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a b s t r a c t

In Van Weert et al. (2010), results are obtained showing that, when allowing some of the cash flows to
be negative, convex order lower bound approximations can still be used to solve general investment
problems in a context of provisioning or terminal wealth. In this paper, a correction and further
clarification of the reasoning of Van Weert et al. (2010) are given, thereby significantly expanding the
scope of problems and cash flow patterns for which the terminal wealth or initial provision can be
accurately approximated. Also an interval for the probability level is derived in which the quantiles of
the lower bound approximation can be computed. Finally, it is shown how one can move from a context
of provisioning of future obligations to a saving and terminal wealth problem by inverting the time axis.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In VanWeert et al. (2010), optimal portfolio selection problems
for arbitrary cash flow patterns have been discussed. They allow
for liabilities that can be both positive or negative, as opposed
to Dhaene et al. (2005), where all liabilities have to be of the
same sign. They generalize portfolio selection problems to the case
where a minimal return requirement is imposed. The results that
they propose are an extension of the solution of Vanduffel et al.
(2005) to the more general context of provisioning and saving
as described in Dhaene et al. (2005). However, the proof of the
presented results contains an error. For example Lemma 1 can
only be applied to partial sums of the form as in Vanduffel et al.
(2005) constituting the function f (p) in formula (16) of VanWeert
et al. (2010). In this paper, we will show how to split f (p) in these
building blocks and to derive the interval for p where f (p) > 0
implies f ′(p) > 0. In a next step, we will enlarge this interval for
p using the theory of zeros of general polynomials. In addition, we
will formulate a sufficient condition for the main result to hold.

∗ Corresponding author. Tel.: +32 9 2644895; fax: +32 9 2644995.
E-mail addresses: jan.dhaene@econ.kuleuven.be (J. Dhaene),

michele.vanmaele@UGent.be (M. Vanmaele).

This will be a slightly stronger condition on the signs and amounts
of the cash flows but will be satisfied in many practical cases. We
will illustrate our resultswith numerical examples. The framework
of optimal portfolio selection in which we work is the same as in
Dhaene et al. (2005) and Van Weert et al. (2010) and we refer to
those papers for more details, notations and terminology.

2. Problem description

To a series of future payments αi at time i, i = 0, 1, . . . , n, we
attach the random variable S defined by

S =

n
i=0

αieZi (1)

where the cash flows αi ofmixed signs are deterministic constants
and the Zi’s are linear combinations of the components of the
multivariate normal random vector (Y1, Y2, . . . , Yn):

Zi =

n
j=1

λijYj.

It is well-known that the random variables Zi are normally
distributed with mean E[Zi] and variance σ 2

Zi
. Depending on the

choice of the Zi’s, the random variable S in (1) can be interpreted
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as a stochastic present value or stochastic accumulated value of
the cash flows, in a model with multivariate normal log returns.
However, it is impossible to determine the distribution function
of S analytically in closed form, because S is a sum of non-
independent lognormal variables. We will use the convex upper
and lower bounds for S satisfying Sℓ

≤cx S ≤cx Sc as introduced in
Dhaene et al. (2002b):

Sc =

n
i=0

αieE[Zi]+σZiΦ
−1(U), (2)

Sℓ
= E [S | Λ] =

n
i=0

αie
E[Zi]+

1
2 (1−r2i )σ 2

Zi
+riσZiΦ

−1(U)
, (3)

with U uniformly distributed on the unit interval, Φ the standard
normal cumulative distribution function (cdf), ri the correlations
between the random variables Zi and the conditioning random
variable

Λ =

n
j=1

βjYj. (4)

If all the amounts αi have the same sign, the upper bound (2)
is a comonotonic sum, which implies that distortion risk measures
related to these bounds can be obtained by simply summing the
individual terms in the sum. For the lower bound Sℓ (3) this is not
a sufficient condition. In view of the factor ri in the exponent, all ri’s
should also have the same sign (not necessarily the same as that of
the αi’s).

In case of payments αi with changing signs, Sc is not a
comonotonic sum. However, the upper bound approximation (2)
can be adapted easily as follows:

Sc =

n
i=0

αieE[Zi]+sign(αi)σZiΦ
−1(U), (5)

with sign(x) = 1 for x > 0 and sign(x) = −1 for x < 0 (see,
e.g., Dhaene et al., 2002a, Dhaene et al., 2002b). It holds that (5)
is a comonotonic sum. However, the upper bound does in general
not give a very accurate approximation of the distribution function
of S; the accuracy of the lower bound (3) is usually much higher.
For this lower bound, the problem is that there is no general rule
to find a conditioning random variable Λ, leading to an accurate
approximation of S, such that Sℓ is a sum of non-decreasing
(or non-increasing) functions of Λ and, hence, such that Sℓ is a
comonotonic sum in case the αi’s have changing signs. One needs
to find a Λ such that the products αiri have the same sign for all i.
Sℓ not being a comonotonic sum would imply that the additivity
property would no longer hold and, hence, that distortion risk
measures related to Sℓ cannot be obtained by simply summing the
individual terms in the sum, which would make the lower bound
approximations useless in practice.

In this paper, however, we show that it is possible, under some
mild conditions, to allow for more arbitrary cash flow patterns.
We show that, although the lower bound approximations are not
comonotonic sums anymore, allowing some of the cash flows to be
negative does not necessarily imply that the convex order lower
bound approximations cannot be used. As a result we significantly
expand the scope of problems and cash flow patterns for which the
quantiles can be accurately approximated.

3. Savings and terminal wealth

3.1. General results

In this section we consider a terminal wealth problem: we
determine how periodic amounts should be invested in order to

reach some target capital at a predetermined future time n. We
consider a set of deterministic amounts α0, α1, . . . , αn−1 with
n ≥ 1. The conditions under which our main result holds, require
α0 to be positive. However, we do not impose a priori a sign
condition on the other amounts αl with l ∈ {1, . . . , n − 1}
which can take positive or negative values. This series of payments
will be interpreted in a first approach as a combination of
series of positive payments (savings) followed by negative ones
(consumptions). Hence this is a generalization of the so-called
‘‘saving–consumption’’ problem described in Vanduffel et al.
(2005) where only one of such series is taken into account.

We recall some notations and terminology based on Vanduffel
et al. (2005) andVanWeert et al. (2010).We assume that the return
on the account is generated by a Brownian motion process. Let Vk
denote the surplus at time k. By convention, the surplus at time k
has to be understood as the surplus just after saving orwithdrawal.
Starting from the initial value V0 = α0, the surplus Vk available at
time k is given by the following recursive relation:

Vk = Vk−1eYk + αk, k = 1, . . . , n − 1. (6)

The surplus at time n is then equal to Vn = Vn−1eYn . Solving
recursion (6), we can rewrite Vk in the form of (1) as

Vk =

k
l=0

αleZl,k , k = 0, . . . , n − 1, (7)

with Zl,k =
k

j=l+1 Yj, for l = 0, . . . , k. By convention
k

j=k+1 Yj =

0. The surplus at time n equals

Vn =

n−1
l=0

αleZl,n , with Zl,n =

n
j=l+1

Yj.

Our goal is to determine the distribution of the final surplus Vn.
However this surplus can become negative, which would imply
short selling of units of the investment portfolio. To avoid this, we
limit our study to the distribution of the terminal wealthWn, which
is defined as:

Wn = max[Vn, 0]. (8)

As explained in the previous section, we focus on the convex order
lower bound (3), whichwe denote here as V ℓ

n . We approximate the
distribution of the terminal wealthWn byW ℓ

n = max[V ℓ
n , 0].

ChoosingΛ such that the variance ofV ℓ
n ismaximized andhence

as close as possible to Var(Vn), results in the optimal conditioning
random variableΛ of the form (4), with coefficients βj equal to, see
Dhaene et al. (2005):

βj =

j−1
l=0

αle(n−l)µ, (9)

for j = 1, . . . , n, with µ the drift of the yearly log returns Yj.
From (3) we find that the random variable V ℓ

n with Λ chosen as
(4) with coefficients (9) equals in distribution

V ℓ
n

d
=

n−1
l=0

αle(n−l)µ−
1
2 r

2
l (n−l)σ 2

+rlσ
√
n−lΦ−1(U), (10)

with U ∼ U(0, 1), Φ the standard normal cdf and σ the standard
deviation of the normally distributed random variables Yj. The
correlation coefficients rl are given by

rl =
Cov


Zl,n, Λ


σZl,nσΛ

=

n
j=l+1

βj

√
n − l


n

j=1
β2
j

, l = 0, . . . , n − 1. (11)
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In the remainder of this section we use the notation f for the
following function:

f (p) =

n−1
l=0

αle
(n−l)


µ−

1
2 r

2
l σ 2


+rlσ

√
n−lΦ−1(p)

, p ∈ (0, 1). (12)

Combining (8) and (10) leads to V ℓ
n

d
= f (U) and W ℓ

n
d
=

max[f (U), 0].
Further, we assume that there arem > 0 series of negative cash

flows:
αk1 < 0, . . . , αk1+j1 < 0 k1 > 0, j1 ≥ 0;
...
αkm < 0, . . . , αkm+jm < 0 km > km−1 + jm−1, jm ≥ 0,

(13)

with km + jm ≤ n − 1. All other cash flows are assumed to be
positive. Then, we can rewrite (12) as the following combination:

f (p) =

m
i=1

fi(p) + fm+1(p), (14)

where

fi(p) =

ki−1
l=ki−1+ji−1+1

αle(n−l)(µ−
1
2 r

2
l σ 2)+rlσ

√
n−lΦ−1(p)

−

ki+ji
l=ki

|αl|e(n−l)(µ−
1
2 r

2
l σ 2)+rlσ

√
n−lΦ−1(p) (15)

for i = 1, . . . ,m, with k0 + j0 + 1 = 0, and

fm+1(p) =

n−1
l=km+jm+1

αle
(n−l)


µ−

1
2 r

2
l σ 2


+rlσ

√
n−lΦ−1(p)

≥ 0, (16)

being zero when km + jm = n − 1. In other words, we divide (12)
into separate sums fi, where each fi for i = 1, . . . ,m represents a
series of positive cash flows, followed by a series of negative cash
flows to which the result of Vanduffel et al. (2005) can be applied.
We will state this result applied to the functions fi and combine it
to arrive at a result for the function f as given by (12) or (14).

Lemma 1. 1. Let fi be defined by (15) and βj by (9). If βj > 0 for
j = ki−1 + ji−1 + 2, . . . , n, then there exists a probability level
pi ∈ (0, 1) such that

fi(p) > 0 H⇒ f ′

i (p) > 0 for p ∈ (pi, 1). (17)

When km + jm < n − 1, we also have that fm+1(p) > 0 implies
f ′

m+1(p) > 0 for all p ∈ (0, 1).
2. Let f be defined by (14) and βj by (9). If βj > 0 for j = 1, . . . , n,

then f (p) > 0 implies f ′(p) > 0 for p ∈ (maxi∈{1,...,m} pi, 1), with
the pi determined in (17).

Proof.
1. Since βj > 0 for j = ki−1 + ji−1 + 2, . . . , n it follows from (11)

that rl > 0 for l = ki−1 + ji−1 + 1, . . . , ki + ji and, hence, that

lim
p→0

fi(p) = 0 and lim
p→1

fi(p) = +∞.

Furthermore, we may apply Lemma 1 of Vanduffel et al. (2005)
to fi which implies that for those p ∈ (0, 1) for which fi(p) ≥ 0,
also f ′

i (p) > 0. It is clear that once the continuous function fi
becomes positive in a p ∈ (0, 1) it is increasing and will not
drop below zero again. We may therefore conclude that there
exists a value pi ∈ (0, 1) such that the implication (17) holds.

2. From (14) it is clear that when all terms fi(p) and fm+1(p) are
positive and increasing then also the sum f (p) will be. In view
of (17) this will be satisfied for p in the stated interval. �

In what follows we will enlarge the interval for p by lowering
the lower bound maxi∈{1,...,m} pi. Hereto we make the change of
variables:

x = eσΦ−1(p) with x ∈ (0, +∞) (18)

in the function f (p) (14):

f (p) = h(x) =

m
i=1

hi(x) + hm+1(x) (19)

with according to (15) and (16)

hi(x) =

ki−1
l=ℓi

αi,lxrl
√
n−l

−

ui
l=ki

|αi,l|xrl
√
n−l (20)

hm+1(x) =

n−1
l=ℓm

αm+1,lxrl
√
n−l, (21)

where we introduced the short hand notations:

ℓi = ki−1 + ji−1 + 1, ui = ki + ji,

αi,l = αle
(n−l)


µ−

1
2 r

2
l σ 2


.

Lemma 2. 1. Let hi be defined by (20) and βj by (9). If βj > 0 for
j = ki−1 + ji−1 + 2, . . . , n, then there exist an xi ∈ [0, +∞) and
an x′

i ∈ [0, +∞) with x′

i ≤ xi such that

hi(x) > 0 H⇒ h′

i(x) > 0 for x ∈ (xi, +∞) (22)

h′

i(x) > 0 H⇒ h′′

i (x) > 0 for x ∈ (x′

i, +∞). (23)

When km + jm < n − 1, we also have that hm+1(x) > 0 implies
h′

m+1(x) > 0 and h′′

m+1(x) > 0 for all x ∈ (0, +∞).
2. Let h be defined by (19) and βj by (9). If βj > 0 for j = 1, . . . , n,

then h(x) > 0 and h′(x) > 0 for x ∈ (x⋆, +∞) with x⋆
=

max(xmax, x′
max) ≤ maxi=1,...,m xi where xmax corresponds to the

largest zero of h, and x′
max to the largest zero of h′, and where the

xi are determined in (22).
3. Let f be defined by (12) and βj by (9). If βj > 0 for j = 1, . . . , n,

then there exists a p⋆
= Φ

 1
σ
log x⋆


, with x⋆ determined in

assertion 2, such that f (p) > 0 and f ′(p) > 0 for p ∈ (p⋆, +∞).

Proof.

1. We note that the coefficients αi,l in (20) have the same sign
pattern as the original coefficientsαl. Also, we note that the first
order derivative functions h′

i are of the same form as hi:

h′

i(x) =

ki−1
l=ℓi

αi,lrl
√
n − lxrl

√
n−l−1

−

ui
l=ki

|αi,l|rl
√
n − lxrl

√
n−l−1.

The coefficients αi,lrl
√
n − l still have the same sign pattern

when all rl are positivewhich is satisfied by the assumption that
βj > 0 for all j ∈ {1, . . . , n}. Hence, a reasoning as in the proof
of Lemma 1 of Vanduffel et al. (2005) and of Lemma 1 above
applied to hi as well as to h′

i leads to (22) and (23). Thus the
functions hi are strictly increasing and convex from x′

i on, but
positive only from xi ≥ x′

i on.
The result for hm+1 is clear from the relation of (16) and (21)
through (18).

2. From (19), it is clear that h(x) > 0 implies h′(x) > 0 for x
∈ [maxi=1,...,m xi, +∞). To determine x⋆

≤ maxi=1,...,m xi we
note that h(x) and h′(x) are generalized polynomials to which
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Descartes’ rule of signs applies, see Jameson (2006) and
references therein, when the exponents rl

√
n − l are listed

in descending order. This is satisfied when the sequence
(rl

√
n − l)l is decreasing in l or equivalently, in view of (11),

when βj > 0 for all j ∈ {1, . . . , n} (in particular, β1 = α0enµ
> 0 requires α0 > 0 as mentioned at the beginning of this
section). Further we find that r0

√
n > 1 since

n
j=1 βj

2
>n

j=1 β2
j under the assumption for the βj’s. Hence we obtain

limx→+∞ h(x) = limx→+∞ h′(x) = sign(α0)∞ = +∞. Both
h and h′ cannot have more zeros than the number of sign
changes of the sequence α0, . . . , αn−1, and the number of zeros
of h in the interval (0, +∞) is less than or equal to the number
of zeros of h′ on (0, +∞) plus one (taking the order of the
zeros into account), see Jameson (2006). Therefore, it is clear
that beyond the largest zero xmax of h, the function h is strictly
positive but can still decrease and increase again before going
to infinity. Similarly for h′, beyond its largest zero x′

max, h
′

is strictly positive. Thus, both h and h′ are strictly positive
for x ∈ (max(xmax, x′

max), +∞). Is x⋆
= max(xmax, x′

max) ≤

maxi=1,...,m xi? Adding h1 and h2 produces a zero in the interval
(min(x1, x2),max(x1, x2)) and by induction we arrive at xmax ≤

maxi=1,...,m xi. Analogously, we obtain for the zeros of h′ and h′

i
that x′

max ≤ maxi=1,...,m x′

i and x′
max ≤ maxi=1,...,m xi since x′

i ≤ xi
for all i.

3. Applying the chain rule when taking the first order derivative
of f in (19), making use of (18), we find

f ′(p) = h′(x)x
σ

ϕ(p)
,

with ϕ the density function of a standard normal random
variable, which implies that also f ′(p) and h′(x) have the same
sign for x and p related by (18). �

Remark. The functions hi (20) are also generalized polynomials
with one sign change in the coefficients and thus by Descartes’ sign
rule have atmost one zero xi > 0 (besides zero itself). Indeed, since
the functions hi are strictly convex increasing, once they crossed
the x-axis, they cannot return to zero again.

We recall that V ℓ
n is not a comonotonic sum: Lemma 2 only

states that the total sum V ℓ
n

d
= f (U) is a non-decreasing function

of one random variable U (for realizations of U at least equal
to p⋆); the separate terms in the sum are not all non-decreasing
functions of U . However, Lemma 2 implies that the lower bound
approximation can still be used, as the quantiles of V ℓ

n can easily
be determined. This result, which is the main result of this section,
is stated in the following theorem:

Theorem 1. If the conditioning random variable Λ is chosen as in
(4)with coefficients βj given by (9), and if the surplus Vl in (6) satisfies

E[Vl] > 0, l = 0, . . . , n − 1, (24)

then the quantiles of W ℓ
n are given by

Qp[W ℓ
n ] = max[f (p), 0] = f (p), p⋆ < p < 1, (25)

where p⋆ is determined in Lemma 2 and f (p) is defined by (12). The
distribution function of W ℓ

n follows from

f (FWℓ
n
(x)) = x, x ≥ Qp⋆ [W ℓ

n ]. (26)

Proof. Define the (left-continuous) function g on the interval
(0, 1) as

g(p) =


f (p) p⋆

≤ p < 1,
f

p⋆


0 < p < p⋆.

We recall from Van Weert et al. (2010) that for l = 0, . . . , n − 1

E[Vl] = e−(n−l)µβl+1. (27)

Hence, by condition (24) we can apply Lemma 2 which implies
that the function g is non-decreasing. As stated in Vanduffel et al.
(2005), the quantiles of W ℓ

n , for p ≥ p⋆, can easily be determined
analytically by (25) and the distribution function of W ℓ

n from (26),
where, in the present case, x has to be at least equal to Qp⋆ [W ℓ

n ]

according to Lemma 2. �

Remarks. Combining (27) and (9), we can rewrite the average
surplus as a polynomial in xwith x = eµ > 0:

E[Vl] =

l
k=0

αke(l−k)µ
=

l
k=0

αkxl−k. (28)

From Descartes’ rule of signs it is known that the number of
positive roots of this polynomial in x is either equal to the number
of sign variations in the coefficients or is less than this number by
an even integer. Thus for given cash flows αl, l = 0, . . . , n− 1 it is
not possible to rewrite the conditions (24) as the single condition
(23) on µ in Van Weert et al. (2010).

However, it is possible to find a lower bound µ⋆ for µ such that
for µ > µ⋆ we are sure that conditions (24) are satisfied. Since
α0 > 0 the polynomial (28) in x will go to +∞ when x tends to
infinity. Denoting the largest zero of the polynomial (28) by xl,max,
this polynomial will be increasing for x > xl,max. Since x = eµ we
obtain that for µ larger than

µ⋆
= max

l=0,...,n−1


max


µ | µ > 0 and

l
k=0

αke(l−k)µ
= 0


(29)

conditions (24) will be satisfied. This is a sufficient condition.
Further, we note that from the recursion

E[Vl] = xE[Vl−1] + αl, l = 1, . . . , n − 1, with E[V0] = α0

it follows that we only have to impose conditions (24) when
adding a negative coefficient αl, thus from the set (13) or for l ∈

{0, k1, . . . , k1 + j1, . . . , km, . . . , km + jm} as was also noted in
Section 2.2.2 from Van Weert et al. (2010).

3.2. Sufficient condition

We derive a sufficient condition imposed on the cash flows
so that the βj > 0 for all j under the realistic assumption that
µ > 0 and hence Theorem 1 holds. It is not a necessary condition,
since there exist sequences of cash flows that will not satisfy that
condition while all the βj’s are strictly positive, as we will see in
the numerical examples. In a first lemma we prove the following
general result.

Lemma 3. Suppose we have deterministic cash flows α0, . . . , αn−1
such that

l
k=0

αk ≥ 0

for l = 0, . . . , n − 1. Suppose {γl}l=0,...,n−1 is a sequence of positive
numbers, which is strictly decreasing in l. Then

l
k=0

αkγk > 0 (30)

for l = 0, . . . , n − 1.
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Proof. Consider the series of negative cash flows (13). All other
cash flows are assumed to be positive. For l = 0, . . . , k1 − 1 it
is straightforward that

l
k=0 αkγk > 0. Next, we look at the first

series of negative cash flows, αk1 , . . . , αk1+j1 . We know that

k1−1
k=0

αk ≥ −

k1+j1
k=k1

αk.

This implies we can choose α
(1)
k such that 0 ≤ α

(1)
k ≤ αk for

k = 0, . . . , k1 − 1 and

k1−1
k=0

α
(1)
k = −

k1+j1
k=k1

αk. (31)

Since the terms γk are strictly decreasing in k, we find that
k1−1
k=0

α
(1)
k γk >


k1−1
k=0

α
(1)
k


γk1

=


−

k1+j1
k=k1

αk


γk1 > −

k1+j1
k=k1

αkγk,

which means, taking into account that γk > 0 for all k:

k1+j1
k=0

αkγk ≥

k1−1
k=0

α
(1)
k γk +

k1+j1
k=k1

αkγk > 0. (32)

Note that, following a similar reasoning, we obtain that
l

k=0 αkγk
> 0 for all l ∈ {k1, . . . , k1 + j1}.

Now consider the second series of negative cash flows,
αk2 , . . . , αk2+j2 . Using (31) and the fact that

k2+j2
k=0 αk ≥ 0, we

know that we can choose α
(2)
k such that 0 ≤ α

(2)
k ≤ αk − α

(1)
k for

k = 0, . . . , k1 − 1, 0 ≤ α
(2)
k ≤ αk for k = k1 + j1 + 1, . . . , k2 − 1

and
k1−1
k=0

α
(2)
k +

k2−1
k=k1+j1+1

α
(2)
k = −

k2+j2
k=k2

αk.

Since the terms γk are decreasing in k, we find that
k1−1
k=0

α
(2)
k γk +

k2−1
k=k1+j1+1

α
(2)
k γk

>


k1−1
k=0

α
(2)
k +

k2−1
k=k1+j1+1

α
(2)
k


γk2

=


−

k2+j2
k=k2

αk


γk2 > −

k2+j2
k=k2

αkγk,

which means
k1−1
k=0

α
(2)
k γk +

k2−1
k=k1+j1+1

α
(2)
k γk +

k2+j2
k=k2

αkγk > 0. (33)

Adding (32) and (33) and taking the ranges for α
(1)
l and α

(2)
l into

account, we have
k2+j2
k=0

αkγk ≥

k1−1
k=0

(α
(1)
k + α

(2)
k )γk +

k1+j1
k=k1

αkγk

+

k2−1
k=k1+j1+1

α
(2)
k γk +

k2+j2
k=k2

αkγk > 0.

Following a similar reasoning, it is clear that
l

k=0 αkγk > 0 for all
l ∈ {k2, . . . , k2 + j2}.

Repeating this reasoning for the remaining negative cash flows,
we find the stated result (30). �

In the following theorem we use Lemma 3 to show that
requiring the total amount of savings to be positive at any time is
a sufficient condition for the coefficients βj to be strictly positive
when the drift µ of the yearly log returns is positive (which is a
realistic assumption):

Theorem 2. Suppose we have deterministic cash flows α0, . . . , αn−1
such that

l
k=0

αk ≥ 0 (34)

for l = 0, . . . , n − 1. Then βj > 0 or equivalently E[Vj−1] > 0
for j = 1, . . . , n, with βj defined by (9) with positive µ and E[Vj−1]

related to βj according to (27).

Proof. Recall that

βj =

j−1
l=0

αle(n−l)µ

for j = 1, . . . , n. The exponential terms e(n−l)µ are clearly strictly
decreasing in l for positive µ. Therefore, applying Lemma 3, we
immediately find thatβj > 0 for j = 1, . . . , n. The result for E[Vj−1]

then follows from (27). �

Next, we show that when requiring the total amount of savings
to be positive at any time, it is possible to construct an analytical
expression for the probability level pmin such that the function f
(12) is positive and increasing in p for p ∈ (pmin, 1).

Theorem 3. Suppose we have deterministic cash flows α0, . . . , αn−1
such that

l
k=0

αk ≥ 0, (35)

for l = 0, . . . , n−1 and let µ be positive. Then it follows that f (p) >

0 and f ′(p) > 0 for pmin < p < 1, with f (p) defined by (12) and

pmin = max
l=0,...,n−1


Φ


1
2σ

2

(n − l)r2l − (n − l − 1)r2l+1


− µ

σ

rl
√
n − l − rl+1

√
n − l − 1

 
. (36)

Proof. As seen inVanduffel et al. (2005), by application of the chain
rule, we find for p ∈ (0, 1) that

f ′(p) =
1

ϕ(Φ−1(p))

n−1
l=0

αlrlσ
√
n − l

× e(n−l)µ−
1
2 r

2
l (n−l)σ 2

+rlσ
√
n−l Φ−1(p), (37)

with rl given by (11). First of all note that 1
ϕ(Φ−1(p))

is a positive
constant. Theorem 2 implies that rl > 0 for all l, and that the
sequence {rlσ

√
n − l} is strictly decreasing in l. Now look at the

exponential terms in (12) and (37). Two consecutive terms are
strictly decreasing if:

e(n−l)µ−
1
2 r

2
l (n−l)σ 2

+rlσ
√
n−lΦ−1(p)

> e(n−l−1)µ−
1
2 r

2
l+1(n−l−1)σ 2

+rl+1σ
√
n−l−1Φ−1(p)

⇔(n − l)µ −
1
2
r2l (n − l)σ 2

+ rlσ
√
n − lΦ−1(p)

> (n − l − 1)µ −
1
2
r2l+1(n − l − 1)σ 2

+ rl+1σ
√
n − l − 1Φ−1(p)
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⇔µ −
1
2
σ 2 (n − l)r2l − (n − l − 1)r2l+1


+ σ


rl
√
n − l − rl+1

√
n − l − 1


Φ−1(p) > 0

⇔p > Φ


1
2σ

2

(n − l)r2l − (n − l − 1)r2l+1


− µ

σ

rl
√
n − l − rl+1

√
n − l − 1

 
.

From this last expression we see that if p > pmin, the exponential
factors in (12) and (37) are strictly decreasing in l, for all l. As a
consequence, using Lemma 3, we see that, if (35) is satisfied, both
f (p) and its derivative f ′(p) are strictly positive for all p > pmin. �

Although the minimal probability level pmin given by (36) does
not have an interpretation, its value can easily be determined
numerically. Following a similar reasoning as in the proof of
Theorem 3, it can be seen that f ( 1

2 ) ≥ 0 and f ′(p) > 0 for all
1
2 ≤ p < 1, which implies that pmin is in general lower than 1

2 .
Indeed, for p ≥

1
2 , we have that Φ−1(p) > 0. As a consequence,

the exponential terms in (12) and (37) can in this case easily be
seen to be strictly decreasing in l for all reasonable combinations
of µ and σ .1

In practical situations, pmin turns out to be significantly lower
than 1

2 , and often even close to zero. In general, we can conclude
that the fewer negative cash flows there are, and, moreover, the
later they occur in time, the lower pmin will be. Also, higher values
of µ, and lower values of σ lead to lower values of pmin, see (36).
We refer to the following section for some numerical illustrations
where we compare p⋆, pmin and maxi=1,...,m pi.

It is clear that in practical situations, when working in a saving
environment, conditions (34), which state that the total amount
of cash saved to the account should be non-negative at any
time, will often be satisfied. Practical situations where sporadic
negative payments occur, exist. For instance, when determining
the liabilities of a pension fund, outgoing and incoming cash flows
are typically compared. It may happen that in some years the
incoming cash flows are larger than the outgoing ones, leading to
negative liabilities in those years.

Theorems 1 and 3 are generalizations of the main result of
Vanduffel et al. (2005), as in our case the sign of the cash
flows is allowed to change several times, and an addition to the
results in Van Weert et al. (2010). Note that in the case of a
‘‘saving–consumption’’ plan, Theorem 1 reduces to the result of
Vanduffel et al. (2005), since only the average final surplus has to
be non-negative for (25) to hold.

3.3. Numerical illustration

The accuracy and speed of the lower bound approximation
was confirmed by numerical illustrations in Section 2.2.2 of
Van Weert et al. (2010), by comparing with results obtained
through simulation. We recall that compared to simulation, the
analytical approximations are significantly less time-consuming.
As a consequence, the analytical approach allows us for example
to optimize over the whole spectrum of investment portfolios,
whereas when using simulation the analysis is typically restricted
to a subset of the admissible portfolios. Also, the analytical
approach allows us to consider a high number of assets or
asset classes without significantly increasing the computational
complexity. Here, we will focus on the interval of the probability

1 For the terms (n − l)µ −
1
2 r

2
l (n − l)σ 2 to be positive for all l, it is sufficient to

require thatµ−
1
2σ 2

≥ 0. For these terms to be decreasing in l, a further restriction
has to be made, which unfortunately is hard to quantify. However, it can be seen
numerically that µ −

1
2σ 2ε ≥ 0 must hold, for an ε sufficiently small such that the

condition is satisfied for realistic choices of µ and σ .

level in which the approximation is valid. We will compare the
lower bounds p⋆, pmin and maxi=1,...,m pi.

We consider the constant savings and consumptions setting of
Section 2.2.2 and example 1 in VanWeert et al. (2010). Supposewe
have a fixed yearly income α(> 0) but also a fixed liability of one
every five years over a period of 25 years. Then, the deterministic
cash flow stream equals

αl =


α − 1 if l = 5k, k = 1, . . . , 5
α otherwise, 0 ≤ l < 26

with the cash flows α5k being negative, when α < 1. As shown in
Van Weert et al. (2010) conditions (24) will be satisfied when the
yearly income α satisfies

α > α⋆
=

1 − e25µ

1 − e26µ
1 − eµ

1 − e5µ
. (38)

As for conditions (24), conditions (34) will be fulfilled when5k
l=0 αl ≥ 0 for k = 1, . . . , 5 as these are the only years in which

negative cash flows are involved. These latter conditions are
equivalent to

(5k + 1)α − k ≥ 0, k = 1, . . . , 5

⇔α ≥ αmax = max
k=1,...,5

k
5k + 1

=
5
26

≈ 0.1923.

A simple calculation shows that αmax > α⋆ for µ > 0.
For different combinations of µ and σ , and for different values

of α we will compare p⋆,maxi=1,...,5 pi and pmin. We will report
also the values of p′

max, pmax andmaxi=1,...,5 p′

i . Note that it has only
sense to report the value of pmin when α > 5

26 ≈ 0.1923. Further,
the value of α⋆ for µ = 0.07 and µ = 0.10 is according to (38)
0.1591 and 0.1455 respectively. For values of α less than α⋆ the
entries in the table are also empty. From the numerical results in
Table 1 we can conclude that when α increases p⋆ decreases to
become nearly zero for values of α larger then 0.30. This means
that in such case the convex lower bound can be used for all
relevant probability levels. We observe that pmin decreases when
µ increases or σ decreases, as could be seen from the expression
(36). In this example, p′

max is smaller than pmax such that p⋆ equals
pmax. As proven in Lemma 2 we find that p⋆

≤ maxi=1,...,5 pi. We
also observe that pmin is too high compared to p⋆.

In view of our comment that a lower bound µ⋆ given by (29) on
the drift µ is a sufficient condition for the conditions (24) to hold,
relation (35) in the application to optimal portfolio selection in Van
Weert et al. (2010) should be replaced by

{π | µ(π) > µ⋆
} ⊂ Θ = {π | E[Vi(π)] > 0; i = 0, . . . , n − 1}.

Similarly, relation (45) inVanWeert et al. (2010) should be adapted
in the numerical illustration, however without any consequences
for the validity of the reported results. The value 0.0242 of µ⋆ in
this example coincides precisely with the one obtained by (29).

In the next section we will have a closer look at the reserving
problem discussed in Section 2.3 of Van Weert et al. (2010).

4. Provisions for future obligations

In this section we will correct the reasoning of Van Weert
et al. (2010) leading to the main result. Further we show how
this provisioning problem can be transformed into a saving and
consumption problem by inverting the time axis.

4.1. General results

We shortly recall the problem description and some notations
from Dhaene et al. (2005) and Van Weert et al. (2010). For the
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Table 1
Minimal probability level.

α (µ, σ) p′
max maxi=1,...,5 p′

i p⋆
= pmax maxi=1,...,5 pi pmin

0.15 (0.07, 0.15) – – – – –
(0.10, 0.15) 9.9189E−4 0.0077 0.5487 0.9844 –
(0.10, 0.20) 0.0188 0.0491 0.6235 0.9875 –

0.16 (0.07, 0.15) 3.2287E−4 0.0090 0.6199 0.9976 –
(0.10, 0.15) 6.3914E−4 0.0165 0.3341 0.7040 –
(0.10, 0.20) 0.0164 0.0840 0.4743 0.7332 –

0.18 (0.07, 0.15) 1.0018E−5 0.0107 0.1896 0.4802 –
(0.10, 0.15) 3.7136E−7 0.0012 0.0361 0.1846 –
(0.10, 0.20) 3.2536E−4 0.0231 0.1384 0.3454 –

0.20 (0.07, 0.15) 5.0928E−15 2.2757E−4 0.0113 0.0635 0.1721
(0.10, 0.15) 3.5659E−18 4.6831E−6 5.2586E−4 0.0067 0.0477
(0.10, 0.20) 2.7000E−10 0.0012 0.0129 0.0599 0.1883

0.25 (0.07, 0.15) 1.3768E−64 3.2973E−14 1.9944E−8 8.2588E−4 0.0642
(0.10, 0.15) 2.4859E−76 2.0219E−17 2.4694E−11 1.3823E−10 0.0093
(0.10, 0.20) 1.5218E−43 1.0606E−9 8.6283E−7 2.8758E−6 0.0835

0.30 (0.07, 0.15) 3.0374E−95 3.4301E−29 1.2646E−16 1.1496E−15 0.0516
(0.10, 0.15) 1.0147E−112 2.2990E−34 2.6483E−21 1.4794E−20 0.0052
(0.10, 0.20) 0.0 3.2296E−19 1.8026E−12 3.2804E−12 0.0510

provisioning problem we consider a sequence of deterministic
obligationsα1, . . . , αn due at time1, . . . , n respectively. In order to
be able tomeet these obligations a provisionhas to be set up at time
zero. The obligations can take positive or negative values, except
for αn which has to be positive in view of the imposed conditions
in the main result.

We consider the stochastically discounted value Rk at time k of
all future obligations from time k on:

Rl =

n
k=l+1

αkeZl,k , l = 0, . . . , n − 1, (39)

with Zl,k = −
k

j=l+1 Yj, for k = l + 1, . . . , n. The goal is to
approximate the distribution function of R0 which, however, can
become negative. Therefore, we consider the stochastic provision
S0 available at time zero defined as:

S0 = max[R0, 0]. (40)

We note that (39) is of the general form (1). Again, wewill focus on
the lower bound approximation, denoted as Rℓ

0 and Sℓ
0 respectively,

and obtained by conditioning on a random variable Λ of the form
(4) with coefficients βj equal to, see Dhaene et al. (2005):

βj = −

n
k=j

αkek(−µ+σ 2), (41)

for j = 1, . . . , n with µ the drift and σ the standard deviation
of the yearly log returns Yj. This leads to the lower bound
approximation Rℓ

0:

Rℓ
0

d
=

n
j=1

αje
−jµ+


1− 1

2 r
2
j


jσ 2

+rj
√
jσΦ−1(U)

, (42)

with U ∼ U(0, 1) and Φ the standard normal cdf. The correlation
coefficients rj are given by

rj =

−

j
k=1

βk

√
j


n

k=1
β2
k

, j = 1, . . . , n. (43)

In view of (40) and (42) we study the function

f (p) =

n
j=1

αje
−jµ+


1− 1

2 r
2
j


lσ 2

+rj
√
jσΦ−1(p)

, p ∈ (0, 1) (44)

so that Sℓ
0

d
= max[f (U), 0]. Therefore, we change from the variable

p to x, (18), and introduce the function

h(x) =

n−1
l=0

an−lxrn−l
√
n−l, x ∈ (0, +∞), (45)

with an−l = αn−le−(n−l)µ+(1− 1
2 r

2
n−l)(n−l)σ 2

having the same sign
pattern as αn−l for l = 0, . . . , n − 1. Note that we changed the
running variable j to n − l going from f to h such that
the function h takes the form of a generalized polynomial
with exponents rn−l

√
n − l listed in descending order when the

sequence (rn−l
√
n − l)l is decreasing. We state the analogue of

Lemma 2.

Lemma 4. 1. Let h be defined by (45) and βj by (41). If βj < 0 for
j = 1, . . . , n, then h(x) > 0 and h′(x) > 0 for x ∈ (x⋆, +∞)
with x⋆

= max(xmax, x′
max), where xmax stands for the largest zero

of h and x′
max for the largest zero of h′.

2. Let f be defined by (44) and βj by (41). If βj < 0 for j = 1, . . . , n,
then there exists a p⋆

= Φ
 1

σ
log x⋆


, with x⋆ determined in

assertion 1, such that f (p) > 0 and f ′(p) > 0 for p ∈ (p⋆, +∞).

Proof. The reasoning is similar to the proof of Lemma 2 and based
on an application of Descartes’ rule of sign to the generalized
polynomials h(x) and h′(x) with

h′(x) =

n−1
l=0

an−lxrn−l
√
n−l−1rn−l

√
n − l, x ∈ (0, +∞),

where in view of (43) the sequence (rn−l
√
n − l)l is decreasing in l

whenβj < 0 for all j ∈ {1, . . . , n}, which in turn implies that rn−l >

0 for all l ∈ {0, . . . , n − 1}. In particular βn = −αnen(−µ+σ 2) < 0
requires αn > 0. Further, since


−
n

j=1 βj
2

>
n

j=1 β2
j , it holds

that rn
√
n > 1 under the assumption for the βj’s. �

The main result of this section is stated in the following
theorem.

Theorem 4. If the conditioning random variable Λ is chosen as
in (4) with coefficients βj given by (41), and if the functions Rl
(39) satisfy

E[Rl] > 0, l = 0, . . . , n − 1, (46)

then the quantiles of Sℓ
0 are given by

Qp[Sℓ
0] = max[f (p), 0] = f (p), p⋆ < p < 1, (47)
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where p⋆ is determined in Lemma 4 and f (p) is defined by (44). The
distribution function of Sℓ

0 follows from

f (FSℓ
0
(x)) = x, x ≥ Qp⋆ [Sℓ

0]. (48)

Proof. Recalling from Van Weert et al. (2010) that for l =

0, . . . , n − 1

E[Rl] = −el(−µ+σ 2)βl+1, (49)

requiring (46) is equivalent to the condition on the βl’s in Lemma 4
which can be applied along the similar lines as in the proof of
Theorem 1, leading to the stated result. �

To conclude, we show how the reserving problem can be
translated to a terminal wealth setting by inverting the time axis
such that the results of Section 3.1 (all symbols of that section are
here denoted by a tilde) can be applied instead of those stated here.
We carry out the following substitutions for l = 0, . . . , n − 1:

α̃l = αn−l

µ̃ = −µ + σ 2

Ỹl = −Yn−l+1 ∼ N


µ̃ −

1
2
σ 2, σ 2


.

Next, we can derive the following relations for l = 0, . . . , n − 1:

β̃l+1 = −βn−l

r̃l = rn−l

Z̃l,k = Zn−k,n−l, l ≤ k

Ṽn = R0

E[Ṽl] = αn−l + E[Rn−l]

f̃ (U)
d
= Ṽ ℓ

n = Rℓ
0

d
= f (U).

Since in general µ̃ will be negative, Theorem 2 will not hold.
Thus

l
k=0 α̃k =

n
i=n−l αi ≥ 0 for all l = 0, . . . , n − 1 or,

equivalently,
n

k=j αk ≥ 0 for all j = 1, . . . , n does not imply that
E[Ṽj−1] > 0. In fact, it is the converse. Conditions (46) will imply a
condition on the obligations.

Theorem 5. Suppose we have deterministic obligations α1, . . . , αn
such that conditions (46) hold. If µ − σ 2 > 0, it holds that

n
k=j

αk ≥ 0 (50)

for j = 1, . . . , n.

Proof. Combining (49) with (41) and changing the running
variable we obtain:

E[Rl] =

n−l−1
t=0

αn−te−(n−l−t)(µ−σ 2).

Denote αn−te−(n−l−t)(µ−σ 2)
= at . Since

n−l−1
t=0 at ≥ 0 we can

apply Theorem 2 with γt = e(n−l−t)(µ−σ 2) which is positive and
strictly decreasing in t for positive µ − σ 2. This leads for all l =

0, . . . , n − 1 to
n−l−1
t=0

αn−t ≥ 0 ⇔

n
k=l+1

αk ≥ 0. �

Note, however, that when conditions (46) hold the reasoning of
the proof of Theorem 3 can be applied when µ − σ 2 is positive.
Thus we can state the following result.

Theorem 6. Suppose we have deterministic obligations α1, . . . , αn
such that conditions (46) hold and let µ−σ 2 be positive. Then, f (p) >

0 and f ′(p) > 0 for pmin < p < 1, with f (p) defined by (44) and

pmin

= max
l=0,...,n−1


Φ


1
2σ 2


(n − l)r2n−l − (n − l − 1)r2n−l−1


+ µ − σ 2

σ

rn−l

√
n − l − rn−l−1

√
n − l − 1

 
.

Proof. Since the conditions (46) hold, relation (49) implies that
all βj < 0, which is equivalent to β̃j > 0 for all j = 1, . . . , n.
Hence r̃l

√
n − l > 0 is strictly decreasing in l. On the other hand

by Theorem 5 we have that
n−l−1

t=0 α̃t ≥ 0 holds for all l =

0, . . . , n − 1. In this way all elements of the proof of Theorem 3
are available so that a similar reasoning leads to

pmin

= max
l=0,...,n−1


Φ


1
2σ

2

(n − l)r̃2l − (n − l − 1)r̃2l+1


− µ̃

σ

r̃l
√
n − l − r̃l+1

√
n − l − 1

 
.

Carrying out the substitution mentioned above gives the stated
expression for pmin. �

5. Conclusion

We corrected the reasoning that led to the results in VanWeert
et al. (2010)which show thatwhen allowing someof the cash flows
to be negative, convex order lower bound approximations can still
be used. In particular we showed these results for the choice (4) of
the conditioning random variable Λ when the cash flows are such
that all expected surpluses after saving or withdrawal are strictly
positive. Further we proved that imposing the stronger condition
(34) on the cash flows is a sufficient condition for these expected
surpluses to be strictly positive. These results significantly expand
the scope of problems and cash flow patterns for which the
quantiles of the terminal wealth can be accurately approximated.
In addition, we derived an interval for the probability level in
which the quantiles of the lower bound approximation can be
computed. Further, we showed how by an inversion of the time
axis the provisioning of future obligations can be transformed into
the savings and terminal wealth problem.
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