. apeF==r+0%)  This function de-
pends on both 1 and o. Moreover, it is decreasing in i, and increasing in o, which means
that, in contrast to the previous section (see (23)), it is not useful to rewrite conditions
(53) as a single condition.

We have shown that allowing some of the obligations to be negative does not necessarily
mean that comonotonic lower bound approximations can not be used to approximate the
distribution function of the initial provision. This is important, since it again significantly
increases the practical applicability of the approximations.

There are plenty of practical examples where negative future obligations occur. For
instance in case of a life insurance, premiums will typically exceed benefit payments in the
first years, whereas the majority of the benefits are paid near the end of the contract. For
these contracts conditions (53) will typically be satisfied, since most negative obligations
will occur in the near future, meaning that the lower bound approximation can be used
to compute an initial provision.

Deriving formulas for the special case of constant future obligations, and applying
the results of this section to optimal portfolio selection is analogous to the derivations in
Sections 2.2.2 and 2.2.3, respectively. This is left as an exercise to the reader.
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3 Minimal Return Requirement

In this section we generalize the problem of finding an optimal constant mix investment
strategy in a provisioning or savings context to the case where a minimal return require-
ment is imposed. Assume the owner of the invested capital requires a minimal yearly
return of r. This minimal level of the return should be obtained with a given (high)
probability of at least (1 — €) over each period of m years.

Note that r is not necessarily strictly positive. A capital guarantee requirement for
example corresponds to a minimal return of 0. Also, a negative r can be used to ensure
the loss of capital can not exceed a specified amount.

Using notations as defined in Section 1.1, an amount of 1 invested according to a
strategy 7 will grow to the random amount e¥1(®+-+Ym(m) after a period of m years.
Hence, the minimal return requirement can be expressed as

Pr [6Y1(3)+...+Ym(£) > emT] >1-—c¢, (61)
or, equivalently,
mr < F£%£)+...+Ym(£) (e)- (62

The distribution function of the random variable Y;(x) + ... + Y, (x) is characterized by

Vi) 4 oot Vinlm) Lm (u@) - 302@) Vi o(m) e (), (63)

with U uniformly distributed on the unit interval, and ® the standard normal cdf. This
implies that the e-quantile of Yi(w) + ... + Y,,,(7) is given by

Bt o €)= m (@) = 30%(@) ) + Vit o) (). 60

Using (64), the return guarantee requirement (62) can be rewritten as

i(g) - 30%(@) 2 7+ S=oln) @71 —<), (65)
or, equivalently,
E[Yi(m)] > r+ W (1 —e). (66)

This condition is in accordance with intuition, as the right hand side of inequality (66) is
increasing for increasing r, decreasing m and decreasing ¢, respectively.

In the framework of optimal portfolio selection, condition (66) can be used as a con-
straint on the admissable investment portfolios 7, in order to guarantee a minimal yearly
return 7, with a related probability level (1 — ¢) over each period of m years.
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3.1 Numerical Illustration

Using notations as in Section 1.1, suppose n = 30, and «; = 10 for ¢ = 0, ..., 29. Further-
more, suppose we have the three asset classes available which were described in Section
2.2.3. The minimal return requirement (66) can be applied both in a context of saving
and provisioning. Here we work in the former framework.

The terminal wealth, or the amount of money available on our account at time n, is
equal to:

n—1
Wn(ﬂ) = Z o e it Yj(l)' (67)
=0

We approximate W,, () by the comonotonic lower bound approximation W' (xr), as defined
in Dhaene et al. (2005):

n—1
Wé(ﬂ) — Zaie(n*i)u(z)*%02(£)+m(ﬂ) n—io(m)®~H(U) (68)
i=0

We want to determine the strategy 7* leading to a maximal terminal wealth K*:

K* = max Fiyt (1= p). (69)
By maximizing the quantiles of the comonotonic lower bound approximation (68) we can

approximate 7* and K* as:
1 -1
K = max FWTZL ()

(1—p)~ K" (70)
Denote the approximated optimal strategy leading to K' as 7'. In our example we use
a certainty level p = 0.85. In Table 4 the influence of a return requirement on the
optimal investment portfolio is illustrated. If we do not impose a return requirement, we
find as a result an optimal strategy = = (0,0.5611,0.4389)7, with corresponding drift
p(r') = 0.0610 and standard deviation o(z!) = 0.1176. The maximized terminal wealth
K' amounts to 499.72.

no return  capital guarantee = positive return
requirement (0%) requirement (1%)

m 0% 17.57% 54.33%

e 56.11% 52.05% 29.40%

s 43.89% 30.38% 16.72%
p(@) | 6.10% 5.23% 3.78%
o(rt) 11.76% 9.24% 5.09%

K 499.72 489.0 460.4

Table 4: Influence of return requirement on optimal investment strategy.

Now suppose we impose (66) as a constraint on the admissable investment portfolios,
with parameters » = 0, m = 10 and ¢ = 0.05. In other words, we require a capital
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guarantee, with a return at least equal to zero, over each period of 10 years, with a
probability of 95%. As can be seen from Table 4, imposing this leads to an optimal
strategy 7' = (0.1757,0.5205,0.3038)T, with u(x!) = 0.0523 and o(x!) = 0.0924. The
maximized terminal wealth K! in this case amounts to 489.0. As a second example,
suppose m = 10 and ¢ = 0.05, but we require a positive return of at least 1%, or r = 0.01.
This leads to ' = (0.5433,0.2940,0.1672)%, with p(z') = 0.0378, o(x!) = 0.0509 and
K' = 460.36.

From these results we can conclude that imposing a return requirement leads to a
more conservative optimal portfolio, with higher proportions invested in less risky assets,
and hence with a lower drift and volatility. Also, the resulting maximal terminal wealth
is significantly lower. These results are in correspondence with intuition.

4 Conclusion

In this paper we have analyzed several applications of optimal portfolio selection problems.
We extended some of the results obtained by Dhaene et al. (2005) and Vanduffel et
al. (2005a), expanding the scope of problems to which comonotonic approximations can
be applied.

First we investigated whether the lower bound approximations based on comonotonic-
ity (see e.g. Dhaene et al. (2002 a,b)) are still valid in case of cash flows with fluctuating
signs. In the context of saving and terminal wealth we showed that the lower bound ap-
proximation works perfectly as long as the expected surplus remains positive at any time
in the future. Similarly, we showed that, when working in a context of reserving, the ap-
proximation is valid in case the expected future obligations remain positive. In both cases
these conditions are intuitive, and satisfied in most practical situations. We also pointed
out how these problems can readily be applied to optimal portfolio selection, illustrating
it with numerical examples.

We also explained how a minimal return guarantee can be introduced in our optimal
portfolio selection framework. We obtained a basic, but very useful and intuitively clear
formula, and illustrated the effect of such a guarantee numerically.

Overall this paper gives several extensions to comonotonic approximations, and its
application to optimal portfolio selection. These results significantly increase the practical
applicability of the main results obtained e.g. in Dhaene et al. (2005). Future research
would consist in generalizing some of these results even further, for example to the case
of stochastic cash flows, or an elliptically distributed return process. Also, the problem
of liabilities with changing signs still has to be solved for more general (distortion) risk
measures, such as (L)TVaR or (L)CTE.

Acknowledgement 1 The authors acknowledge the financial support by the Onderzoeks-
fonds K.U.Leuwven (GOA/07: Risk Modeling and Valuation of Insurance and Financial
Cash Flows, with Applications to Pricing, Provisioning and Solvency).
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