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a b s t r a c t

Using a standard reduction argument based on conditional expectations, this paper argues that risk
sharing is always beneficial (with respect to convex order or second degree stochastic dominance)
provided the risk-averse agents share the total losses appropriately (whatever the distribution of the
losses, their correlation structure and individual degrees of risk aversion). Specifically, all agents hand
their individual losses over to a pool and each of them is liable for the conditional expectation of his
own loss given the total loss of the pool. We call this risk sharing mechanism the conditional mean risk
sharing. If all the conditional expectations involved are non-decreasing functions of the total loss then
the conditional mean risk sharing is shown to be Pareto-optimal. Explicit expressions for the individual
contributions to the pool are derived in some special cases of interest: independent and identically
distributed losses, comonotonic losses, and mutually exclusive losses. In particular, conditions under
which this payment rule leads to a comonotonic risk sharing are examined.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Loss sharing mechanisms have been studied for decades in the
economics and actuarial literatures. The pioneering work by Borch
(1960, 1962) considered equilibrium in a reinsurance market.
Under appropriate conditions (including that agents are expected
utility maximizers and have the same probability on the state
space), this author established that any Pareto-optimal loss sharing
mechanism is equivalent to a pool arrangement, i.e. all the agents
hand their individual losses over to a pool and agree on some
rule as to how the total pooled loss has to be divided amongst
agents. This fundamental result explains why comonotonicity
plays a central role in the study of Pareto-optimality of risk sharing
mechanisms, as each component of a comonotonic random vector
is (almost surely) equal to a non-decreasing function of the sum of
all of its components.

After Borch (1962) established that agents’ optimal risk sharing
depends only on aggregate loss, Landsberger and Meilijson (1994)
have shown that Pareto-optima are comonotonic if agents’ pref-
erences agree with second degree stochastic dominance. Specifi-
cally, Landsberger and Meilijson (1994) provided an algorithm to
construct an improvement of any non-comonotonic risk allocation
in the discrete case. This result has been extended to the general
case by Dana andMeilijson (2003) and Ludkovski and Rüschendorf
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(2008). In this paper, we consider the particular conditional mean
risk sharing rule andwe investigate its comonotonicity and Pareto-
optimality. More precisely, we show that whatever the risks faced
by decision-makers, there is always amutually beneficial risk pool-
ing mechanism with respect to second degree stochastic domi-
nance. A noteworthy feature of the analysis conducted in this paper
is that risk sharing remainsmutually beneficial even if the loss ran-
dom variables are (positively) correlated. This result is obtained by
a standard reduction argument involving conditional expectations,
that can be found, e.g., in Dana and Meilijson (2003). In some spe-
cial cases, explicit expressions for the individual contributions to
the pool are derived. We study several particular cases where the
risk sharing based on conditional expectations leads to a comono-
tonic allocation. We also further stress the importance of comono-
tonicity in the context of Pareto-optimal risk sharing schemes.

Let us briefly describe the contents of this paper. In Section 2,
the definition of the convex order is recalled, and some of its ba-
sic properties are presented. Section 3 introduces risk sharing and
related notions. In Section 4, we define the conditional mean risk
allocation and stress the importance of comonotonicity for estab-
lishing Pareto-optimality. It is shown that risk-averse decision-
makers can always reduce their respective risks by pooling them
together. The result guarantees the existence of a mutually bene-
ficial risk exchange. When comonotonic, that risk exchange turns
out to be Pareto-optimal. We study the respective contributions of
each participant to the pool and establish conditions under which
those participants bringing larger losses have to contribute more
to the pool, as should hold for any reasonable risk sharing mecha-
nism. In general, the conditionalmean risk sharing rule can only be
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applied if we know the conditional distributions of the individual
risks, given the total pooled loss. This requires knowing the joint
distribution of the individual risks to be pooled. However, there are
situations where a weaker form of knowledge is sufficient to apply
our conditional mean risk allocation rule. Examples of such situ-
ations are given where conditions under which the proposed risk
sharing rule produces comonotonic individual payments are also
studied. Some particular cases are examined in Section 4: indepen-
dent and identically distributed losses, comonotonic losses, mu-
tually exclusive losses, and independent losses with log-concave
densities.

Henceforth, all the equalities between random variables and
random vectors are assumed to hold almost surely, unless stated
otherwise.

2. Convex order

Let X and Y be two random variables such that

E[g(X)] ≤ E[g(Y )] for all convex functions g : R → R, (2.1)

provided the expectations exist. Then X is said to be smaller than
Y in the convex order (denoted as X ≼CX Y ). Now, X is said to
be strictly smaller than Y in convex order, which is denoted as
X ≺CX Y , if X ≼CX Y holds true and X and Y are not identically
distributed.

The stochastic inequality X ≼CX Y intuitively means that X and
Y have the same magnitude (as E[X] = E[Y ] holds) but that Y is
more variable than X . For instance, the variance of Y is larger than
the variance of X . For a thorough description of the convex order
and its applications in an actuarial context, we refer the reader, e.g.,
to Denuit et al. (2005).

An important characterization of ≼CX is as follows. The random
variables X and Y satisfy X ≼CX Y if, and only if, there exist two
random variablesX andY , defined on the same probability space,
such thatX and X (resp.Y and Y ) are identically distributed, and

E[Y X] = X . (2.2)

More generally, whatever the random variable (or random
vector) Z ,

E[X |Z] ≼CX X . (2.3)

The economic intuition behind (2.3) is that averaging a loss (i.e.,
taking a conditional expectation of it) decreases the risk involved
(in the sense of convex order). Applications of (2.2)–(2.3) to
actuarial science are described in Denuit and Vermandele (1998,
1999). See also Leitner (2004, 2005) for a use of (2.2) in connection
with riskmeasures andDhaene et al. (2002a,b) for an application of
(2.3) in connection with (comonotonic) approximations for sums
of non-independent random variables.

The convex order can also be characterized by means of Tail-
VaR risk measures. Recall that the Value-at-Risk (or VaR) for a risk
X with distribution functions FX is defined as

VaR[X; p] = F−1
X (p) = inf{x ∈ R|FX (x) ≥ p}, 0 < p < 1.

The Tail-VaR at probability level p is then defined as

TVaR[X; p] =
1

1 − p

 1

p
VaR[X; ϵ] dϵ.

Then, X ≼CX Y if, and only if, E[X] = E[Y ] and TVaR[X; p] ≤

TVaR[Y ; p] holds for all p. See, e.g., Denuit et al. (2005). We will
use this characterization of convex order in the proof of our main
result. Notice that X ≺CX Y implies that there exists a probability
level p0 ∈ (0, 1) such that TVaR[X; p0] < TVaR[Y ; p0].

3. Risk sharing

3.1. Definitions

Consider n decision-makers (economic agents), numbered i =

1, 2, . . . , n. Each of them faces a possible risk (or loss), denoted by
Xi. No particular assumption is made about the distribution of the
random vector X = (X1, X2, . . . , Xn).

Definition 3.1 (Risk Sharing Scheme). Consider a portfolio of risks
represented by the random vector X = (X1, X2, . . . , Xn). A risk
sharing (or risk allocation) scheme for X is a random vector
(h1(X), h2(X), . . . , hn(X)) where the (measurable) functions hi :

Rn
→ R are such that

n
i=1

hi (X) =

n
i=1

Xi. (3.1)

In the end, each agent will pay (h1(x), h2(x), . . . , hn(x)) where
x is the observed realization of X . The condition (3.1) is called the
full risk allocation condition. Consider n economic agents facing
total risk

S =

n
i=1

Xi. (3.2)

In the sequel we will exclusively use the notation S for the total
risk (3.2) of the portfolio X = (X1, X2, . . . , Xn). The risk sharing
scheme characterized by (h1, h2, . . . , hn) allocates the total risk
S to the different agents. The i-th agent bears the risk hi(X), i =

1, 2, . . . , n. Notice that we allow the hi to be depending on (the
distribution of) X , as it will be the case for the conditional mean
risk allocation discussed in the next section.

An important subclass of risk allocations consists of

(h1 (X) , h2 (X) , . . . , hn (X)) = (g1 (S) , g2 (S) , . . . , gn (S))

for some functions g1, g2, . . . , gn : R → R. We will call a risk
allocation scheme fulfilling this property a risk pooling scheme.

3.2. Pareto-optimality

In this paper,we study Pareto optimal risk sharing schemes. The
following definition is in line with Dana and Meilijson (2003).

Definition 3.2 (Pareto Optimal Risk Sharing Schemes). A risk
sharing scheme (h⋆

1(X), h⋆
2(X), . . . , h⋆

n(X)) for X is Pareto-optimal
if there exists no risk sharing scheme (h1(X), h2(X), . . . , hn(X))
for X such that the stochastic inequalities

hi (X) ≼CX h⋆
i (X)

hold for i = 1, 2, . . . , n, with at least one of these convex order
inequalities being strict.

Hence, we have that a risk sharing scheme is Pareto-optimal if
no agent can be made strictly better off (in the sense of convex
order) without worsening the situation of another agent. Notice
thatwe define here better in terms of convex order. In the expected
utility paradigm, one has that a risk sharing scheme is Pareto-
optimal if there exists no risk sharing scheme that increases the
expected utility of all (risk-averse assumed) agents, with a strict
increase for at least one of them.

Remark 3.3. Note that the convex order naturally appears in the
context of Pareto-optimality, because of the condition (3.1) which
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rules out many other stochastic order relations. For instance,
replacing the convex order with stochastic dominance ≼ST does
not lead to a useful concept, as explained next. Recall the X ≼ST Y
holds if Pr[X > t] ≤ Pr[Y > t] is valid for all real t . The inequality
X ≼ST Y is strict if X and Y are not identically distributed, that is, if
there is at least one value t0 such that Pr[X > t0] < Pr[Y > t0].
Then, requiring that hi(X) ≼ST h⋆

i (X) holds for i = 1, 2, . . . , n,
with at least one of the stochastic dominance inequalities being
strict implies that E[hi(X)] ≤ E[h⋆

i (X)] holds for i = 1, 2, . . . , n,
with at least one strict inequality. But this contradicts the full risk
allocation condition (3.1) which ensures that

n
i=1 E[hi(X)] =n

i=1 E[h⋆
i (X)] must hold whatever the risk sharing scheme for X .

Remark 3.4. Notice that the definition of Pareto-optimality given
in this paper is not the only one possible. For instance, Ludkovski
and Rüschendorf (2008) require that there is no risk sharing
scheme (h1(X), h2(X), . . . , hn(X)) for X such that

ρi [hi (X)] ≤ ρi

h⋆
i (X)


, i = 1, 2, . . . , n

holds, with at least one strict inequality, and this for a given choice
of risk measures ρi[·] consistent with≼CX. See also Goovaerts et al.
(2010) for a careful treatment of the difference existing between
risk measures and decision principles.

3.3. Comonotonicity of the risk sharing rule

Comonotonicity of the risk sharing rule is closely related to
Pareto-optimality, as explained in the Introduction. Recall that a
random vector X = (X1, X2, . . . , Xn) is said to be comonotonic
if there exists a random variable Z and non-decreasing functions
fi such that X is distributed as (f1(Z), f2(Z), . . . , fn(Z)). See, e.g.,
Dhaene et al. (2002a,b) for a review of comonotonicity and of its
applications in actuarial science and finance. Comonotonicity of
X is equivalent to stating that there exist continuous and non-
decreasing functions gi : R → R such that

g1(z) + · · · + gn(z) = z for any z ∈ R

and

X = (g1 (S) , . . . , gn (S)) .

Broadly speaking, this characterization of comonotonicity implies
that a comonotonic risk allocation scheme is always a risk
pooling scheme. This explainswhy comonotonicity is so intimately
connected to Pareto-optimality since Borch (1962) established that
under mild assumptions, agents’ optimal risk sharing depends
only on aggregate loss S given in (3.2). Landsberger and Meilijson
(1994), Dana andMeilijson (2003), and Ludkovski and Rüschendorf
(2008) have shown under various sets of assumptions that Pareto-
optima are comonotonic if agents’ preferences agree with ≼CX.

4. Conditional mean risk sharing

4.1. Definition

In this paper, we study the risk sharing rule g⋆
i , i = 1, 2, . . . , n,

defined as

g⋆
i (S) = E[Xi|S]. (4.1)

We call (4.1) the conditional mean risk sharing (or allocation) of
X1, . . . , Xn. Clearly, the conditional mean risk allocation satisfies
the full allocation condition (3.1) as
n

i=1

E [Xi | S] = S.

In particular, we consider the situation where the functions s →

g⋆
i (s) = E[Xi|S = s] are non-decreasing for every i = 1, 2, . . . , n,

making E[X1|S], . . . , E[Xn|S] comonotonic.
The next result shows that the conditional mean risk sharing

always results in a larger covariance between the individual
contributions to the pool, compared to the initial risks.

Property 4.1. Whatever the individual risks X1 and X2 with sum S =

X1+X2, the covariance between g⋆
1(S) and g⋆

2(S) is always larger than
the covariance between X1 and X2.
Proof. Clearly, X1 + X2 = g⋆

1(S) + g⋆
2(S) gives

V[S] = V[X1] + V[X2] + 2C[X1, X2]

= V[g⋆
1(S)] + V[g⋆

2(S)] + 2C[g⋆
1(S), g

⋆
2(S)].

Now, as g⋆
i (S) ≼CX Xi holds, we have V[Xi] ≥ V[g⋆

i (S)] so that

C

g⋆
1(S), g

⋆
2(S)


≥ C[X1, X2]

must indeed hold. �
Note that a pooling arrangement cannot be improved using the

reduction technique underlying the conditional mean risk sharing
as E[gi(S)|S] = gi(S). We discuss below several important cases
where the g⋆

i in (4.1) are non-decreasing, making the conditional
mean risk sharing (g⋆

1(S), . . . , g
⋆
n(S)) comonotonic.

4.2. Pareto-optimality of the comonotonic conditional mean risk
sharing

Either the individuals remain with their own loss Xi, or they
start to bargain with each other to find a sharing solution. The
next result indicates that there always exists a mutually beneficial
risk sharing mechanism (with respect to ≼CX). If economic agents
resort to the conditional mean risk allocation then they improve
their situation in the ≼CX-sense, meaning that they increase their
respective expected utilities (assuming that they are risk-averse).
Furthermore, if E[X1|S], . . . , E[Xn|S] are comonotonic then the
conditional mean risk allocation (4.1) is optimal.

Proposition 4.2. Whatever the Xi’s, the conditional mean risk
allocation (4.1) is mutually beneficial, that is,

g⋆
i (S) ≼CX Xi for i = 1, 2, . . . , n.

If g⋆
1(S), . . . , g

⋆
n(S) are comonotonic, that is, if s → g⋆

i (s) =

E[Xi|S = s] is non-decreasing for every i = 1, 2, . . . , n, then the
conditional mean risk allocation is Pareto-optimal.
Proof. The first part of the result is obvious since a direct
application of (2.3) gives

g⋆
i (S) = E [Xi|S]≼CX Xi for i = 1, . . . , n.

The proof of the Pareto-optimality is by contradiction. Assume that
there is a risk allocation g1(S), . . . , gn(S) such that

gi(S) ≼CX E [Xi|S] for i = 1, . . . , n, and
n

i=1

gi (S) = S

with a least one strict improvement, in that for some i0 ∈

{1, . . . , n} there exists a probability level p0 such that

TVaR[gi0(S); p0] < TVaR[g⋆
i0(S); p0].

Recall from Dhaene et al. (2006) that TVaR is a subadditive risk
measure, which is additive for comonotonic risks. Then, we have

TVaR[S; p0] ≤

n
i=1

TVaR[gi(S); p0]

<

n
i=1

TVaR[g⋆
i (S); p0]

= TVaR[S; p0]
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which is a contradiction. We can conclude that the conditional
mean risk sharing is optimal when it results in comonotonic
contributions to the pool. �

Note that the conditional mean risk allocation also applies to
risks with infinite expectation (like Pareto losses) which are not
insurable. Also risk sharing, due to its nature of sharing risks,
whateverwill be their outcome, avoids the need for keeping capital
to ensure solvency. Recall from Kalashnikov and Norberg (2002)
that the financial risk often dominates in the insurance industry
and greatly increases the insolvency probability for the insurer.
Specifically, these authors show that the probability of ultimate
ruin decreases slowly (not faster than a power function) if the
premiums and reserve are currently invested in a risky asset, that
is, an asset that may bear negative interest. The main message
of Kalashnikov and Norberg (2002) is that risky investments
may impair the insurer’s solvency just as severely as do large
claims, roughly speaking. In these respects (effectiveness towards
large losses and no need for capital), risk sharing is superior to
conventional fixed premium insurance.

Notice that Proposition 4.2 can be generalized as follows.

Proposition 4.3. Any comonotonic risk sharing scheme (h1(X),
h2(X), . . . , hn(X)) of a portfolio of risks X is Pareto-optimal.

The proof follows the same lines as for Proposition 4.2.
Pareto-optimal risk pooling arrangements are not always

appealing in practice. The next result gives an interesting property
of the conditional mean risk sharing rule, which is shown to
minimize the sum of the expected squared difference between the
individual risks to be shared and the pooling arrangement. Hence,
the risk share g⋆

i (S) is ‘‘as close as possible’’ to the original risk Xi,
taking into account the full risk allocation condition, in the sense
of the quadratic distance.

Property 4.4. The conditional mean risk allocation g⋆
1(S), . . . ,

g⋆
n(S) for X minimizes
n

i=1

E

(Xi − gi(S))2


over all risk pooling arrangements g1(S), . . . , gn(S).

Proof. The result immediately follows from the properties of
conditional expectations, ensuring that

E


Xi − g⋆
i (S)

2
≤ E


(Xi − gi(S))2


must hold for every i = 1, 2, . . . , n, whatever gi. �

4.3. Respective contributions to the pool

The classicalway to compare the respective sizes of two random
variables X and Y is by using stochastic dominance ≼ST. If, given
that they belong to some interval, X and Y can still be compared
by means of ≼ST then the likelihood ratio order ≼LR is obtained.
Specifically, X ≼LR Y if [X |a ≤ X ≤ b] ≼ST[Y |a ≤ Y ≤ b] holds
for all a < b ∈ R. Let X and Y be continuous (or discrete) random
variables with respective probability (ormass) density functions fX
and fY . Then,

X ≼LR Y ⇔ fX (u)fY (v) ≥ fX (v)fY (u) for all u ≤ v. (4.2)

For a description of≼LR and its applications in an actuarial context,
we refer the reader, e.g., to Denuit et al. (2005).

The next result shows that with the conditional mean risk
allocation, an agent bringing a smaller loss to the pool (in the ≼LR-
sense) will indeed contribute a smaller amount in the total loss
provided individual losses are independent.

Property 4.5. Consider a pool with two participants. Their indepen-
dent losses are denoted as X1 and X2, S = X1 +X2 being the total loss.
Assume that the loss X1 brought to the pool is smaller than X2 in that
the stochastic inequality X1 ≼LR X2 holds true. Then,

E[X1|S = s] ≤ E[X2|S = s] for all s

so that the contribution paid for X1 is always smaller than the
contribution paid for X2.

Proof. This result can be deduced from Theorem 1.C.26 in Shaked
and Shanthikumar (2007) which gives

[X1|S = s] ≼LR[X2|S = s] for all s.

This ensures that the means are ordered accordingly, that is, the
announced result holds. �

Note that independence is a crucial assumption in this last
result. In general, an agent bringing a larger loss to the pool may
nevertheless be required a smaller contribution due to the fact that
his loss is negatively related with the total pooled loss.

4.4. Particular cases

Recall that, in general, the conditional mean risk sharing rule
can only be applied if we know the conditional distributions of the
Xi, given the aggregate claims S. Broadly speaking, this requirement
comes down to knowing the joint distribution of the random
vector X . This section discusses situations where a weaker form
of knowledge is sufficient to apply the conditional mean allocation
rule.

4.4.1. Independent and identically distributed risks
If the Xi’s are independent and identically distributed then it is

well-known that

g⋆
i (S) =

S
n
.

In such a case, the individuals share the total losses equally. Since
the g⋆

i are indeed non-decreasing, we know from Proposition 4.2
that the conditional mean risk allocation (4.1) is Pareto-optimal
for independent and identically distributed losses, which complies
with intuition.

This result remains true for exchangeable risks X1, X2, . . . , Xn.

4.4.2. Comonotonic risks
If the Xi’s are comonotonic then they can be represented as

non-decreasing functions of their sum S, that is, there are non-
decreasing functions f1, . . . , fn such that Xi = fi(S) holds almost
surely. Then,

g⋆
i (S) = fi(S) = Xi

and the Pareto-optimal conditional mean allocation leaves each
agent with his own loss.

4.4.3. Mutually exclusive risks
Recall from Dhaene and Denuit (1999) that the (non-negative)

risks X1, X2, . . . , Xn are said to be mutually exclusive when

Pr

Xi > 0, Xj > 0


= 0 for all i ≠ j.

Clearly, mutual exclusivity of (X1, X2, . . . , Xn) means that the
probability mass of this random vector is concentrated on the
axes.

Let us now determine the conditional mean risk allocation
scheme (g⋆

1(S), g
⋆
2(S), . . . , g

⋆
n(S)) for the mutually exclusive risk

portfolio (X1, X2, . . . , Xn). Hereafter, we assume that all Xi have a
discrete distribution. An extension to more general distributions
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is straightforward. Furthermore, we introduce the following
notation:

qi = Pr [Xi > 0] , i = 1, 2, . . . , n.

Clearly, it holds that E[Xi | S = 0] = 0 for every i. On the other
hand, for s > 0 with Pr[S = s] > 0, we have that

g⋆
i (s) = E [Xi | S = s]

=

n
j=1

E

Xi | S = s, Xj > 0


Pr


Xj > 0 | S = s


= s Pr [Xi > 0 | S = s] .

Hence, for any s ≥ 0 with Pr[S = s] > 0, it holds that

g⋆
i (s) =

Pr [Xi > 0 and S = s]
n

j=1
Pr


Xj > 0 and S = s

 s.

Introducing the notations pj(s) = Pr[Xj > 0 and S = s], we find
that

g⋆
i (S) =

pi(S)
n

j=1
pj(S)

S.

If pi(s) = pj(s) for all i and j then it is easily seen that g⋆
i (S) =

S
n and

the conditional mean risk allocation is Pareto-optimal. In general,
the non-decreasingness of the g⋆

i has to be checked before we can
conclude that the conditional mean risk sharing scheme is Pareto-
optimal.

Example 4.6. In the special case where all the mutually exclusive
risks Xi are two-point distributions with probability mass in 0 and
a > 0,

Pr [Xi = a] = qi

and

pj(a) = Pr

Xj > 0 and S = a


= qj.

The allocation rule g⋆
i reduces to

g⋆
i (s) =

qi
n

j=1
qj

s, s ∈ {0, a}.

Hence,

g⋆
i (S) =

qi
n

j=1
qj

S,

which means that the conditional mean risk allocation is
comononotic and Pareto-optimal in this case.

4.5. Pareto-optimality of the conditional mean risk sharing rule for
independent losses with log-concave densities

Assume that X1, X2, . . . , Xn are independent, each of them
having a log-concave probability density function (that is, the
logarithm of their probability density function is concave). For
instance, Gamma and Weibull distributions are log-concave for
appropriate values of their parameters. Log-concave densities
enjoy numerous attractive properties. For instance, log-concave
densities are unimodal, that is, they are non-decreasing up to some
point and non-increasing beyond that point, and convolutions of
log-concave densities remain log-concave.

We know from Efron (1965) that each such Xi increases in the
sum S in the ≼LR-sense, that is,

[Xi|S = s] ≼LR[Xi|S = s′] for s ≤ s′.

This ensures that s → g⋆
i (s) = E[Xi|S = s] is non-decreasing so

that the conditional mean risk sharing is comonotonic. Thus, the
conditional mean risk sharing is Pareto-optimal for independent
log-concave risks.

Example 4.7. Let us assume that Xi is Normally distributed with
parameters µi and σ 2

i for i = 1, 2. Furthermore, assume that
(X1, X2) is bivariate Normal with Pearson linear correlation coef-
ficient

ρ = r[X1, X2].

Then we find that

E [Xi | S = s] = µi +
C [Xi, S]

V [S]
(s − E [S]) .

This leads to

g⋆
i (S) = E [Xi | S] = µi +

C [Xi, S]
V [S]

(S − E [S]) .

If ρ ≥ 0 then this is a comonotonic risk sharing scheme.
We have that (g⋆

1(S), g
⋆
2(S)) is bivariate Normal with

E

g⋆
i (S)


= µi,

V

g⋆
i (S)


=

(C [Xi, S])2

V [S]
= (r [Xi, S])2 σ 2

i ≤ σ 2
i .

Furthermore, we know from Property 4.1 that

C

g⋆
1(S), g

⋆
2(S)


=

C [X1, S]C [X2, S]
V [S]

≥ C[X1, X2].

From this expression for the covariance between g⋆
1(S) and g⋆

2(S),
we find that

r

g⋆
1(S), g

⋆
2(S)


= 1

so that g⋆
1(S) and g⋆

2(S) are perfectly correlated, andhence comono-
tonic.

Now let us consider the special case that the Xi are mutually
independent, that is, ρ = 0. Since X1 and X2 have logconcave den-
sities, we know that the conditional mean risk sharing is Pareto-
optimal. We find that

g⋆
i (S) = E [Xi | S] = µi +

σ 2
i

σ 2
1 + σ 2

2
(S − E [S]) .

Obviously, the risk sharing scheme (g⋆
1(S), g

⋆
2(S)) is also comono-

tonic in this case.
We also find

V

g⋆
i (S)


=

σ 2
i

σ 2
1 + σ 2

2
σ 2
i ≤ σ 2

i

and

C

g⋆
1(S), g

⋆
2(S)


=

σ 2
1 σ 2

2

σ 2
1 + σ 2

2
≥ 0 = C[X1, X2].

Example 4.7 can be generalized to anydimensionn ifwe assume
that r[Xi, Xj] ≥ 0 for all i and j. This is because comonotonicity is
equivalent to r[Xi, Xj] = 1 for all i and j in the multivariate Normal
case (seeDhaene et al. (2002a)). Also,we refer the interested reader
to Liggett (2000) for a discrete analog of logconcavity, and for
further examples.
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