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Abstract

This paper develops a unifying framework for allocating the aggregate capital of a financial
firm to its business units. The approach relies on an optimisation argument, requiring that
the weighted sum of measures for the deviations of the business unit’s losses from their re-
spective allocated capitals be minimised. The approach is fair insofar as it requires capital to
be close to the risk that necessitates holding it. The approach is additionally very flexible in
the sense that different forms of the objective function can reflect alternative definitions of
corporate risk tolerance. Owing to this flexibility, the general framework reproduces several
capital allocation methods that appear in the literature and allows for alternative interpreta-
tions and possible extensions.
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1 Introduction

The level of the capital held by a bank or an insurance company is a key issue for its stakeholders.
The regulator, primarily sharing the interests of depositors and policyholders, establishes rules to
determine the required capital to be held by the company. The level of this capital is determined
such that the company will be able to meet its financial obligations with a high probability as
they fall due, even in adverse situations. Rating agencies rely on the level of available capital to
assess the financial strength of a company. Shareholders and investors alike are concerned with
the risk of their capital investment and the return that it will generate.

The determination of a sufficient amount of capital to hold is only part of a larger risk man-
agement and solvency policy. The practice of Enterprise Risk Management (ERM) enhances
identifying, measuring, pricing, and controlling risks. An important component of an ERM
framework is the exercise of capital allocation, a term referring to the subdivision of the aggre-
gate capital held by the firm across its various constituents, e.g. business lines, types of exposure,
territories or even individual products in a portfolio of insurance policies.

Most financial firms write several lines of business and may want their total capital allocated
across these lines for a number of reasons. First, there is a need to redistribute the total (fric-
tional or opportunity) cost associated with holding capital across various business lines so that
this cost is equitably transferred back to the depositors or policyholders in the form of charges.
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Secondly, the allocation of expenses across lines of business is a necessary activity for financial
reporting purposes. Thirdly, capital allocation provides for a useful device of assessing and com-
paring the performance of the different lines of business by determining the return on allocated
capital for each line. Comparing these returns allows one to distinguish the most profitable busi-
ness lines and hence may assist in remunerating the business line managers. Finally, allocating
capital may help to identify areas of risk consumption within a given organisation and support
the decision making concerning business expansions, reductions or even eliminations.

There is a countless number of ways to allocate the aggregate capital of a company to its
different business units. Mutual dependencies that may exist between the performances of the
various business units make capital allocation a non-trivial exercise. Accordingly, there is an
extensive amount of literature on this subject with a wide number of proposed capital allocation
algorithms. Cummins (2000) provides an overview of several methods suggested for capital al-
location in the insurance industry and relates capital allocation to management decision making
tools such as RAROC (risk-adjusted return on capital) and EVA (economic value added). Myers
and Read Jr. (2001) consider capital allocation principles based on the marginal contribution of
each business unit to the company’s default option. LeMaire (1984) and Denault (2001) discuss
capital allocations based on game theoretic considerations, where a risk measure is used as a
cost functional. In the case of coherent risk measures (see Artzner et al. (1999)), such capi-
tal allocations reduce to subdivisions according to marginal costs. Overbeck (2000) considers
marginal contributions to the expected shortfall risk measure in a credit risk context. In closely
related works, marginal (‘Euler’) capital allocations are proposed within a portfolio optimisation
context by Tasche (2004) and an axiomatic allocation system is proposed by Kalkbrener (2005).
A commentary on the various approaches to allocating capital has appeared in Venter (2004). A
recent work by Kim and Hardy (2008) proposed a method based on a solvency exchange option
and which explicitly accounts for the notion of limited liability.

Panjer (2001) considers the particular case of multivariate normally distributed risks and
provides an explicit expression of marginal cost based allocations, when the risk measure used
is Tail Value-at-Risk (TVaR). Landsman and Valdez (2003) extends these explicit capital alloca-
tion formulas to the case where risks belong to the class of multivariate elliptical distributions,
for which the class of multivariate normal is a special case. Dhaene et al. (2008) re-derive the
results of Landsman and Valdez (2003) in a more straightforward manner and apply these to
sums that involve normal as well as lognormal risks. In Valdez and Chernih (2003), expressions
for covariance-based allocations are derived for multivariate elliptical risks. Tsanakas (2004)
studies allocations where the relevant risk measure belongs to the class of distortion risk mea-
sures, while Tsanakas (2008) extends these allocation principles to the more general class of
convex risk measures including the exponential risk measures. By considering the link between
solvency and a fair rate of return, Sherris (2006) developed allocation principles consistent with
the economic value of a financial institution’s balance sheet. Furman and Zitikis (2008b) in-
troduce the class of weighted risk capital allocations “which stems from the weighted premium
calculation principle”.

The multitude of allocation methods proposed in the literature can be bewildering, with the
justifications of allocation approaches varying between e.g. economic (Tasche, 2004), game-
theoretic (Denault, 2001), and axiomatic (Kalkbrener, 2005) criteria, while some authors doubt
the purpose itself of allocating capital (Gründl and Schmeiser, 2007; Phillips et al., 1998; Venter,
2004).

This paper constructs a unifying framework designed to address specific decision criteria in
a comprehensive yet still highly stylised setting. We consider capital allocation as the outcome
of a particular optimisation problem, in which the weighted sum of measures for the deviations
of the business unit’s losses from their respective allocated capitals is minimised. The proposed
approach is justified as follows:
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• The idea of capital being ‘close’ to the risk it is being allocated to is intuitive because
allocated capital should be a reflection of the associated risk. Moreover, such closeness
models a notion of fairness within an organisation: risky portfolios are penalised, less
risky ones are rewarded.

• The objective function of our optimisation approach relies crucially on the function used to
weigh, that is, define the significance, of different scenarios (states of the world). Conse-
quently, capital is allocated such that it matches closely the risk under particular scenarios
considered adverse by management. These may be scenarios affecting the whole portfolio
or isolated business units, extreme or less extreme, depending solely on the company’s
aggregate risk or on broader market conditions. Thus the proposed approach allows the
flexibility of aligning capital allocation with management’s different notions of risk toler-
ance.

It is then shown that many capital allocation approaches appearing in the literature can be
seen as special cases of our more general framework. Thus different allocation approaches,
studied through a common framework, are made comparable and are offered an alternative
interpretation. A quadratic deviation criterion gives rise to allocations that generally have the
form of expectations. Allocations based on well-known risk measures such as the Conditional
Tail Expectation (CTE) (e.g. as in Overbeck (2000)) as well as allocations taking into account
the insurer’s default option (e.g. as in Sherris (2006)) are derived in this setting. An absolute
deviation criterion gives rise to quantile-based allocations, whereby diversification is reflected
by lowering the confidence level of VaR measures applied at sub-portfolio level. In both cases,
the allocations may or may not reflect the dependence structure of the portfolio, via dependence
between the individual and the aggregate risks.

The purpose of our approach is not to choose a “best possible” capital allocation method, but
instead, by considering very different capital allocation formulas as part of the same framework
in order to make these more comparable and mutually illuminating.

We note that mathematical results related to the material in this paper have been presented
by Zaks et al. (2006). These authors work in a premium allocation context, restricting them-
selves to quadratic deviation criteria and do not use the device of weighting different scenarios;
the range of allocation approaches derived in that paper is therefore narrower in scope. It is to be
noted that the idea of deriving capital allocation via optimisation arguments was also discussed
by Dhaene et al. (2003) and Laeven and Goovaerts (2004). However, Dhaene et al. (2003)
is within the scope of our general framework while Laeven and Goovaerts (2004) generalizes
Dhaene et al. (2003) but in a different direction than ours.

The structure of the rest of the paper is as follows. In Section 2, risk measures and the
capital allocation problem are discussed and an overview of some popular allocation methods is
given. In Section 3, which forms the main contribution of the paper, a unifying optimal capital
allocation approach is presented. From this general approach, a multitude of special cases is
derived. Finally, brief conclusions are given in Section 4.

2 Capital allocation

2.1 Risk Measures

A risk measure is a mapping ρ from a set Γ of real-valued random variables defined on a proba-
bility space (Ω,F ,P) to the real line R:

ρ : Γ→ R : X ∈ Γ→ ρ [X] . (1)
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The random variable X refers to the loss associated with conducting a business. In actuar-
ial science, risk measures have traditionally been used for determining insurance premiums
(Goovaerts et al. (1984)). More recently, however, they have been applied in a risk manage-
ment context, with ρ [X] representing the amount of capital to be set aside in order to make the
loss X an acceptable risk; see Artzner et al. (1999).

Some well known properties that risk measures may or may not satisfy are law invariance,
monotonicity, positive homogeneity, translation invariance (or equivariance) and subadditivity.
They are formally defined as:

• Law invariance: For any X1, X2 ∈ Γ with P[X1 ≤ x] = P[X2 ≤ x] for all x ∈ R, ρ[X1] =
ρ[X2].

• Monotonicity: For any X1, X2 ∈ Γ, X1 ≤ X2 implies ρ [X1] ≤ ρ [X2].

• Positive homogeneity: For any X ∈ Γ and a > 0, ρ [aX] = aρ [X].

• Translation invariance: For any X ∈ Γ and b ∈ R, ρ [X + b] = ρ [X] + b.

• Subadditivity: For any X1, X2 ∈ Γ, ρ [X1 +X2] ≤ ρ [X1] + ρ [X2].

Artzner et al. (1999) call any risk measure that satisfies the last four properties a coherent
risk measure. Föllmer and Schied (2002) provide weaker sets of properties and discuss the
desirability or otherwise of the properties of coherent risk measures.

2.2 The allocation problem

Consider a portfolio of n individual losses X1, X2, ..., Xn materialising at a fixed future date T .
Assume that (X1, X2, ..., Xn) is a random vector on the probability space (Ω,F ,P). Throughout
the paper, we will always assume that any loss Xi has a finite mean. The distribution function
P [Xi ≤ x] of Xi will be denoted by FXi (x).

The aggregate loss is defined by the sum

S =
n∑
i=1

Xi, (2)

where this aggregate loss S can be interpreted as:

• the total loss of a corporate, e.g. an insurance company, with the individual losses corre-
sponding to the losses of the respective business units;

• the loss from an insurance portfolio, with the individual losses being those arising from
the different policies; or

• the loss suffered by a financial conglomerate, while the different individual losses corre-
spond to the losses suffered by its subsidiaries.

It is the first of these interpretations we will use throughout this article. Hence S is the
aggregate loss faced by an insurance company and Xi the loss of business unit i. We assume
that the company has already determined the aggregate level of capital and denote this total risk
capital by K. (This may or may not include technical provisions, but is not reflective of market
premiums). The company now wishes to allocate this exogenously given total risk capital K
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across its various business units, that is, to determine non-negative real numbers K1, . . . ,Kn

satisfying the full allocation requirement:

n∑
i=1

Ki = K. (3)

This allocation is in some sense a notional exercise; it does not mean that capital is physically
shifted across the various units, as the company’s assets and liabilities continue to be pooled.
The allocation exercise could be made in order to rank the business units according to levels
of profitability. This task can be performed, for example, by determining the returns on the
allocated capital for the respective business units.

Given that a capital allocation can be carried out in a countless number of ways, additional
criteria must be set up in order to determine the most suitable. A reasonable start is to require
the allocated capital amounts Ki to be ‘close’ to their corresponding losses Xi in some appro-
priately defined sense. This underlies the approach proposed in the present paper. Prior to
introducing the idea of ‘closeness’ between individual loss and allocated capital, we revisit some
well-known capital allocation methods.

2.3 Some known allocation formulas

For a given probability level p ∈ (0, 1), we denote the Value-at-Risk (VaR) or quantile of the loss
random variable X by F−1

X (p). As usual, it is defined by

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1]. (4)

with inf{∅} = +∞ by convention. Below we will also need so-called α–mixed inverse distri-
bution functions; see Dhaene et al. (2002). Therefore, we first define the inverse distribution
function F−1+

X (p) of the random variable X by

F−1+
X (p) = sup {x ∈ R | FX(x) ≤ p} , p ∈ [0, 1], (5)

with sup{∅} = −∞. The α–mixed inverse distribution function F
−1(α)
X of X is then defined as

follows:
F
−1(α)
X (p) = αF−1

X (p) + (1− α)F−1+
X (p), p ∈ (0, 1) α ∈ [0, 1]. (6)

From this definition, one immediately finds that for any random variable X and for all x with
0 < FX(x) < 1, there exists an αx ∈ [0, 1] such thatF−1(αx)

X (FX(x)) = x.

2.3.1 The haircut allocation principle

It is a common industry practice, driven by banking and insurance regulations, to measure stand-
alone losses by a VaR for a given probability level p. In line with such practice, a straightforward
allocation method consists of allocating the capital Ki = γF−1

Xi
(p), i = 1, . . . , n, to business unit

i, where the factor γ is chosen such that the full allocation requirement (3) is satisfied. This
gives rise to the haircut allocation principle:

Ki =
K∑n

j=1 F
−1
Xj

(p)
F−1
Xi

(p), i = 1, . . . , n. (7)

For an exogenously given value of K, this principle leads to an allocation that is not influ-
enced by the dependence structure between the losses Xi of the different business units. In this
sense, one can say that the allocation method is independent of the portfolio context within
which the individual losses Xi are embedded.
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It is well-known that the quantile risk measure is not always subadditive. Consequently,
using the p-quantile as stand-alone risk measure will not necessarily imply that the subportfolios
will benefit from a pooling effect. This means that it may happen that the allocated capitals Ki

exceed the respective stand-alone capitals F−1
Xi

(p).

2.3.2 The quantile allocation principle

The haircut allocation rule (7) allocates to each business unit i a proportion γ of its p-quantile,
with γ chosen such that the full allocation condition is fulfilled. This means that a constant
proportional reduction (or increase) is applied on each of the quantiles F−1

Xi
(p). Instead of

applying a proportional cut on the monetary amounts F−1
Xi

(p), one could adopt the probability
level p equally among all business units and determine an α–mixed inverse with α ∈ [0, 1], such
that the full allocation requirement is again satisfied. This approach gives rise to the quantile
allocation principle with allocated capital amounts Ki given by

Ki = F
−1(α)
Xi

(βp), with α and β such that
n∑
i=1

Ki = K. (8)

Similar to the haircut allocation principle, for a given aggregate capital K, the allocated capitals
Ki are not influenced by the dependence structure between the different losses Xi, i = 1, . . . , n.

The quantile allocation rule is in compliance with the principle of using equal quantiles to
measure the risk associated with the different business units. If it is considered ‘consistent’ to
measure each stand-alone loss Xi by the corresponding quantile F−1

Xi
(p), then it makes sense to

measure each ‘pooled’ loss by F−1(α)
Xi

(βp) where α and β are chosen such that the full allocation
requirement is satisfied. This means that all losses Xi continue to be evaluated at the same
probability level ‘β × p’ and the benefits from pooling are in some sense ‘subdivided neutrally’
across the different business units.

The haircut allocation principle (7) will in general not lead to a quantile-based allocation
with the same probability level for all business units. Companies and regulators when debating
that all risks should be evaluated using the same p-quantile measure may prefer the quantile
allocation principle rather than the haircut principle.

The appropriate levels of α and β are to be determined as the solutions to

K =
n∑
i=1

F
−1(α)
Xi

(βp), (9)

In order to solve this problem, we need to introduce the concept of a comonotonic sum Sc defined
by

Sc =
n∑
i=1

F−1
Xi

(U), (10)

where U is a uniform random variable on (0, 1). It then holds that

K = F
−1(α)
Sc (βp), (11)

which leads us to
βp = FSc(K). (12)

Furthermore, we have that
K = F

−1(α)
Sc (FSc(K)). (13)
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Further additional details can be found in Dhaene et al. (2002). The quantile allocation rule in
(8) can then be re-expressed as

Ki = F
−1(α)
Xi

(FSc (K)) , i = 1, . . . , n, (14)

with α determined from (13).
In the special case that all distribution functions FXi are strictly increasing and continuous,

this rule reduces to
Ki = F−1

Xi
(FSc (K)) , i = 1, . . . , n. (15)

This allocation principle was proposed in Dhaene et al. (2003), where it was derived as the
solution of an appropriate optimisation problem; See also Section 3.3. Notice that for strictly
increasing and continuous distribution functions FXi , the quantile allocation principle can be
considered as a special case of the haircut allocation principle (7) by choosing p = FSc (K).

2.3.3 The covariance allocation principle

The covariance allocation principle proposed by e.g. Overbeck (2000) is given by

Ki =
K

Var [S]
Cov [Xi, S] , i = 1, . . . , n, (16)

where Cov[Xi, S] is the covariance between the individual loss Xi and the aggregate loss S
and Var[S] is the variance of the aggregate loss S. Because clearly the sum of these individual
covariances is equal to the variance of the aggregate loss, the full allocation requirement is
automatically satisfied in this case.

The covariance allocation rule, unlike the haircut and the quantile allocation principles, ex-
plicitly takes into account the dependence structure of the random losses (X1, X2, ..., Xn). Busi-
ness units with a loss that is more correlated with the aggregate portfolio loss S are penalised
by requiring them to hold a larger amount of capital than those which are less correlated.

2.3.4 The CTE allocation principle

For a given probability level p ∈ (0, 1), the Conditional Tail Expectation (CTE) of the aggregate
loss S is defined as

CTEp [S] = E
[
S | S > F−1

S (p)
]
. (17)

At a fixed level p, it gives the average of the top (1 − p)% losses. In general, the CTE as a
risk measure does not necessarily satisfy the subadditivity property. However, it is known to
be a coherent risk measure in case we restrict to random variables with continuous distribution
function. See e.g. Acerbi and Tasche (2002) and Remark 4.2.3. in Dhaene et al. (2006).

The CTE allocation principle, for some fixed probability level p ∈ (0, 1), has the form

Ki =
K

CTEp [S]
E
[
Xi

∣∣S > F−1
S (p)

]
, i = 1, . . . , n (18)

In the particular case that K = CTEp [S], formula (18) essentially reduces to the “contributions
to expected shortfall” allocation suggested by Overbeck (2000) and, as a special case, by Denault
(2001). In fact, the CTE allocation principle is a special case of marginal or Euler allocations
discussed in detail by Tasche (2004).

The CTE allocation rule explicitly takes into account the dependence structure of the random
losses (X1, X2, ..., Xn). Imterpreting the event ‘S > F−1

S (p)’ as ‘the aggregate portfolio loss S is
large’, we see from (18) that business units with larger conditional expected loss, given that the
aggregate loss S is large, will be penalised with a larger amount of capital required than those
with lesser conditional expected loss.
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2.3.5 Proportional allocations

The capital allocation methods we have discussed so far can also be viewed as special cases of
a more general class. Each member of this class is obtained by first choosing a risk measure ρ
and then attributing the capital Ki = αρ [Xi] to each business unit i, i = 1, . . . , n. The factor
α is chosen such that the full allocation requirement (3) is satisfied. This gives rise to the
proportional allocation principle:

Ki =
K∑n

j=1 ρ[Xj ]
ρ[Xi], i = 1, . . . , n. (19)

The allocation principles discussed in the previous subsections follow from (19) by choosing
the appropriate risk measure ρ:

Haircut allocation: ρ[Xi] = F−1
Xi

(p), (20)

Quantile allocation: ρ[Xi] = F−1
Xi

(FSc (K)) with α from (13), (21)

Covariance allocation: ρ[Xi] = Cov [Xi, S] , and (22)

CTE allocation: ρ[Xi] = E
[
Xi

∣∣S > F−1
S (p)

]
. (23)

We note that in the last two allocations, the risk measure ρ(X) does not depend only on the
distribution of X, that is, ρ is not law invariant. If ρ is law invariant (first two allocations), the
proportional allocation derived from ρ is not influenced by the dependence structure between
the losses Xi of the different business units.

Let us assume that stand-alone losses are measured by a risk measure ρ. This means that
K = ρ[S] and also that the risk of business unit i, considered as a stand-alone unit, is measured
by ρ[Xi]. From (19) one finds that in case of a proportional allocation, each business unit
benefits from a pooling effect in the sense that Ki ≤ ρ[Xi] if and only if

K = ρ[S] ≤
n∑
j=1

ρ[Xj ]. (24)

This condition is fulfilled for subadditive risk measures ρ. As we have observed before, the
haircut allocation method, which chooses a VaR as a stand-alone risk measure, may lead to a
positive or a negative pooling effect. On the other hand, choosing Tail Value-at-Risk (TVaR) as
stand-alone risk measure such as in the CTE allocation method, will lead to Ki ≤ ρ[Xi].

In Section 3, we develop a unifying optimal capital allocation approach and show that the
quantile allocation (21), the covariance allocation (22) and the CTE allocation (23) fall as spe-
cial cases of this approach. In contrast, the haircut allocation (20) does not seem to be recon-
cilable with our general framework. Note however that for strictly increasing and continuous
distribution functions FXi , the quantile allocation principle can be considered as a special case
of the haircut allocation principle by choosing p = FSc (K).

2.3.6 Location-scale families of distributions

This section investigates the relationship that exists between the different allocation rules pre-
sented above, in case the losses Xi belong to the same location-scale family of distributions.
Herewith, we assume that there exists a random variable Z with a zero mean and constants
ai > 0 and bi such that

Xi
d= aiZ + bi, i = 1, . . . , n, (25)

where d= stands for ‘equality in distribution’. For simplicity, we further assume that FZ is strictly
increasing and continuous on R.
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Let us first consider the general proportional allocation principle (19) where ρ is assumed to
be law invariant, translation invariant and positive homogeneous. In this case, all ρ[Xi] can be
expressed as

ρ[Xi] = F−1
Xi

(p) = ai + zpbi, i = 1, . . . , n, (26)

where zp is the p-th quantile of Z for some fixed probability level p ∈ (0, 1); see e.g. Dhaene
et al. (2009). This means that under the stated conditions, the proportional allocation principle
(19) reduces to the haircut allocation principle (7).

Next we consider the CTE allocation principle (18) with K = CTEp[S] and where the vector
of business losses (X1, X2, ..., Xn) is multivariate elliptically distributed with E [Xi] = 0, i =
1, . . . , n. The assumption that all Xi have a zero mean may be relevant for practical situations
where a provision equal to the expected value of the aggregate loss is set aside, and in addi-
tion capital is used as a buffer to protect against the ‘uncertainty of the aggregate loss around
its mean’. In this case, each Xi has to be interpreted as the loss of business unit i minus its
expectation.

From Landsman and Valdez (2003), we find that in this case the allocated capitals Ki are
given by

Ki = E
[
Xi

∣∣S > F−1
S (p)

]
=

CTEp[S]
Var[S]

Cov [Xi, S] , i = 1, . . . , n. (27)

Hence, we can conclude that when (X1, X2, ..., Xn) is multivariate elliptically distributed with
zero means and in addition K = CTEp[S], the CTE allocation principle (18) coincides with the
covariance allocation principle (16).

2.3.7 Allocation and the default option

A somewhat different class of approaches, based on the arguments of Myers and Read Jr. (2001),
produces a capital allocation procedure by considering the value of the insurer’s default option.
Since the shareholders of the company have limited liability, in the event of default, i.e. when
S > K, they are not, in principle, obligated to pay the excess loss S − K. Therefore, the
protection that the collective of policyholders purchases is min(S,K), which can be written as

S − (S −K)+. (28)

The quantity (S−K)+ is called the policyholder deficit or alternatively the insurer’s default option.
Myers and Read Jr. (2001) assume that markets are complete and that a proportional in-

crease in the exposure to a particular line of business produces a proportional increase in its
allocated capital. They subsequently allocate the value of the default option via the marginal
contributions of each line of business to that value.

It can be shown that the Myers-Read allocation is given by the general formula (which does
not appear in their paper in this form),

E[(S −K)+] =
n∑
j=1

E[(Xj −Kj) I(S > K)], (29)

where I(A) is the indicator function of event A and expectations may be taken under a risk
neutral measure.

It is worth noting that (29) is not a capital allocation formula in itself, as the K1 . . . ,Kn are
considered as given and only the default option value is allocated. Capital allocation methods
that consider the value of the default options have been derived by e.g. Sherris (2006).
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3 Optimal capital allocations

3.1 General setting

The allocation of the exogenously given aggregate capital K to n parts K1, . . . ,Kn, correspond-
ing to the different subportfolios or business units, can be carried out in an infinite number of
ways, some of which were illustrated in the previous section. At first glance, there seems to be a
lack of a clear motivation for preferring to choose one method over another, although it appears
obvious that different capital allocations must in some sense correspond to different questions
that can be asked within the context of risk management. Hereafter we systematise capital allo-
cation methods by viewing them as solutions to a particular decision problem. For that we need
to formulate a decision criterion, such as:

Capital should be allocated such that for each business unit the allocated capital and the loss are
sufficiently close to each other.

In order to cast this statement in a more formal setting, consider the aggregate portfolio loss
S = X1 + · · · + Xn with aggregate capital K. Once the aggregate capital is allocated, the
difference between aggregate loss and aggregate capital can be expressed as

S −K =
n∑
j=1

(Xj −Kj) , (30)

where the quantity (Xj −Kj) expresses the loss minus the allocated capital for subportfolio j.
Important to notice is that in this setting, the subportfolios are cross-subsidising each other, in
the sense that the occurence of the event ‘Xk > Kk ’ does not necessarily lead to ‘ruin’; such
unfavorable performance of subportfolio k may be compensated by a favorable outcome for one
or more values (Xl −Kl) of the other subportfolios.

We propose to determine the appropriate allocation by the following optimisation problem:

Optimal capital allocation problem: Given the aggregate capital K > 0, determine the allocated
capitals Ki, i = 1, . . . , n, from the following optimisation problem:

min
K1,...,Kn

n∑
j=1

vjE
[
ζj D

(
Xj −Kj

vj

)]
, such that

n∑
j=1

Kj = K, (31)

where the vj are non-negative real numbers such that
∑n

j=1 vj = 1, the ζj are non-negative random
variables such that E[ζj ] = 1 and D is a non-negative function.

Before solving the general optimal capital allocation problem (31), we first elaborate on its
various elements.

vj : The non-negative real number vj is a measure of exposure or business volume of the j-
th unit, such as revenue, insurance premium, etc. These scalar quantities are chosen
such that they sum to 1. Their inclusion in the expression D

(
Xj−Kj

vj

)
normalises the

deviations of loss from allocated capital across business units to make them relatively more
comparable. At the same time, the vj ’s are used as weights attached to the different values

of E
[
ζj D

(
Xj−Kj

vj

)]
in the minimisation problem (31), in order to reflect the relative

importance of the different business units.
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D
(
Xj−Kj

vj

)
: For simplicity, we first assume that vj = 1 and also that ζj ≡ 1. The terms

D (Xj −Kj) quantify the deviations of the outcomes of the losses Xj from their allocated
capital Kj . Minimising the sum of the expectations of these quantities essentially reflects
the requirement that the allocated capitals should be ‘as close as possible’ to the losses they
are allocated to. Examples of distance measures are “squared or quadratic deviations” and
“absolute deviations”.

ζj : The deviations of the losses Xj from their respective allocated capital levels Kj are mea-
sured by the terms E [ζj D (Xj −Kj)]. These expectations involve non-negative random
variables ζj with E[ζj ] = 1 that are used as weight factors to the different possible out-
comes of D (Xj −Kj).
One possible choice for the ζj could be ζj = h(Xj) for some non-negative and non-
decreasing function h. In this case, the heaviest weights are attached to deviations that
correspond to states-of-the-world leading to the largest outcomes of Xj . We will call allo-
cations based on such a choice for the ζj business unit driven allocations.
Another choice is to let ζj = h(S) for some non-negative and non-decreasing function h,
such that the outcomes of the deviations are weighted with respect to the aggregate port-
folio performance. In this case, heavier weights are attached to deviations that correspond
to states-of-the-world leading to larger outcomes of S. Allocations based on such a choice
for the random variables ζj will be called aggregate portfolio driven allocations.
A yet different approach is to let ζj = ζM for all j, where ζM can be interpreted as the loss
on a reference (or market) portfolio. In this case, the weighting is market driven and the
corresponding allocation is said to be a market driven allocation.

In summary, we propose in (31) to fully allocate the aggregate capital K to the different
business units such that the exposure-weighted sum of the expectations of the weighted and
normalised deviations of the losses Xj from their respective allocated capitals Kj , is minimised.

3.2 The quadratic optimisation criterion

3.2.1 General solution of the quadratic allocation problem

In this subsection we discuss optimal allocation under a quadratic criterion, that is, by letting

D(x) = x2. (32)

In this case, the optimal allocation problem (31) reduces to

min
K1,...,Kn

n∑
j=1

E

[
ζj

(Xj −Kj)
2

vj

]
, such that

n∑
j=1

Kj = K. (33)

The solution to this minimisation problem is given in the following theorem.

Theorem 1 The optimal allocation problem (33) has the following unique solution:

Ki = E[ζiXi] + vi

K − n∑
j=1

E[ζjXj ]

 , i = 1, . . . , n. (34)

Proof. Problem (33) can be solved via a Lagrange optimisation. However, we will give a sim-
ple geometric proof, based on an argument given in Zaks et al. (2006) who considered the
minimisation problem (33) in the special case that all ζj ≡ 1.
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Taking into account the relations

E
[
ζj (Xj −Kj)

2
]

= (E [ζjXj ]−Kj)
2 + E

[
ζjX

2
j

]
− (E [ζjXj ])

2 , j = 1, . . . , n,

we have that the solution of the minimisation problem (33) is identical to the solution of the
following minimisation problem:

min
K1,...,Kn

n∑
j=1

(E [ζjXj ]−Kj)
2

vj
, such that

n∑
j=1

Kj = K. (35)

Clearly, eliminating the term
∑n

j=1

(
E
[
ζjX

2
j

]
− (E [ζjXj ])

2
)

does not change the optimal allo-
cation.

By introducing the notation

xj =
Kj − E [ζjXj ]√

vj
j = 1, . . . , n, (36)

we can transform (35) into

min
x1,...,xn

n∑
j=1

x2
j , such that

n∑
j=1

√
vjxj =

K − n∑
j=1

E[ζjXj ]

 . (37)

Let us now interpret the set(x1, x2, . . . , xn) ∈ Rn
∣∣∣ n∑
j=1

√
vjxj =

K − n∑
j=1

E[ζjXj ]


as a hyperplane in Rn. The solution of (37) can then be interpreted as the point (x1, x2, . . . , xn)
on the hyperplane

∑n
j=1
√
vjxj =

(
K −

∑n
j=1 E[ζjXj ]

)
that is closest to the origin (0, 0, . . . , 0).

Hence,

xi =
√
vi

K − n∑
j=1

E[ζjXj ]

 , i = 1, . . . , n.

Translating this result in terms of the Ki via (36) immediately leads to (34).

The capital Ki given by (34) equals the weighted expected loss of Xi, in addition to a term
proportional to the volume of the unit. This second term is a redistribution of the difference
between the amount of aggregate capital K held and

∑n
j=1 E[ζjX]. This redistribution is as-

signed using weights vi based on the ‘volume’ or on some other measure of the ‘riskiness’ of the
corresponding business units.

In the particular case that the volume weights are given by

vi =
E[ζiXi]∑n
j=1 E[ζjXj ]

, (38)

it immediately follows that (34) reduces to

Ki =
K∑n

j=1 E[ζjXj ]
E[ζiXi], i = 1, . . . , n. (39)
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This allocation rule can be seen as a special case of the proportional allocation rule (19), by
choosing

ρ[Xi] = E[ζiXi], i = 1, . . . , n. (40)

Notice that (39) can be rearranged as

Ki − E[ζiXi]
E[ζiXi]

=
K −

∑n
j=1 E[ζjXj ]∑n

j=1 E[ζjXj ]
, i = 1, . . . , n. (41)

In the special case that the aggregate capital K is given by K =
∑n

j=1 E[ζjXj ], the allocation
rule (34) reduces to

Ki = E[ζiXi], i = 1, . . . , n. (42)

This class of allocations is investigated in Furman and Zitikis (2008b) who call the members of
this class weighted risk capital allocations.

3.2.2 Business unit driven allocations

In this subsection we consider the case where the weighting random variables ζi in the quadratic
allocation problem (33) are given by

ζi = hi(Xi), (43)

with hi being a non-negative and non-decreasing function such that E[hi(Xi)] = 1, for i =
1, . . . , n. Hence, for each business unit i, the states-of-the-world to which we want to assign the
heaviest weights are those under which the business unit performs the worst. As earlier pointed
out, we call allocations based on (43) business unit driven allocations. In this case, the allocation
rule (34) can be rewritten as

Ki = E[Xihi(Xi)] + vi

K − n∑
j=1

E[Xjhi(Xj)]

 , i = 1, . . . , n. (44)

For an exogeneously given value of K, the allocations Ki are not influenced by the mutual
dependence structure between the losses Xi of the different business units. In this sense, one
can say that the allocation principle (44) is independent of the portfolio context within which
the Xi’s are embedded, and hence, is indeed business unit driven. Such allocations might be
a useful instrument for determining the performance bonuses of the business unit managers,
in case one assumes that each manager should be rewarded for the performance of his own
business unit, but not extra rewarded (or penalised) for the interrelationship that exists between
the performance of his business unit and that of the other units of the company. One should
however note that disregarding in this way diversification between business units, the allocation
may give incentives to managers that are at odds with overall portfolio optimization criteria.

The law invariant risk measure E[Xihi(Xi)] assigns to any loss Xi the expected value of the
weighted outcomes of this loss, where higher weights correspond to larger outcomes of the loss,
that is, to more adverse scenarios. Risk measures and premium principles of this general type
have been proposed and investigated in Heilmann (1989), Tsanakas (2007) and Furman and
Zitikis (2008a).

A particular choice of the random variables hi(Xi) considered in (44) is given by

hi(Xi) =
I
(
Xi > F−1

Xi
(p)
)

1− FXi

(
F−1
Xi

(p)
) , i = 1, . . . , n, (45)
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for some p ∈ (0, 1). In this case, we find that E[Xihi(Xi)] transforms into

E[Xihi(Xi)] = CTEp [Xi] , i = 1, . . . , n. (46)

More generally, consider the random variables hi(Xi) defined by

hi(Xi) = g′
(
FXi(Xi)

)
, i = 1, . . . , n, (47)

with g : [0, 1] → [0, 1] an increasing and concave function with derivative g′ if it exists, and FX
the decumulative function of X. We then find that

E[Xihi(Xi)] = E[Xi g
′ (FXi(Xi)

)
], i = 1, . . . , n, (48)

and E[Xihi(Xi)] is a concave distortion risk measure, also called spectral risk measure. See
Wang (1996), Acerbi (2002), or Dhaene et al. (2006).

Other examples of risk measures of the form E[Xihi(Xi)] are the standard deviation princi-
ple, the Esscher principle and the exponential principle. These are summarised in Table 1.

Defining the volumes vi by

vi =
E[Xihi(Xi)]∑n
j=1 E[Xjhj(Xj)]

, i = 1, . . . , n, (49)

we find that the allocation principle (44) reduces to

Ki =
K∑n

j=1 E[Xjhj(Xj)]
E[Xihi(Xi)], i = 1, . . . , n, (50)

which is a special case of the proportional allocation principles discussed in Section 2.3.5.

Table 1: Business unit driven capital allocation
Reference hi(Xi) E[Xihi(Xi)]
Standard deviation principle
Bühlmann (1970)

1 + a
Xi − E[Xi]

σXi

, a ≥ 0 E[Xi] + aσXi

Conditional tail expectation
Overbeck (2000)

1
1− p

I
(
Xi > F−1

Xi
(p)
)
, p ∈ (0, 1) CTEp [Xi]

Distortion risk measure
Wang (1996), Acerbi (2002)

g′
(
FXi(Xi)

)
, g : [0, 1] 7→ [0, 1],

g′ > 0, g′′ < 0
E
[
Xig

′ (FXi(Xi)
)]

Exponential principle
Gerber (1974)

∫ 1

0

eγaXi

E[eγaXi ]
dγ, a > 0

1
a

ln E
[
eaXi

]
Esscher principle
Gerber (1981)

eaXi

E[eaXi ]
, a > 0

E[Xie
aXi ]

E[eaXi ]

It is to be noted that, with the exception of the CTE allocation, none of the allocation rules
discussed in Section 2 can be readily seen as examples of business unit driven allocation rules
that we discussed here.
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3.2.3 Aggregate portfolio driven allocations

Let us now consider the case where

ζi = h(S), i = 1, . . . , n, (51)

with h being a non-negative and non-decreasing function such that E[h(S)] = 1. In this case,
the states-of-the-world to which we assign the heaviest weights are those under which the ag-
gregate portfolio performs worst. Therefore, we call such allocations aggregate portfolio driven
allocations. The allocation rule (34) can now be rewritten as

Ki = E[Xih(S)] + vi (K − E[Sh(S)]) , i = 1, . . . , n. (52)

Hence, the capital Ki allocated to unit i is determined using a weighted expectation of the loss
Xi, with higher weights attached to states-of-the-world that involve a large aggregate loss S.
Notice that the allocation principle (52) can be reformulated as

Ki = E[Xi] + Cov[Xi, h(S)] + vi (K − E[Sh(S)]) , i = 1, . . . , n. (53)

This means that the capital allocated to the i-th business unit is given by the sum of the expected
loss E[Xi], a loading which depends on the covariance between the individual and aggregate
losses Xi and h(S), plus a term proportional to the volume of the business unit. A strong
positive correlation between Xi and h(S), which reflects that Xi could be a substantial driver of
the aggregate loss S, produces a higher allocated capital Ki. Allocation principles of the form
(52) are closely related to the ‘Euler’ allocations proposed in Tasche (2004).

Using aggregate portfolio driven allocations might be appropriate when one wants to inves-
tigate each individual portfolio’s contribution to the aggregate loss of the entire company. In
other words, the company wishes to evaluate the subportfolio performances, e.g. the returns
on the allocated capitals, in the presence of the other subportfolios. This can provide relevant
information to the company within which it can further be used to evaluate either business
expansions or reductions.

A particular choice of the random variable h(S) considered in (52) is given by

h(S) =
I
(
S > F−1

S (p)
)

1− FS
(
F−1
S (p)

) , i = 1, . . . , n, (54)

for some p ∈ (0, 1). In this case, we find that E[Xih(S)] and E[Sh(S)] transform into

E[Xih(S)] = E
[
Xi

∣∣S > F−1
S (p)

]
, i = 1, . . . , n (55)

and
E[Sh(S)] = CTEp [S] , (56)

respectively. Furthermore, by taking

h(S) = S − E[S], (57)

we find
E[Xih(S)] = Cov [Xi, S] , i = 1, . . . , n (58)

and
E[Sh(S)] = Var[S]. (59)

Other choices for the random variable h(S) and the related expressions for E[Xih(S)] can be
found in Table 2. They correspond to capital allocation principles that have been considered in
Overbeck (2000), Tsanakas (2004), and Tsanakas (2008).
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Defining the exposures vi by

vi =
E[Xih(S)]
E[Sh(S)]

, i = 1, . . . , n, (60)

we find that the allocation principle (52) reduces to the proportional allocation rule

Ki =
K

E[Sh(S)]
E[Xih(S)], i = 1, . . . , n. (61)

Now, the CTE allocation principle (23) that we discussed in Section 2.3.4 follows as a special
case of the allocation principle (61) by choosing h(S) as in (54). Furthermore, taking h(S) as
in (57) means that the allocation principle (61) effectively reduces to the covariance allocation
principle (22) discussed in Section 2.3.3.

Table 2: Aggregate portfolio driven allocations
Reference h(S) E[Xih(S)]

Overbeck (2000) 1 + a
S − E[S]

σS
, a ≥ 0 E[Xi] + a

Cov[Xi, S]
σS

Overbeck (2000)
1

1− p
I
(
S > F−1

S (p)
)
, p ∈ (0, 1) E[Xi|S > F−1

S (p)]

Tsanakas (2004)
g′(FS(S)), g : [0, 1] 7→ [0, 1], g′ > 0,

g′′ < 0
E
[
Xig

′(FS(S))
]

Tsanakas (2008)
∫ 1

0

eγaS

E[eγaS ]
dγ, a > 0 E

[
Xi

∫ 1

0

eγaS

E[eγaS ]
dγ

]

Wang (2007)
eaS

E[eaS ]
, a > 0

E[Xie
aS ]

E[eaS ]

3.2.4 Market driven allocations

Let ζM be a random variable such that market-consistent values of the aggregate portfolio loss
S and the business unit losses Xi are given by

π[S] = E[ζMS] (62)

and
π[Xi] = E[ζMXi], i = 1, . . . , n, (63)

respectively. Further suppose that at the aggregate portfolio level, a provision π[S] is set aside
to cover future liabilities S. Apart from the aggregate provision π[S], the aggregate portfolio has
an available solvency capital equal to (K − π[S]). The solvency ratio of the aggregate portolio is
then given by

K − π[S]
π[S]

. (64)

In order to determine an optimal capital allocation over the different business units, we let
in (31) ζi = ζM , i = 1, . . . , n, thus allowing the market to determine which states-of-the-world
are to be regarded adverse. This yields:

Ki = π[Xi] + vi (K − π[S]) . (65)
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If we now use the market-consistent prices as volume measures, after substituting

vi =
π[Xi]
π[S]

, i = 1, . . . , n, (66)

in (65), we find

Ki =
K

π[S]
π[Xi], i = 1, . . . , n. (67)

Rearranging these expressions leads to

Ki − π[Xi]
π[Xi]

=
K − π[S]
π[S]

, i = 1, . . . , n. (68)

The quantities π[Xi] and (Ki − π[Xi]) can be interpreted as the market-consistent provision and
the solvency capital attached to business unit i, while Ki−π[Xi]

π[Xi]
is its corresponding solvency ratio.

From (68), we can conclude that the optimisation criterion (33) with ζi = ζM , i = 1, . . . , n, and
volume measures given by (66), leads to a capital allocation whereby the solvency ratio for
each business unit is the same and equal to that of the aggregate portfolio. A similar allocation
principle has been proposed by Sherris (2006) within the context of allocating the company’s
total equity to the different business units “to determine an expected return on equity by line of
business”.

3.2.5 Allocation with respect to the default option

An alternative choice for the weighting random variable ζi is given by

ζi = h(S) =
I(S > K)
P[S > K]

, i = 1, . . . , n, (69)

such that only those states-of-the-world that correspond to insolvency are considered when de-
termining the expectations E[Xih(S)]. The allocation rule (34) then becomes

Ki = E [Xi | S > K] + vi (K − E [S | S > K]) . (70)

Notice the similarity between (69) and the choice of h(S) made in (54) which led to the CTE
allocation rule.

Expression (70) can be rearranged as follows:

E[(Xi −Ki) I(S > K)] = viE[(S −K)+], i = 1, . . . , n. (71)

Summing the left and right hand sides of this expression over i = 1, . . . , n, leads to expression
(29). The quantity E[(S −K)+] represents the expected policyholder deficit or alternatively, the
expected value of the default option that shareholders of an insurance company hold, given their
limited liability. The allocation principle in (71) is such that the marginal contribution of each
business unit to the expected value of the policyholder deficit is the same per unit of business
volume, and hence is consistent with the arguments of Myers and Read Jr. (2001).

3.3 The absolute deviation optimisation criterion

In this section we discuss the optimal allocation problem under an absolute deviation criterion,
that is, by letting

D(x) = |x| . (72)
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In this case the optimisation problem (31) reduces to

min
K1,...,Kn

n∑
j=1

E [ζj |Xj −Kj |] , such that
n∑
j=1

Kj = K. (73)

From the relation
|x| = 2 (x)+ − x, (74)

we immediately find that the optimal solution of (73) is identical to the solution of the following
problem:

min
K1,...,Kn

n∑
j=1

E
[
ζj (Xj −Kj)+

]
, such that

n∑
j=1

Kj = K. (75)

This means that the absolute deviation optimisation problem (73) only takes into account the
outcomes of the business unit losses Xj that lead to technical insolvency Xj > Kj in that unit.

In order to solve the optimisation problem (75), we first consider the special case where all
ζj ’s are identical to 1.

Theorem 2 Assuming that F−1+
Sc (0) < K < F−1

Sc (1), the optimal allocation problem

min
K1,...,Kn

n∑
j=1

E
[
(Xj −Kj)+

]
such that

n∑
j=1

Kj = K (76)

has the following solution:

Ki = F
−1(α)
Xi

(FSc(K)), i = 1, . . . , n, (77)

where Sc is defined in (10) and α ∈ [0, 1] follows from

F
−1(α)
Sc (FSc(K)) = K. (78)

Proof. Let α be determined from (78). Then we immediately find from Dhaene et al. (2002)
that

E
[
(Sc −K)+

]
=

n∑
j=1

E
[(
Xj − F−1(α)

Xi
(FSc(K))

)
+

]

≤
n∑
j=1

E
[
(Xj −Kj)+

]
, K ∈

(
F−1+
Sc (0), F−1

Sc (1)
)
,

holds for all (K1,K2, ...,Kn) such that
∑n

j=1Kj = K. This proves the stated result.

We can conclude that the quantile allocation principle (14) considered in Section 2.3.2 is a
solution of the minimisation problem (76). This optimisation problem and its solution were pre-
viously considered in Dhaene et al. (2003) in the particular case that the FXi ’s are all strictly in-
creasing. A proof of Theorem 2 using Lagrange techniques can be found in Laeven and Goovaerts
(2004).

The solution to the general optimisation problem (73) will be expressed in terms of functions
F

(ζi)
Xi

defined as follows:

F
(ζi)
Xi

(x) = E[ζi I(Xi ≤ x)] = E[ζi | Xi ≤ x] FXi(x), i = 1, . . . , n. (79)
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One can prove that each function F
(ζi)
Xi

defines a proper distribution function, which we will
call the ζi–weighted distribution of Xi; see Rao (1997), Furman and Zitikis (2008a) and the
references therein. The decumulative distribution function F (ζi)

Xi
(x) = 1− F (ζi)

Xi
(x) is given by

F
(ζi)
Xi

(x) = E [ζi I(Xi > x)] = E[ζi | Xi > x] FXi(x), i = 1, . . . , n. (80)

A sufficient condition for F (ζi)
Xi

to be continuous is that FXi be continuous. A sufficient condition

for F (ζi)
Xi

to be strictly increasing is that FXi be strictly increasing and that P[ζi > 0] = 1. For any

p ∈ (0, 1) and any α ∈ [0, 1], we denote the α–mixed inverse of F (ζi)
Xi

at level p by
(
F

(ζi)
Xi

)−1(α)
(p).

In the following lemma, we prove that the deviation measure E
[
ζi (Xi −Ki)+

]
can be trans-

formed to a stop-loss premium of Xi with retention Ki, where the expectation is taken with
respect to the ζi–weighted distribution of Xi.

Lemma 3 Let U be a uniform random variable on the unit interval (0, 1). Then it holds that

E
[
ζi (Xi −Ki)+

]
= E

[((
F

(ζi)
Xi

)−1
(U)−Ki

)
+

]
, i = 1, . . . , n. (81)

Proof. From the tower property of the expectation operator, we find

E
[
ζi (Xi −Ki)+

]
= E

[
ζiE
[
(Xi −Ki)+ | ζi

]]
.

Substituting E
[
(Xi −Ki)+ | ζi

]
by
∫ ∞
Ki

P[Xi > x | ζi] dx and changing the order of the integra-

tions, we find

E
[
ζi (Xi −Ki)+

]
=

∫ ∞
Ki

E [ζi P[Xi > x | ζi]] dx

=
∫ ∞
Ki

E [ζi E[I(Xi > x) | ζi]] dx.

Taking into account the tower property once more leads to

E
[
ζi (Xi −Ki)+

]
=
∫ ∞
Ki

E [ζi I(Xi > x)] dx =
∫ ∞
Ki

F
(ζi)
Xi

(x) dx.

The stated result follows then from observing that the distribution function of
(
F

(ζi)
Xi

)−1
(U) is

given by F (ζi)
Xi

so that
∫ ∞
Ki

F
(ζi)
Xi

(x) dx is an expression for the stop-loss premium of
(
F

(ζi)
Xi

)−1
(U)

with retention Ki.

Now we are able to prove our main result concerning the absolute deviation optimisation
problem.

Theorem 4 Let Sc be the comonotonic sum defined by

S
c =

n∑
i=1

(
F

(ζi)
Xi

)−1
(U), (82)
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where the random variable U is uniformly distributed on the unit interval (0, 1). In case F−1+
S

c (0) <
K < F−1

S
c (1), the optimal allocation problem (73) has the following solution:

Ki =
(
F

(ζi)
Xi

)−1(α)
(FScK), i = 1, . . . , n, (83)

where α ∈ [0, 1] follows from
F
−1(α)

S
c (FSc(K)) = K. (84)

Proof. From Lemma 3, we find that the optimisation problem (73) can be rewritten as

min
K1,...,Kn

n∑
j=1

E
[((

F
(ζj)
Xj

)−1
(U)−Kj

)
+

]
, such that

n∑
j=1

Kj = K.

The stated result follows then by applying Theorem 2.

From the theorem above, we can conclude that the mean absolute deviation optimality crite-
rion (73) gives rise to a quantile-based allocation principle: Each allocated capital Ki is given by
the α–mixed inverse of the ζi–weighted distribution function of Xi at a fixed probability level,
which is chosen such that the full allocation requirement is satisfied. From (83), we find that
the optimal allocations Ki satisfy the following conditions:

F
(ζi)
Xi

(Ki) = FSc(K), i = 1, . . . , n. (85)

In the case where
P[ζi > 0] = 1, i = 1, . . . , n, (86)

and the distributions F (ζj)
Xj

are strictly increasing, then the optimal allocations in (83) reduce to

Ki =
(
F

(ζi)
Xi

)−1
(FScK), i = 1, . . . , n. (87)

We end this subsection with an example of an absolute deviation allocation principle. Con-
sider the following choice for the weighting random variables:

ζi =
I(S > K)
P[S > K]

, i = 1, . . . , n. (88)

This means that the optimisation procedure only considers those outcomes that lead to insol-
vency, i.e. the case where S > K, on the aggregate portfolio level. In this instance, the optimi-
sation problem (75) reduces to

min
K1,...,Kn

n∑
j=1

E
[
(Xj −Kj)+ | S > K

]
, such that

n∑
j=1

Kj = K. (89)

From (79), we find that the ζi–weighted distribution function of Xi is given by

F
(ζi)
Xi

(x) = P [Xi ≤ x|S > K] , i = 1, . . . , n. (90)

In the particular case that x = Ki, we find from (85) that:

F
(ζi)
Xi

(Ki) = P [Xi > Ki|S > K] = FSc(K), i = 1, . . . , n. (91)

Hence, capital is allocated such that the conditional probability of a business unit’s loss exceed-
ing its allocated capital, given that the whole company defaults, is identical for all business
units.
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4 Conclusion

In this article, we developed a general and unifying optimisation framework that produces sev-
eral of the capital allocation approaches that are encountered both in the literature and in
practice. This general framework is based on the idea of minimising the sum of the divergences
between the losses and the allocated capital of the different subportfolios.

Depending on how this divergence is defined, several alternative allocation methods arise. In
particular, choice of the functions ζi determines which scenarios (states of the world), e.g. port-
folio or unit-specific, carry most weight in the capital allocation. We believe that this approach
allows for a closer alignment between capital allocation and the definition of management’s risk
tolerance.

Finally, the framework presented in this paper provides the flexibility to produce new capital
allocation methods, by varying, for example, the choices of the weights ζi and vi. This is not an
avenue we pursued here at great lengths but remains a subject of importance for future work.
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H. Bühlmann. Mathematical Methods in Risk Theory. Springer-Verlag, Berlin, 1970.

J.D. Cummins. Allocation of capital in the insurance industry. Risk Management and Insurance
Review, 3(1):7–27, 2000.

M. Denault. Coherent allocation of risk capital. Journal of Risk, 4(1):1–34, 2001.

J. Dhaene, M. Denuit, M.J. Goovaerts, R. Kaas, and D. Vyncke. The concept of comonotonicity in
actuarial science and finance: theory. Insurance: Mathematics and Economics, 31:3–33, 2002.

J. Dhaene, M.J. Goovaerts, and R. Kaas. Economic capital allocation derived from risk measures.
North American Actuarial Journal, 7(2):44–59, 2003.

J. Dhaene, S. Vanduffel, Q. Tang, M.J. Goovaerts, R. Kaas, and D. Vyncke. Risk measures and
comonotonicity: a review. Stochastic Models, 22(4):573–606, 2006.

J. Dhaene, L. Henrard, Z. Landsman, A. Vandendorpe, and S. Vanduffel. Some results on the
CTE based capital allocation rule. Insurance: Mathematics and Economics, 42(2):855–863,
2008.

J. Dhaene, M. Denuit, and S. Vanduffel. Correlation order, merging and diversification. Submit-
ted, 2009. Available at http://www.econ.kuleuven.be/insurance/research.htm.



Optimal Capital Allocation Principles 22
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