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Abstract
For any random vector X = (X1; :::; Xn) on a given probability space (
;F ;Pr), one

can always construct comonotonic modi�cations of X, which are de�ned as random vectors
with the same marginals as X but with the comonotonic copula describing their dependency
structure. In this short note, we investigate whether it is always possible or not to de�ne
comonotonic modi�cations of X on its own probability space (
;F ;Pr).
Keywords: Comonotonic random vector, comonotonic modi�cation, non-atomic proba-

bility space.

1 Introduction

Consider a random vector X = (X1; :::; Xn) de�ned on a given probability space (
;F ;Pr).
Loosely speaking, the random vector X is comonotonic if its multivariate distribution is equal
to the multivariate distribution of a random vector Y = (Y1; :::; Yn) of which the stochasticity
can be captured by a single driver, which means that all random variables Yi behave as non-
decreasing functions of a single underlying random variable.

Let us now assume that X is not comonotonic. Then one can always construct a comonotonic
modi�cation of X, that is a comonotonic random vector Xc = (Xc

1; :::; X
c
n) which has the same

marginal distributions as X.
The probability space (
;F ;Pr) on which X is de�ned may or may not be rich enough

to contain comonotonic modi�cations of X. In case it is not rich enough, the comonotonic
modi�cations Xc will necessary have to be de�ned on another probability space.

In this short note we present a condition on the probability space, under which comonotonic
modi�cations can always be constructed on the same probability space as the one of the original
random vectorX. We also give a simple example of probability space containing a random vector
X for which no comonotonic modi�cation can be constructed without leaving the original space.

This note is structured as follows. In Section 2 we brie�y describe the concept of comonotonic-
ity and some of its properties. The existence of the comonotonic modi�cation of a random vector
on its own probability space is discussed in Section 3. Finally, Section 4 concludes the paper.

2 Comonotonic random variables

In the sequel, a n-vector (x1; :::; xn) will often be denoted by x: For two n-vectors x and y the
notation x � y is used for the componentwise order which is de�ned by xi � yi for all i = 1; :::; n.
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De�nition 1 A set A � Rn is said to be comonotonic if for any x and y in A, either x � y or
y � x holds.

Hereafter we restate the de�nition of the notion of comonotonicity of random vectors, as
presented in Kaas et al. (2000).

De�nition 2 A random vector X is said to be comonotonic if it has a comonotonic support.

In the following theorem, some characterizations are given for the comonotonicity of a random
vectors. The notation F�1X is used for the usual inverse of the distribution function FX of the
r.v. X, i.e.

F�1Xi (p) = inf fx 2 R j FXi(x) � pg ; p 2 [0; 1] (1)

with inf ? = +1 by convention. Furthermore, in the remainder of this note, the notation U
is used to denote a r.v. which is uniformly distributed on the unit interval (0; 1). Finally, the

notation d
= is used to denote �equality in distribution�.

Theorem 3 A random vector X = (X1; :::; Xn) is comonotonic if, and only if, one of the
following equivalent conditions holds:
(1) For U � Uniform (0; 1), we have that

X
d
=
�
F�1X1 (U); :::; F

�1
Xn
(U)

�
: (2)

(2) There exists a r.v. Z and non-decreasing functions fi : R! R; i = 1; :::; n, such that

X
d
= (f1(Z); :::; fn(Z)) : (3)

For a proof of this theorem, see e.g. Denneberg (1997). An overview of the properties of
comonotonic random vectors can be found in Dhaene et al. (2002a). An overview of actuarial
and �nancial applications of the concept of comonotonicity is presented in Dhaene et al. (2002b)
and Deelstra et al. (2011).

3 Comonotonic modi�cations of a random vector in its own
probability space

In this section we investigate conditions under which for any random vectorX = (X1; X2; : : : ; Xn)
de�ned on a given probability space (
;F ;Pr), one can construct a comonotonic modi�cation
on this same probability space.

De�nition 4 A random vector Y is said to be a comonotonic modi�cation of the random vector
X if Y is comonotonic and has the same marginal distributions as X.

For any random vector X de�ned on a probability space (
;F ;Pr) one can construct
comonotonic modi�cations. Indeed, for any U � Uniform (0; 1), we have that�
F�1X1 (U); :::; F

�1
Xn
(U)

�
is a comonotonic modi�cation of X. Notice that U and hence also the

comonotonic modi�cation
�
F�1X1 (U); :::; F

�1
Xn
(U)

�
of X are not necessarily de�ned on (
;F ;Pr).

Before we introduce a condition which guarantees the existence of comontonic modi�cations
of a random vector on its own probability space, we �rst consider a condition guaranteeing the
existence of uniformly distributed r.v.�s on a given probability space. The notion of �non-atomic
probability spaces�turns out to be essential in that respect.
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De�nition 5 A probability space (
;F ;Pr) is said to be atomic if there exists an event B 2 F
with Pr [B] > 0, for which it is impossible to �nd another event A � B such that 0 < Pr [A] <
Pr [B].

The event B in the de�nition above is called an atom of the probability space under consid-
eration. Intuitively, an atom of a given probability space is a non-zero event which cannot be
divided in nontrivial sub-events.

A probability space without atoms is called a non-atomic space. The space ([0; 1];F[0;1]; �),
with F[0;1] being the class of all Lebesgue measurable subsets of [0; 1] and � the Lebesgue
measure, is an example of a non-atomic probability space.

In a discrete probability space, i.e. a probability space with a countable (�nite or countably
in�nite) universe, any ! 2 
 with Pr [f!g] > 0 is an atom.

Another example of an atomic probability space is ([0; 1];F ; �). Here F is the set of all �nite
or countable subsets A of the unit interval [0; 1] as well as their complements [0; 1]nA. Hence,
F = fA; [0; 1]nA j A � [0; 1] is �nite or countableg. Further, for any �nite our countable A �
[0; 1], we set � [A] = 0 and � [[0; 1]nA] = 1. It follows immediately that any [0; 1]nA is an atom
of the probability space under consideration.

In the following two lemmas , we prove that a probability space contains uniformly distrib-
uted, and more generally continuously distributed r.v.�s, if and only if this space is non-atomic.

Lemma 6 On a given probability space (
;F ;Pr), one can construct a r.v. U � Uniform (0; 1)
if, and only if, this space is non-atomic.

Proof. First, let the space (
;F ;Pr) have atoms, i.e., there exists an event B with Pr [B] > 0
such that all measurable subsets of B have probability either 0 or Pr [B]. Then for any r.v. X
de�ned on (
;F ;Pr), we must have that Pr [X � x and B] equals either 0 or Pr [B]. This implies
that Pr [X � x j B] can only take the values 0 or 1. Hence, there exist a real number x0 such that
Pr [X = x0 j B] = 1. From this observation we �nd that Pr [X = x0] � Pr [X = x0 and B] =
Pr [B] > 0, which implies that X cannot have a continuous cdf. In particular, X can not be
uniformly distributed on the unit interval.

Now let (
;F ;Pr) be non-atomic. Then for each number n, we can divide 
 into disjoint
parts 
in; i = 1; :::; n, with Pr(
in) = 1

n ; i = 1; :::; n, see Corollary 1.12.10 in Bogachev (2007).
Introduce the r.v.�s Un by Un(!) = i

n ; ! 2 
in; i = 1; :::; n. The sequence of probability laws
L(Un) weakly converges to the Uniform (0; 1) law. Then from Engl & Wakolbienger (1983)
it follows that there exists a r.v. U on (
;F ;Pr), with a Uniform (0; 1) distributed limit
distribution.

Lemma 6 immediately leads to the following result.

Lemma 7 On a given probability space (
;F ;Pr), one can de�ne r.v.�s with a continuous cdf
if, and only if, this space is non-atomic.

Proof. From Lemma 6 we know that a non-atomic space contains r.v.�s U � Uniform (0; 1),
which have a continuous cdf.

On the other hand, if (
;F ;Pr) contains a r.v. X with a continuous cdf, then also FX(X) �
Uniform (0; 1) is a r.v. on this probability. From Lemma 6 we can conclude that this space is
non-atomic.

From Lemma 6, we �nd the following corollary.

Corollary 8 For any random vector X which is de�ned on a non-atomic probability space, one
can construct a comonotonic modi�cation which is de�ned on the same probability space.
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Proof. As X is de�ned on a non-atomic probability space (
;F ;Pr), we �nd from Lemma 6
that there exists a r.v. U � Uniform (0; 1) de�ned on (
;F ;Pr). The proof follows then from the
fact that the random vector

�
F�1X1 (U); :::; F

�1
Xn
(U)

�
is a comonotonic modi�cation of X de�ned

on (
;F ;Pr).

Consider the special case of a random vector X = (X1; :::; Xn) de�ned on (
;F ;Pr); where
at least one of the Xi has a continuous cdf. From Lemma 7, we know that (
;F ;Pr) is non-
atomic. From Corollary 8 we can conclude that there exists a comonotonic modi�cation of X
on (
;F ;Pr). In this particular case, it is straightforward to construct such a comonotonic
modi�cation. Without loss of generality, we may assume that X1 has a continuous cdf. Then
FX1(X1) � Uniform(0; 1) and the random vector Xc de�ned by

Xc =
�
X1; F

�1
X2
(FX1(X1)) ; :::; F

�1
Xn
(FX1(X1))

�
(4)

is a comonotonic modi�cation of X de�ned on (
;F ;Pr).

Let us now consider the case of a random vector de�ned on a given atomic probability space
and investigate whether it is possible or not to construct comonotonic modi�cation of that
random vector on the same probability space.

Example 9 Consider the probability space (
;F ;Pr). The universe is given by 
 = f!1; !2g.
Further, F is the �-�eld of all subsets of 
. Finally, Pr is the probability measure on (
;F)
de�ned by

0 < Pr [f!1g] = p < 1 and Pr [f!2g] = q = 1� p < p:

The random vector X = (X1; X2) de�ned on (
;F ;Pr) is given by

X(!1) = (1; 0) and X(!2) = (0; 1): (5)

The marginal distributions of X follow from

Pr [X1 = 0] = q = 1� Pr [X1 = 1] (6)

and
Pr [X2 = 0] = p = 1� Pr [X2 = 1] : (7)

The quantile functions of X1 and X2 are given by

F�1X1 (u) =

�
0 : 0 < u � q
1 : q < u � 1 and F�1X2 (u) =

�
0 : 0 < u � p
1 : p < u � 1: (8)

For any comonotonic modi�cation Xc of X it holds that

Xc d
=
�
F�1X1U); F

�1
X2
(U)

�
: (9)

From this equality in distribution and the expressions (8) of the quantile functions we �nd that

Pr [Xc = (0; 0)] = q; Pr [Xc = (1; 0)] = p� q and Pr [Xc = (1; 1)] = q: (10)

As the probability space (
;F ;Pr) is not rich enough in the sense that it contains no event with
probability p� q, we can conclude that it is impossible to de�ne a comonotonic modi�cation Xc

of X on (
;F ;Pr).
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From the example above we can conclude that in atomic spaces random vectors do not always
have comonotonic modi�cations in that same space. However, the following example proves
that there exist atomic probability spaces with random vectors for which one can construct
comonotonic modi�cations without leaving this space.

Example 10 Let the universe be given by 
 = f!1; !2; !3g, while F is the �-�eld of all subsets
of 
, and Pr is the probability measure on (
; F) de�ned by

0 < Pr [f!1g] = q = 1� p < p; Pr [f!2g] = p� q and Pr [f!3g]) = q: (11)

The random vector X = (X1; X2) on (
; F ;Pr) is de�ned by

X(!1) = X(!2) = (1; 0) and X(!3) = (0; 1): (12)

As before, the marginal distributions of X follow from (6) and (7), while the quantile functions
are given by (8). The distribution of any comonotonic modi�cation Xc of X is again given by
(10).
Let us now de�ne the random vector Y on (
; F ;Pr) by

Y (!1) = (0; 0); Y (!2) = (1; 0) and Y (!3) = (1; 1): (13)

As Y has a comonotonic support, it is a comonotonic random vector. One can easily verify
that Y has the same marginal distributions as X. We can conclude that Y is a comonotonic
modi�cation of X, de�ned on the same probability space as X.

From the two examples above we �nd that random vectors de�ned on an atomic probability
space may or may not have a comonotonic modi�cation in that same space.

4 Conclusions

In this note, we showed that for a random vector on a probability space without atoms, there
always exists a comonotonic modi�cation de�ned on the same probability space. On the other
hand, random vectors de�ned on an atomic probability space may or may not have a comonotonic
modi�cation, depending on the richness of that space.
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