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Abstract

In the present paper, we give su¢ cient conditions for an ordering
of De Pril approximations of the distribution of the number of claims
in an insurance portfolio of independent policies. Possible extensions
are discussed, both for the De Pril approximation and the Kornya
approximation. A numerical example is given.

1 Introduction

De Pril (1986) introduced a method for recursive evaluation of the aggregate
claims distribution in the individual life model with independent policies with
non-negative integer-valued sums assured. As this method was rather time-
consuming, Vandebroek & De Pril (1988) and De Pril (1988) introduced an
approximation by including the r �rst terms in some summations. De Pril
(1988) deduced an error bound for this approximation; we call r the order of
the approximation. The approximation and the error bound were extended
to non-degenerate claim amount distributions on the non-negative integers
by De Pril (1989).
The Kornya approximation is proportional to the De Pril approxima-

tion with proportionality factor chosen such that the approximation of the
probability function sums to one like an exact probability function. This ap-
proximation was introduced by Kornya (1983) for the individual life model
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with independent policies with non-negative integer-valued sums assured and
extended to non-degenerate claim amount distributions on the non-negative
integers by Hipp (1986); both these authors deduced error bounds.
Dhaene & De Pril (1994) uni�ed the deduction of the approximations of

De Pril and Kornya, as well as an approximation introduced by Hipp (1996),
and error bounds for these approximations.
For probability distributions on the non-negative integers with a positive

mass at zero, Sundt (1995) named a central transform in the recursions of
De Pril (1986) the De Pril transform. Dhaene & Sundt (1998) extended the
de�nition of the De Pril transform to functions on the non-negative inte-
gers with a positive mass at zero and discussed approximations within this
framework.
Sundt (2002) and Sundt & Vernic (2009) give surveys of the theory of

recursions for aggregate claims distributions. Dhaene et al. (2006) and Sundt
& Vernic (2006) compare recursions for aggregate claims distributions within
an individual setting.
Numerical examples presented by Vandebroek &De Pril (1988) and Sundt

& Vernic (2009) seem to indicate that for the cumulative distribution, for
r = 1; 2; : : : , the De Pril approximation of order 2r � 1 is decreasing in r,
whereas the approximation of order 2r is increasing in r. For the Kornya
approximation, the situation seems to be the opposite, the approximation of
order 2r� 1 increasing in r and the approximation of order 2r decreasing in
r.
For the Kornya approximation in the individual life model, Kornya (1983)

gave conditions for this property. However, in published discussions to that
paper, David C. McIntosh and Donald P. Minassian pointed out an error in
the proof. The latter discussant gave counterexamples.
The purpose of the present paper is to give su¢ cient conditions for the

ordering property of the De Pril approximation to hold for the distribution of
the number of policies with claims. In themselves, these results are perhaps
not too interesting as in this simple case it would not be that complicated
to evaluate the exact distribution, but we hope that the results can be step-
stones to more general results. When each policy can have at most one claim,
the distribution of the number of policies with claims can be interpreted as
the claim number distribution, that is, an aggregate claims distribution with
all claim amount distributions concentrated in one.
In Section 2, we introduce some notation that we shall apply in this paper.

As the De Pril transform will be a central tool in our deductions, we de�ne it
and recapitulate some of its properties in Section 3. Section 4 is devoted to
the relation between De Pril transforms and generating functions. In Section
5, we introduce the approximations of De Pril and Kornya. The core of our
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paper is Section 6. That is where we prove the inequalities. In Section 7,
we discuss some possible extensions, both for the De Pril approximation and
the Kornya approximation. Finally, in Section 8, we present a numerical
example based on a dataset introduced by Gerber (1979). This dataset has
also been applied for numerical examples by Jewell & Sundt (1981), Chan
(1984), Sundt (1985), Hipp (1986), Vandebroek & De Pril (1988), Kuon et
al. (1993), Dhaene & Goovaerts (1997), and Sundt & Vernic (2009).
For proofs of the results in Sections 3 and 5, see e.g. Sundt & Vernic

(2009).

2 Notation and conventions

In this paper, we shall study distributions on the non-negative integers. We
denote the probability function by a lower-case letter, the cumulative distri-
bution function by the corresponding capital, and the tail by a bar on that
capital. Thus, if f is a probability function on the non-negative integers,
then

F (x) =
xX
y=0

f (y) ; F (x) =
1X

y=x+1

f (y) = 1� F (x) . (x = 0; 1; 2; : : : )

We use this notation also for approximations to distributions. These
approximations do not necessarily sum to one, so that the identity

1X
y=x+1

f (y) = 1� F (x) (x = 0; 1; 2; : : : ) (1)

does not necessarily hold. In Section 8, we shall discuss the orderings men-
tioned in Section 1 in connection with a numerical example. When dis-
playing the cumulative distribution function and its approximations, it is
di¢ cult to see what is going on far out in tail as the values will be close
to one. Hence, it is more informative to display the tail. When de�ning a
tail by the second expression in (1), the orderings will be preserved with the
inequalities the opposite way. However, the orderings will not necessarily
be preserved with the �rst expression if the approximations sum to di¤er-
ent values. Hence, for convenience, we de�ne the tail of F by F = 1 � F .
We introduce F (1) = limx"1 F (x) and F (1) = limx"1 F (x) under the
assumption that these limits exist.
We shall to a large extent apply De Pril transforms. As these trans-

forms are normally more convenient to apply on probability functions than
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on cumulative distribution functions, we shall usually mean the probability
function when referring to a distribution.
Let P0 denote the class of distributions on the non-negative integers with

a positive mass at zero, P+ the class of distributions on the non-negative
integers, and F0 the class of functions on the non-negative integers with a
positive mass at zero.
We denote a compound distribution with counting distribution p and

severity distribution h by p _ h. If p 2 P0 and h 2 P+, we have

(p _ h) (x) =
xX
n=0

p (n)hn� (x) . (x = 0; 1; 2; : : : ) (2)

Thus, p_h 2 P0. More generally, we apply (2) as de�nition of the compound
function p _ h when p 2 F0 and h 2 P+; in that case, p _ h 2 F0.
A distribution p 2 P0 is the Bernoulli distribution Bern (�) if it is given

by
p (1) = 1� p (0) = �. (0 < � < 1) (3)

We introduce the indicator function I, that is, I (A) = 1 if a condition A
is satis�ed, and I (A) = 0 if it is not satis�ed.
For a function f on the integers, we let �f (x) = f (x)� f (x� 1) for all

integers x. We have f = �F .
We denote the generating function of a function f on the non-negative

integers by � f , that is, � f (s) =
P1

x=0 f (x) s
x. When using generating func-

tions, it is tacitly assumed that they exist.
If x is a real number, then we let [x] denote the largest integer less than

or equal to x.
A summation

Pb
j=a is assumed to be equal to zero when b < a.

When giving a function an argument outside the range for which the
function has been de�ned, we tacitly assume that the value of the function
for that argument is equal to zero.

3 The De Pril transform

Inspired by De Pril (1989), Sundt (1995) de�ned the De Pril transform 'f
of a distribution f 2 P0 by the recursion

'f (x) =
1

f (0)

 
xf (x)�

x�1X
y=1

'f (y) f (x� y)
!

(x = 1; 2; : : : ) (4)
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and studied some of its properties. Allowing for approximations to distribu-
tions, Dhaene & Sundt (1998) extended this de�nition to functions in F0 and
studied the properties of the De Pril transform within that wider context.
As a distribution sums to one, the De Pril transform of a distribution in

P0 determines the distribution uniquely, whereas the De Pril transform of a
function in F0 determines the function only up to a multiplicative constant,
that is, all functions in F0 proportional to that function have the same De
Pril transform.
Solving (4) for f (x) gives

f (x) =
1

x

xX
y=1

'f (y) f (x� y) , (x = 1; 2; : : : ) (5)

by which we can evaluate f recursively if f (0) is known.
It can be shown that if f = �mj=1fj with fj 2 F0 for j = 1; 2; : : : ;m, then

'f =
mX
j=1

'fj . (6)

Thus, we can evaluate f by �rst evaluating each 'fj recursively by (4), then
'f by (6), and, �nally, f recursively by (5). This is De Pril�s �rst method.
If f = p _ h with p 2 F0 and h 2 P+, then

'f (x) = x
xX
y=1

'p (y)

y
hy� (x) . (x = 1; 2; : : : ) (7)

In particular, if p is the Bernoulli distribution Bern (�) given by (3), then

'p (y) = �
�

�

� � 1

�y
, (y = 1; 2; : : : ) (8)

so that

'f (x) = �x
xX
y=1

1

y

�
�

� � 1

�y
hy� (x) . (x = 1; 2; : : : ) (9)

Any distribution f 2 P0 can be expressed as a compound distribution
with counting distribution being the Bernoulli distribution Bern (�) with
� = 1� f (0) and severity distribution h 2 P+ given by h (y) = f (y) =� for
y = 1; 2; : : : . Hence, instead of evaluating each 'fj recursively by (4) in De
Pril�s �rst method, we can use (9). We then obtain De Pril�s second method.
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De Pril�s �rst and second methods were presented by De Pril (1986) in the
individual life model and extended to distributions in P0 by De Pril (1989).
For f 2 F0, Dhaene et al. (1999) showed that

'F (x) = 1 + 'f (x) . (x = 1; 2; : : : ) (10)

Combining this with (5) gives the recursion

F (x) =
1

x

xX
y=1

�
1 + 'f (y)

�
F (x� y) , (n = 1; 2; : : : ) (11)

from which we see that if 'f � �1, then F � 0.

4 Generating functions

For f 2 F0, we obtain from (5) that

xf (x) =
xX
y=1

'f (y) f (x� y) : (x = 0; 1; 2; : : : )

Multiplication by sx and summation over x gives

s� 0f (s) = �'f (s) � f (s) ,

that is,
d

ds
ln � f (s) =

�'f (s)

s
=

1X
x=1

'f (x) s
x�1.

By integration, we obtain

ln � f (s)� ln � f (0) =
1X
x=1

'f (x)

x
sx,

so that

� f (s) = f (0) exp

 1X
x=1

'f (x)

x
sx

!
.

Letting s = 1 gives

F (1) = � f (1) = f (0) exp
 1X
x=1

'f (x)

x

!
� 0. (12)

At �rst glance, this seems to give the impression that F (1) is positive for
all functions f 2 F0. However, we have made the convention that when
applying generating functions, it is tacitly assumed that they exist. Hence,
(12) indicates that

P1
x=1 'f (x) =x does not exist when F (1) < 0.
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Theorem 1. Let p = �mj=1pj and f = �mj=1 (pj _ hj) with hj 2 P+, pj 2 F0,
and

P1
n=1

���'pj (n)���.n convergent for j = 1; 2; : : : ;m. Then F (1) = P (1).
Proof. By application of (6) and (7),we obtain

1X
x=1

'f (x)

x
=

1X
x=1

1

x

mX
j=1

'pj_hj (x) =

1X
x=1

mX
j=1

xX
y=1

'pj (y)

y
hy�j (x) =

1X
y=1

1

y

mX
j=1

'pj (y)

1X
x=y

hy�j (x) =
1X
y=1

1

y

mX
j=1

'pj (y) =

1X
y=1

'p (y)

y
.

Together with (12), this gives

F (1) = f (0) exp
 1X
x=1

'f (x)

x

!
= p (0) exp

 1X
y=1

'p (y)

y

!
= P (1) .

Q.E.D.

By solving (12) for f (0), we obtain

f (0) = � f (1) exp

 
�

1X
x=1

'f (x)

x

!
= F (1) exp

 
�

1X
x=1

'f (x)

x

!
.

When f sums to one, like when f 2 P0, this gives

f (0) = exp

 
�

1X
x=1

'f (x)

x

!
. (13)

By application of (10), we obtain that

�F (s) = F (0) exp

 1X
x=1

'F (x)

x
sx

!
= f (0) exp

 1X
x=1

1 + 'f (x)

x
sx

!
=

f (0) exp

 
� ln (1� s) +

1X
x=1

'f (x)

x
sx

!

when jsj < 1. Thus,

�F (s) =
f (0) exp

�P1
x=1

'f (x)

x
sx
�

1� s =
� f (s)

1� s . (14)
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Furthermore,

�F (s) =
1X
x=0

F (x) sx =
1X
x=0

(1� F (x)) sx = 1

1� s � �F (s) ,

and insertion of (14) gives

�F (s) =
1� f (0) exp

�P1
x=1

'f (x)

x
sx
�

1� s =
1� � f (s)
1� s . (15)

5 Approximations

For f = p _ h with p 2 P0 and h 2 P+, evaluating 'f (x) by (7) can be
rather time-consuming for large x. Hence, one often approximates p with a
function p(r) 2 F (r)

0 for some positive integer r with F (r)
0 denoting the class

of functions q 2 F0 for which 'q (y) = 0 for all y > r.
We see that the convolution of functions in F (r)

0 , is also in F
(r)
0 .

From (12), we obtain that

P (r) (1) = p(r) (0) exp
 

rX
n=1

'p(r) (n)

n

!
, (16)

that is, the summation in the exponent has now a �nite number of terms.
This implies that P (r) (1) will always exist and be positive. When P (r) (1) =
1, we get

p(r) (0) = exp

 
�

rX
n=1

'p(r) (n)

n

!
. (17)

Application of (11) gives the recursion

P (r) (n) =
1

n

nX
i=1

�
1 + 'p(r) (i)

�
P (r) (n� i) . (n = 1; 2; : : : )

Here we have to sum up to n although 'p(r) (i) = 0 when i > r. From
Corollary 8.1 in Sundt & Vernic (2009), we obtain the alternative recursion

P (r) (n) = P (r) (n� 1) + 1

n

r+1X
i=1

�'p(r) (i)P
(r) (n� i) , (n = 1; 2; : : : ) (18)

where we avoid that problem.
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We shall now concentrate on two classes of such approximations that
satisfy the condition

'p(r) (y) = I (y � r)'p (y) . (y = 1; 2; : : : ) (19)

This condition determines the approximation only up to a multiplicative
constant, so that we need another condition to determine that constant:

1. For the De Pril approximation, we let

p(r) (0) = p (0) . (20)

It is immediately seen that p(r) converges to p when r goes to in�nity.

2. The Kornya approximation sums to one like a distribution. Hence, (17)
and (19) give that

p(r) (0) = exp

 
�

rX
n=1

'p (n)

n

!
. (21)

From (13) and (21), we see that p(r) (0) converges to p (0) when r goes
to in�nity, if

P1
n=1 'p (n) =n is convergent. In that case, the propor-

tionality factor between the rth order Kornya approximation and the
rth order De Pril approximation converges to one when r goes to in-
�nity. This implies that the rth Kornya approximation converges to
in�nity when r goes to in�nity, as that is the case with the rth order
De Pril approximation.

We easily see that for all positive integers r the rth order De Pril approx-
imation of the convolution of distributions in P0 is the convolution of the
rth order De Pril approximations of these distributions. Analogous for the
Kornya approximation.
Application of (19) in (18) gives the recursion

P (r) (n) = P (r) (n� 1)+

1

n

 
rX
i=1

�'p (i)P
(r) (n� i)� 'p (r)P (r) (n� r � 1)

!
. (n = 1; 2; : : : ) (22)

From (20), (19), and (16), we obtain that when p(r) is the De Pril ap-
proximation, then

P (r) (1) = p (0) exp
 

rX
n=1

'p (n)

n

!
.

9



Hence, P (r) (1) can be evaluated recursively by

P (r) (1) = P (r�1) (1) exp
�
'p (r)

r

�
(r = 1; 2; : : : ) (23)

with P (0) (1) = p (0) :
Now, let us consider an insurance portfolio ofm independent policies. For

j = 1; 2; : : : ;m, the jth policy has aggregate claims distribution fj 2 P0. We
want to evaluate the aggregate claims distribution f = �mj=1fj of the portfolio.
We express each fj as fj = pj _ hj where pj is the Bernoulli distribution
Bern (�j) with �j = 1 � fj (0) and hj 2 P+ given by hj (y) = fj (y) =�j
for y = 1; 2; : : : . Then we approximate pj with a function p

(r)
j 2 F (r)

0 , but
keep the severity distribution hj unchanged. Hence, we approximate f with
f (r) = �mj=1f

(r)
j with f (r)j = p

(r)
j _ hj for each j. We evaluate f (r) by De Pril�s

second method.
The distribution p = �mj=1pj is the distribution of the number of policies

with claims, and we approximate that distribution with p(r) = �mj=1p
(r)
j . The

special case when the pjs are approximated with the De Pril approximation,
will be studied in Section 6.
In the present case, insertion of (8) in (6) gives

'p (n) =
mX
j=1

'pj (n) = �
mX
j=1

�
�j

�j � 1

�n
.

Thus, for n = 2; 3; : : : , we obtain

�'p (n) = �
mX
j=1

�n�1j

(�j � 1)n
. (n = 2; 3; : : : ) (24)

When the p(r)j s satisfy (19), then that is also the case with p
(r) and insertion

of (24) in (22) gives

P (r) (n) =

 
1 +

1

n

mX
j=1

�j
1� �j

!
P (r) (n� 1)+

1

n

 
P (r) (n� r � 1)

mX
j=1

�
�j

�j � 1

�r
�

rX
i=2

P (r) (n� i)
mX
j=1

�i�1j

(�j � 1)i

!
.

(n = 1; 2; : : : )

10



6 Inequalities for the De Pril approximation
to the distribution of the number of policies
with claims

We shall now study the distribution p of the number of policies with claims
in the insurance portfolio model described in Section 5.
Let �j = �j /(1� �j) for j = 1; 2; : : : ;m. From (8), we then obtain

'pj (n) = (�1)
n+1 �nj . (n = 1; 2; : : : )

For all positive integers r, let p(r)j denote the rth order De Pril approximation
of pj. Then (20) and (19) give

p
(r)
j (0) = pj (0) = 1� �j

'
p
(r)
j
(n) = I (n � r)'pj (n) = I (n � r) (�1)

n+1 �nj . (n = 1; 2; : : : )

We want to approximate the distribution p = �mj=1pj of the number of
policies with claims by p(r) = �mj=1 p

(r)
j . We have

'p (n) = (�1)
n+1

mX
j=1

�nj (n = 1; 2; : : : ) (25)

'p(r) (n) = I (n � r)'p (n) = I (n � r) (�1)
n+1

mX
j=1

�nj (n = 1; 2; : : : ) (26)

p(r) (0) = p (0) =
mQ
j=1

(1� �j) ,

and application of (10) gives

'P (r) (n) = 1 + I (n � r)'p (n) = 1 + I (n � r) (�1)
n+1

mX
j=1

�nj

for n = 1; 2; : : : . By insertion in (5), we obtain

P (r) (n) =
1

n

nX
y=1

�
1 + I (y � r)'p (y)

�
P (r) (n� y) =

1

n

nX
y=1

 
1 + I (y � r) (�1)y+1

mX
j=1

�yj

!
P (r) (n� y) (n = 1; 2; : : : ) (27)
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with initial value P (r) (0) = p (0).
This immediately gives that

P (r) > 0 (r = 1; 2; : : : ) (28)

when
'p � �1. (29)

From (25), we see that 'p (2) = �
Pm

j=1 �
2
j . Thus, a necessary condition for

(29) is that
mX
j=1

�2j � 1. (30)

In that case, we must have �j � 1 for each j, and, if this condition is ful�lled,
then 'p � 'p (2). Hence, (29) holds if and only if (30) holds.
The following theorem shows that the inequalities

0 � P (2) (n) � P (4) (n) � P (6) (n) � � � � � P (n) � � � � �
P (5) (n) � P (3) (n) � P (1) (n) . (31)

hold for su¢ ciently large n when �j < 1 (that is, �j < 1=2) for all j.

Theorem 2. If �j < 1 for j = 1; 2; : : : ;m, then

0 < P (2) (1) < P (4) (1) < P (6) (1) < � � � < P (1) < � � � <
P (5) (1) < P (3) (1) < P (1) (1) . (32)

Proof. Insertion of (25) in (23) gives

P (r) (1) = P (r�1) (1) exp
 
(�1)r+1

r

mX
j=1

�rj

!
. (r = 1; 2; : : : )

Hence, for all positive integers r,

P (r+2) (1) = P (r) (1) exp
 
(�1)r+2

r + 1

mX
j=1

�r+1j +
(�1)r+3

r + 2

mX
j=1

�r+2j

!
=

P (r) (1) exp
 

(�1)r

(r + 1) (r + 2)

mX
j=1

(1 + (r + 1) (1� �j))�r+1j

!
.

As 0 < �j < 1 for each j, we have

exp

 
(�1)r

(r + 1) (r + 2)

mX
j=1

(1 + (r + 1) (1� �j))�r+1j

!�
<
>

�
1.
�
r

�
odd
even

��
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Furthermore, from (12) and (26) follows that P (r) (1) > 0. Hence,

P (r+2) (1)
�
<
>

�
P (r) (1) .

�
r

�
odd
even

��
As P (r) converges to P , the inequalities (32) hold. Q.E.D.

In the following, we shall give necessary conditions for (31) to hold for
�nite n.

Theorem 3. If (30) and

mX
j=1

�r+1j

�
P (r+2) (n� r � 1)� �jP (r+2) (n� r � 2)

�
� 0 (33)

(n = 1; 2; : : : ; r = 2; 3; : : : )

hold, then

0 < P (2) � P (4) � P (6) � � � � � P � � � � � P (5) � P (3) � P (1). (34)

Proof. For any positive integer r, we obviously have

I (i � r) = I (i � r + 2) . (i = 1; 2; : : : ; r � 1; r; r + 3; r + 4; : : : ) (35)

We shall prove by induction on n that

P (r+2) (n) � P (r) (n) . (n = 0; 1; 2; : : : ; r = 1; 3; 5; : : : ) (36)

We have P (r) (0) = p (0) = P (r+2) (0) so the induction hypothesis (36)
holds for n = 0.
Let us now assume that it holds for n = 1; 2; : : : ; k � 1 for some positive

integer k.
We �rst assume that k � r. By application of (27), (29), (35), and (36),

we obtain

P (r+2) (k) =
1

k

kX
i=1

�
1 + I (i � r + 2)'p (i)

�
P (r+2) (k � i) �

1

k

kX
i=1

�
1 + I (i � r)'p (i)

�
P (r) (k � i) = P (r) (k) , (37)

that is, the induction hypothesis (36) holds also for n = k.
From (25), we obtain that 'p (r + 1) < 0, so that (37) holds also for

k = r + 1, that is, the induction hypothesis (36) holds also for n = r + 1.
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Now let k > r + 1. By (25), (33), and (36), we obtain

r+2X
i=r+1

�
1 + I (i � r + 2)'p (i)

�
P (r+2) (k � i) =

r+2X
i=r+1

 
1 + (�1)i+1

mX
j=1

�ij

!
P (r+2) (k � i) =

r+2X
i=r+1

P (r+2) (k � i)�

mX
j=1

�r+1j

�
P (r+2) (k � r � 1)� �jP (r+2) (k � r � 2)

�
�

r+2X
i=r+1

P (r+2) (k � i) �
r+2X
i=r+1

P (r) (k � i) =

r+2X
i=r+1

�
1 + I (i � r)'p (i)

�
P (r) (k � i) .

This implies that (37) holds also for k > r + 1, that is, the induction hypo-
thesis (36) holds also for n > r + 1.
We have now shown that the induction hypothesis (36) holds for all non-

negative integers n. As P (r) converges to P , (36) implies that

P � � � � � P (5) � P (3) � P (1).

The inequalities

P (2) � P (4) � P (6) � � � � � P ,

are proved analogously.
This completes the proof of Theorem 3. Q.E.D.

The condition (33) is obviously satis�ed when

P (r) (n) � �lP (r) (n� 1) . (n = 1; 2; : : : ; r = 2; 3; : : : ; l = 1; 2; : : : ;m) (38)

The following two theorems give su¢ cient conditions for (30) and (38) to
hold.

Theorem 4. If

�l � 1�
mX
j=1

�2j , (l = 1; 2; : : : ;m) (39)

then (30) and (38) hold.

14



Proof. From (39), we immediately see that (30) holds and �1; �2; : : : ; �m 2
(0; 1).
We shall prove by induction on n that (38) holds.
Application of (27) gives that

P (r) (1)� �lP (r) (0) =
 
1 +

mX
j=1

�j � �l

!
P (r) (0) � 0,

so that (38) is satis�ed for n = 1.
Let us now assume that (38) is satis�ed for n = 1; 2; : : : ; k � 1 for some

positive integer k. We shall show that it then holds also for n = k. Applica-
tion of (27) gives

k
�
P (r) (k)� �lP (r) (k � 1)

�
=

kX
i=1

�
1 + I (i � r)'p (i)

�
P (r) (k � i)�

�l

 
P (r) (k � 1) +

k�1X
i=1

�
1 + I (i � r)'p (i)

�
P (r) (k � 1� i)

!
=

(1� �l)
kX
i=1

P (r) (k � i) +
rX
i=1

'p (i)
�
P (r) (k � i)� �lP (r) (k � 1� i)

�
�

(1� �l)P (r) (k � 2) +
rX
i=1

'p (i)
�
P (r) (k � i)� �lP (r) (k � 1� i)

�
=

(1� �l)P (r) (k � 2) + 'p (1)P (r) (k � 1)+
rX
i=2

�
'p (i)� �l'p (i� 1)

�
P (r) (k � i)� �l'p (r)P (r) (k � 1� r) =

(1� �l)P (r) (k � 2) + 'p (1)P (r) (k � 1) +
�
'p (2)� �l'p (1)

�
P (r) (k � 2)+

rX
i=3

�
'p (i)� �l'p (i� 1)

�
P (r) (k � i)� �l'p (r)P (r) (k � 1� r) =�

1� �l + 'p (2)
�
P (r) (k � 2) + 'p (1)

�
P (r) (k � 1)� �lP (r) (k � 2)

�
+

rX
i=3

�
'p (i)� �l'p (i� 1)

�
P (r) (k � i)� �l'p (r)P (r) (k � 1� r) .

15



Insertion of (25) gives

k
�
P (r) (k)� �lP (r) (k � 1)

�
�
 
1� �l �

mX
j=1

�2j

!
P (r) (k � 2)+

�
P (r) (k � 1)� �lP (r) (k � 2)

� mX
j=1

�j +

mX
j=1

S
(r)
kjl (40)

with

S
(r)
kjl = (�l + �j)

krX
i=3

(��j)i�1 P (r) (k � i) + �l (��j)r P (r) (k � 1� r)

with kr = min (r; k).
By (39), (28), and the induction hypothesis (38), the �rst two terms in

(40) are non-negative so that

P (r) (k)� �lP (r) (k � 1) �
1

k

mX
j=1

S
(r)
kjl. (41)

We immediately see that S(2)kjl � 0.
For r > 2, we obtain

S
(r)
kjl = (�l + �j)�0@[kr=2]X
i=2

�2i�2j

�
P (r) (k � 2i+ 1)� �jP (r) (k � 2i)

�
+ I (kr odd) (��j)kr�1 P (r) (k � kr)

1A+
�l (��j)r P (r) (k � 1� r) .

By the induction hypothesis (38), this gives

S
(r)
kjl � (42)

I (kr odd) (�l + �j) (��j)kr�1 P (r) (k � kr) + �l (��j)r P (r) (k � 1� r) .

When k � r, the last term vanishes and kr = k, so that

S
(r)
kjl � I (k odd) (�l + �j) (��j)

k�1 P (r) (0) � 0.

Let us now turn to the case when k > r. Then kr = r, and insertion in
(42) gives

S
(r)
kjl � I (r odd) (�l + �j) (��j)

r�1 P (r) (k � r) + �l (��j)r P (r) (k � 1� r) .

16



When r is even, the �rst term vanishes, and the last term is non-negative so
that S(r)kjl � 0. When r is odd, we obtain

S
(r)
kjl � (�l + �j) (��j)

r�1 P (r) (k � r) + �l (��j)r P (r) (k � 1� r) =
(��j)r�1

�
�lP

(r) (k � r) + �j
�
P (r) (k � r)� �lP (r) (k � 1� r)

��
� 0

by the induction hypothesis (38).
We have now shown that we always have S(r)kjl � 0. Insertion in (41) gives

that the induction hypothesis (38) is satis�ed when n = k, and by induction
follows that it is satis�ed for all positive integers n.
This completes the proof of Theorem 4. Q.E.D.

Theorem 5. If (30) and

�l �
�Xm

j=1
�j + 1

��1
(l = 1; 2; : : : ;m) (43)

hold, then (38) holds.

Proof. From (43), we see that �1; �2; : : : ; �m 2 (0; 1), and (30) gives that
(28) holds. We shall prove by induction on n that (38) holds.
Analogous to the proof of Theorem 4, we obtain that (38) holds for n = 1.
Let us now assume that (38) holds for n = 1; 2; : : : ; k�1 for some integer

k > 1. We shall show that it also holds for n = k. The deduction of (40) is
also valid under the present assumptions. We obtain 

1� �l �
mX
j=1

�2j

!
P (r) (k � 2) +

�
P (r) (k � 1)� �lP (r) (k � 2)

� mX
j=1

�j = 
1� �l

 
1 +

mX
j=1

�j

!!
P (r) (k � 2)+

mX
j=1

�j
�
P (r) (k � 1)� �jP (r) (k � 2)

�
� 0

by (43) and the induction hypothesis (38). Hence, (41) still holds, and,
analogous to the proof of Theorem 4, we obtain that the induction hypothesis
(38) holds also for n = k. By induction follows that it holds for all positive
integers n.
This completes the proof of Theorem 5. Q.E.D.
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7 Possible further results

In Section 6, we gave su¢ cient conditions for the ordering (34) to hold for the
distribution of the number of policies with claims in an insurance portfolio
of independent policies when we use the De Pril approximation. As pointed
out in Section 1, we hope these results can be step-stones for deducing more
general results.
A natural question is now whether it would be possible to extend our

results to give su¢ cient conditions for the ordering

0 � F (2) � F (4) � F (6) � � � � � F � � � � � F (5) � F (3) � F (1) (44)

in the insurance portfolio model of Section 5. For such extension, perhaps
one should start with the individual life model, that is, each policy can have
at most one claim and the size of that claim is �xed.
Many of the error bounds that have been introduced for such approxima-

tions, depend on only the Bernoulli parameters, not the severity distributions.
Could this be the case also for su¢ cient conditions for the ordering (44)? At
least, Theorem 1 immediately gives that F (r) (1) = P (r) (1) for all r, so
that

0 < F (2) (1) < F (4) (1) < F (6) (1) < � � � < F (1) < � � � <
F (5) (1) < F (3) (1) < F (1) (1)

if and only if (32) holds.
As pointed out in Section 1, when using the Kornya approximation in-

stead of the De Pril approximation, numerical examples often indicate the
ordering

0 � ~F (1) � ~F (3) � ~F (5) � � � � � F � � � � � ~F (6) � ~F (4) � ~F (2), (45)

where we have added a tilde to distinguish from the De Pril approximation.
As the rth order Kornya approximation is proportional with the rth order

De Pril approximation, we have

F (r) (1) = F (r) (1)
~F (r) (1)

=
F (r) (0)
~F (r) (0)

=
F (0)
~F (r) (0)

.

Thus,

~F (1) (0) < ~F (3) (0) < ~F (5) (0) < � � � < F (0) < � � � <
~F (6) (0) < ~F (4) (0) < ~F (2) (0)

18



if and only if

F (2) (1) < F (4) (1) < F (6) (1) < � � � < F (1) < � � � <
F (5) (1) < F (3) (1) < F (1) (1) .

It would have been very nice if the ordering (45) could hold under the
same conditions as the corresponding ordering for the De Pril approximation.
Unfortunately, in the numerical example of Section 8, Theorem 3 gives that
the ordering for the De Pril approximation holds, but numerical calculations
show that the ordering for the Kornya approximation does not hold. The
question is then whether it would be possible to �nd conditions under which
both (44) and (45) hold. That would be very convenient as the approxima-
tions of De Pril and Kornya are proportional, so that we could obtain upper
and lower bounds for P by using the same approximation and a scaling factor.
If both (44) and (45) hold, then we have

(�1)r F (r) � (�1)r F � (�1)r ~F (r). (r = 1; 2; : : : )

By using the proportionality between the rth order Kornya approximation
and the rth order De Pril approximation, we obtain

(�1)r � (�1)r F

F (r)
� (�1)r �(r) (r = 1; 2; : : : )

with

�(r) =
~F (r) (0)

F (r) (0)
=
~f (r) (0)

f (r) (0)
=

mY
j=1

~f
(r)
j (0)

f
(r)
j (0)

=
mY
j=1

~p
(r)
j (0)

p
(r)
j (0)

.

Application of (21), (20), and (8) gives

�(r) =

mY
j=1

exp

�Pr
y=1

1

y

�
�j

�j � 1

�y�
1� �j

=

mY
j=1

exp
�Pr

y=1

�
1� fj (0)�1

�y.
y
�

fj (0)
.

8 Numerical example

As a numerical example, we study a life assurance portfolio introduced by
Gerber (1979). The portfolio consists of 31 independent policies. Each policy
can have at most one claim. Thus, the number of policies with claims is the
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Amount
j �j �j 1 2 3 4 5 kj
1 0:03 0:030928 2 3 1 2 0 8
2 0:04 0:041667 0 1 2 2 1 6
3 0:05 0:052632 0 2 4 2 2 10
4 0:06 0:063830 0 2 2 2 1 7

Table 1: Gerber�s portfolio.

number of claims. Furthermore, the claims have �xed amounts. There are
m = 4 di¤erent claim probabilities and �ve di¤erent claim amounts. As we
are going to concentrate on the distribution p of the number of claims, the
amounts are of less interest to us. For j = 1; 2; : : : ;m, we let �j denote the jth
claim probability and kj the number of policies with this claim probability.
We also introduce �j = �j /(1� �j) for j = 1; 2; : : : ;m.
In Table 1, we display the number of policies for each combination of

amount and claim probability, as well as the �js and the kjs.
We now have

1�
mX
j=1

kj�
2
j = 0:925711,

which is much greater than the �js, so that (39) is ful�lled. Hence, the
ordering (34) holds.
In Table 2, we display the exact tail P of the claim number distribution,

as well as the De Pril approximation of order 1, 2, 3, and 4. As expected,
these �gures satisfy the ordering (44).
The corresponding calculations with the De Pril approximation replaced

with the Kornya approximation are shown in Table 3. These �gures do
not satisfy the ordering (45); in particular, P (4) (n) > P (2) (n) for n =
15; 16; 17; 18.
As we wanted to study the ordering properties far out in the tail, we have

not used the recursive methods with their risk of error accumulation, but
rather power series expansion of (15) with the MuPad engine of Scienti�c
Workplace, version 5.5. As a control, we did the same calculations with
the Maple engine of Scienti�c Workplace, version 3.0. The calculations were
reasonably consistent at least up to n = 20.
In Table 4, we display the proportionality factor

�(r) =

mY
j=1

0BB@exp
�Pr

y=1

1

y

�
�j

�j � 1

�y�
1� �j

1CCA
kj

.
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r 1 2 3 4

�(r) 0:9647555 1:0012649 0:9999478 1:0000024

Table 4: The proportionality factor.

Calculations for the aggregate claims distribution presented by Dhaene
& Vandebroek (1988) and Sundt & Vernic (2009) satisfy the orderings (44)
and (45).
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