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Abstract

In this paper, we develop a recursive method to derive an exact numerical and nearly
analytical representation of the Laplace transform of the transition density function with
respect to the time variable for time-homogeneous diffusion processes. We further apply
this recursion algorithm to the pricing of mortality-linked derivatives. Given an arbitrary
stochastic future lifetime T, the probability distribution function of the present value of a
cash flow depending on T can be approximated by a mixture of exponentials, based on Jacobi
polynomial expansions. In case of mortality-linked derivative pricing, the required Laplace
inversion can be avoided by introducing this mixture of exponentials as an approximation
of the distribution of the survival time T in the recursion scheme. This approximation
significantly improves the efficiency of the algorithm.
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1 Introduction

Significant increase of the human life expectancy has been observed in most developed countries
over the past few decades. Unexpected improvement of human mortality rates naturally leads
to an underestimation of the prices and provisions determined for mortality related products
for insurance companies and public pension system. Therefore, financial instruments, such as
mortality swap, longevity bonds, or other related option-style derivatives, need to be developed
to hedge the risk exposure of insurance companies.

Under the assumption of no-arbitrage and market completeness, a unique risk-neutral price can
be found using an equivalent martingale measure (EMM). However, it is argued that the EMM
is not unique once the derivatives are associated with mortality or longevity since the market is
then incomplete, that is, there may exist several EMMs to determine the fair risk premium under
the incomplete markets setting. Different methods were proposed in the literature to handle this
problem, although there is still no consensus on how to price these products in a fair way. The
Wang transform (Wang (2000)) was introduced with the parameter of market price of risk λ for
the pricing of mortality-linked derivatives, see Lin and Cox (2005) and Denuit et al. (2007). The
Wang transform was criticized by Pelsser (2008), who states that the Wang transform can not
be treated as a universal financial measure for financial and insurance pricing, see also Goovaerts
and Laeven (2008) and Lauschagne and Offwood (2010). Other methods for the pricing and
hedging in incomplete markets are super-replication, Follmer-Schweizer-Sondermann approach,
indifference pricing based on insurer’s utility function, etc., see e.g. Embrechts (2000) and Møller
(2000) for an overview. Given the difficulty to fairly price the mortality-linked derivatives in
incomplete market, it would still be interesting to obtain physical and “risk-neutral” density
functions as we can simply consider the terminal payoff function as series of future cash flows,
which leads to an easy calculation of the mortality-linked insurance contracts.

One of the prerequisites for the pricing of mortality-linked derivatives is to capture the dynam-
ics of future stochastic mortality. Different models were introduced in the literature for the
stochastic modeling of mortality rates: the one-factor Lee-Carter model (Lee and Carter (1992,
2000)), the refined Lee-Carter model in Renshaw and Haberman (2003), the two-factor model
by Cairns et al. (2006), etc. For a quantitative comparison of these models, we refer to Cairns
et al. (2009). Diffusion processes were introduced to model the force of mortality in Milevsky
and Promislow (2001) and Dahl (2004). It turns out that one can hardly obtain a closed-form
valuation formula, and therefore simulation based methods are usually used for the calculations.
Affine jump diffusion processes based on the results of Duffie et al. (2000) were used in Biffis
(2005) to describe the dynamics of the force of mortality for the sake of its tractability. The
underlying difficulties for the diffusion approach is that the long-term transition probabilities
are usually not available in closed-form and too complicated to obtain accurate approximations,
whereas the typical life insurance contracts are usually long-term. In this paper, we work under
an assumed equivalent martingale measure Q. Furthermore, we assume that the underlying
financial assets follow time-homogeneous diffusion processes, whereas the uncertainties for the
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future mortality can be represented by the stochastic future life time which is assumed to be
independent of the dynamics of the underlying financial assets. Goovaerts et al. (2010) presented
a recursive approach for the nearly analytical approximation of Laplace transformed transition
densities, using a Feynman-Kac integral formalism and the delta-perturbation theory. This re-
cursive approach generates very accurate approximations for the transition densities, not only
for the short-time horizon, but also for long-time perspective. Having accurate approximations
for transition densities over the long-term available in nearly analytical form is particularly use-
ful to price these products in a probabilistic approach.

Theoretically, we usually calculate the transition densities by numerically solving the forward
Kolmogorov equation, such as in the finite difference method (FDM). Nevertheless, the major
complication with this approach is the fact that the initial condition of this forward equation is a
Dirac’s delta function which could result in unreliable and unrobust numerical outcomes, whereas
in the Feynman formalism, the delta function is already self-contained within the Feynman-Kac
integral framework. For an overview of the Feynman-Kac integral approach to the approximation
of the transition densities, we refer to Goovaerts et al. (2004), where closed-form approximations
were obtained based on the concepts of convex ordering and comonotonicity which have been
used extensively in the ordering of risk theory in actuarial science.

Apart from the Feynman-Kac integral approach, Jensen and Poulsen (2002) summarized some
other methods used in the approximation of the transition densities in the literature: Euler,
binomial, simulation, FDM (finite difference method), and Hermite expansion as proposed in
Aı̈t-Sahalia (1999). They concluded that the method based on the Hermite expansion is pre-
ferred to the other methods in terms of the trade-offs between speed and accuracy. However,
compared with the Feynman-Kac integral approach, the Hermite expansion approximation may
deteriorate with the increase of the time horizon, that is, it may only be applicable for modeling
short term dynamics.

In this paper we apply the recursion algorithm presented in Goovaerts et al. (2010) to the
pricing of mortality-linked derivatives. By incorporating the approximation of the probability
distribution of the future lifetime T into the recursive scheme by using certain mixtures of ex-
ponentials, the risk-neutral pricing kernel can be derived without performing an additional real
Laplace inversion. This approach significantly improves the efficiency of the recursive scheme.

The outline of the paper is as follows. Section 2 gives a brief introduction to transition densities
and the Feynman-Kac integral formulation of the recursion algorithm. The idea of approximat-
ing probability distribution by certain mixtures of exponentials using Jacobian polynomials is
presented in Section 3. Section 4 concentrates on mortality-linked derivative pricing using the
recursion algorithm. Some numerical examples are studied in section 5.
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2 The recursion algorithm for Laplace transformed transition

densities

In this section, we construct a nearly analytical recursion algorithm for the calculation of the
Laplace transform of transition density. For more details concerning this recursion scheme, its
applications and extensions, we refer to Goovaerts et al. (2010). We start this section with some
results on the connections between the Feynman-Kac integral and the diffusion processes.

2.1 Diffusion processes and transition density

A general diffusion process is conventionally defined by the following stochastic differential equa-
tion:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, X0 = x0, (1)

where Xt denotes the variable of interest, Wt is a standard Brownian motion and µ(Xt, t) and
σ(Xt, t) are the drift and diffusion terms satisfying certain conditions, namely, smoothness of
the coefficients, nondegeneracy of the diffusion and boundary behavior (Aı̈t-Sahalia (1999)). In
this contribution, we consider the time-homogeneous diffusion process

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0 (2)

where “time-homogeneous” refers to the fact that the diffusion process is independent of the
time evolution. Here we assume that the stochastic differential equation is defined by Itô’s left
point discretization criteria.
The diffusion process can be best understood by its transition density function defined as

p(xt, t|x0, 0) =
d

dxt
Prob[Xt ≤ x|X0 = x0]. (3)

The transition density function also satisfies the semigroup property, sometimes called Chapman-
Kolmogorov property,

p(xt, t|x0, 0) =
∫
p(xt, t|xs, s)p(xs, s|x0, 0)dxs.

Given a time-homogeneous diffusion process of the form (2), we can always transform (2) to its
corresponding unit diffusion process using Lamperti transform

Yt := ψ(Xt) =
∫ Xt

dr/σ(r),

where ψ(·) is non-decreasing and invertible, and the unit diffusion process reads

dYt = µ̃(Yt)dt+ dWt (4)

where

µ̃(y) =
µ(ψ−1(y))
σ(ψ−1(y))

− 1
2
∂σ

∂x
(ψ−1(y)).
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The transition density function with underlying unit diffusion process (4) satisfies the Fokker-
Planck equation

1
2
∂2

∂y2
t

(p(yt, t|y0, 0))− 1
2
∂

∂yt
(µ̃(yt)p(yt, t|y0, 0)) =

∂

∂t
p(yt, t|y0, 0) (5)

with initial condition p(yt, 0|y0, 0) = δ(yt − y0).

One can prove that any unit diffusion process has the Feynman-Kac integral representation for
its transition density function (see Goovaerts et al. (2004)).

Theorem 2.1 (Feynman-Kac integral representation of the transition density). A stochastic
differential equation with unit diffusion

dYt = µ̃(Yt)dt+ dWt (6)

can always be expressed by the Feynman-Kac integral formalism as

p(yt, t|y0, 0) = e
∫ yt
y0
µ̃(y)dyEy0,yt,t

[
e−

∫ t
0 V (y)dτ

]
. (7)

where V (y) = 1
2

(
µ̃2(y) + ∂µ̃(y)

∂y

)
and Ey0,yt,t[·] is a conditional expectation given the initial and

end points states. This notation can be rewritten as E(y0,yt)
(0,t) which is the notation related to

Brownian bridge. It can also be written in Feynman notation as

p(yt, t|y0, 0) = e
∫ yt
y0
µ̃(y)dy

(yt,t)∫
(y0,0)

Dy(τ)e
− 1

2

t∫
0
( dydτ )2

dτ−
t∫
0

V (y)dτ
(8)

where Dy(τ) is the probability measure representing the limit sum between (y0, 0) and (yt, t). A
list of the function V (x) for some popular diffusion models is provided in Appendix.

The probability density function pX(xt, t|x0, 0) can be easily found by applying the Jacobian
formula

pX(xt, t|x0, 0) =
1

σ(xt)
pY (ψ(xt), t|ψ(x0))

=
1

σ(xt)
e
∫ ψ(xt)

ψ(x0)
µ̃(y)dyEψ(x0),ψ(xt),t

[
e−

∫ t
0 V (y)dτ

]
.

2.2 Feynman-Kac integral decomposition and recursion algorithm

The first proof of the following recursive formula between a Feynman-Kac integral and the one
with an additional δ-function perturbation was obtained in Goovaerts (1985), see also Goovaerts
and Broeckx (1985) and Grosche (1990). The idea behind the recursion algorithm is that we
decompose the piecewise continuous potential function V (x) into two parts and derive an exact
recursion scheme for calculation of the Laplace transform (with respect to t) in case the analyt-
ical expression of one of the decomposed potentials is known.
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Consider the Feynman-Kac integral for a sum of two functions (i.e., potentials) V1(x) and V2(x),

k1,2(xt, t|x0, 0) = Ex0,xt,t
[
e−

∫ t
0 V1(x)dτ−

∫ t
0 V2(x)dτ

]
. (9)

Suppose that there exists a closed-form expression for

k1(xt, t|x0, 0) = Ex0,xt,t
[
e−

∫ t
0 V1(x)dτ

]
.

One then expands exp
(
−
∫ t
0 V2(Xτ )dτ

)
. This expansion gives a so-called Born series:

exp
(
−
∫ t

0
V2(Xτ )dτ

)
=

+∞∑
n=0

(−1)n

n!

[∫ t

0
V2(Xτ )dτ

]n

=
+∞∑
n=0

(−1)n

n!

∫ t

0
dτ1 · · ·

∫ t

0
dτnV2(Xτ1) · · ·V2(Xτn).

Due to symmetry, the right hand side of the expression above reduces to

+∞∑
n=0

(−1)n
∫ t

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1V2(Xτn) · · ·V2(Xτ1).

Hence, substituting the above expression in (9) and using the Chapman-Kolmogorov property
one obtains

k1,2(xt, t|x0, 0) =
+∞∑
n=0

(−1)n
∫ t

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1

×
∫ +∞

−∞
dxn · · ·

∫ +∞

−∞
dx1k1(xt, t|xn, τn)V2(xn) · · ·V2(x1)k1(x1, τ1|x0, 0).

Taking the Laplace transform of the transition probability with respect to s and using as a
notation

ρs1,2(xt, x0) :=
∫ +∞

0
e−stk1,2(xt, t|x0, 0)dt, and ρs1(xt, x0) :=

∫ +∞

0
e−stk1(xt, t|x0, 0)dt,

one gets

ρs1,2(xt, x0) =
+∞∑
n=0

(−1)n
∫ +∞

−∞
dxn · · ·

∫ +∞

−∞
dx1ρ

s
1(xt, xn)V2(xn) · · · ρs1(x1, x0)V2(x1). (10)

For an arbitrary potential V (x), we introduce the following integral representation:

V (x) =
∫ +∞

−∞
V (a)δ(x− a)da

= lim
max(aj+1−aj)→0

+∞∑
j=0

(aj+1 − aj)V (aj)δ(x− aj),

here we define the partition −∞ = a0 < a1 < · · · < a∞ = +∞ and denote by δ(x) Dirac’s delta
function. We start with a linear combination of m+ 1 delta function potentials:

V (m)(x) =
m∑
j=0

(aj+1 − aj)V (aj)δ(x− aj).
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As we remarked before, the Feynman formalism allows for the calculation of combinations of
delta function potentials. In the sequel, we assume V (x) ≥ 0 to guarantee that the recursion
algorithm will be convergent. In case of negative potential V (x), we could first make the poten-
tial for the recursion positive and then put an extra factor outside the Feynman-Kac integral.
For details, we refer to Remark 4 in Goovaerts et al. (2010).

Suppose we know ρs,(m)(x, x0) for some V1(x) = V (m)(x), adding an additional δ function
V2(x) = (am+2 − am+1)V (am+1)δ(x− am+1) and recalling (10), we obtain

ρs,(m+1)(x, x0) =
+∞∑
n=0

(−1)n
∫ +∞

−∞
dxn · · ·

∫ +∞

−∞
dx1

× ρs,(m)(xt, xn)(am+2 − am+1)V (am+1)δ(xn − am+1)

· · · (am+2 − am+1)V (am+1)δ(x1 − am+1)ρs,(m)(x1, x0)

=
+∞∑
n=0

(−1)n(am+2 − am+1)nV n(am+1)

× ρs,(m)(xt, am+1)
(
ρs,(m)(am+1, am+1)

)n−1
ρs,(m)(am+1, x0)

= ρs,(m)(xt, x0)− ρs,(m)(xt, am+1)ρs,(m)(am+1, x0)V (am+1)(am+2 − am+1)
1 + ρs,(m)(am+1, am+1)V (am+1)(am+2 − am+1)

,

(11)

where the last equality holds by virtue of the geometric series.

The recursion algorithm can be summarized as follows

The Recursive Scheme of the Laplace Transformed Transition Densities

Input: potential V (x), constant a0, Laplace transform parameter s, terminal time t,
number of recursions N .

Initial condition:
(1) ρs,(0)(xt, x0) = 1√

2s
e−
√

2s|xt−x0|, for movements in the entire plane.

(2) ρs,(0)(xt, x0) = e−
√

2s|xt−x0|−e−
√

2s|xt+x0|√
2s

, for movements in positive quarter plane.

Recursion: from i = 0 to N :

ρs,(m+1)(xt, x0) = ρs,(m)(xt, x0)− ρs,(m)(xt,am+1)ρs,(m)(am+1,x0)V (am+1)(am+2−am+1)

1+ρs,(m)(am+1,am+1)V (am+1)(am+2−am+1)
.

where ρs(xt, x0) :=
∫ +∞
0 e−stEx0,xt,t

[
e−

∫ t
0 V (x)dτ

]
dt.
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3 Approximation of probability distribution with mixtures

The approximation of probability distribution functions is often needed in actuarial science,
especially in risk theory and for calculations related to stochastic life annuities. There are
mainly two approaches proposed in the literature for such kind of approximations. In Dufresne
(2007a) and (2007b), the author suggests using Jacobi polynomials and logbeta distributions
to generate a convergent series of exponentials for the approximation of the square root of
probability density function√

fT(t) ≈
∑
j

aje
−λjt, t ≥ 0, λj > 0, j = 1, · · · , n, 1 ≤ n <∞.

The same techniques can be used for the approximation of the decumulative distribution func-
tion F̄ (t).

Besides, an Erlang mixture is also often used in the approximation of the probability density
function (pdf). It is a mixture of the form

f(y) =
∞∑
j=1

qj
β(βy)j−1e−βy

(j − 1)!
=
∞∑
j=1

qjτj(y) y > 0, β > 0, j = 1, 2, · · ·

where τj(y) = β(βy)j−1e−βy

(j−1)! is the Erlang-j (Ej) random variable and {q1, q2, · · · } is a discrete
probability measure. Notice that an Erlang mixture is not a combination of exponential func-
tions. In order to simplify the calculations by implementing the recursive scheme, therefore, we
concentrate on the methods of mixtures of exponentials.

To give a simple example, we consider a life following a Makeham mortality law

lx+t = ksx+tgc
x+t
.

Here lx denotes the number of persons attaining age x in the chosen group under consideration,
while k, s, g, c are the constants in the Makeham law. The probability that a life aged x will die
within t years is

tpx =
lx+t
lx

=
ksx+tgc

x+t

ksxgcx
= stgc

x(ct−1).

After some simple algebra and a Taylor expansion, we can express this probability density as

tpx = et ln s+c
x(et ln c−1) ln g = et ln s+c

x(t ln c+
t2(ln c)2

2
) ln g ≈ et(ln s+cx ln(c+g)),

which is indeed a mixture of exponential functions.

3.1 Jacobi polynomials

The approximation is based on the ‘shifted’ Jacobi polynomials which belong to the class of
orthogonal polynomials and are defined as

R(α,β)
n (x) = P (α,β)

n (2x− 1) =
n∑
j=0

ρnjx
j ,
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where
ρnj =

(−1)n(β + 1)n(−n)j(n+ λ)j
(β + 1)jn!j!

, λ = α+ β + 1, α, β > −1.

P
(α,β)
n (x) is the Jacobi polynomials obtained from the Gaussian hypergeometric function 2F1

P (α,β)
n (x) =

(α+ 1)n
n! 2F1(−n, n+ α+ β + 1, α+ 1;

1− x
2

), n = 0, 1, · · ·

and (z)n is Pochhammer’s symbol

(z)0 = 1, (z)n = z(z + 1) · · · (z + n− 1) =
Γ(z + n)

Γ(z)
, n ≥ 1.

See Dufresne (2007a) for details.

3.2 Fitting probability distributions with linear combinations of exponentials

Fitting given probability distributions by combinations of exponentials often leads to simpler
calculations. In the sequel, we approximate the square root of a probability density function by
a mixture of exponentials√

fT(t) ≈
∑
j

aje
−λjt, t ≥ 0, j = 1, · · · , n,

for appropriate real-valued coefficient aj . This square root can be approximated using ‘shifted’
Jacobi polynomials, making use of a result in Dufresne (2007a, Theorem 3.3), stating that

√
fT(t) = e−prt

∞∑
k=0

bkR
(α,β)
k (e−rt) =

∞∑
j=0

 ∞∑
k=j

bkρkj


︸ ︷︷ ︸

aj

e−

λj︷ ︸︸ ︷
(j + p)r t,

where
bk =

r

hk

∫ ∞
0

e−(β−ρ+1)rt(1− e−rt)αR(α,β)
k (e−rt)

√
fT(t)dt,

and

ρkj =
(−1)k(β + 1)k(−k)j(k + λ)j

(β + 1)jk!j!
,

hk =
Γ(k + α+ 1)Γ(k + β + 1)

(2k + λ)k!Γ(k + λ)
.

Denote {
aj =

∑
k bkρkj

λj = (j + p)r
,

the probability density fT(t) could be approximated by

fT(t) ≈

 n∑
j=1

aje
−λjt

2

=
N∑
i=1

ãie
−λ̃it, t ≥ 0,

where N = n(n+1)
2 and it is still a combination of exponentials.
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4 Mortality-linked derivative pricing

In this section, we apply the recursion algorithm to the pricing of mortality-linked derivatives,
when the future remaining life time is approximated by a mixture of exponentials. Suppose the
price of the financial asset Xt follows the time-homogeneous diffusion process (2), the Feynman-
Kac integral of the physical probability density of Xt is given by

p(xt, t|x0, 0) =
1

σ(xt)
e
∫ ψ(xt)

ψ(x0)
µ̃(y)dy

k(ψ(xt), t|ψ(x0), 0) (12)

where

Yt := ψ(Xt) =
∫ Xt

dr/σ(r)

and

k(ψ(xt), t|ψ(x0), 0) := Eψ(x0),ψ(xt),t
[
e−

∫ t
0 V (y)dτ

]
=

(ψ(xt),t)∫
(ψ(x0),0)

Dy(τ)e
− 1

2

t∫
0

ẏ2dτ−
t∫
0

V (y)dτ
.

Denote fT(t) as the probability density function of the future life time T, one obtains an equiv-
alent martingale measure by omitting the exponential factor and rescaling, that is,

pQ(xt, t|x0, 0) =
k(ψ(xt), t|ψ(x0), 0)

σ(xt) · n(x0)
(13)

where n(x0) is the normalization factor which guarantees it is a martingale and is given as

n(x0) =

+∞∫
0

fT(t)dt

+∞∫
−∞

k(ψ(xt), t|ψ(x0), 0)
σ(xt)

dxt.

Therefore, the risk neutral probability density function of this type of mortality-linked derivatives
is given by

+∞∫
0

fT(t)dt · pQ(xt, t|x0, 0), (14)

while the pricing kernel under the physical probability measure reads as
+∞∫
0

fT(t)dt · p(xt, t|x0, 0). (15)

Let H(xt) be the terminal payoff function. The expectation of such payoff with stochastic time
under the equivalent martingale measure can be formulated as

EQ
T [H(xt)] =

+∞∫
0

fT(t)dt ·
+∞∫
−∞

pQ(xt, t|x0, 0)H(xt)dxt. (16)

Similar expression also holds under the physical probability measure by replacing the correspond-
ing pricing kernel. From the previous section, we know that the probability density function of
future life time T could be approximated by a combination of exponential functions of the form

fT(t) ≈
N∑
i=1

ãie
−λ̃it,
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where N = n(n+1)
2 and n is the terms of Jacobi polynomials used in the fitting. Plugging this

mixture into (16), we find

EQ
T [H(xt)] ≈

+∞∫
0

N∑
i=1

ãie
−λ̃itdt ·

+∞∫
−∞

pQ(xt, t|x0, 0)H(xt)dxt (17)

If we rearrange the terms, the probability density function (14) can be casted into the form
containing the Laplace transformed transition density ρλi(xt, x0) with parameter λi. The corre-
sponding expected value of the payoff under the risk-neutral probability measure can be written
as

EQ
T [H(xt)] ≈

1
n(x0)

+∞∫
−∞

1
σ(xt)

N∑
i=1

ãiρ
λ̃i(ψ(xt), ψ(x0))H(xt)dxt.

The recursive scheme is somehow computation expensive on the real Laplace inversion calcula-
tion of the transition densities, however, it takes only few seconds or even a fraction of a second
for the calculation of the Laplace transformed transition densities ρs(xt, x0). In this applica-
tion, we can avoid this additional real Laplace inversion by incorporating the combinations of
exponentials. To obtain the value of the mortality-linked derivative, we only have to evaluate
an one-dimension integral, which significantly improves the efficiency of the algorithm.

5 Numerical examples

In this section, we consider several numerical examples. In the first example, we assume that
the future remaining life time follows Makeham law. We calculate the corresponding physical
and risk-neutral pricing kernels by the recursion algorithm and compare these results with the
exact solutions. Next, we consider the Lee-Carter model and fit the distribution of future life
time by a combination of exponentials based on the estimates from this model. Similar results
as in the first example are obtained in this setting.

5.1 The Makeham law

The force of mortality or the failure rate of an individual aged x under the Makeham law is
given by

µx = A+Bcx,

with constants A capturing the accident hazard and Bcx capturing the hazard of aging. The
corresponding survival function can then by expressed as

s(x) = e
−Ax− B

log c
(cx−1)

,

and the survival probabilities are given by

tpx =
s(x+ t)
s(x)

= e
−At− B

log c
cx(ct−1)

.

The probability density function for the remaining life time T is given by

fT(t) =
d

dt
tqx =

d

dt

(
1− s(x+ t)

s(x)

)
= tpx · µx(t).
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In this example, we take
A = 0.0007, B = 0.00005, c = 100.04.

The transition density function k(xt, t|x0, 0) with quadratic potential V (x) = x2 is known in
closed-form

k(xt, t|x0, 0) =
e
− 1√

2sh(
√

2t)
[ch(
√

2t)(x2+x2
0)−2x·x0]√√

2πsh(
√

2t)
. (18)

The quadratic potential corresponds to the dynamics of a special case of the Vasicek model.
Note that other time-homogeneous diffusion processes can be considered in this setting as well
using different forms of potential function V (x). Figure 1 presents the 10-term Jacobi polyno-
mial approximation for the probability density function of the future remaining life time T for
an individual aged 65 which follows Makeham mortality law. The “Jacobi” refers to the shifted
Jacobi polynomial approximations, and the “exact” refers to the closed-form results. The prob-
ability mass of this pdf is 0.9970 indicating that the pdf of T can be approximated satisfactorily
by Jacobi polynomials. 7,10,20-term Jacobi polynomial approximations for the stochastic time
are compared in Figure 2. Figure 3 shows the risk-neutral pricing kernel of mortality-linked
derivatives with quadratic potential V (x) = x2 and Makeham future remaining life time T. The
recursive approximation is given by the red dot line and the blue solid line is the exact solution
for risk neutral density. The corresponding exact solution to the probability density function
under the physical probability measure is shown in black dot line in Figure 3.
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Figure 1: 10-term Jacobi polynomial approximation for the pdf of T for an individual aged 65
under Makeham mortality law with α = 0, β = 0, r = 0.08, p = 0.2. The probability mass of this
pdf is 0.9970.
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Figure 2: 7,10,20-term Jacobi polynomial approximation for the pdf of T for an individual aged
65 under Makeham mortality law with α = 0, β = 0, r = 0.08, p = 0.2.
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Figure 3: 10-term Jacobi polynomial approximation for the probability density function of
mortality-linked derivative (15) with quadratic potential V (x) = x2 and Makeham remaining
life time T for individuals aged 65 taking α = 0, β = 0, r = 0.08, p = 0.2, x0 = 0, a0 = 5, N = 100.
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5.2 The Lee-Carter model

Lee and Carter (1992) proposed an extrapolative one-factor model for the long-term forecast of
human mortality pattern based on the parameters calibrated to the historical US mortality data

lnmx(t) = αx + βxκ(t),

where mx(t) is the death rate and κ(t) is modeled as a random walk with drift c and a white
noise term u(t) ∼ N(0, σ2)

κ(t) = κ(t− 1) + c+ u(t).

To guarantee a unique solution, the following constrains on age x and time t are usually imposed:∑
t

κ(t) = 0 and
∑
x

βx = 1.
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Figure 4: Parameters from Lee-Carter model for France total population data.

The data we use in this example are the France total population data from year 1971 to 2006
and ages from 65 to 100. The parameters calibrated to the historical data are given in Figure
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4. Figure 6 presents the projected mortality table till year 2056 for French population aged
between 65 and 100. Figure 5 gives the mortality rates from year 1971 to 2006.

The probability density function for the future remaining lifetime T of an individual aged x is
then given by

fT(t) =
d

dt
tqx = tpx · µx(t).

The probability of dying in t years tq
j
x under the Lee-Carter model can be calculated by

tq
j
x = 1− 1p

j
x ∗ 1p

j+i
x+1 ∗ · · · ∗ 1p

j+i
x+i ∗ · · · ∗ 1p

j+i
x+t

where 1p
j+i
x+i denotes the probability of an individual aged x+ i in year j + i is alive in one year.

The results for the probability of dying in t years tq
2007
65 of an individual aged 65 is presented in

Figure 7. The density function of the future remaining life time fT(t) in this case can be obtained
by taking the first derivative of tq2007

65 with respect to time t. Unlike the Makeham example with
continuous survival function, tq2007

65 under the Lee-Carter model is only given as the yearly data.
Hence, we first refine the curve for tq

2007
65 by performing a cubic spline interpolation in order to

have higher accuracy for the Jacobian polynomial approximations. Figure 8 shows the fittings
of the Jacobian polynomials compared with the empirical results and Figure 9 presents the
similar results as in the Makeham example for the physical and risk-neutral pricing kernels.
The expected value EQ

T [H(xt)] of the payoff function H(xt) = (xt −K)+ under the risk-neutral
measure for different strike prices K is presented in Figure 10.
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(d)
Figure 5: The surface of the logarithm of the death rate of the France total population data
between year 1971 to 2006.
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Figure 6: The projection surface of the logarithm of the death rate from Lee-Carter model for
France total population data between year 2007 to 2056.
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Figure 7: Probability of an individual aged 65 will die in t years tq
2007
65 under the Lee-Carter

model.
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Figure 8: 10-term Jacobi polynomial approximation for the future remaining lifetime pdf fT(t)
of an individual aged 65 under the Lee-Carter model with parameters α = 0, β = 3, r = 0.08, p =
0.2.

6 Conclusion

In this paper, we formulated a recursion algorithm to derive the risk-neutral probability distri-
bution for the mortality-linked derivatives with stochastic remaining life time T which can be
approximated by a combination of exponentials. In this application, the recursion algorithm
gives very accurate results compared to the closed-form solutions and it can be easily imple-
mented and extended to other mortality or longevity related derivatives or cash flow calculations
with underlying asset governed by arbitrary time-homogeneous diffusion process combined with
any type of future remaining time distributions.
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A Potentials

Model Diffusion Equation Domain Potential V (x) µ̃(y)

Wiener
dXt = µdt+ σdWt

(−∞,∞) µ2

2σ2
µ
σσ positive constant

Geometric Wiener
dXt =

(
µ+ σ2

2

)
Xtdt+ σXtdWt

(0,∞) µ2

2σ2
µ
σ

σ positive constant

Vasicek
dXt = κ(α−Xt)dt+ σdWt,

(−∞,∞) κ2

2
x2 − κ2α

σ
x+ κ2α2

2σ2 − κ
2

κα
σ
− κy

κ, α, σ positive constants

CIR
dXt = κ(α−Xt)dt+ σ

√
XtdWt,

(0,∞) κ2

8
x2 +

(
2κ2α2

σ4 − 2κα
σ2 + 3

8

)
1
x2 − κ2α

σ2

(
2κα
σ2 − 1

2

)
1
y
− κ

2
y

κ, α, σ positive constants, 2κα ≥ σ2

Adapted Geometric Wiener dXt =
((
δ + σ2

2

)
Xt − 1

)
dt+ σXtdWt (0,∞) 1

2

(
1− 2δ

σ2

)
e−σx + 1

2σ2 e
−2σx + δ2

2σ2
δ
σ
− 1

σ
e−σy

Bessel with Drift dXt =
(

1
Xt
− 2

)
dt+ dWt (0,∞) 2− 2

x
1
y
− 2

Table 1: Potentials in the Feynman-Kac integral representation of the transition density for popular diffusion processes. Explicit transition
density available.

Model Diffusion Equation Domain Potential V (x) µ̃(x)

CKLS
dXt = κ(α−Xt)dt+ σX

3/2
t dWt

(0,∞) 1
8

(
3
x2 + (κ2 − 3κασ2)x2 − κ2ασ2

2
x4 + κ2α2σ4

16
x6

)
+ κ −κασ

2

8
y3 + 3

2y
+ κ

2
y

κ, α, σ positive constants

Double Well Potential dXt = (Xt −X3
t )dt+ dWt (−∞,∞) 1

2
(x6 − 2x4 − 2x2 + 1) y − y3

Table 2: Potentials in the Feynman-Kac integral representation of the transition density for popular diffusion processes. Explicit transition
density not available.
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