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Abstract

In this paper, we propose a new fear index based on (equity) option surfaces of an index and its
components. The quantification of the fear level will be solely based on option price data. The index
takes into account market risk via the VIX volatility barometer, liquidity risk via the concept of implied
liquidity, and systemic risk and herd-behavior via the concept of comonotonicity. It thus allows us to
measure an overall level of fear (excluding credit risk) in the market as well as to identify precisely the
individual importance of the distinct risk components (market, liquidity or systemic risk). As a side result
we also derive an upperbound for the VIX.
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1 Introduction

The VIX is a key measure of market expectations of near-term volatility conveyed by S&P500 stock index

option prices. It is often referred to as the fear index or fear gauge. Since its introduction in 1993, the VIX

has been considered by many to be a good barometer of investor sentiment and market volatility. It is a

weighted blend of prices for a range of options on the S&P500 index. The formula uses a kernel-smoothed

estimator that takes as inputs the current market prices for all out-of-the-money calls and puts for the

front month and second month expirations. The goal is to estimate the implied volatility of the S&P500

index over the next 30 days. On March 26, 2004, the first-ever trading in futures on the VIX Index was

launched on the CBOE Futures Exchange (CFE). As of February 24, 2006, it became possible to trade

VIX options contracts.

Actually, the VIX is an indicator of perceived volatility in either direction (including the upside) and

hence not necessarily bearish for the stocks. Of course it is well documented that volatility and stock

returns are negatively correlated.

Next to volatility, there are also other risk or fear factors in the market. Other fear components

are for example systemic risk, liquidity risk and counterparty risk. More precisely, in times of heavy

distress, besides very high levels of volatility, we typically observe also a drying up of liquidity in the

sense that bid and ask spreads widen. When liquidity dries up, one cannot easily unwind positions near

theoretical mid prices anymore, but one faces a negative price impact for immediate liquidiations; fire-sale

transactions are typically at much lower prices. Furthermore, in such circumstances we also see more herd

behavior pointing to a movement of the market into one direction. The later is related to the dependency

relationships between traded assets. Finally, the market is well aware of the fact that in stress situations

the probability that a counterparty fails is rising. Good indicators of counterpart risk are the credit

indices like CDX and iTraxx.

In this paper, we will create a new fear index on the basis of (equity) option surfaces on an index and

its components. The quantification of the fear level is hence on the basis of option price data only and

not on any kind of historical data. The index will take into account market risk, via the VIX volatility

barometer, liquidity risk, via the concept of implied liquidity, and finally systemic risk, via the concept

of comonotonicity. The index allows us to measure an overall level of fear (excluding credit risk) in the

market and to identify exactly the importance of the individual components (market, liquidity or systemic

risk).

As indicated above the paper will make use of the concept of implied liquidity introduced in [13]. It is

based on the fundamental theory of conic finance, in which the one-price theory is abandoned and replaced

by a two-price theory giving bid and ask prices for traded assets. The pricing is performed by making use

of non-linear distorted expectations. In essence, the distorted expectation used in [8] is parameterized by

one parameter. A high value of this parameter gives rise to a wide bid-ask spread, a low value to a small

spread. Given a market bid-ask spread, one can, via reverse engineering (cfr. implied volatility), back

out the unique implied parameter to be put into the distortion function to recoup the market spread.

This implied parameter is called the implied liquidity parameter. This allows us to measure the degree

of liquidity of a certain asset in an isolated manner and to quantify it exactly.

Further, in order to quantify the level of systemic risk in the markets, we make use of the theory of

comonotonicity (see [16] and [17]). This theory allows us to measure herd behavior, i.e. to which degree

the whole market just goes into one direction. In particular, the comonotonic dependency structure is

such that it is driven by one single systemic factor, and so that under a full comonotonic setting, all
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movements of all the assets are driven by this single factor. By pricing vanilla options on the index,

which we see as options on a basket of the underlying components, under the comonotonic dependency

structure and comparing these with actual index option prices, we are able to measure how far the

observed market prices are away from the fully comonotonic market case. If we are in the theoretical case

that the comonotonic gap, i.e. the difference between the comonotonic price and the market price, is zero,

we are in a market driven purely by one common factor. If the gap is large, one is closer to a situation

where the index components have a fully independent idiosyncratic behavior. The notion comonotonicity

gap was introduces by Laurence ([21]). Comonotonic option prices can be determined via the general

procedure presented in [16]. The applications of this procedure to the index option case in a market with

a finite number of options traded is considered in [21] and [7].

This paper is organized as follows. First we elaborate on how exactly to compute the components

of the overall market fear index. Then, we bring together the liquidity, the systemic and the volatility

component into one overall fear estimate. We do this by taking a weighted sum, where the weights are

set such that a number of fear of 100 represents historically the average case. A number above 100

indicates that the fear is above average; a number below 100 indicates that we are in a fear situation

below average. The later is exactly quantified on the basis of a historical study over the period January

2007 - October 2009, for which we calculate the fear numbers on a daily basis for the Dow Jones Index

and its components. Some key events in the recent credit crisis in that period are clearly identified.

2 Measuring market risk via the VIX

In 1993 the Chicago Board Options Exchange (CBOE) introduced a new index, called VIX, which aimed

at estimating the expected short-term volatility of the S&P100 index over the next 30 days. Initially, VIX

used to be an average of eight different implied volatilities calculated from eight at-the-money options of

the S&P100. In particular, two ATM calls and two ATM puts were selected for two different maturities

(which we will refer to as ”near term” and ”next term” maturities) and the implied volatilities were

computed according to a Black-Scholes model.

However, model dependent estimations based on the small range of options inaccurately reflected the

real market volatilities. Thus, in September 2003 the new VIX has been introduced (see [6]). It is based

on a much wider range of options and the underlying index has been replaced by the larger S&P500,

which provides stronger correlation with the market than S&P100, as more stocks are involved. Also

a model-free approach is used. This model-free approach relies on an volatility estimation developed in

[4] combined with an efficient discretisation proposed in [20]. There is no model involved and the only

requirements are continuity, absence of arbitrage and Markovian dynamics.

On March 26, 2004, the first-ever trading in futures on the VIX Index was launched on CBOE Futures

Exchange (CFE). As of February 24, 2006, it became possible to trade VIX options contracts. On January

5, 2011, CBOE announced to also VIX-ify individual stocks like APPL, IBM, GS, GOOG, ....

The new VIX index is often referred to as the fear index or fear gauge, since its extreme values were

achieved during the substantial decreases on the market. As mentioned, the volatility measure aims at

estimating the expected short-term volatility of the S&P500 index over the next 30 days. It is calculated

using the current market prices of all out-of-the-money options with front month and second month

expirations. Values of the VIX index based on S&P500 are depicted in Figure 1.

Since its introduction, the VIX has been considered by many to be a good barometer of investor’s

sentiment and market volatility. The VIX typically spikes up when the market falls and goes down when
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Figure 1: Historical values of the S&P500 VIX; period 01.1990-12.2010
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Figure 2: DJX volatility vs DJX stock price; period 01.2007-10.2009

the market goes up. This reflects a natural negative correlation between the VIX and the index returns

(see Figure 2). The VIX thus quantifies the concept of volatility and acts as an effective measure for the

expected movements in the next 30 days S&P500 returns.

The VIX index typically fluctuated within a range of 15-30, with an average of 18.97 for the period

04.01.1993-31.12.2007. Due to the worldwide financial crisis in 2008, the VIX reached a value of 80 around

November 2008 (see Figure 1).

The next subsection describes the notion of the model-free estimator for the volatility.

2.1 The model-free estimator for volatility: the VIX

As mentioned before, the VIX index has not always been calculated in the same way, as in September 2003

the model-free approach based on a wider option surface was introduced. The actual VIX is a weighted

blend of prices for a range of options on the S&P500 index. The formula uses as inputs the current market

prices for all out-of-the-money calls and puts for the front month and second month expirations. The
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goal is to estimate the volatility of the S&P500 index over the next 30 days.

The following quantity is crucial in the VIX calculation. It gives a model-free estimate for the variance,

based only on options with maturity T .

σ2 =
2

T

∑
i

∆Ki

K2
i

erT Q(Ki)− 1

T

( F

K0
− 1

)2

, (1)

where

• F is the forward index level. F is determined by first identifying the strike price, K∗ at which the

absolute difference between the call (C(K∗, T )) and put (P (K∗, T )) prices is the smallest. Then

F = K∗ + erT (C(K∗, T )− P (K∗, T ));

• K0 is the first strike below the forward index level;

• Ki is the strike price of the ith out-of -the money option; a call if Ki > K0 and a put if Ki < K0;

both put and call if Ki = K0. The range of the strikes taken into consideration is described in [10];

• ∆Ki is half the difference between the strikes on either side of Ki, i.e.

∆Ki = (Ki+1 −Ki−1)/2

except for the lowest strike, where ∆K is simply the difference between the lowest strike and the

next higher strike. Likewise, ∆K for the highest strike is the difference between the highest strike

and the next lower strike;

• Q(Ki) is the midpoint of the bid/ask spread for each option with strike Ki; The K0 put and call

prices are averaged to produce a single value.

Here, C(K, T ) and P (K, T ) denote the respective mid–prices of the call and put options with strike

K and maturity T . In contrast, we write Cbid(K, T ) and Cask(K, T ) for the bid and ask prices. One

can notice that the VIX calculation is very much related to the implementation of a Variance Swap as

elaborated on in [5], [24] and [15].

For the actual calculation of the VIX index, which is a 30-day forward looking estimate of the volatility,

one needs to compute two variances based on this formula, namely a first one, σ2
1 , for the near term options

(T1) and a second one, σ2
2 , for the next term options (T2). When the near-term options have less than

a week to expiration, the VIX “rolls” to the second and third contract months. The VIX is then an

interpolation at the 30 days point, based on values at T1 and T2:

V IX30 = 100

√√√√√√√√





T1σ2
1

[
NT2 −N30

NT2 −NT1

]

︸ ︷︷ ︸
x1

+T2σ2
2

[
N30 −NT1

NT2 −NT1

]

︸ ︷︷ ︸
1− x1





N365

N30
(2)

where:

– NT1 = number of minutes to settlement of the near-term options (i.e. with maturity T1);

– NT2 = number of minutes to settlement of the next-term options (i.e. with maturity T2);

– N30 = number of minutes in 30 days;

– N365 = number of minutes in a 365-day year.
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Figure 3: Dow Jones VIX; period 01.2007-10.2009

The VIX methodology was historically introduced on the S&P500 options and later applied to several

other indices, stocks and assets. The VIX calculations conducted in this research will in contrast be based

on the Dow Jones Industrial Average Index (DJX). Figure 3 shows the DJX VIX estimate in the period

between January 2007 and October 2009.

One can observe a mean-reverting behavior of the VIX. In the period preceding the credit crisis, the

VIX underwent a rapid growth and went from a value of 20 up to a value of more than 70 in a timespan

of a few weeks only. The S&P500 VIX actually went up even to 80. Hence at that point, at the heat of

the financial crisis, the market was expecting unusually large movements of the stocks. We also remark

that in 2010, the DJX VIX has come down from its highest levels back under the 30 level again. The

average Dow Jones VIX level for this period is calculated as 24.66.

3 Measuring liquidity risk via the implied liquidity

In the previous section it was shown that volatility levels can give us an indication of the nervousness

of the market conditions. Liquidity is another important measure, which reflects an asset’s ability to be

sold. High bid-ask spreads characterize illiquid products, whereas liquidity implicates a smaller spread.

However, it is very difficult to measure liquidity in an isolate manner. Bid-ask spreads can move around

in a non-linear manner if spot or volatility moves, without a change in liquidity.

In the sequel, we will discuss the concept of implied liquidity, which in a unique and fundamental

founded way isolates and quantifies the liquidity risk in financial markets. This concept was already

proposed in [13] and is based on the theory of conic finance, in which the one–price theory is abandoned

and the two–price market is employed.

3.1 Conic finance - bid and ask pricing

In this section, we summarize the basic conic finance techniques needed to calculate the implied liquidity

parameter related to a vanilla option position. For more background, see [8], [9] and [23]. Conic finance

uses distortion functions to calculate distorted expectations. In [13], a distortion function from the

minmaxvar family parameterized by a single parameter λ ≥ 0 as in Equation (3) is chosen.
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Φ(u; λ) = 1−
(
1− u

1
1+λ

)1+λ

(3)

Hereafter, we will employ distorted expectations to calculate bid and ask prices. The prices arise from

the theory of acceptability. A risk X is said to be acceptable (notation: X ∈ A) if

EQ[X] ≥ 0 for all measures Q in a convex set M.

The convex set M contains the supporting measures, which can be seen as a kind of test-measures under

which the cash-flow X needs to have positive expectation to deliver acceptability. Under a larger set M,

one has a smaller set of acceptable risks, because there are more underlying tests to be passed.

Operational cones were defined by Cherney and Madan [8] and depend solely on the distribution

function G(x) of X and a distortion function Φ. Here X ∈ A if the distorted expectation is non-negative.

More precisely, the distorted expectation with respect to the distortion function Φ (we use the one given

in Equation (3) but other distortion functions are also possible), of a random variable X with distribution

function G(x), is defined as

de(X; λ) =

∫ +∞

−∞
xdΦ(G(x); λ). (4)

Note that if λ = 0, Φ(u; 0) = u and hence de(X; 0) = E[X] is equal to the original expectation.

The ask price of payoff X is determined by

ask(X) = − exp(−rT )de(−X; λ).

This formula is derived by noting that the cash-flow of selling X at its ask price is acceptable in the

relevant market, that is ask(X)−X ∈ A. Similarly, the bid price of payoff X is determined as

bid(X) = exp(−rT )de(X; λ)

Here the cash-flow of buying X at its bid price is acceptable in the relevant market : X − bid(X) ∈ A.

One can prove that the bid and ask prices of a positive contingent claim X with distribution function

G(x) can be calculated as

bid(X) = exp(−rT )

∫ +∞

0

xdΦ(G(x); λ), (5)

ask(X) = exp(−rT )

∫ 0

−∞
(−x)dΦ(1−G(−x); λ). (6)

Suppose now that we are given a market bid and ask price for a European call. We can then calculate

the mid price of that call option, as the average of the bid and ask prices. Out of this mid price we calculate

the implied Black-Scholes volatility, to calculate the conic bid and ask prices (using the implied volatility

as parameter). Under the Black-Scholes framework, this comes down to the following calculations for an

European call option with strike K and maturity T. The distribution of the call payoff random variable

to be used in (5) and (6) is in this case given by

G(x) = 1−N

(
log(S0/(K + x)) + (r − q − σ2/2)T

σ
√

T

)
, x ≥ 0

where S0 is the current stock price, r the risk-free rate and q the dividend yield. Further, N is the

cumulative distribution function of the standard normal law and σ is the implied vol determined on the

basis of the mid price. For x < 0, G(x) = 0, since the payoff is a positive random variable. The above

closed-form solution for G(x) in combination with Equation (5) and (6) gives rise to very fast and accurate

calculations of the bid and ask prices.
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Figure 4: Dow Jones LIQ; period 01.2007-10.2009

The parameter λ in (5) and (6), which fits the bid-ask spread around the mid price the best, is then

called the implied liquidity parameter. The smaller the implied liquidity parameter, the more liquid the

underlying and the smaller the bid-ask spread. In the extremal case where the implied liquidity parameter

equals 0, the bid price coincides with the ask price, and we are back in the one-price framework.

3.2 Measuring liquidity with LIQ

It is well-known that a distressed market suffers from drying liquidity. In order to measure the liquidity

risk, we propose a measure based on implied liquidity, which we will call LIQ.

We denote by LIQj the 30–days implied liquidity of company j, calculated from the near and next

term implied liquidities: λ∗j (T1) and λ∗j (T2). We compute it using the same weights as in the VIX

methodology. λ∗j (Ti), i = 1, 2 itself is calculated as an average of all the individual implied liquidities of

all non-zero bid call and put options of company j. Hence, LIQj of the j–th company is given by

LIQj = x1λ
∗
j (T1) + (1− x1)λ

∗
j (T2)

In the same way we calculate the implied liquidity LIQDJX of the index. This combination of near and

next term liquidities provides a short term forward looking implied liquidity.

The overall liquidity index for a particular day is defined as:

LIQ =
1

2
LIQDJX +

1

2n

n∑
j=1

LIQj .

In Figure 4 the market liquidity estimation based on the DJX index and all the 30 underlying stocks is

presented. We clearly observe that LIQ is not constant over time and apparently exhibits a mean-reverting

behavior. Recent work investigates this stochastic liquidity behavior more in depth, see [2].

The long run average of the implied liquidity of the data set in the period between January 2007 and

October 2009 equals 412 bp. The highest value of the LIQ parameter, 1260 bp, was reached on the 24th

of October 2008. Around this day several European banks were rescued by government intervention.
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4 Measuring herd-behavior via the comonotonicity

In this section, we introduce a third ingredient contributing to the general panic level in the market,

namely herd behavior. This notion refers to the tendency of one decision maker to take his decisions in

accordance with those of a whole group of decision makers, whether or not these decisions are rational.

When the market is more agitated, it is therefore not unusual to observe a stronger herd behavior

pointing to a systemic movement of the market into one direction. Measuring the risk of herd behavior

is not necessarily straightforward, as it relies on human’s reactions in specific circumstances, which are

not easy to quantify. However, the herd phenomenon in the financial market is also essentially related to

the dependency relationship between the traded assets.

Inspired by [18], we propose a measure for herd behavior in the market based on the concept of

comonotonicity. While in [18], the implied variance of the index price is compared with its comonotonic

version and its ratio is called the HIX, we propose to compare the VIX index by its comonotonic ver-

sion. From a methodological point of view this is very similar to the HIX approach. Therefore, for a

more profound study of the underlying methodology, we refer to [18]. For an overview of the theory of

comonotonicity and its applications in insurance and finance, we refer to [16] and [17]. For further work

on the applications of this theory in an option pricing framework, we refer to [7], [1], [25] and [22]. A

recent overview of the literature on financial applications of the theory of comonotonicity is given in [14].

4.1 Comonotonicity

In this section, we will summarize basic concepts of comonotonicity theory in relationship with the

dependency structure between the underlyings in a basket of assets. We start with stating some main

results concerning comonotonicity theory. Definitions, results and detailed proofs can be found in [16] and

[7]. Let us consider n different stocks i = 1, . . . , n with corresponding stock price processes {Si(t), t ≥ 0}.
These stocks form an index (or basket) consisting of a combination of a certain amount wi of stock i,

where w1, w2, . . . , wn is a series of upfront fixed positive weights. We denote by {S(t), t ≥ 0} the price

process of the index calculated as the weighted sum of the n underlying stock price components, i.e.,

S(t) =

n∑
i=1

wiSi(t), t ≥ 0.

In our example, we will use n = 30, and work with the 30 components (Si, i = 1, ..., 30) of the DJX index

(S).

Suppose there exists an option market of vanilla calls and puts on the individual stocks i = 1, . . . , n,

as well as on the index. We shall denote by Ci(K, T ) and Pi(K, T ) the prices of a European call option

and European put option resp. on stock i with strike K and maturity T . In the same way, we write

C(K, T ) and P(K, T ) for the option prices on the index.

Recall that the payoff of an European call with strike K and maturity T on the index is given by

(S(T ) − K)+ =
(∑n

i=1 wiSi(T )−K
)+

. In order to compute the price of this call option, one would

actually need to have full knowledge about the dependency structure of the underlying stocks. This

information is usually not known, however, one can always find an optimal upper bound of C(K, T ) by

taking a linear combination of observable call option prices Ci(K, T ), and which corresponds to the case

when the stock price vector is comonotonic. This leads us to the definition of comonotonic vectors.

Definition 1 (Comonotonic vector) Let Y1, . . . , Yn be arbitrary random variables and let U be a uni-

formly distributed random variable on the unit interval. We say that the random vector Y = (Y1, . . . , Yn)
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is comonotonic if

Y
d
= (F

[−1]
Y1

(U), . . . , F
[−1]
Yn

(U)),

where
d
= stands for equal in distribution, and F

[−1]
Y (u) = inf{x ∈ R : FY (x) ≥ u}.(and inf ∅ = +∞ by

convention).

The comonotonic vector is driven by only one single factor (U) - the systemic risk. Now, for any

random vector X = (X1, . . . , Xn), we can define the so–called comonotonic counterpart of X. It is

denoted by Xc and is defined as

Xc ≡ (Xc
1 , . . . , Xc

n)
d
= (F

[−1]
X1

(U), . . . , F
[−1]
Xn

(U)).

In this context, we define the comonotonic index price process as:

Sc(t) =

n∑
i=1

wiS
c
i (t), t ≤ T,

where Sc(t) = (Sc
1(t), . . . , S

c
n(t)) is the comonotonic counterpart of the stock price vector S(t) = (S1(t), . . . , Sn(t)).

In analogy to the regular index call price we will denote

Cc(K, T ) = e−rTEQ

[
(Sc(T )−K)+

]
. (7)

for the comonotonic call value. Note that the comonotonic version incorporates perfect herd behavior,

and index call options under perfect herd behavior should intuitively be more expensive, since each index

component moves in the same direction and hence the index exhibits a higher volatility. From now on,

to avoid unnecessary overloading of notation, we will omit writing ”(t)” whenever there is no confusion

possible. In particular, we will write Sc ≡ Sc(T ) and Si(T ) ≡ Si.

4.2 Comonotonic upper bound

In this section it will be shown how to derive an upper bound for a call option on the index in terms of

call options on the individual stocks. For details, we refer to [7].

In fact comonotonicity theory implies, that it is always possible to bound the index option price

C(K, T ) from above, namely with the price of the comonotonic index call price Cc(K, T ). To do so, we

first have to specify the comonotonic distribution FSc .

Theorem 2 (Comonotonic distribution) The distribution function of the comonotonic index price pro-

cess is given for any x ∈ (F−1+
Sc (0), F−1

Sc (1)) as

FSc(x) = sup
{

p ∈ [0, 1] :

n∑
i=1

wiF
[−1]
Si

(p) ≤ x
}

. (8)

where for each 0 < α ≤ 1 the alpha–inverse of FSc is given by

F
[−1(α)]
Sc (p) =

n∑
i=1

wiF
[−1(α)]
Si

(p), 0 < α ≤ 1,

and the alpha-inverse is defined as F
[−1(α)]
Y (u) = αF

[−1]
Y (u) + (1 − α)F

[−1+]
Y (u), 0 < α < 1, with

F
[−1+]
Y (u) = sup{x ∈ R : FY (x) ≤ u} (with sup ∅ = −∞, by convention).

We are now able to calculate the expected payoff of a call option on the comonotonic basket, as it is

shown in the following theorem; for a proof see [7].
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Theorem 3 (Comonotonic index option price) Let Sc be the comontonic price process of an index as

above. Then

E
[
(Sc −K)+

]
=

n∑
i=1

wiE
(
Si − F

[−1(α)]
Si

(
FSc(K)

))+

, (9)

where α ∈ [0, 1] must be chosen in such a way that F
[−1(α)]
Sc (FSc(K)) = K, or equivalently (by the

additivity property of comonotonic quantiles),

n∑
i=1

wiF
[−1(α)]
Si

(FSc(K)) = K.

Consequently, the comonotonic index option price is given by

Cc(K, T ) =

n∑
i=1

wiCi

(
F

[−1(α)]
Si

(FSc(K)) , T
)
.

Essentially, the above expression tells us that the price of a call option with strike K and maturity T on

the index under the comonotonic setting equals a weighted sum of call prices on the index components.

The weights are identical to the ones used for the index composition and the maturities are identical as

well. The strikes are given by

K∗
i = F

[−1(α)]
Si

(FSc(K)) . (10)

To determine these strikes we need to know the distribution functions of Si, FSi(x) and the distribution

function of the comonotonic index FSc . The distribution function of FSi(x) can be extracted from the

option surface of stock i:

FSi(x) = 1 + erT ∂C(K, T )

∂K
|K=x+, x > 0. (11)

Given the marginal distribution functions, the comonotonic distribution function can be calculated

using (8). Note that both (8) and (11) can be calculated in a model free way using only option price data.

The above formula (11) is however only valid if call options are available for any strike. In the real

world this is not the case and only a finite number of call prices are available for a given maturity.

Therefore, in [19] (see also [7]) one proposes to approximate FSi(x) by a piecewise constant function

F Si(x) defined as

F̄Si(Ki,j) = 1 + erT Ci(Ki,j+1, T )− Ci(Ki,j , T )

Ki,j+1 −Ki,j
, (12)

where Ki,j , j = 1, ..., mi, are the traded strikes for the underlying stock i. Finally, we have that

F̄Sc(x) = sup
{

p ∈ [0, 1] :

n∑
i=1

wiF̄
[−1]
Si

(p) ≤ x
}

.

Having all the formulas at hand, we can define the comonotonic upper bound: for all strikes K in the

support of FSc we can bound the index option price by

C(K, T ) ≤
∑

i∈NK

wiCi(Ki,ji , T ) +
∑

i/∈NK

wi

{
αKCi(Ki,ji , T ) + (1− αK)Ci(Ki,ji+1, T )

}
, (13)

where j1, . . . , jn and NK are (sets of) indices depending on FS̄c(K), and where αK is a function of

observed call option prices Ci(Ki,j , T ) only. In particular, we have that

• 1. the indices ji are such that F̄Si(Ki,ji−1) < FS̄c(K) ≤ F̄Si(Ki,ji),

2. NK = {i ≤ n : FS̄c(K) 6= F̄Si(Ki,ji)},

11



3. αK is any number satisfying F̄
[−1(αK)]
Sc (FS̄c(K)) = K, or equivalently,

n∑
i=1

wiF̄
[−1(αK)]
Si

(FS̄c(K)) = K. (14)

The comonotonic upper bounds can be computed for and on the basis of put options as well [22].

There is only one formula that requires adaptation, i.e. the empirical distribution function F̄Si(Ki,j).

The expression in (12) then becomes

F̄Si(Ki,j) = erT Pi(Ki,j+1, T )− Pi(Ki,j , T )

Ki,j+1 −Ki,j
. (15)

The comonotonic upper bound for the index put option is then the analogue of (13), and can be

formulated in the following way: For all strikes K in the support of FS̄c we can bound the index put

option price by

P(K, T ) ≤
∑

i∈NK

wiPi(Ki,ji , T ) +
∑

i/∈NK

wi

{
αKPi(Ki,ji , T ) + (1− αK)Pi(Ki,ji+1, T )

}
,

where j1, . . . , jn and NK are (sets of) indices depending on FS̄c(K), and where αK is a function of

observed put option prices Pi(Ki,j , T ) only.

4.3 The Comonotonicity ratio

Knowing both the index option price C(K, T ) for a certain strike K and maturity T and its upper bound∑n
i=1 wiCi(K

∗
i , T ) = Cc(K, T ), one can compare both values to measure how far one is away from the

fully comonotonic situation. On the basis of this, [21] proposes the so–called comonotonicity gap, which

compares the market’s price with the perfectly comonotonic price by means of their ratio. We work with

the related comonotonicity ratio:

%call(K, T ) =
C(K, T )

Cc(K, T )
. (16)

Alternatively, in order to have a more robust and overall comonotonicity measure and based on similar

ideas as the one proposed in [18], we VIX-ify the above comonotonicity ratio by replacing call and put

option quotes in the VIX formula by their comonotonic upper bound. More precisely, in (1) we replace

Q(Ki) by its comonotonic upper bound Qc(Ki), calculated according to the formulas above. This results

in the following formula:

σ2
com(T ) =

2

T

∑
i

∆Ki

K2
i

erT Qc(Ki)− 1

T

( F

K0
− 1

)2

.

In this way and using the same interpolation on the 30-days point (using the front and next month

maturities), we derived a comonotonic VIX (V IXc), which is a market implied upper bound for the VIX

(Figure 5):

V IXc = 100

√√√√√√√√





T1σ2
com(T1)

[
NT2 −N30

NT2 −NT1

]

︸ ︷︷ ︸
x1

+T2σ2
com(T2)

[
N30 −NT1

NT2 −NT1

]

︸ ︷︷ ︸
1− x1





N365

N30

We graph in Figure 5, the DJX VIX and its upperbound V IXc.

12



06/2007 12/2007 07/2008 01/2009 08/2009
0

20

40

60

80

 

 
VIX
comonotonic VIX

Figure 5: Dow Jones VIX and V IXc; period 01.2007-10.2009
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Figure 6: Dow Jones CIX ; period 01.2007-10.2009

Finally, we define the comonotonicity VIX ratio, baptized CIX, as the ratio of the regular VIX and

the comonotonic VIX, i.e.,

CIX = %V IX =
V IX

V IXc
. (17)

The CIX can be used as a measure for systemic risk and herd behavior. The closer to 1, the closer we

are to the comonotonic situation and the more systemic risk or herd behavior there is in the market.

Perfect herd behavior is reached when CIX = 1. Hence, the ratio gives us a simple and convenient way

to measure how much herd behavior is present in the market, and thus to quantify the systemic risk on

the basis of traded option information.

Again, the credit crisis is clearly visible around October 2008 as well as financial issues during the

summer of 2007.
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Figure 7: Dow Jones Fear Index; period 01.2007-10.2009

5 FIX: The Fear Index

In the previous chapters we have proposed measures for quantifying several types of risks in the market.

As such, we have discussed the VIX as a (model–free) estimate for market risk, introduced LIQ as (model

dependent) estimate for the liquidity and elaborated on the CIX as a (model-free) measure of herd behavior

and systemic risk. The major objective of these developments was the establishment of a general measure

for overall market fear, which is based on the three aforementioned components, combined in a particular

way.

We call our new fear index the FIX. And, FIX is calculated out of VIX, LIQ and CIX as follows:

FIX = ω1V IX + ω2LIQ + ω3CIX

where ω1, ω2, ω3 are the weights allocated to the different risk measures in such a way that the contribution

of each risk is proportional to its contribution to the ”average fear situation”. Based on our previous

results and calculations, the respective average values for the DJX Index over the period 2007 – 2009 are

estimated as follows:

ṼIX = 24.66%, L̃IQ = 400.65 bp and C̃IX = 69.16%

We now define the weights ω1, ω2 and ω3 in such a way that

0.25ω1 = 0.04ω2 = 0.7ω3 =
100

3
,

where the choices 25%, 400bp and 70% are settled in accordance with the obtained averages. Applying

these values leads to the contribution of each component in the FIX:

ω1 = 133.33, ω2 = 833.33 ω3 = 47.62.

These choices will then lead to a fear measure FIX having an average level of 100. A value FIX > 100

will reflect a market with a fear level above average, whereas a value FIX < 100 expresses less fear in the

market than average. Application of these values in the calculation of the FIX gives the following plot of

the Fear Index FIX as shown in Figure 7.
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Figure 8: Dow Jones Fear Index components; period 01.2007-10.2009

The different market fear components are shown in Figure 8. The pattern of Figure 8 clearly reflects

the financial problems of the past few years. For instance, the peak on June, 7, 2007 coincides with the

announcement by Bear Stearns to the investors that it is suspending redemptions from its HighGrade

Structured Credit Strategies Enhanced Leverage Fund. Two months later, in August 2007, the FIX peaks

again. In this case, it goes along with with bankruptcy of American Home Mortgage Investment Corp.

(NYSE: AHM) on August 6, 2007. The following days numerous quantitative long/short equity hedge

funds suddenly began experiencing unprecedented losses. As such, on August 9, 2007, BNP Paribas

SA, France’s largest bank, suspended three investment funds because it could not ”fairly” value their

holdings after the U.S. subprime mortgage losses roiled credit markets. From 10 August 2007 on, the

Central Banks around the world started injecting funds into markets as a response to an undesired and

unwelcome spike in short-term rates. As a last example, we mention the huge increase in the Fear Index

in October 2008 revealing the global financial crisis.

5.1 Conclusions

”Market fear” should be measured by several factors. In this research we have focused on three of them,

which in our opinion, have a significant impact on the overall market fear level. First, we propose to

take into account market risk and nervousness, expressed it in terms of the index volatility. The higher

the volatility, the more market uncertainty there is and the wider the swings in the market can occur.

Secondly, we propose to take into account the implied liquidity parameter intrinsically related to bid-ask

spreads. Finally, we propose to measure the systemic risk and herd behavior via the comonotonicity ratio

of the VIX and the VIX-ified comontonic upperbound. In a systemic crisis, all assets move into the same

direction. The more comonotonic-like behavior we observe the more assets move together and the higher

the systemic risk.

We presented the historical values of the market fear index solely based on vanilla index options and

individual stock options.
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