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Abstract

This paper contains an overview and an extension of the theory on comonotonicity-
based model-free upper bounds and super-replicating strategies for stock index op-
tions, as presented in Hobson et al. (2005) and Chen et al. (2008). Whereas these
authors only consider index call options, here a uni�ed approach for call and put
options is presented. Considering a uni�ed framework gives rise to an e¢ cient algo-
rithm for calculating upper bounds and for determining the corresponding super-
hedging strategies for both cases. The uni�ed framework also allows to extend sev-
eral existing results, in particular on the optimality of the superhedging strategies.
Several practical issues concerning the implementation of the results are discussed.
In particular, a simpli�ed algorithm is presented for the situation where for some of
the constituent stock in the index there are no options available.

Keywords: index call and put options, comonotonicity, model-free approach, static
super-replicating strategies.

1 Introduction

In this paper we investigate European-type options on an index which is a weighted
sum of stock prices. The usual setup for determining the arbitrage-free price of such an
option consists of �rst postulating a risk-neutral measure and then determining its price
as the expected value of its discounted pay-o¤, where discounting is performed at the
risk-free rate and the expectation is taken with respect to the risk-neutral measure. We
will consider a di¤erent approach. Instead of postulating a risk-neutral measure, we will
look for the best upper bound for the price of the index option under consideration, based

�KU Leuven, Leuven, Belgium. Email: Daniel.Linders@econ.kuleuven.be
yKU Leuven, Leuven, Belgium. Email: Jan.Dhaene@econ.kuleuven.be
zUniversité d�Abomey-Calavi, Cotonou, Benin. Email: hip14@yahoo.fr
xUniversiteit Gent, Gent, Belgium. Email: Michele.Vanmaele@ugent.be

1



on available market information. In particular, we will determine the lowest upper bound
for the price of the index option which is consistent with the observed prices of traded
European options on the individual stocks contained in the index. We will prove that this
upper bound corresponds to the price of the cheapest strategy in a broad class of static
investment strategies with a pay-o¤ that super-replicates the pay-o¤ of the index option.

We �rst consider the in�nite market case, where the prices of the options on the stocks
of which the index is composed are available for all strikes. We prove that in this case,
the cheapest super-replicating strategy for the index option consists of buying for each
individual stock only one type of option on that stock. Armed with the results of the
in�nite market case, we are able to investigate the more realistic �nite market case, where
only a �nite number of options on each individual stock are traded. In the �nite market
case, it turns out that the cheapest super-replicating strategy consists of buying for each
individual stock options with at most two di¤erent strike prices.

The approach followed in this chapter is a model-free approach in the sense that the
upper bound for the index option price and the corresponding super-hedging strategy are
determined from the observed option prices on the individual stocks, without making any
assumption about the underlying risk-neutral measure.

This paper is of a pedagogical nature. It is closely related to earlier work of Hobson
et al. (2005) and Chen et al. (2008). In order to make this paper self-contained, we repeat
their results on index call options. Furthermore, we develop corresponding results for index
put options. Considering the pricing of index call and put options in a uni�ed framework
gives rise to an e¢ cient algorithm for calculating upper bounds and for determining the
corresponding superhedging strategies for both cases. The uni�ed framework also allows
us to extend existing optimality results concerning these superhedging strategies. We
also consider the situation where for some of the constituent stocks in the index there
are no options available. We show how the algorithm for calculating bounds and super-
replicating strategies can be further simpli�ed in this case. One of the aims of our paper is
to make this extended version of the work of Hobson et al. (2005) and Chen et al. (2008)
accessible to a broader audience by simplifying the original proofs and presentations and
by considering several practical aspects concerning the implementation of these results.
Based on the results presented in this paper, Dhaene et al. (2011) and Dhaene et al. (2012)
propose an easy to calculate measure for the implied degree of co-movement behavior in
stock markets.

2 Stocks, the market index and options

Throughout this chapter, we assume a �nancial market1 where n di¤erent (dividend or
non-dividend paying) stocks, labeled from 1 to n, are traded. Current time is 0, while

1We use the common approach to describe the �nancial market via a �ltered probability space�

;F ; (Ft)0�t�T ;P

�
, which satis�es the usual technical conditions of completeness and right-continuity,

and where F0 contains all P - null sets of 
. Price processes of traded �nancial instruments are modeled

as stochastic processes on that probability space which are adapted to the �ltration (Ft)0�t�T .
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the time span under consideration is T years. The price of stock i at time t, 0 � t � T , is
denoted by the non-negative random variable (r.v.) Xi (t). The stochastic price process
of stock i is denoted by fXi (t) j 0 � t � Tg.
In this market, there is a market index which is a linear combination of the n traded

stocks. Denoting the price of this index at time t by S (t), 0 � t � T , we have that

S (t) = w1X1 (t) + w2X2 (t) + : : :+ wnXn (t) ; (1)

where wi; i = 1; 2; : : : ; n; are positive weights that are �xed up front.

We assume that market participants have access to a number of European options
with maturity T . More precisely, they can trade in European calls and puts on the index
as well as on the individual stocks. We recall that the pay-o¤ at time T of a European
call with maturity T and strike K on the index is given by (S (T )�K)+, whereas the
pay-o¤of the corresponding index put option is given by (K � S (T ))+. The time-0 prices
of these index options are denoted by C [K;T ] and P [K;T ], respectively. Similar pay-o¤s
and notations hold for calls and puts on the constituent stocks. In particular, the time-0
prices of calls and puts on stock i are denoted by Ci [K;T ] and Pi [K;T ], respectively.

It is assumed that the �nancial market is arbitrage-free and that there exists a pricing
measure Q, equivalent to the physical probability measure P, such that the current price
of any pay-o¤at time T can be represented as the expectation of the discounted pay-o¤. In
this price-recipe, the discounting factor is e�rT , where r is the continuously compounded
time-0 risk-free interest rate to expiration T , whereas expectations are taken with respect
to Q. For simplicity in notation and terminology, we assume deterministic interest rates.
Notice however that all results hereafter remain to hold in case interest rates are stochastic,
provided the discounting factor e�rT is interpreted as the time-0 price of a T -year zero
coupon bond and the pricing measure Q is interpreted as a �T -year forward measure�
instead of a �risk-neutral measure�.

The no-arbitrage condition gives rise to the following expressions for the European
call and put option prices:

Ci [K;T ] = e
�rTE[(Xi(T )�K)+]; (2)

Pi [K;T ] = e
�rTE[(K �Xi(T ))+]; (3)

and

C [K;T ] = e�rTE[(S(T )�K)+]; (4)

P [K;T ] = e�rTE[(K � S(T ))+]: (5)

In formulae (2), (3), (4) and (5) as well as in the remainder of this text, expectations
of functions of (X1 (T ) ; : : : ; Xn (T )) have to be understood as expectations under the Q-
measure. We call such expectations risk-neutral expectations. Furthermore, the notations
FXi(T ) (x) and FS(T ) will be used for the time-0 cumulative distribution functions (cdf�s) of
Xi (T ) and S (T ) under Q. We will call FXi(T ) (x) and FS(T ) the risk-neutral distributions
of the stock and index prices at time T , respectively.
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In order to avoid unnecessary overloading of the notations, from here on we will omit
the time index T when no confusion is possible. This means e.g. that we will use the
notations Xi; Ci [K] and FXi (x) for Xi (T ) ; Ci [K;T ] and FXi(T ) (x), respectively.

One of the goals of this chapter is to determine the smallest upper bound for the
index call and put option prices C [K] and P [K] which can be expressed as the price of a
portfolio of individual stocks and options on these individual stocks, with a pay-o¤ that
super-replicates the pay-o¤ of the index option under consideration. Solving this problem
numerically by considering any feasible combination of stock options is practically impos-
sible. Indeed, let us consider the simpler problem where we want to determine the lowest
upper bound for the call index option price C [K] which can be expressed as the pricePn

i=1wiCi [Ki] of a super-replicating strategy for this index call option consisting of buy-
ing for each stock i in the index a number of wi call options Ci [Ki] with strike Ki. From a
practical point of view, solving this problem numerically by considering any feasible vector
(K1; K2; : : : ; Kn) of available strikes is impossible. Assuming that the number of traded
strikes per vanilla option is equal to m, this problem comes down to �nding the price of
the cheapest super-replicating strategy among a set of mn possible combinations. In case
of the Dow Jones Index (DJI), which has 30 stocks in the index and an average number
of around 10 traded strikes per individual stock, the number of possible combinations is
of the order 1030. The problem that we want to solve in this chapter is even much more
complex, in the sense that we will not restrict to super-replicating strategies consisting
of only one strike per stock. Instead, we will consider super-replicating strategies which
allow to buy stock options for any traded strike. This example, which is described in
Hobson et al. (2005), clearly illustrates the need for deriving an anaytical solution to the
above-mentioned super-replication problem.

3 Convex order, inverse distributions and comonotonic-
ity

In this section we summarize some de�nitions and results concerning convex order, in-
verse distributions and comonotonicity that will be needed in later sections. All random
variables are assumed to have �nite means.

A r.v. X is said to precede a r.v. Y in convex order sense, notation X �cx Y , if�
E
�
(X �K)+

�
� E

�
(Y �K)+

�
E
�
(K �X)+

�
� E

�
(K � Y )+

� ; for all K 2 R: (6)

From (6) it is clear that X �cx Y intuitively means that Y has larger (upper and lower)
tails than X:

The usual inverse F�1X of the cdf FX of a r.v. X is de�ned by

F�1Xi (p) = inf fx 2 R j FXi(x) � pg ; p 2 [0; 1] ; (7)

with inf ; = +1, by convention. For any x 2 R and p 2 [0; 1] ; the following equivalence
relation holds:

F�1X (p) � x() p � FX (x) : (8)
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An alternative de�nition for the inverse distribution function of FX is given by:

F�1+X (p) = sup fx 2 R j FXi(x) � pg ; p 2 [0; 1] ; (9)

with sup ; = �1, by convention. Both inverses (7) and (9) only di¤er on horizontal
segments of the distribution function FX . The interval

�
F�1+X (0) ; F�1X (1)

�
is a support

of X.
For any number � 2 [0; 1], the alpha inverse F�1(�)X is de�ned as a linear combination of
(7) and (9):

F
�1(�)
X (p) = �F�1X (p) + (1� �)F�1+X (p) ; p 2 (0; 1) : (10)

The random vector (Y1; : : : ; Yn) is said to be comonotonic if

(Y1; : : : ; Yn)
d
=
�
F�1Y1 (U) ; : : : ; F

�1
Yn
(U)
�
; (11)

where U is a uniform (0; 1) r.v. and � d= �is used to denote �equality in distribution�.

Consider the random vector (X1; : : : ; Xn) and the positive weights wi > 0. The
weighted sum S is de�ned by

S =
nX
i=1

wiXi:

The comonotonic modi�cation Sc of the weighted sum S is de�ned by

Sc = w1F
�1
X1
(U) + w2F

�1
X2
(U) + : : :+ wnF

�1
Xn
(U) . (12)

Taking into account that

F�1Xi (U)
d
= Xi; i = 1; 2; : : : ; n; (13)

we immediately �nd that
E [S] = E [Sc] : (14)

Furthermore, the comonotonic sun is always larger in convex order than the sum S:

S �cx Sc: (15)

The convex order inequality (15) can be generalized as follows:

Xi �cx Yi for i = 1; : : : ; n)
nX
i=1

wiXi �cx
nX
i=1

wiF
�1
Yi
(U): (16)

For any � 2 [0; 1] ; the inverse distribution function F�1(�)Sc of a comonotonic sum can
be expressed in terms of the marginal inverse distribution functions F�1(�)Xi

; i = 1; 2; : : : ; n:

F
�1(�)
Sc (p) =

nX
i=1

wiF
�1(�)
Xi

(p) ; p 2 (0; 1) : (17)
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For K 2
�
F�1+Sc (0); F�1Sc (1)

�
, the stop-loss premium E

�
(Sc �K)+

�
of the comonotonic

sum Sc can be decomposed into a linear combination of stop-loss premiums of the mar-
ginals involved:

E
�
(Sc �K)+

�
=

nX
i=1

wiE
�
(Xi �K�

i )+
�
; (18)

where
K�
i = F

�1(�K)
Xi

(FSc (K)) ; i = 1; : : : ; n; (19)

and �K is any element in [0; 1] that satis�es the following relation:X
wiK

�
i = K: (20)

For an extensive overview of the theory of comonotonicity, including proofs of the
results mentioned in this subsection, we refer to Dhaene et al. (2002a). Financial and
actuarial applications of the concept of comonotonicity are described in Dhaene et al.
(2002b). An updated overview of applications of comonotonicity can be found in Deelstra
et al. (2010).

4 The in�nite market case

4.1 From option prices to risk-neutral distributions

In this section, we consider the situation where for each stock i, the prices Ci [K] and
Pi [K] of the stock options are known for any strike K � 0. For obvious reasons, we
call this situation the in�nite market case. All these option prices are known because we
either assume that any strike is traded so that the price of any put and call is observed in
the market, or we assume that Q is known. The �rst approach is called model-free as it
is based on the observed stock option prices, without making any assumption concerning
the pricing measure Q that is actually used by the market. The second approach is called
model-based, as it is based on a particular stock price model, such as the Black & Scholes
model e.g.

From (2) and (3) it follows that

Ci [K] + e
�rTK = Pi [K] + e

�rTE [Xi] . (21)

This relation between the call and the put option prices with the same strike and maturity
is known as the put-call parity. The term e�rTE [Xi] can be interpreted as the zero-strike
call option price:

Ci[0] = e
�rTE [Xi] : (22)

In case it is known that stock i will pay no dividends in [0; T ], we have that Ci[0] = Xi (0).
In general however, one has that

Ci[0] � Xi (0) . (23)
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The put-call parity (21) can also be proven via a no-arbitrage argument. Indeed,
consider the time zero strategy consisting of buying Ci [Ki;j] and investing Ki;je

�rT in the
risk-free account. The pay-o¤ at time T of this strategy is equal to the pay-o¤ at time T
of the time zero strategy consisting of buying the options Pi [Ki;j] and Ci[0]. Given that
both strategies have the same pay-o¤ at time T , they must have the same price at time
0.

The risk-neutral expectation E [Xi] in (21) can also be interpreted as the time-0 forward
price of stock i at time T . Indeed, consider the contract set up at time 0, of which the
buyer pays the stock price Xi at time T , while the seller in return pays a �xed amount P
at time T , which was agreed upon at the deal�s inception. Assuming that P is determined
such that the price of the contract is 0 at time 0, i.e.

0 = e�rTE [Xi � P ] ; (24)

leads to the following expression for P :

P = E [Xi] : (25)

This contract is called a T -year forward contract on stock i, while E [Xi] is called the

time-0 forward price of stock i at time T .

The put-call parity (21) with K = 0 connects the time-0 call option price Ci[0] and
the forward price E [Xi] with the prices of call and put options on stock i.

The risk-neutral distribution function FXi of Xi can be determined from the corre-
sponding call option curve by the following equation:

FXi(x) = 1 + e
rTC 0i[x+]; (26)

where C 0i[x+] is the right derivative of Ci at x; see e.g. Breeden and Litzenberger (1978).
Using the put-call parity, it follows that FXi can also be derived from the corresponding
put option curve:

FXi(x) = e
rTP 0i [x+]: (27)

Given the call or the put option curve, the risk-neutral marginal distribution function
FXi is fully determined. However, the observed stock option prices do not allow us to
specify the multivariate pricing distribution FX1;X2;:::;Xn(x1; x2; : : : ; xn).

In practice, it will never be the case that stock options are traded for allK � 0. Instead,
only at most a �nite number of such options will be traded per individual stock. This more
realistic situation will be investigated in the next section, where we will consider the �nite
market case. However, we will consider the in�nite market case �rst as the results for the
�nite market case will follow rather straightforward from transforming the �nite market
in an (arti�cial) in�nite market. Furthermore, the results for the in�nite market case
presented in this section may be useful in a model-based approach, where a speci�c pricing
measure Q is assumed. In this case the multivariate pricing distribution of the random
vector X � (X1; X2; : : : ; Xn) is speci�ed. Nevertheless, determining the price of the index
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option analytically in this situation is in most cases still not a straightforward exercise,
mainly because of the dependence that exists between the stock prices Xi, i = 1; 2; : : : ; n.
Even in a Black & Scholes setting where the stock prices are driven by correlated geometric
Brownian motions and the stock option prices Ci[K] and Pi [K] can easily be obtained
for all K, the index option prices C[K] and P [K] are di¢ cult to evaluate analytically.
Therefore, the use of an easy computable upper bound in terms of the stock option prices
involved may also in a model-based approach be very helpful as an approximation for the
real price of the index option.

4.2 Upper bounds for index option prices

As before, the notation S is used to denote the value of the index at time T . Hence,

S = w1X1 + w2X2 + : : :+ wnXn; (28)

where wi; i = 1; 2; : : : ; n; are positive weights that are �xed up front. The comonotonic
modi�cation Sc of S is de�ned by

Sc = w1F
�1
X1
(U) + w2F

�1
X2
(U) + : : :+ wnF

�1
Xn
(U) ; (29)

where U is a uniform (0; 1) random variable. We will call Sc the comonotonic index price
at time T .

In practice, we will never observe the outcome of Sc, unless all stock prices (X1; X2; : : : ; Xn)
are comonotonic. Our goal is to �nd reasonable upper bounds for the index option prices
C [K] and P [K] which can be expressed in terms of the information contained in the
observed stock option prices. We start our search for such bounds by deriving upper
bounds for C [K] and P [K] in terms of the cdf of Sc.

Theorem 1 (Upper bounds for index option prices) The prices C [K] and P [K]
of the index options with pay-o¤ at time T given by (S �K)+ and (K � S)+, respectively,
are constrained from above as follows:

C [K] � e�rTE
�
(Sc �K)+

�
; (30)

P [K] � e�rTE
�
(K � Sc)+

�
: (31)

Proof. The inequalities (30) and (31) follow immediately from the characterization (6)
of the convex order relation (15) and by taking into account the expressions (4) and (5)
for index call and put options prices.

The right hand sides of (30) and (31) correspond to the prices of an index call and
put option with strike K in case the dependence structure is the comonotonic one. In the
sequel, we will denote these prices by Cc [K] and P c [K], respectively:

Cc [K] = e�rTE
�
(Sc �K)+

�
; (32)

P c [K] = e�rTE
�
(K � Sc)+

�
; (33)
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and call them the comonotonic call and put option prices.

For K =2
�
F�1+Sc (0); F�1Sc (1)

�
, we know the exact values of the index option prices C [K]

and P [K]. Indeed, it is straightforward to verify that

C [K] =

�
e�rT (E [S]�K) ; K � F�1+Sc (0) ;

0; K � F�1Sc (1) ;
(34)

while

P [K] =

�
0; K � F�1+Sc (0) ;

e�rT (K � E [S]) ; K � F�1Sc (1) :
(35)

In these expressions, e�rTE [S] is equal to the zero-strike index call option price C[0]. It
can be determined from the zero-strike stock option prices:

e�rTE [S] =
nX
i=1

wiCi[0]: (36)

The quantity E [S] can be interpreted as the time-0 forward price of the market index at
time T . From the put-call parity

C [K] + e�rTK = P [K] + e�rTE [S] (37)

for index options, it follows that E [S] can also be determined from observed index call
and put option prices. Notice that for the comonotonic index and its related comonotonic
option prices, the following put-call parity holds:

Cc [K] + e�rTK = P c [K] + e�rTE [S] : (38)

It is straightforward to prove that

C [K] = Cc [K] and P [K] = P c [K] ; if K =2
�
F�1+Sc (0); F�1Sc (1)

�
: (39)

This means that the upper bounds in Theorem 1 coincide with the exact option prices in
this case.

As the values of C [K] and P [K] are explicitely known for K =2
�
F�1+Sc (0); F�1Sc (1)

�
,

in the sequel we will focus on the case where K 2
�
F�1+Sc (0); F�1Sc (1)

�
when considering

upper bounds for index option prices.

In the following theorem, we show that both upper bounds for index options that were
derived in Theorem 1 can be expressed as a linear combination (l.c.) of observed stock
option prices.

Theorem 2 (Cc and P c are l.c.�s of stock option prices) For anyK 2
�
F�1+Sc (0); F�1Sc (1)

�
the comonotonic index option prices Cc [K] and P c [K] can be expressed as

Cc [K] =

nX
i=1

wiCi [K
�
i ] ; (40)

P c [K] =

nX
i=1

wiPi [K
�
i ] ; (41)
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with the K�
i given by

K�
i = F

�1(�K)
Xi

(FSc(K)) ; i = 1; 2; : : : ; n (42)

and where �K is any element in [0; 1] such that

nX
i=1

wiK
�
i = K: (43)

Proof. Taking into account expression (2) for the stock option curve Ci, we can rewrite
the decomposition formula (18) as follows:

Cc [K] =
nX
i=1

wiCi [K
�
i ] ; (44)

which proves (40). Using the put-call parities (21) and (38), one can transform (44) into

P c [K] + e�rTE [S]� erTK =
nX
i=1

wi
�
Pi [K

�
i ] + e

�rTE [Xi]� erTK�
i

�
:

Combining this expression with (43) proves assertion (41).

From the additivity property (17) of quantiles of a comonotonic sum, it follows that
relation (43) which is used for determining �K can be rewritten as

F
�1(�)
Sc (FSc(K)) = K: (45)

In order to be able to calculate the optimal strike prices K�
i one has to determine FSc (K)

and �K . The determination of these quantities is considered in Section 4.5.

The comonotonic call option priceCc [K] corresponds to the price of a super-replicating
strategy for the index call option with pay-o¤(S �K)+ at time T , whereas the comonotonic
put option price P c [K] corresponds to the price of a super-replicating strategy for the
index put option with pay-o¤ (K � S)+ at time T . These statements are proven in the
following theorem.

Theorem 3 (Cc and P c are the prices of static super-replicating strategies) Let
K 2

�
F�1+Sc (0); F�1Sc (1)

�
and consider the index call and put options with pay-o¤ at time

T given by (S �K)+ and (K � S)+, respectively.

1. The pay-o¤ of the static strategy where at time 0, for each stock i; i 2 f1; 2; : : : ; ng,
one buys wi calls Ci [K�

i ] and holds these positions until they expire at time T;
super-replicates the pay-o¤ of the index call option with price C [K]. The price of
this super-replicating strategy is given by Cc [K].

2. The pay-o¤ of the the static strategy where at time 0, for each stock i; i 2 f1; 2; : : : ; ng,
one buys wi puts Pi [K�

i ] and holds these positions until they expire at time T; super-
replicates the pay-o¤ of the index put option with price P [K]. The price of this
super-replicating strategy is given by P c [K].
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Proof. The pay-o¤ at time T of the index option C [K] is given by (
Pn

i=1wiXi �K)+,
while the pay-o¤ at time T of the time-0 strategy consisting of buying wi call options
Ci [K

�
i ] and holding these options until maturity is given by

Pn
i=1wi(Xi � K�

i )+. AsPn
i=1wiK

�
i = K, we have that the following inequality holds: 

nX
i=1

wiXi �K
!
+

�
nX
i=1

wi(Xi �K�
i )+; (46)

which proves that the pay-o¤ of this time-0 strategy super-replicates the pay-o¤ of the
index call option. Obviously, the price of this strategy is given by

Pn
i=1wiCi [K

�
i ], which

according to (40) is equal to Cc [K].
From (46) one �nds that 

K �
nX
i=1

wiXi

!
+

�
nX
i=1

wi(K
�
i �Xi)+: (47)

The left hand side of this inequality is the pay-o¤ at time T of the index put option P [K],
whereas its right hand side equals the pay-o¤ at time T of the time-0 strategy consisting
of buying wi vanilla put options Pi [K�

i ] and holding these options until they expire at
time T . Hence, this static time-0 strategy super-replicates the index put option pay-o¤
(K � S)+. The price of this super-replicating strategy is given by

Pn
i=1wiPi [K

�
i ], which

according to (41) is equal to P c [K].

Theorem 3 shows that in the presence of traded call and put options on the constituent
stocks of the index, an index call option can be superhedged with stock call options, while
an index put option can be superhedged with stock put options. From this observation
we �nd that the price inequalities

C [K] �
nX
i=1

wiCi [K
�
i ]

and

P [K] �
nX
i=1

wiPi [K
�
i ]

remain to hold, without having to make the explicit assumption that the involved option
prices are expectations of discounted pay-o¤s under someQ-measure. The only assumption
that we have to make is that all option prices involved are traded prices in an arbitrage-
free market, implying that a superhedging strategy for the index option is more expensive
than the index option itself. Notice however that in order to prove the equalities (40)
and (41), we have to assume that option prices can be expressed as expectations of their
discounted pay-o¤s.

4.3 The upper bound is the price of the cheapest super-replicating
strategy

The upper bounds that we derived for the index call and put option prices are linear
combinations of n observed stock option prices. To be more precise, the linear combination
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contains wi options on the underlyingXi with strike priceK�
i . The question arises whether

it is possible to derive better upper bounds for the price of both types of index options
within a general class of superhedging strategies consisting of buying or selling call and
put options on the underlying stocks. In order to be able to answer this question, we �rst
have to de�ne this general class of superheding strategies. Hereafter, we use �r.c.� as an
abbreviation for �right continuous�.

De�nition 1 (The class I) The class I consists of all 2n-dimensional functions � �
(�1c; �1p; �2c; �2p : : : ; �nc; �np), of which for each i, the functions �ic : R! R and �ip : R!
R are r.c. jump functions with �ic(y) = �ip(y) = 0 for any y < 0, and having only a �nite
number of jumps in [0;+1). Jumps upwards as well as downwards are allowed.

We will consider the class of investment strategies where for each stock i at current
time 0, stock options can be bought (i.e. holding a long position) or sold (i.e. holding
a short position) for any strike y � 0. The positions taken are assumed to be held until
time T , and then eventually exercised. We describe any such investment strategy by a
vector of functions � 2 I, where for any stock i and any strike y � 0, we interprete �ic (y)
as the number of call options purchased with a strike price smaller than or equal to y.
Similarly, for any stock i and any strike y � 0, the value of �ip (y) is the number of put
options purchased with a strike price smaller than or equal to y. Notice that selling a
number of n options of a certain type can be expressed as buying (�n) of these options.
A jump upwards in one of the components of � corresponds to a long position, whereas
a jump downwards corresponds to a short position. Although the assumption about the
�nite number of jumps can be relaxed, we will keep it here as it is a reasonable assumption
which will always be met in real-life investment strategies where obviously only a �nite
number of strikes will be purchased per stock.

For each stock i, we use the symbol J�ic to denote the �nite set containing all values
of y at which the function �ic (y) jumps, whereas ��ic(y) is used to denote the magnitude
of the jump at y:

��ic(y) = �ic(y)� �ic(y�): (48)

The notation �ic(y�) is used for the left limit lim"#0 �ic(y � ") at y. A positive value
of ��ic(y) means that an amount of ��ic(y) call options Ci [y] is purchased, whereas a
negative value of ��ic(y) corresponds with selling short an amount of ��i(y) of these
options. The functions J�ip and ��ip(y) are de�ned analogously.

The pay-o¤ at time T of the investment strategy � 2 I is given by

Pay-o¤ [�;X] =
nX
i=1

0@X
y2J�ic

(Xi � y)+ ��ic(y) +
X
y2J�ip

(y �Xi)+ ��ip(y)

1A ; (49)

where X � (X1; X2; : : : ; Xn) is the vector of the individual stock prices at time T . The
corresponding price of this investment strategy is given by

Price [�] =
nX
i=1

0@X
y2J�ic

Ci [y] ��ic(y) +
X
y2J�ip

Pi [y] ��ip(y)

1A : (50)
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Introducing Riemann-Stieltjes integrals, we can rewrite the expressions for the pay-o¤
and the price of the investment strategy � 2 I as follows:

Pay-o¤ [�;X] =
nX
i=1

�Z +1

�1
(Xi � y)+ d�ic (y) +

Z +1

�1
(y �Xi)+ d�ip (y)

�
(51)

and

Price [�] =
nX
i=1

�Z +1

�1
Ci [y] d�ic(y) +

Z +1

�1
Pi [y] d�ip(y)

�
: (52)

Herafter, we will use the expressions (51) and (52) to denote pay-o¤s and prices of invest-
ment strategies in I.

Example 1 (Two simple investment strategies ) The investment strategy

�� �
�
��1c; �

�
1p; : : : ; �

�
nc; �

�
np

�
2 I

is de�ned such that for i = 1; 2; : : : ; n, we have that

��ic(y) =

�
0 y < K�

i ;
wi y � K�

i ;
and ��ip � 0;

with the K�
i de�ned in (42). This strategy consists of buying wi calls Ci [K

�
i ] for any

stock i, whereas no put option is purchased. This investment strategy is the one that is
considered in the �rst part of Theorem 3. Taking into account (40), we �nd that the price
of the investment strategy �� is given by

Price [��] =
nX
i=1

wiCi [K
�
i ] = C

c [K] :

At time T , this strategy will generate the following pay-o¤:

Pay-o¤ [��; X] =
nX
i=1

wi(Xi �K�
i )+:

Similarly, we de�ne the investment strategy

�� =
�
��1c; �

�
1p; : : : ; �

�
nc; �

�
np

�
2 I

by

��ic(y) � 0 and ��ip(y) =
�
0 y < K�

i ;
wi y � K�

i :

The investment strategy �� is the one that was considered in the second part of Theorem
3. The price of �� is given by

Price
�
��
�
=

nX
i=1

wiPi [K
�
i ] = P

c [K] ;
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while its pay-o¤ at time T equals

Pay-o¤
�
��; X

�
=

nX
i=1

wi(K
�
i �Xi)+:

From Theorem 3 it follows that:

(S �K)+ � Pay-o¤ [��; X] ;

(K � S)+ � Pay-o¤
�
��; X

�
;

which means that the strategy �� is a super-replicating strategy for the index call option
with pay-o¤ (S �K)+, whereas �� is a super-replicating strategy for the index put option
with pay-o¤ (K � S)+. r

The question arises whether it is possible to �nd better super-replicating strategies for
the index options than the one that were considered in the previous example. Hence, can
we �nd other strategies � 2 I which super-replicate the pay-o¤of the corresponding index
option but are cheaper than ��, resp. ��? In order to be able to answer this question, we
�rst have to de�ne the subsets CK and PK of I, containing all super-replicating strategies
for the index call option C [K] and put option P [K], respectively. Obviously, �� 2 CK
and �� 2 PK , but are they the cheapest element in their respective classes?

De�nition 2 (The classes CK and PK) For any K � 0, the classses CK and PK are
de�ned by

CK =
(
� 2 I j

 
nX
i=1

wi xi �K
!
+

� Pay-o¤ [�; x] for all x
)

and

PK =
(
� 2 I j

 
K �

nX
i=1

wi xi

!
+

� Pay-o¤ [�; x] for all x
)
;

respectively. In these de�nitions, x � (x1; x2; : : : ; xn) and �for all x�has to be interpreted
as

�for all x with xi 2 Support [Xi] , i = 1; 2; : : : ; n�.

From the assumptions we made concerning the in�nite market case it follows that we
know the supports of any stock price Xi in the Q-world, and hence, also in the P-world.
The latter conclusion follows from the fact that P and Q are equivalent, which implies
that they agree on sure events and hence, also on supports. The set of x-values for which
the inequalities in the de�nitions above have to hold is a support of (X1; X2; : : : ; Xn). We
can conclude that

P
�
(S �K)+ � Pay-o¤ [�;X]

�
= 1; for any � 2 CK , (53)

which means that the pay-o¤ of any investment strategy � 2 CK almost surely super-
replicates the pay-o¤ of the index call option. A similar remark holds for the pay-o¤ of
any investment strategy � 2 PK .
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Example 2 (Super-replicating strategies) Consider the investment strategy

� � (�1c; �1p; : : : ; �nc; �np) 2 I

where for i = 1; 2; : : : ; n, the functions �ic and �ip are given by

�ic(y) =

�
0 y < Ki;
wi y � Ki;

and �ip � 0;

and where the Ki � 0 are such that they satifsy
nX
i=1

wiKi � K. (54)

By a triangle inequality, one can prove that condition (54) leads to 
nX
i=1

wixi �K
!
+

�
nX
i=1

wi (xi �Ki)+ = Pay-o¤ [�; x] ;

which holds for any x. Hence we can conclude that � belongs to CK. In particular, we �nd
from (43) that the investment strategy �� de�ned in Example 1 belongs to the set CK. r

Now we are equipped with the tools required for �nding the cheapest super-replicating
investment strategy for the index call and put options C [K] and P [K], respectively.

Theorem 4 (The price of the cheapest super-replicating strategy) Let �� 2 CK
and �� 2 PK be the investment strategies de�ned in Example 1.
For any K 2

�
F�1+Sc (0); F�1Sc (1)

�
it holds that

min
�2CK

Price [�] = Price [��] = Cc [K] (55)

and
min
�2PK

Price [�] = Price
�
��
�
= P c [K] : (56)

Proof. Consider the super-replicating investment strategy � 2 CK . Replacing the xi by
F�1Xi (U) in the pay-o¤ inequality 

nX
i=1

wixi �K
!
+

�
nX
i=1

�Z +1

�1
(Xi � y)+ d�ic (y) +

Z +1

�1
(y �Xi)+ d�ip (y)

�
and taking expectations leads to

E
�
(Sc �K)+

�
�

nX
i=1

�Z +1

�1
E [(Xi � y)+] d�ic(y) +

Z +1

�1
E [(y �Xi)+] d�ip(y)

�
.
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Multiplying the left- and the right hand side by e�rT , this inequality can be rewritten as

Cc [K] � Price [�] :

As this inequality holds for any � 2 CK , we can conclude that

Cc [K] � inf
�2CK

Price [�] .

On the other hand, as �� 2 CK , we have that

inf
�2CK

Price [�] � Price [��] = Cc [K] .

Combining these results, it follows that the stated results hold true for the call option
case. The put option case can be proven in a similar way.

From Theorem 4, it is clear that the cheapest super-replicating strategy contained in
CK , resp. PK , is the one that we considered in Example 1. The price of this cheapest super-
replicating strategy is equal to the upper bound Cc [K], resp. P c [K], that we derived in
Theorem 1 for the index option price. Hence, we must answer �no�to the question whether
it is possible to improve the upper bounds derived in Theorem 1 by allowing for more
than one type of option per individual stock. Although we allow portfolios consisting of an
arbitrary number of calls and puts per stock, the cheapest of these strategies only invests
in a single type of option (calls or puts) and a single strike per stock. This is a somewhat
surprising result. Notice that this result does not mean that we limit the information
used for deriving the upper bounds to a single option price per stock. Indeed, in order
to determine the optimal strikes K�

i , we also need the additional information see (42) in
Theorem 2.

Theorem 4 can easily be generalized to the broader class of static super-replicating
strategies which also contains investments in the risk-free account and in any contin-
gent claim generating a pay-o¤ H (Xi) at time T provided that the time-0 price of this
contingent claim is given by

Price [H (Xi)] = e
�rTE [H (Xi)] : (57)

In this more general case, we simply have to rede�ne I, CK and PK in terms of the available
investment instruments, whereas the proof of the generalized optimisation result proceeds
in the same way as the proof of Theorem 4.

Let us now suppose that neither the index call option C [K] nor the index put option
P [K] is traded in the market. In case C [K] is sold over-the-counter, then Cc [K] may
be a reasonable price for the index call option, both from the viewpoint of the seller and
the buyer. Indeed, the seller can use this amount to acquire the portfolio ��, which will
always super-replicate the pay-o¤ of the index option that he is due to the buyer. On
the other hand, the buyer of the index call option cannot �nd a cheaper super-replicating
strategy in the market. In case the index option was sold over-the-counter at a higher
price than the comonotonic price Cc [K], the buyer may prefer to buy the cheaper super-
replicating portfolio ��. A similar argument holds for the index put option that is sold
over-the-counter.

16



4.4 The upper bound is the least upper bound for the index
option price

We introduce the symbol Dn to denote the class of all n-dimensional cdf�s on the non-
negative orthant of Rn, whereas the symbols Fi; i = 1; : : : ; n are used to denote the
marginal cdf�s of F 2 Dn. The Fréchet class Rn is de�ned as follows:

Rn = fF 2 Dn j Fi = FXi, i = 1; : : : ; ng : (58)

It is the class of all n-dimensional distribution functions F with marginals Fi equal to the
observed risk-neutral distributions FXi of the r.v.�s Xi.

Because the stop-loss premium E
�
(Xi �K)+

�
can be expressed as follows,

E
�
(Xi �K)+

�
=

Z +1

K

(1� FXi (x))dx:

any cdf Fi is unambiguously determined by its call or its put option curve. We can de�ne
Rn also as follows:

Rn =
�
F 2 Dn j e�rTEFi

�
(Xi �K)+

�
= Ci [K] for all K and i = 1; : : : ; n

	
;

or

Rn =
�
F 2 Dn j e�rTEFi

�
(K �Xi)+

�
= Pi [K] for all K and i = 1; : : : ; n

	
;

where the subscript denotes the cdf which has to be used to determine the expectation.
For example, the notation EFi

�
(Xi �K)+

�
is the stop-loss premium of Xi with retention

K; where the cdf of Xi is given by Fi:

This means that Rn is the class of all n-dimensional cdf�s F which produce the ob-
served call and put option curves on the di¤erent stocks. In other words, Rn is the class
of all feasible multivariate risk-neutral distributions for X, given that the only informa-
tion that we have about FX are its marginal distributions FXi. Obviously, the cdf of
(F�1X1 (U); F

�1
X2
(U); : : : ; F�1Xn (U)) is an element of Rn. Knowing that FX 2 Rn does not

allow us to determine the index option prices P [K] or C [K], however it allows us to
determine the comonotonic index option prices Cc [K] and P c [K].

Theorem 5 (The least upper bound for the index option price) For any K � 0
it holds that

max
F2Rn

e�rTEF
�
(S �K)+

�
= Cc [K] (59)

and
max
F2Rn

e�rTEF
�
(K � S)+

�
= P c [K] (60)

Moreover, in both cases the maximum is obtained for the cdf of (F�1X1 (U); F
�1
X2
(U); : : : ; F�1Xn (U)).
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Proof. For any multivariate distribution F belonging to Rn, we �nd from the convex
order relation (15) that

EF
�
(S �K)+

�
� E

�
(Sc �K)+

�
;

with Sc � F�1X1 (U) + : : :+ F
�1
Xn
(U). Hence,

sup
F2Rn

EF
�
(S �K)+

�
� E[(Sc �K)+]:

On the other hand, the multivariate distribution of Xc �
�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
is an

element of Rn. This implies that

E[(Sc �K)+] � sup
F2Rn

EF [(S �K)+]:

Combining these observations leads to the call option result in (59). The put option case
is proven in a similar way.

Theorem 5 states that both upper bounds derived in Theorem 1 can be interpreted
as least upper bounds in the sense that they correspond to the largest possible expected
discounted pay-o¤ of the corresponding index option, given the risk-neutral distributions
of the underlying stocks. Somewhat loosely speaking, Cc [K] is the lowest upper bound
for the index call option price C [K] in the class of all models which are consistent with the
observed stock option prices. A similar remark holds for the upper bound P c [K] for the
index put option price P [K]. The upper bound Cc [K], resp. P c [K], coincides with the
index option prices C [K], resp. P [K], in case the risk-neutral multivariate distribution
of the price vector X is comonotonic. Notice that in a comonotonic market, all stocks
move perfectly together and there is no diversi�cation possible. The question whether
it is always possible or not to construct such an arbitrage-free comonotonic market is
considered in Hobson et al. (2005) and in Dhaene and Kukush (2010).

4.5 Computational aspects

4.5.1 Numerical evaluation of the upper bounds

In order to be able to calculate the upper boundsCc [K] and P c [K] forK 2
�
F�1+Sc (0); F�1Sc (1)

�
,

one has to determine the probability FSc(K) and the coe¢ cient �K .

The coe¢ cient �K was implicitely de�ned as any element in [0; 1] that satis�es (45).
Taking into account the de�nition (10) of the �-inverse, expression (45) leads to

�K =

8<:
F�1+Sc (FSc(K))�K

F�1+Sc (FSc(K))� F�1Sc (FSc(K))
; if F�1+Sc (FSc(K)) 6= F�1Sc (FSc(K)) ;

1; otherwise.
(61)

The coe¢ cient �K follows from this expression, provided we know FSc(K), F�1Sc (FSc(K))
and F�1+Sc (FSc(K)).
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Concerning FSc(K), notice that

FSc(K) = sup fp 2 [0; 1] j FSc(K) � pg :

Using (8) and taking into account the additivity property of quantiles of a comonotonic
sum, this relation can be transformed into

FSc(K) = sup

(
p 2 [0; 1] j

nX
i=1

wiF
�1
Xi
(p) � K

)
: (62)

Hence FSc(K) can be determined from the inverse marginal distribution functions F�1Xi .

From (17), we �nd that F�1Sc (FSc(K)) and F
�1+
Sc (FSc(K)) are given by

F�1Sc (FSc(K)) =
nX
i=1

wiF
�1
Xi
(FSc(K))

and

F�1+Sc (FSc(K)) =
nX
i=1

wiF
�1+
Xi

(FSc(K)) ;

respectively.

4.5.2 The upper bounds in terms of the inverses F�1Xi

The upper bounds (30) and (31) can also be written in terms of the inverses F�1Xi , as is
shown in the following corollary.

Corollary 1 For any K 2
�
F�1+Sc (0); F�1Sc (1)

�
one has that

Cc [K] =
nX
i=1

wiCi
�
F�1Xi (FSc(K))

�
� e�rT

�
K � F�1Sc (FSc(K))

�
(1� FSc(K)) (63)

and

P c [K] =
nX
i=1

wiPi
�
F�1Xi (FSc(K))

�
+ e�rT

�
K � F�1Sc (FSc(K))

�
FSc(K): (64)

Proof. From Dhaene et al. (2000), we �nd that

E [(Sc �K)] =
nX
i=1

wiE
h�
Xi � F�1Xi (FSc(K))

�
+

i
� (1� FSc(K))

�
K � F�1Sc (FSc(K))

�
:
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Combining this expression with (4) proves (63).
Using the put-call parities (21) and (38), expression (63) can be transformed into expres-
sion (64).

By de�nition of the �-inverse, it holds that

F�1Sc (FSc(K)) � K = F
�1(�K)
Sc (FSc(K)) , (65)

which implies that the second term in the right hand side of (63) is non-negative. Hence,
we �nd from (30) that

Pn
i=1wiCi

�
F�1Xi (FSc(K))

�
is also an upper bound for the index

option price C[K], although it is not necessarily the optimal one in the sense that the
time - 0 price of this portfolio of stock options Ci[F�1Xi (FSc(K))] may not be the the price
of the cheapest super-replicating strategy for the index call option C [K].

Let K 2
�
F�1+Sc (0); F�1Sc (1)

�
and let us assume that all marginal cdf�s FXi are strictly

increasing on
�
F�1+Xi

(0); F�1Xi (1)
�
. This assumption implies that FSc is strictly increasing

on
�
F�1+Sc (0); F�1Sc (1)

�
. In this case, any �-inverse F�1(�)Xi

(FSc(K)) and F
�1(�)
Sc (FSc(K))

coincides with the usual inverse F�1Xi (FSc(K)) and F
�1(�)
Sc (FSc(K)), respectively. Fur-

thermore, the comonotonic index option prices (63) and (64) reduce to

Cc [K] =
nX
i=1

wiCi
�
F�1Xi (FSc(K))

�
(66)

and

P c [K] =
nX
i=1

wiPi
�
F�1Xi (FSc(K))

�
(67)

respectively. From (65) it follows that F�1Sc (FSc(K)) = K in this case. Taking into
account the additivity property of quantiles of a comonotonic sum, the value FSc(K) can
be obtained from

nX
i=1

wiF
�1
Xi
(FSc(K)) = K: (68)

If we now additionally assume that at least one cdf FXi is continuous on R, then one can
prove that also FSc is continuous on R and FSc(K) is the unique solution of (68).
A particular situation where the assumptions about the strictly increasingness and the
continuity of the marginals FXi are met and hence, where the expressions (66) and (67)
hold is the Black & Scholes model.

5 The �nite market case

5.1 Traded options and approximations

In the preceding section, we assumed that the prices Ci [K] and Pi [K] of the stock options
with maturity T are known for any strike K � 0. In this section we will investigate the
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more realistic situation where only �nitely many strikes are traded per stock. More
speci�cally, we will assume that for each stock i; only the strikes Ki;j; j = 0; 1; : : : ;mi,
are traded and hence, only the prices Ci [Ki;j] and Pi [Ki;j] ; j = 0; 1; : : : ;mi; are observed.
We call the situation where only a �nite number of option prices is observed the �nite
market case. As before, we assume that the traded option prices can be expressed as

Ci [Ki;j] = e
�rTE

�
(Xi �Ki;j)+

�
; i = 1; : : : ; n; j = 0; 1; : : : ;mi; (69)

Pi [Ki;j] = e
�rTE

�
(Ki;j �Xi)+

�
; i = 1; : : : ; n; j = 0; 1; : : : ;mi; (70)

where for each i, the value of stock i at time T is denoted by Xi and the expectations are
taken with respect to the distributions FXi of the stock prices Xi under the risk-neutral
measure Q. The only information that we have about these risk-neutral distributions is
contained in the observed option prices. Notice that we assume that the sets of traded
strikes for the call and put options are identical. This assumption will be relaxed in
Section 5.5.

For each stock i, we denote the �maximal value�of the stock price Xi at time T by
Ki;mi+1:

F�1Xi (1) := Ki;mi+1: (71)

Any valueKi;mi+1 may be �nite or in�nite. In the sequel, we will take a practical approach
and assume that all Ki;mi+1 are known and have a �nite value, which is su¢ ciently large.
Loosely speaking, Ki;mi+1 is the maximal possible value for stock i at time T . Appropriate
choices for the Ki;mi+1 are discussed in Section 5.5.

We assume that the chain of traded strikes is such that

0 = Ki;0 < Ki;1 < Ki;2 < � � � < Ki;mi
< Ki;mi+1 = F

�1
Xi
(1) <1: (72)

In particular we assume that for each stock i, the smallest traded strike Ki;0 is equal to 0.

From (69) and (70) we �nd that the zero-strike stock option prices are given by

Ci [0] = e
�rTE [Xi] and Pi [0] = 0: (73)

Furthermore, from (69) and (70) it follows that the prices of the stock options with strike
Ki;mi+1 are given by

Pi [Ki;mi+1] = e
�rT (Ki;mi+1 � E [Xi]) and Ci [Ki;mi+1] = 0: (74)

Obviously, the put options with strike 0 and the call options with strike Ki;mi+1 are not
traded. In practice, also the call options with strike 0 and the put options with strike
Ki;mi+1 are not traded directly. However, these options can be constructed arti�cially by
a combination of traded instruments. For more details we refer to Section 5.5.

An example of observed option curves corresponding to a particular stock at a partic-
ular date is given in Figure 1, where the NYSE midquote closing prices for puts and calls
on Walt Disney Company are shown. Time 0 is January 23, 2012, whereas the expiration
date T is February 17, 2012. The numerical values of these option prices are listed in
Table 1.
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Figure 1: Option curves Walt Disney Co., January 23, 2012.

Strike Call Price Put Price

28 11.3 0.015
29 10.3 0.025
30 9.3 0.035
33 6.35 0.08
34 5.425 0.11
35 4.45 0.17
36 3.525 0.265
37 2.68 0.41
38 1.915 0.65
39 1.265 1.01
40 0.775 1.52
42 0.23 2.955
44 0.06 4.825

Table 1: Option prices Walt Disney Co., January 23, 2012.
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For each i, we �rst de�ne the convex functions Ci and Pi by

Ci [K] = e
�rTE

�
(Xi �K)+

�
; K � 0 (75)

and
Pi [K] = e

�rTE
�
(K �Xi)+

�
; K � 0: (76)

Notice that in the in�nite market case, the value of these functions is known for all K, or
equivalently, the risk-neutral distribution FXi is completely speci�ed for any stock i. On
the other hand, in the �nite market case, the functions Ci [K] and Pi [K] are known only
for the values Ki;j, j = 0; 1; : : : ;mi + 1, implying that the risk-neutral distributions FXi
are not completely speci�ed.

In Figure 2, the dashed curve corresponds to a possible shape of the curve Ci, of which
only the values Ci [Ki;j], j = 0; 1; : : : ;mi + 1; are explicitely known.

Let S be the weighted sum of the stock prices Xi at time T , as de�ned earlier. Suppose
that the index call and put options with strike K and respective pay-o¤s (S �K)+ and
(K � S)+ at time T are traded in the market. Their prices are denoted by C [K] and
P [K]. As before, we assume that these prices can be expressed as

C [K] = e�rTE
�
(S �K)+

�
(77)

and
P [K] = e�rTE

�
(K � S)+

�
; (78)

where the expectations are taken with respect to the distribution FS of S under the
Q-measure.

It is our goal to �nd upper bounds for the index option prices C [K] and P [K]
which can be expressed in terms of the available stock option prices Ci [Ki;j] and Pi [Ki;j],
j = 0; 1; : : : ;mi + 1. We will show that the solution to this problem follows in a rather
straightforward way from the results derived for the in�nite market case.

From Theorem 2 we �nd the following upper bounds for the index option prices :

C [K] �
nX
i=1

wiCi [K
�
i ] and P [K] �

nX
i=1

wiPi [K
�
i ] ;

with the K�
i de�ned in (42). In the �nite market case, it is in general not possible to

determine these upper bounds numerically, because the distribution function of Sc is not
completely speci�ed. In order to solve this problem, in a �rst step we construct approxi-
mations Ci and P i for the functions Ci and Pi respectively, which are fully speci�ed. In
particular, we de�ne Ci and P i as the piecewise linear functions connecting the observed
points (Ki;j; Ci [Ki;j]) and (Ki;j; Pi [Ki;j]) ; j = 0; 1; : : : ;mi + 1, respectively. Hence, Ci
and P i are piecewise linear functions, changing their slope only in the observed strikes
Ki;j and such that

Ci [Ki;j] = Ci [Ki;j] ; j = 0; 1; : : : ;mi + 1; (79)

P i [Ki;j] = Pi [Ki;j] ; j = 0; 1; : : : ;mi + 1: (80)
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Figure 2: The option curves Ci [K] (dashed curve) and Ci [K] (solid curve).

From (75) and (76) it follows that

Ci [K] = Ci [0]� e�rTK and Pi [K] = 0; if K � 0;

whereas
Ci [K] = 0 and Pi [K] = e�rTK � Ci [0] ; if K � Ki;mi+1:

Therefore, we de�ne Ci and P i as follows in the region outside (0; Ki;mi+1):

Ci [K] = Ci [K] if K =2 (0; Ki;mi+1) ; (81)

P i [K] = Pi [K] if K =2 (0; Ki;mi+1) (82)

In Figure 2, the dashed curve corresponds to the (unknown) option curve Ci [K],
whereas the solid curve corresponds to the piecewise linear approximation Ci [K].

The results for the in�nite market case derived in the previous section will be applied
to the piecewise linear curves Ci and P i. This will lead to upper bounds in terms of stock
options for appropriately de�ned strikes K�

i . At �rst sight, one may end up with the
case where the upper bounds contain stock options with strikes K�

i that are not traded in
the market. However, we will show that for any �unreachable�strike, the corresponding
call or put stock option price can be expressed in terms of a convex combination of its
neighbouring observed stock option prices.

In the following lemma, we consider the piecewise linear approximation Ci for the call
option curve Ci.
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Lemma 1 (Piecewise linear approximation for the call option curve) The piece-
wise linear approximation Ci for the stock option curve Ci is given by

Ci [K] =
Ci [Ki;j+1]� Ci [Ki;j]

Ki;j+1 �Ki;j

(K �Ki;j) + Ci [Ki;j] ; (83)

in case Ki;j � K < Ki;j+1; j = 0; 1; : : : ;mi:
For K � 0, it is given by

Ci [K] = Ci [K] = Ci [0]� e�rTK; (84)

while for K � Ki;mi+1; one has that

Ci [K] = Ci [K] = 0: (85)

The function Ci is convex and decreasing. Furthermore,

Ci[K] � Ci[K] for all K.

Proof. Expression (83) follows from the fact that the line that connects the observed
points (Ki;j;Ci [Ki;j]) and (Ki;j+1;Ci [Ki;j+1]) is given by (83). The expressions (84) and
(85) hold by de�nition of Ci. The convexity and decreasingness of Ci follows from the
corresponding properties of Ci.

Next, we consider the piecewise linear approximation P i for the put option curve Pi.

Lemma 2 (Piecewise linear approximation for the put option curve) The piece-
wise linear approximation P i for the option curve Pi is given by

P i [K] =
Pi [Ki;j+1]� Pi [Ki;j]

Ki;j+1 �Ki;j

(K �Ki;j) + Pi [Ki;j] ;

in case Ki;j � K < Ki;j+1; j = 0; 1; : : : ;mi:
For K � 0, it is given by

P i [K] = Pi [K] = 0;

while for K � Ki;mi+1; one has that

P i [K] = Pi [K] = e�rTK � Ci [0] :

The function P i is convex and increasing. Furthermore,

P i[K] � Pi[K] for all K.

Proof. The proof is similar to the proof of Lemma 1.

From the previous lemma�s one can prove that the following put-call parity holds for
the approximated stock option curves:

Ci [K] + e
�rTK = P i [K] + e

�rTE [Xi] . (86)
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In the in�nite market case, we were able to obtain the risk-neutral cdf FXi of Xi from
the observed stock option curve Ci [K] via expression (26) or from the observed put option
curve Pi [K] via expression (27). In the �nite market case, we are not able to determine
FXi. In a �rst step, we proposed to approximate the partially known call and put option
curves Ci [K] and Pi [K] by the completely speci�ed piecewise linear functions Ci[K] and
P i[K], respectively. In a second step, we will determine the distribution functions FXi
such that the approximated option prices Ci[K] and P i[K] can be expressed as expected
values of the respective discounted pay-o¤s, where the expectations are taken with respect
to that distribution. In the following lemma, we consider the call option case.

Lemma 3 (The cdf FXi of Xi corresponding to Ci) Let FXi be the cdf of Xi deter-
mined such that

e�rTEFXi
�
(Xi �K)+

�
= Ci [K] ; for all K: (87)

Then we have that

FXi(x) =

8>><>>:
0 if x < 0;

1 + erT
Ci [Ki;j+1]� Ci [Ki;j]

Ki;j+1 �Ki;j

if Ki;j � x < Ki;j+1; j = 0; 1; : : : ;mi;

1 if x � Ki;mi+1:
(88)

Proof. For the particular situation at hand, the expression (26) translates into

FXi(x) = 1 + e
rTC

0
i[x+]:

The proof of (88) follows immediately from applying this expression to the function Ci[K]
de�ned in Lemma 1.

Let us now consider the put option case.

Lemma 4 (The cdf FXi of Xi corresponding to P i) Let FXi be the cdf of Xi deter-
mined such that

e�rTEFXi
�
(K �Xi)+

�
= P i [K] for all K. (89)

Then we have that

FXi(x) =

8>><>>:
0 if x < 0;

erT
Pi [Ki;j+1]� Pi [Ki;j]

Ki;j+1 �Ki;j

if Ki;j � x < Ki;j+1; j = 0; 1; : : : ;mi;

1 if x � Ki;mi+1:

(90)

Proof. Translating expression (27) to the situation at hand, we �nd that

FXi(x) = e
rTP

0
i[x+]:
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The proof of (90) follows then from applying this expression to the function P i[K] de�ned
in Lemma 2.

Important to notice is that the put-call parity (86) allows us to prove that the underly-
ing distribution FXi derived from the call option curve Ci[K] is equal to the distribution
function that emerged from the put option curve P i[K].

From Lemma 1 we �nd the following ordering relations between the distributions FXi
and FXi:

Xi
d
= F�1Xi (U) �cx F

�1
Xi
(U); (91)

where as usual, U is a r.v. which is uniformly distributed over the unit interval.

For any stock i, we have that FXi is a discrete distribution function, with possible
outcomes given by the traded strikes Ki;j. For any x 2 [Ki;j; Ki;j+1) ; j = 0; 1; : : : ;mi,
one has that 0 � FXi(x) < 1. The �rst strictly positive jump upwards of FXi(x) does
not necessarily occurs at 0, but the last strictly positive jump upwards of FXi(x) always
occurs at Ki;mi+1: Therefore, we have to determine F

�1+
Xi
(0) and F

�1
Xi
(1) as follows:

F
�1+
Xi
(0) = min

j2f0;1;:::;mig

�
Ki;j j FXi(Ki;j) > 0

	
and F

�1
Xi
(1) = Ki;mi+1: (92)

A possible shape of the risk-neutral cdf FXi of stock i is shown in Figure 3. In this
particular case, we have that F

�1+
Xi
(0) = Ki;2. Figure 4 shows the corresponding option

curves Ci[K] and P iK].

Hereafter, we will always silently assume that

FXi(Ki;mi
) > 0; i = 1; 2; : : : ; n: (93)

This assumption means that no marginal cdf FXi has a one-point distribution. Notice
that this assumption can always be satis�ed by chosing the maximal values Ki;mi+1,
i = 1; 2; : : : ; n, su¢ ciently large.

Taking into account Lemma 3 and expression (69) for the call option prices, we �nd
the following relation between the cdf�s FXi and FXi:

FXi(Ki;j) =
1

Ki;j+1 �Ki;j

Z Ki;j+1

Ki;j

FXi (x)dx; j = 0; 1; : : : ;mi, (94)

where we used the following representation for the stop-loss premiums of Xi:

E
�
(Xi �K)+

�
=

Z +1

K

(1� FXi (x))dx:

From (92) we �nd that for any j = 0; 1; : : : ;mi, it holds that

F
�1+
Xi
(0) = Ki;j () FXi(Ki;j�1) = 0 and FXi(Ki;j) > 0; (95)

where Ki;�1 is de�ned by
Ki;�1 = �1: (96)
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Figure 3: The cdf FXi of Xi:

Figure 4: The curves Ci [K] and P i [K] under FXi.
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Obviously, one has that
FXi(Ki;�1) = 0: (97)

Taking into account (94), the equivalence relations (95) can be rewritten as

F
�1+
Xi
(0) = Ki;j () Ki;j � F�1+Xi

(0) < Ki;j+1; j = 0; 1; : : : ;mi: (98)

This means that F
�1+
Xi
(0) is equal to Ki;j when the �smallest value�of Xi is contained in

the interval [Ki;j; Ki;j+1). In particular, we have that

F
�1+
Xi
(0) = 0 () 0 � F�1+Xi

(0) < Ki;1: (99)

Hence, F
�1+
Xi
(0) = 0 if the �minimal possible value�of the price Xi of stock i at time T is

strictly smaller than strike Ki;1.

5.2 An upper bound for the index option price

Our goal is to �nd the best possible upper bound for the prices C [K] and P [K] of the
traded index options in terms of the observed stock option prices Ci [Ki;j] and Pi [Ki;j].
This upper bound will be expressed in terms of the comonotonic sum S

c
, which is de�ned

by
S
c
= w1F

�1
X1
(U) + w2F

�1
X2
(U) + � � �+ wnF

�1
Xn(U): (100)

The extreme outcomes of S
c
ful�ll the following conditions:

F�1+
S
c (0) =

nX
i=1

wiF
�1+
Xi
(0) �

nX
i=1

wiF
�1+
Xi

(0) = F�1+Sc (0) � F�1+S (0); (101)

F�1S (1) � F�1Sc (1) =
nX
i=1

wiKi;mi+1 = F
�1
S
c (1): (102)

In the following theorem, we derive upper bounds for the index option prices C [K] and
P [K] in terms of the distribution function of S

c
.

Theorem 6 (An upper bound for the index option price) The prices C [K] and
P [K] of the traded index options with pay-o¤ (S �K)+ and (K � S)+ at time T are
constrained from above as follows:

C [K] � e�rTE
h�
S
c �K

�
+

i
; (103)

P [K] � e�rTE
h�
K � Sc

�
+

i
: (104)

Proof. From (15), (16) and (91) we �nd that

nX
i=1

wiXi �cx
nX
i=1

wiF
�1
Xi
(U) �cx

nX
i=1

wiF
�1
Xi
(U) ;
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or equivalently,
S �cx Sc �cx S

c
: (105)

The stated inequalities follow from (6).

The right-hand sides of (103) and (104) correspond to the prices of an index call and
put option with strikeK in case the stock option curves are piecewise linear and moreover,
the dependence structure between the stock prices is the comonotonic one. In the sequel
we will use the notations C

c
[K] and P

c
[K] for options written on S

c
:

C
c
[K] = e�rTE

h�
S
c �K

�
+

i
; (106)

P
c
[K] = e�rTE

h�
K � Sc

�
+

i
; (107)

and call them the comonotonic index call and put option prices. Notice that the following
put-call parity holds for these comonotonic option prices:

C
c
[K] + e�rTK = P

c
[K] + e�rTE [S] : (108)

For K =2
�
F�1+
S
c (0); F�1

S
c (1)

�
, we know the exact value of the index option prices C [K]

and P [K]; see (34) and (35). Furthermore, one has that

C [K] = C
c
[K] if K =2

�
F�1+
S
c (0); F�1

S
c (1)

�
;

P [K] = P
c
[K] if K =2

�
F�1+
S
c (0); F�1

S
c (1)

�
:

As the values of C [K] and P [K] are explicitely known when K =2
�
F�1+
S
c (0); F�1

S
c (1)

�
,

in the sequel we will focus on the case where K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
when considering

upper bounds for the index option prices. When not explicitely mentioned, we will always
suppose that K 2

�
F�1+
S
c (0); F�1

S
c (1)

�
.

In the following theorem, we show that the upper bounds derived in Theorem 6 can
be expressed in terms of stock option prices.

Theorem 7 (Expressions for C
c
and P

c
) For anyK 2

�
F�1+
S
c (0); F�1

S
c (1)

�
, the comonotonic

option prices C
c
[K] and P

c
[K] can be expressed as

C
c
[K] =

nX
i=1

wiCi [K
�
i ] ; (109)

P
c
[K] =

nX
i=1

wiP i [K
�
i ] ; (110)

with the K�
i given by

K�
i = F

�1(�K)
Xi

(FSc(K)) ; i = 1; 2; : : : ; n (111)
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and where �K is any element in [0; 1] such that
nX
i=1

wiK
�
i = K: (112)

Proof. The proof of the stated results is similar to the proof of Theorem 2.

From Lemma 1, we know that for each i, the comonotonic option price Ci [K�
i ] can be

expressed in terms of at most two observed option prices Ci [Ki;j], j = 0; 1; : : : ;mi + 1.
Hence, the upper bound C

c
[K] for the index call option price C [K] is a linear combination

of observed stock call option prices. A similar remark holds for the index put option.

Taking into account the additivity property (17) for quantiles of a comonotonic sum,
relation (112) can be rewritten as

F
�1(�K)
S
c (FSc(K)) = K: (113)

Hereafter, we explain how to determine the upper bounds C
c
[K] and P

c
[K]. There-

fore, we �rst introduce the indices ji(K) and the sets NK and NK .

Let K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
, then we have that FSc(K) 2 (0; 1). For any such K and

any stock i, we de�ne ji(K) � ji as the unique element contained in the set f0; 1; : : : ;mi+
1g that satis�es

FXi(Ki;ji�1) < FSc(K) � FXi(Ki;ji): (114)

Further, we de�ne the set NK as follows:

NK =
�
i 2 f1; 2; : : : ; ng j FXi(Ki;ji�1) < FSc(K) < FXi(Ki;ji)

	
: (115)

Its complement NK is the set given by

NK =
�
i 2 f1; 2; : : : ; ng j FSc(K) = FXi(Ki;ji)

	
: (116)

Notice that i 2 NK implies that ji 2 f0; 1; : : : ;mig.
In Figures 5 and 6, we illustrate how to determine the indices ji. In Figure 5 we

consider the case where FXi(Ki;j�1) < FSc(K) < FXi(Ki;j), hence i 2 NK . In Figure 6,
we have that FSc(K) = FXi(Ki;j), which implies that i 2 NK .

In the following theorem, we prove that the comonotonic option prices C
c
[K] and

P
c
[K] for the index call and put options can be expressed in terms of traded stock option

prices.

Theorem 8 (C
c
and P

c
are l.c.�s of stock option prices) For anyK 2

�
F�1+
S
c (0); F�1

S
c (1)

�
,

the comonotonic option prices C
c
[K] and P

c
[K] can be expressed as

C
c
[K] =

X
i2NK

wiCi [Ki;ji ] +
X
i2NK

wi (�KCi [Ki;ji ] + (1� �K)Ci [Ki;ji+1]) ; (117)

P
c
[K] =

X
i2NK

wiPi [Ki;ji ] +
X
i2NK

wi (�KPi [Ki;ji ] + (1� �K)Pi [Ki;ji+1]) ; (118)

where �K is any element in [0; 1] such that (113) holds.
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Figure 5: The cdf FXi(x) in case i 2 NK :

Figure 6: The cdf FXi(x) in case i 2 NK :
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Proof. Let K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
. From Lemma 3 it follows that for any � 2 [0; 1],

the �-quantile F
�1(�)
Xi

(p), 0 < p < 1, is given by

F
�1(�)
Xi

(p) =

8<: Ki;j
if FXi(Ki;j�1) < p < FXi(Ki;j);
j = 0; 1; : : : ;mi + 1;

�Ki;j + (1� �)Ki;j+1 if p = FXi(Ki;j); j = 0 : : : ;mi:

(119)

Taking into account the de�nitions of the indices ji and the sets NK and NK in (114),
(115) and (116), we �nd that

F
�1(�)
Xi

(FSc(K)) =

�
Ki;ji if i 2 NK
�Ki;ji + (1� �)Ki;ji+1 if i 2 NK

(120)

holds for any � 2 [0; 1].
Combining (120) with Lemma 1 and using the linearity of the function Ci, we arrive at

Ci

h
F
�1(�)
Xi

(FSc(K))
i
=

�
Ci [Ki;ji ] if i 2 NK
Ci [�Ki;ji + (1� �)Ki;ji+1] if i 2 NK

=

�
Ci [Ki;ji ] if i 2 NK
�Ci [Ki;ji ] + (1� �)Ci [Ki;ji+1] if i 2 NK :

(121)

which holds for any � in [0; 1]. The proof of (117) follows from Theorem 7 and expression
(121) for � = �K .
Expression (118) can be proven in a similar way or via the put-call parities (21) for stock
option prices and (108) for comonotonic index option prices.

In order to calculate the comonotonic option prices (117) and (118) in Theorem 8, we
�rst have to determine FSc(K) and �K . Knowledge of FSc(K) allows to determine the
indices ji, as well as the sets NK and NK . The numerical valuation of these quantities is
considered in Section 5.5.

In the following theorem we prove that each upper bound presented in the previous
theorem corresponds to the price of a static super-replicating strategy for the index option
under consideration.

Theorem 9 (C
c
and P

c
are the prices of static super-replicating strategies) Let

K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
and consider the index call and put options with pay-o¤ at time

T given by (S �K)+ and (K � S)+, respectively.

1. Consider the strategy where at time 0, for any stock i 2 NK one buys wi calls
Ci [Ki;ji ], while for any stock i 2 NK one buys �Kwi calls Ci [Ki;ji ] and (1� �K)wi
calls Ci [Ki;ji+1]. Furthermore, these positions are held until they expire at time T .
This static strategy super-replicates the pay-o¤ of the index call option with price
C [K]. Its price is given by C

c
[K].
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2. Consider the pay-o¤ of the strategy where at time 0, for any stock i 2 NK one buys
wi puts Pi [Ki;ji ], while for any stock i 2 NK one buys �Kwi puts Pi [Ki;ji ] and
(1� �K)wi puts Pi [Ki;ji+1]. Furthermore, these positions are held until they expire
at time T . This static strategy super-replicates the pay-o¤ of the index put option
with price P [K]. Its price is given by P

c
[K].

Proof. The pay-o¤ of the �rst strategy described in the theorem is given byX
i2NK

wi (Xi �Ki;ji)+ +
X
i2NK

wi
�
�K (Xi �Ki;ji)+ + (1� �K) (Xi �Ki;ji+1)+

�
;

while from Theorem 8 it follows that its price is given by C
c
[K].

Taking into account (112) we �nd that the pay-o¤ at time T of the index option C [K]
can be expressed as

(S �K)+ =
 

nX
i=1

wi (Xi �K�
i )

!
+

; (122)

with the K�
i de�ned in (111).

It remains to prove that

(S �K)+ �
X
i2NK

wi (Xi �Ki;ji)++
X
i2NK

wi
�
�K (Xi �Ki;ji)+ + (1� �K) (Xi �Ki;ji+1)+

�
:

(123)
In order to prove this inequality, observe from (120) that

K�
i = F

�1(�K)
Xi

(FSc(K)) =

�
Ki;ji if i 2 NK ;
�KKi;ji + (1� �K)Ki;ji if i 2 NK :

(124)

Taking into account (112) and (124), we �nd from (122) that

(S �K)+ �
nX
i=1

wi (Xi �K�
i )+

=
X
i2NK

wi (Xi �Ki;ji)+ +
X
i2NK

wi (Xi � �KKi;ji � (1� �K)Ki;ji+1)+

�
X
i2NK

wi (Xi �Ki;ji)+ +
X
i2NK

wi
�
�K (Xi �Ki;ji)+ + (1� �K) (Xi �Ki;ji+1)+

�
;

so we have proven that the �rst strategy in the theorem indeed super-replicates the index
call option pay-o¤.

Let us now consider the put option case. Using the relation

(S �K)+ = (K � S)+ + S �K;

one immediately �nds from (123) that

(K � S)+ �
X
i2NK

wi (Ki;ji �Xi)++
X
i2NK

wi
�
�K (Ki;ji �Xi)+ + (1� �K) (Ki;ji+1 �Xi)+

�
:
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This inequality proves that the second strategy in the theorem is indeed a super-replicating
strategy for the the index put option P [K]. From Theorem 8, it follows that the price of
this strategy is given by P

c
[K] :

From our previous derivations, we can conclude that the following inequalities hold
concerning the index option prices:

C [K] �
X
i2NK

wiCi [Ki;ji ] +
X
i2NK

wi (�K Ci [Ki;ji ] + (1� �K)Ci [Ki;ji+1]) ; (125)

P [K] �
X
i2NK

wiPi [Ki;ji ] +
X
i2NK

wi (�K Pi [Ki;ji ] + (1� �K)Pi [Ki;ji+1]) : (126)

The right hand side of equation (125) is the price of a static super-replicating strategy
for the index call option with pay-o¤ (S �K)+ at time T , whereas the right hand side of
equation (126) is the price of a static super-replicating strategy for the index put option
with pay-o¤ (K � S)+ at time T . From these observations we can conclude that the upper
bound inequalities (125) and (126) remain to hold, without having to make the explicit
assumption that the involved option prices are expected discounted pay-o¤s under some
Q-measure. The only assumption that we have made is that the market is free of arbitrage.
Remark however that in order to prove the equalities (117) and (118), we have to make
the assumption that any option price can be expressed as an expectation of its discounted
pay-o¤.

5.3 The upper bound is the price of the cheapest super-replicating
strategy

The upper bounds (125) and (126) for the index option prices C[K] and P [K] are both
linear combinations of observed stock options prices. Each bound can be interpreted as
the price of a static strategy that super-replicates the pay-o¤ of the corresponding index
option; see Theorem 9. The question arises whether it is possible to derive better up-
per bounds within a general class of superhedging strategies consisting of buying/selling
available stock call and put options. In order to be able to answer this question, we have
to introduce the class of admissible strategies I.

De�nition 3 (The class I) The class I consists of all 2n-dimensional functions � �
(�1c; �1p; : : : ; �nc; �np), of which for each i, the functions �ic : R! R and �ip : R! R are
r.c. jump functions, only having jumps at Ki;j, j = 0; 1; 2; : : : ;mi + 1. Jumps upwards as
well as downwards are allowed.

We will consider the class of investment strategies where for each stock i at current
time 0, calls and/or puts can be bought (i.e. holding a long position) or sold (i.e. holding
a short position). The positions taken are assumed to be held until time T , and then exer-
cised. Any such static investment strategy can be uniquely described by a 2n-dimensional
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function � 2 I, where for any stock i and any strike y � 0, we interprete �ic (y) as the
number of call options purchased with a strike smaller than or equal to y. Similarly,
for any stock i and any strike y � 0, the value of �ip (y) is the number of put options
purchased with a strike price smaller than or equal to y.

The pay-o¤ at time T of the investment strategy � 2 I is given by

Pay-o¤ [�;X] =
nX
i=1

mi+1X
j=0

((Xi �Ki;j)+ ��ic(Ki;j) + (Ki;j �Xi)+ ��ip(Ki;j)) ; (127)

where X � (X1; X2; : : : ; Xn) is the vector of the individual stock prices at time T and
where ��ic(Ki;j) and ��ip(Ki;j) are the magnitudes of the jumps of the function �ic and
�ic at Ki;j. The corresponding price of this investment strategy is given by

Price [�] =
nX
i=1

mi+1X
j=0

(Ci [Ki;j] ��ic(Ki;j) + Pi [Ki;j] ��ip(Ki;j)) : (128)

As before, we will write these sums in terms of Riemann-Stieltjes integrals. This means
that we rewrite the pay-o¤ and the price formulas as follows:

Pay-o¤ [�;X] =
nX
i=1

�Z +1

�1
(Xi � y)+ d�ic (y) +

Z +1

�1
(y �Xi)+ d�ip (y)

�
(129)

and

Price [�] =
nX
i=1

�Z +1

�1
Ci [y] d�ic(y) +

Z +1

�1
Pi [y] d�ip(y)

�
: (130)

We are only interested in investment strategies that super-replicate the pay-o¤(S �K)+
of the index call option or the pay-o¤ (K � S)+ of the index put option. Therefore, we
de�ne the subclass CK of super-replicating strategies for the index call option with pay-
o¤ (S �K)+ and the subclass PK of super-replicating strategies for the index put option
with pay-o¤ (K � S)+.

De�nition 4 (The classes CK and PK ) For any K � 0, the classes CK and PK are
de�ned by

CK =
(
� 2 I j

 
nX
i=1

wi xi �K
!
+

� Pay-o¤ [�; x] for all x
)
; (131)

PK =
(
� 2 I j

 
K �

nX
i=1

wi xi

!
+

� Pay-o¤ [�; x] for all x
)
: (132)

In this de�nition, x � (x1; x2; : : : ; xn) and �for all x�has to be understood as

�for all x with xi 2
h
F
�1+
Xi
(0); F

�1
Xi
(1)
i
�. (133)
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As we have from (98) that F
�1+
Xi
(0) � F�1+Xi

(0) and from (92) that F
�1
Xi
(1) = F�1Xi (1) =

Ki;mi+1, we �nd that the set of x-values for which the inequalities in the de�nitions above
have to hold is a support of (X1; X2; : : : ; Xn) in theQ-world and hence, also in the P-world.
We can conclude that

P
�
(S �K)+ � Pay-o¤ [�;X]

�
= 1; for any � 2 CK : (134)

A similar remark holds for any � 2 PK .
In the following example, we show that the super-replicating strategies that were

considered in Theorem 9 are elements of the class CK and PK , respectively.

Example 3 (Two simple investment strategies) Consider the investment strategy �� ��
��1c; �

�
1p; : : : ; �

�
nc; �

�
np

�
2 I, where for any i 2 NK, the functions ��ic and ��ip are de�ned by

��ic(y) =

�
0 if y < Ki;ji ;
wi if y � Ki;ji ;

and ��ip(y) � 0;

while for any i 2 NK, the functions ��ic and �
�
ip are de�ned by

��i (y) =

8<:
0 if y < Ki;ji ;

�Kwi if Ki;ji � y < Ki;ji+1;
wi if y � Ki;ji+1;

and ��ip(y) � 0:

Obviously, �� is the super-replicating strategy for the index call option that was considered
in Theorem 9 and hence,

�� 2 CK : (135)

The pay-o¤ of this strategy is given by:

Pay-o¤ [��; X] =
X
i2NK

wi (Xi �Ki;ji)+

+
X
i2NK

wi
�
�K (Xi �Ki;ji)+ + (1� �K) (Xi �Ki;ji+1)+

�
;

whereas its price is given by
Price [��] = C

c
[K] : (136)

Similarly, we de�ne the investment strategy �� �
�
��1c; �

�
1p; : : : ; �

�
nc; �

�
np

�
2 I, where for

any i 2 NK, the functions ��ic and ��ip are de�ned by

��ic(y) � 0 and ��ip(y) =
�
0 if y < Ki;ji

wi if y � Ki;ji ;

while for any i 2 NK, the functions ��ic and �
�
ip are de�ned by

��ic(y) = 0 and �
�
ip(y) =

8<:
0 if y < Ki;ji ;

�Kwi if Ki;ji � y < Ki;ji+1;
wi if y � Ki;ji+1:
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The investment strategy �� is the super-replicating strategy for the index put option that
was considered in Theorem 9 and hence,

�� 2 PK : (137)

Its price is given by
Price

�
��
�
= P

c
[K] : (138)

The investment strategies �� and �� will turn out to be optimal super-replicating strategies
for the index call and put option, respectively. r

In the following theorem, we look for the cheapest strategy contained in CK which
super-replicates the pay-o¤ (S �K)+ of the index option C [K], as well as for the cheapest
strategy contained in PK which super-replicates the pay-o¤ (K � S)+ of the index option
P [K] :

Theorem 10 Let �� 2 CK and �� 2 PK be the investment strategies de�ned in Example
3. For any K 2

�
F�1+
S
c (0); F�1

S
c (1)

�
it holds that

min
�2CK

Price [�] = Price [��] = C
c
[K] (139)

and
min
�2PK

Price [�] = Price
�
��
�
= P

c
[K] : (140)

Proof. Consider the investment strategy � 2 CK . Replacing the xi by F
�1
Xi
(U) in the

pay-o¤ inequality 
nX
i=1

wi xi �K
!
+

�
nX
i=1

�Z +1

�1
(Xi � y)+ d�ic (y) +

Z +1

�1
(y �Xi)+ d�ip (y)

�
and taking expectations leads to

E
h�
S
c �K

�
+

i
�

nX
i=1

�Z +1

�1
E [(Xi � y)+] d�ic(y) +

Z +1

�1
E [(y �Xi)+] d�ip(y)

�
.

Multiplying the left and right hand side by e�rT , this inequality can be rewritten as

C
c
[K] � Price [�] :

As this inequality holds for any � 2 CK , we can conclude that

C
c
[K] � inf

�2CK
Price [�] .
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On the other hand, as �� 2 CK , we have that

inf
�2CK

Price [�] � Price [��] = Cc [K] .

Combining these results, we can conclude that the stated results holds true for the call
option case.
The put option case can be proven in a similar way.

From Theorem 10, it follows that the cheapest super-replicating strategy contained in
CK is given by ��, whereas the cheapest super-replicating strategy contained in PK is given
by ��. The prices of these cheapest super-replicating strategies are equal to the upper
bounds C

c
[K] and P

c
[K] that we derived in Theorem 6. Although we allow portfolios

consisting of any available strike per individual stock, the cheapest of these strategies only
invests in at most two strikes per stock.

Suppose for a moment that the index call option C [K] is not traded in the market,
but sold over-the-counter. In this case, both the seller and the buyer of this option may
think of C

c
[K] as a fair price for the index option. Indeed, from the seller�s point of view,

C
c
[K] may be a reasonable price for the index call option as he can use this amount

to acquire the portfolio ��, resulting in a pay-o¤ which always exceeds the pay-o¤ of the
index option that he is due to the buyer. On the other hand, the buyer of the index option
cannot �nd a cheaper super-replicating strategy in the market. In case the index option
was sold over-the-counter at a higher price than its comonotonic price C

c
[K], the buyer

may prefer to buy the cheaper investment portfolio ��. A similar reasoning can be made
concerning the over-the-counter index put option price.

5.4 The upper bound is the least upper bound for the index
option price

As before, we use the symbol Dn to denote the class of all n-dimensional cdf�s on the
non-negative orthant of Rn, whereas the symbols Fi; i = 1; : : : ; n are used to denote the
marginal cdf�s of F 2 Dn. We �rst de�ne the subclass Rn of Dn.

De�nition 5 (The Fréchet class generated by the observed stock option prices)
The class Rn of n-dimensional cdf�s F is de�ned as

Rn =
�
F 2 Dn j e�rTiEFi

�
(Xi �Ki;j)+

�
= Ci [Ki;j] ; (141)

i = 1; : : : ; n and j = 0; 1; : : : ;mi + 1g :

The Fréchet class Rn consists of all multivariate distributions F which are consistent
with the observed call option prices Ci [Ki;j].

From the put-call parity (21), it follows that the class Rn can also be seen as the class
of all multivariate distributions F; which are consistent with the observed put option
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prices Pi [Ki;j]:

Rn =
�
F 2 Dn j e�rTiEFi

�
(Ki;j �Xi)+

�
= Pi [Ki;j] ;

i = 1; : : : ; n and j = 0; 1; : : : ;mi + 1g :

Taking into account (79) and (87), we �nd that the cdf of the comonotonic random

vector
�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
with marginal distributions FXi de�ned in (88) is

an element of Rn.

In the �nite market case that we consider in this section, the only information that
we have about the cdf of (X1; X2; : : : ; Xn) is that it belongs to Rn. This information does
not allow us to determine the index option prices C [K] and P [K], neither does it allow
us to derive Cc [K] and P c [K]. However, this information is su¢ cient to specify the cdf
of S

c
unambigously and hence, it allows us to determine the comonotonic index option

prices C
c
[K] and P

c
[K].

Theorem 11 (The least upper bound for the index option price) For any K �
0, one has that

max
F2Rn

e�rTEF
�
(S �K)+

�
= C

c
[K] (142)

and
max
F2Rn

e�rTEF
�
(K � S)+

�
= P

c
[K] : (143)

Moreover, in both cases the maximum is obtained for the cdf of
�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
.

Proof. Suppose that F 2 Rn is the cdf of (X1; X2; : : : ; Xn). The stop-loss relation
S �cx S

c
in (105) implies that

EF
�
(S �K)+

�
� E

h�
S
c �K

�
+

i
As this inequality holds for any F 2 Rn, we �nd that

sup
F2Rn

EF
�
(S �K)+

�
� E

h�
S
c �K

�
+

i
:

On the other hand, from the fact that the cdf of
�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
is an

element of Rn, we also have that

E[(Sc �K)+] � sup
F2Rn

EF [(S �K)+]:

Combining these observations leads to (142).
The put option case is proven in a similar way.
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Theorem 11 states that both the upper bounds C
c
[K] and P

c
[K] that we derived in

Theorem 6 can be interpreted as least upper bounds in the sense that they correspond to
the largest possible expected discounted pay-o¤ of the corresponding index option, given
the limited information about the marginal distributions of the underlying stocks that is
contained in the observed stock option prices. Somewhat loosely speaking, C

c
[K] is the

lowest upper bound for the index call option price with strike K in the class of all models
which are consistent with the observed stock option prices. A similar interpretation holds
true for the upper bound P

c
[K].

The upper bound C
c
[K], resp. P

c
[K], coincides with the index option price C [K],

resp. P [K], in case the risk-neutral multivariate distribution of the price vector X is equal

to the distribution of
�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
. The question whether this upper

bound is reachable in the sense that it is possible to construct an arbitrage-free market
with the observed index and stock option prices and with this risk-neutral multivariate
pricing distribution is considered in Hobson et al. (2005).

5.5 Computational and practical aspects

In this section we will consider several computational aspects related to the �nite market
case. We �rst prove the following lemma, which will be needed hereafter. The notations
used in this section correspond to the notations introduced before.

Lemma 5 Consider a real number x which can be expressed as

x =
nX
i=1

wixi (144)

with x = (x1; x2 : : : ; xn) being an element of a comonotonic support of�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
. Then one has that

FSc (x) = min
i2f1;2;:::;ng

FXi(xi): (145)

Proof. Any two elements x and y of a given comonotonic support of
�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
are ordered componentwise. Hence either xi � yi must hold for all i or yi � xi must hold
for all i. Let x be de�ned by (144), then the componentwise ordering of x and y leads to

nX
i=1

wiyi � x() yi � xi; for all i = 1; 2; : : : ; n; (146)

or, equivalently,

I

 
nX
i=1

wiyi � x
!
= I (y1 � x1; y2 � x2; : : : ; yn � xn) ; (147)
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where the notation I(A) is used to denote the indicator function which equals 1 when A
holds true and 0 otherwise. Replacing each yi by F

�1
Xi
(U) in (147) and taking expectations

on both sides leads to

FSc (x) = P
h
F
�1
Xi
(U) � x1; F

�1
X2
(U) � x2; : : : ; F

�1
Xn(U) � xn

i
= min

i2f1;2;:::;ng
FXi(xi);

where in the last step we made use of the well-known expression for the multivariate cdf
of a comonotonic vector.

5.5.1 Numerical evaluation of the upper bounds for C [K] and P [K]

In this subsection, we explain how to determine the comonotonic index option prices
C
c
[K] and P

c
[K] as well as the corresponding super-replicating strategies �� and �� for

the index options C [K] and P [K], respectively.

Starting from either the observed stock option prices Ci [Ki;j] or the observed stock
put options Pi [Ki;j], we can determine all FXi (Ki;j) from Lemma 3. In a second step,
the extreme outcomes F�1+

S
c (0) and F�1

S
c (1) are obtained from

F�1+
S
c (0) =

nX
i=1

wiF
�1+
Xi
(0) with F

�1+
Xi
(0) = min

j2f0;1;:::;mig

�
Ki;j j FXi(Ki;j) > 0

	
and

F�1
S
c (1) =

nX
i=1

wiKi;mi+1:

For K =2
�
F�1+
S
c (0); F�1

S
c (1)

�
, the comonotonic index option prices C

c
[K] and P

c
[K]

are equal to the exact index option prices:

C [K] = 0; K � F�1
S
c (1) ;

P [K] = 0; K � F�1+
S
c (0) ;

and

C [K] = e�rT (E [S]�K) ; K � F�1+
S
c (0) ;

P [K] = e�rT (K � E [S]) ; K � F�1
S
c (1) :

In the remainder of this section, we assume that K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
, except if ex-

plicitely stated otherwise. This assumption implies that FSc(K) 2 (0; 1).

In order to be able to determine the upper bounds C
c
[K] and P

c
[K] for the index

call and put options C [K] and P [K], one has to determine FSc(K), the indices ji; i =
1; 2; : : : ; n, the corresponding sets NK and NK , and also the coe¢ cient �K . Let us �rst
consider the problem of determining FSc(K).
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Lemma 6 For any K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
one has that

FSc(K) = min
i2f1;:::;ng

�
FXi (Ki;ji)

	
: (148)

Proof. First notice that

FSc (K) = FSc
�
F�1
S
c (FSc (K))

�
As F�1

S
c (FSc (K)) =

Pn
i=1wiF

�1
Xi
(FSc (K)) and

�
F
�1
X1
(FSc (K)) ; : : : ; F

�1
Xn (FSc (K))

�
is an

element of a comonotonic support of
�
F
�1
X1
(U) ; : : : ; F

�1
Xn (U)

�
, a direct application of

Lemma 5 leads to
FSc (K) = min

i2f1;2;:::;ng
FXi(F

�1
Xi
(FSc (K)))

Expression (148) follows then from (120).

Unfortunately, Lemma 6 does not provide us with a straightforward way for determin-
ing FSc(K). Indeed, the ji depend on the value of FSc(K) and hence, (148) only gives an
implicit expression for FSc(K). In the following theorem we present an explicit expression
for FSc(K). The proof of the theorem makes use of Lemma 6.

Theorem 12 Let A be the set de�ned by

A =
�
FXi (Ki;j) j i = 1; : : : ; n and j = 0; 1; : : : ;mi

	
n f0g : (149)

For any K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
, the value of FSc(K) follows from

FSc(K) = max

(
p 2 A j

nX
i=1

wiF
�1
Xi
(p) � K

)
: (150)

Proof. From Lemma 6 it follows immediately that FSc(K) is equal to one of the

FXi (Ki;j), i = 1; : : : ; n; j = 0; 1; : : : ;mi+1. Furthermore, for anyK 2
�
F�1+
S
c (0); F�1

S
c (1)

�
one has that 0 < FSc(K) < 1. These observations imply that

FSc(K) 2 A:

Obviously it holds that

FSc(K) = max fp 2 A j p � FSc(K)g .

Taking into account (8), this relation can be transformed into

FSc(K) = max
n
p 2 A j F�1

S
c (p) � K

o
:

Combining this expression with the additivity property for the quantiles of a comonotonic
sum leads to (150).

Combining the previous results and Theorem 12 allows us to write down the following
algorithm for determining FSc(K).
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Algorithm 1 (Determining FSc(K)) For anyK 2
�
F�1+
S
c (0); F�1

S
c (1)

�
, determine FSc(K)

as follows:

1. Calculate all elements FXi (Ki;j) of the set A de�ned in (149):
For any i = 1; : : : ; n and j = 0; 1; : : : ;mi, we have that

FXi (Ki;j) = 1 + e
rT Ci [Ki;j+1]� Ci [Ki;j]

Ki;j+1 �Ki;j

,

or, equivalently,

FXi (Ki;j) = e
rT Pi [Ki;j+1]� Pi [Ki;j]

Ki;j+1 �Ki;j

:

2. Calculate F
�1
Xi
(p) for any i = 1; : : : ; n and any p 2 A:

F
�1
Xi
(p) = Ki;j if FXi(Ki;j�1) < p � FXi(Ki;j); j = 0; 1; : : : ;mi + 1:

3. Calculate FSc(K) from (150):

FSc(K) = max

(
p 2 A j

nX
i=1

wiF
�1
Xi
(p) � K

)

In case K =2
�
F�1+
S
c (0); F�1

S
c (1)

�
, it is straightforward to determine FSc(K): Indeed,

FSc(K) = 1 if K � F�1
S
c (1);

whereas
FSc(K) = 0 if K < F�1+

S
c (0)

and
FSc

�
F�1+
S
c (0)

�
= min

i2f1;:::;ng
FXi

�
F
�1+
Xi
(0)
�

(151)

This last expression follows from Lemma 5.

A computationally better but more complicated algorithm for determining FSc(K)
is described in Chen et al. (2008). After having calculated FSc(K), the indices ji; i =
1; 2; : : : ; n; can be determined from (114), while the sets NK and NK are given by (115)
and (116), respectively. From (111), together with (112) and (120) we �nd that

K =
X
i2NK

wiKi;ji +
X
i2NK

wi (�KKi;ji + (1� �K)Ki;ji+1) : (152)

Solving this equation for �K leads to

�K = 1�
K �

Pn
i=1wiKi;jiP

i2NK
wi (Ki;ji+1 �Ki;ji)

(153)
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From Lemma 6 it follows that the set NK contains at least one element. Furthermore,
recall that we assumed that all Ki;mi+1 are �nite. Both observations guarantee that �K is
well-de�ned.

In practice, it may happen that the chain of traded strikes is di¤erent for the stock
calls and puts. In order to explain how to cope with this problem, let us suppose that
Pi [K] is traded, while Ci [K] is not. As long as there is at least one strike K�

i for which
the prices Ci [K�] and P [K�

i ] are traded, the forward price E [Xi] can be calculated in a
model-free way from the put-call parity applied to this couple:

e�rTE [Xi] = Ci [K
�]� Pi [K�] + e�rTK�:

The pay-o¤ of receiving Xi at time T can be replicated by an investment strategy con-
sisting of buying the call Ci [K�], selling the put Pi [K�] and putting e�rTK� on the bank
account. The price Ci [K] of the non-traded call option can then be backed out of the
traded put option Pi [K] with the help of the put-call parity:

Ci [K] = Pi [K] + e
�rTE [Xi]� e�rTK:

In this case, a long position in the non-traded call option Ci [K] has to be understood
as a long position in the traded put option Pi [K], receiving the stock i at time T and
borrowing e�rTK.

5.5.2 On the choice of the maximal values Ki;mi+1

In this subsection we make the following assumption concerning the choice of the �maxi-
mal�values Ki;mi+1 of the stock prices Xi:

max
i2f1;:::;ng

FXi (Ki;mi�1) < min
i2f1;:::;ng

FXi (Ki;mi
) . (154)

Notice that we implicitely assume here that all mi > 0. From (88) we �nd that any
FXi (Ki;mi

) is given by

FXi (Ki;mi
) = 1� erT Ci [Ki;mi

]

Ki;mi+1 �Ki;mi

:

This implies that FXi (Ki;mi
) is an increasing function of Ki;mi+1 and by choosing Ki;mi+1

su¢ ciently large, the value of FXi (Ki;mi
) can be made as close to 1 as desired. This means

that the assumption (154) will be ful�lled, provided all Ki;mi+1 are chosen su¢ ciently
large.
Taking into account (88), we can rewrite the assumption (154) as follows:

Ki;mi+1 > Ki;mi
+ Ci [Ki;mi

]� max
j2f1;:::;ng

(
Kj;mj

�Kj;mj�1

Cj
�
Kj;mj�1

�
� Cj

�
Kj;mj

�) ; i = 1; 2; : : : ; n:

(155)
Throughout this subsection, we will also silently assume that F

�1+
Xi
(0) < Ki;mi

for any
i = 1; : : : ; n. This assumption implies that FXi (Ki;mi

) > 0 for all i.
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Lemma 7 Assume that the Ki;mi+1; i = 1; : : : ; n; are su¢ ciently large in the sense that
(154) holds. Then one has that

FSc(K) < min
i2f1;:::;ng

FXi (Ki;mi
) ; if K <

nX
i=1

wiKi;mi
; (156)

while

FSc

 
nX
i=1

wiKi;mi

!
= min

i2f1;:::;ng
FXi (Ki;mi

) : (157)

Proof. (a) We �rst prove that (157) holds.
Let pmin be de�ned by

pmin = min
i2f1;:::;ng

FXi (Ki;mi
) :

Notice that 0 < pmin < 1. From assumption (154) we �nd that

FXi (Ki;mi�1) < pmin � FXi (Ki;mi
) ; i = 1; : : : ; n. (158)

This implies that
F
�1
Xi
(pmin) = Ki;mi

; i = 1; : : : ; n.

Hence,
nX
i=1

wiKi;mi
=

nX
i=1

wiF
�1
Xi
(pmin).

These last two expressions combined with Lemma 5 imply that (157) holds true.
(b) The r.v. S

c
is a comonotonic sum of discrete r.v.�s and hence, also has a discrete

distribution. As F�1
S
c (pmin) =

Pn
i=1wiF

�1
Xi
(pmin) =

Pn
i=1wiKi;mi

we have that S
c
has a

strictly positive probability mass at
Pn

i=1wiKi;mi
. This observation implies (156).

Based on the results derived above, we are now able to prove that, under rather general
conditions, the upper bounds for the index option prices will not depend on the particular
choices for the values of the Ki;mi+1.

Theorem 13 Assume that the Ki;mi+1; i = 1; : : : ; n; are chosen su¢ ciently large in the

sense that (154) holds. In this case, we have that for any K 2
�
F
�1+
S
c (0);

Pn
i=1wiKi;mi

i
the upper bounds C

c
[K] and P

c
[K] for the index option prices C [K] and P [K] and also

the corresponding super-replicating strategies do not depend on the particular choices for
the values of the Ki;mi+1.

Proof. (a) When K <
Pn

i=1wiKi;mi
, we know from Lemma 7 that

FSc(K) < FXi (Ki;mi
) ; i = 1; : : : ; n:

From the de�nitions of the ji it follows then that for each i 2 f1; : : : ; ng either �ji = mi

and i 2 NK�or �ji � mi � 1�holds. Hence, the indices ji as well as the sets NK and
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NK do not depend on the choices of the values of the Ki;mi+1. From (153) it follows that
also �K does not depend on the choice of the Ki;mi+1. We can conclude that the upper
bounds C

c
[K] and P

c
[K] for the index option prices C [K] and P [K] and the associated

super-replicating strategies do not depend on the particular choice of the Ki;mi+1.

(b) Let us now consider the limiting case where K =
Pn

i=1wiKi;mi
. From Lemma 7,

we know that FSc has a positive jump at K. Taking into account the de�nition (113) of
�K , we �nd that �K = 1 in this case. Furthermore, from assumption (154) and expression
(157) we �nd that

FXi (Ki;mi�1) < FSc (K) � FXi (Ki;mi
) ; i = 1; : : : ; n;

which implies that ji = mi for any i = 1; : : : ; n in this case. Hence, we can again
conclude that the upper bounds C

c
[K] and P

c
[K], as well as the associated optimal

super-replicating strategies, do not depend on the particular choice of the Ki;mi+1.

From the previous lemma, we know that under reasonable assumptions the bounds
C
c
[K] and P

c
[K], as well as the corresponding super-replicating strategies, do not depend

on the particular choices of the values of the Ki;mi+1.

5.5.3 Determining the stock option prices Ci [0] and Pi [Ki;mi+1]

Until here we assumed that the stock option prices

Ci [0] = e
�rTE [Xi] (159)

and
Pi [Ki;mi+1] = e

�rT (Ki;mi+1 � E [Xi]) (160)

are known for any stock i. In practice however, these options are not traded and hence,
their prices cannot be observed. Hereafter, we will explain how to derive these prices, or
equivalently, how to determine the forward prices E [Xi], from information that is available
in the market. Notice from the previous subsection that under appropriate choices for
the Ki;mi+1, our results will not depend on the explicit values of these Ki;mi+1 and hence,
knowledge of the Pi [Ki;mi+1] will not be required. Nevertheless, for reasons of completeness
hereafter we will not only explain how to cope with the problem of unobserved values of
the option prices Ci [0], but we will also have a look at the problem of unknown values of
Pi [Ki;mi+1].

Let us �rst consider the simple case where stock i pays no dividends in the period
[0; T ]. In this case, �buying the call Ci [0] at time 0 and holding it until maturity T�or
�buying the stock i at time 0 and selling it at time T�leads to the same pay-o¤ Xi at
time T . A no-arbitrage argument leads to the conclusion that the call option price Ci [0]
is equal to the spot price of the underlying stock in this case:

Ci [0] = Xi (0) ; for a non-dividend-paying stock. (161)

From (159) and (160) it follows that the put option price Pi [Ki;mi+1] is then given by

Pi [Ki;mi+1] = e
�rTKi;mi+1 �Xi (0) ; for a non-dividend-paying stock. (162)
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Let us now consider the general case where stock i may or may not pay dividends in
the period [0; T ]. In order to determine the value of Ci [0] in this case, let y be any strike
for which calls and puts with expiration date T are traded on stock i. From the put-call
parity (21) we �nd that

Ci [0] = Ci [y]� Pi [y] + ye�rT : (163)

Taking into account (159) and (160), this expression leads to

Pi [Ki;mi+1] = Pi [y]� Ci [y] + e�rT (Ki;mi+1 � y) : (164)

The relations (163) and (164) express the option prices Ci [0] and Pi [Ki;mi+1] in terms of
observed prices. Furthermore, it is straightforward to prove that the pay-o¤s of both Ci [0]
and Pi [Ki;mi+1] can be replicated by the pay-o¤s of time-0 strategies consisting of trading
the stock options Ci [y] and Pi [y] and investing in the risk-free T -year zero coupon bond,
the prices of which are given by the right hand sides of (163) and (164), respectively.

In principle Ci [0] and Pi [Ki;mi+1] can be determined from (163) and (164) for any
traded strike y. However, in order to guarantee that the strike y is su¢ ciently traded,
in practice one often prefers to choose the strike y as close as possible to E [Xi], or
equivalently, to choose y such that jCi [y]� Pi [y]j is as small as possible. This means that
the strike y 2 fKi;j j j = 0; 1; : : : ;mi + 1g that is used to determine Ci [0] and Pi [Ki;mi+1]
is de�ned as follows:

y = argmin
j2f0;1;:::;mi+1g

jCi [Ki;j]� Pi [Ki;j]j : (165)

Having determined the values of Ci [0] or Pi [Ki;mi+1], we immediately �nd the correspond-
ing value of E [Xi].

A �rst way to circumvent the problem that Ci [0] and Pi [Ki;mi+1] are not directly
observed is to consider strategies that replicate the pay-o¤s of these options. This proce-
dure was explained above. A second way of solving this problem consists of determining
upper bounds for the unobservable option prices Ci [0] and Pi [Ki;mi+1]. This procedure is
considered hereafter.

A �rst upper bound that we considered already for Ci [0] is given by

Ci [0] � Xi (0) , (166)

where the inequality can be replaced by an equality in case stock i pays no dividends.
Another upper bound can be constructed for Ci [0] by considering its largest possible value
CMi [0] which is consistent with the available information. Taking into account that Ci [y]
is convex and decreasing, that (Ki;1; Ci [Ki;1]) is an element of the curve (y; Ci [y]) and
that the slope of Ci [y] is given by �e�rT for y � 0, we �nd that

Ci [y] � CMi [y] ; for all y � Ki;1,

with CMi [y] de�ned by

CMi [y] = Ci [Ki;1]� e�rT (y �Ki;1) .
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In particular, we �nd that the maximal value for Ci [0] is given by

CMi [0] = Ci [Ki;1] + e
�rTKi;1:

Hence, we �nd the following upper bound for the zero-strike call option:

Ci [0] � Ci [Ki;1] + e
�rTKi;1; (167)

see Figure 7. This upper bound for Ci [0] is the price of a super-replicating strategy for
the pay-o¤Xi at time T , consisting of buying the call Ci [Ki;1] and investing e�rTKi;1 in
the risk-free zero coupon bond at time 0.

In a similar way, we can derive an upper bound for the unobserved option price
Pi [Ki;mi+1] by considering its largest possible value P

M
i [Ki;mi+1] which is consistent with

the available information. Taking into account that Pi [y] is convex and increasing, that
(Ki;mi

; Pi [Ki;mi
]) is an element of the curve (y; Pi [y]) and that the slope of Pi [y] is equal

to e�rT for y � Ki;mi+1, we �nd that

Pi [y] � PMi [y] ; for all y � Ki;mi
,

with PMi [y] de�ned by

PMi [y] = Pi [Ki;mi
] + e�rT (y �Ki;mi

) :

In particular, we �nd that the maximal value for Pi [Ki;mi+1] is given by

PMi [Ki;mi+1] = Pi [Ki;mi
] + e�rT (Ki;mi+1 �Ki;mi

) :

Hence, we �nd the following upper bound:

Pi [Ki;mi+1] � Pi [Ki;mi
] + e�rT (Ki;mi+1 �Ki;mi

) : (168)

This upper bound for Pi [Ki;mi+1] is the price of a super-replicating strategy for the
pay-o¤ (Ki;mi+1 �Xi) at time T , consisting of buying the put Pi [Ki;mi

] and investing
e�rT (Ki;mi+1 �Ki;mi

) in the risk-free zero coupon bond at time 0.

Most of the results that we derived concerning upper bounds for index options in
the �nite market case remain to hold if we replace Ci [0] and Pi [Ki;mi+1] by C

M
i [0] and

PMi [Ki;mi+1], respectively, and replace �buying the call Ci [0]�by �buying Ci [Ki;1] and
investing e�rTKi;1in the risk-free zero coupon bond�, while replacing �buying the put
Pi [Ki;mi+1]�by �buying the put Pi [Ki;mi

] and investing e�rT (Ki;mi+1 �Ki;mi
) in the risk-

free zero coupon bond at time 0.

Notice that replacing Ci [0] by Xi (0) and �buying Ci [0]�by �buying Xi (0)�in all our
previous results will not always be appropriate as it may lead to a non-convex call option
curve. This situation will arise when Xi (0) > C

M
i [0]. This inequality will be ful�lled in

particular when a substantial part of the stock price Xi (0) consists of the market price
for the future dividend payments in the period [0; T ].
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Figure 7: Upper bounds for the call price Ci [0] :

5.5.4 The upper bounds in terms of the inverses F
�1
Xi

From Theorem 7 it follows that the comonotonic index option prices C
c
[K] and P

c
[K]

are expressed in terms of the inverses F�1(�K)
Xi

with �K de�ned in (153). In the following
corollary, we show that these upper bounds can also be expressed in terms of the usual
inverses F�1

Xi
.

Corollary 2 For any K 2
�
F�1+
S
c (0); F�1

S
c (1)

�
, one has that

C
c
[K] =

nX
i=1

wi Ci [Ki;ji ]� e�rT
 
K �

nX
i=1

wi Ki;ji

!
(1� FSc(K)) (169)

and

P
c
[K] =

nX
i=1

wi Pi [Ki;ji ] + e
�rT

 
K �

nX
i=1

wi Ki;ji

!
FSc(K); (170)

where the indices ji are de�ned as before.

Proof. From Corollary 1 applied to the vector
�
F
�1
X1
(U); F

�1
X2
(U); : : : ; F

�1
Xn(U)

�
we �nd

that C
c
[K] can be expressed as

C
c
[K] =

nX
i=1

wiCi

h
F
�1
Xi
(FSc(K))

i
� e�rT

�
K � F�1

S
c (FSc(K))

�
(1� FSc(K)) :

From (121) for � = 1, we �nd that Ci
h
F
�1
Xi
(FSc(K))

i
= Ci [Ki;ji ]. Furthermore, from

the additivity property for quantiles of a comonotonic sum and from (119) for � = 1, we
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have that F�1
S
c (FSc(K)) =

Pn
i=1wi Ki;ji. Combining these observations leads to (169).

The expression (170) for P
c
[K] can be proven in a similar way.

From (152) it follows that
Pn

i=1wiKi;ji � K. This implies that the second term in the
right hand side of (170) is non-negative. Hence, we �nd that

C
c
[K] �

nX
i=1

wiCi [Ki;ji ] (171)

and
Pn

i=1wi Ci [Ki;ji ] is also an upper bound for the index option price C[K], although it
is not the optimal one in the sense that the time-0 price of the portfolio of stock options
Ci [Ki;ji ] will not be the price of the cheapest super-replicating strategy for the index call
option C [K].

5.5.5 The case when no option data are available for some stocks

Recall that for any stock i, the chain of traded strikes is given by

0 = Ki;0 < Ki;1 < Ki;2 < � � � < Ki;mi
< Ki;mi+1 = F

�1
Xi
(1) <1:

In practice, there may be stocks i for which mi = 0, which means that there is no couple
(Ci [Ki;j] ; Pi [Ki;j]) of option prices available with 0 < Ki;j < Ki;mi+1. This situation will
occur in particular when there are only options available on a subset of the constituent
stocks of the index. An example in that respect is the S&P 500 index. Hereafter, we
show how the calculations of the index option upper bounds can be simpli�ed in this
case, provided the Ki;mi+1 ful�ll an appropriate condition. Without lack of generality,
throughout this section we assume that mi > 0 for stocks i = 1; 2; : : : ; k, while mi = 0 for
i = k + 1; : : : ; n.

The discrete distributions FXi of the stocks i = k + 1; : : : ; n, follow from Lemma 3:

FXi(x) =

8>><>>:
0 x < 0;

1� erT Ci [0]
Ki;1

0 � x < Ki;1;

1 x � Ki;1:

(172)

As before, we assume that no marginal distribution FXi is a one-point distribution, see
(93). For the stocks i = k + 1; : : : ; n, this implies that 0 < FXi(0) < 1.

We introduce the notation S
c

k for the comonotonic sum of the �rst k stocks:

S
c

k = w1F
�1
X1
(U) + w2F

�1
X2
(U) + � � �+ wkF

�1
Xk
(U): (173)

Furthermore, we use the symbol C
c

k [K] and P
c

k [K] to denote the corresponding comonotonic
call and put option prices:

C
c

k [K] = e
�rTE

h�
S
c

k �K
�
+

i
(174)
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and
P
c

k [K] = e
�rTE

h�
K � Sck

�
+

i
: (175)

For any K 2
�
F�1+
S
c
k
(0); F�1

S
c
k
(1)
�
, the value of FSck(K) follows from algorithm 1, where

we replace n, A and S
c
by k, Ak and S

c

k, respectively:

FSck(K) = max

(
p 2 Ak j

kX
i=1

wiF
�1
Xi
(p) � K

)
; (176)

with the set Ak given by

Ak =
�
FXi (Ki;j) j i = 1; : : : ; k and j = 0; 1; : : : ;mi

	
n f0g : (177)

From Theorem 7, we �nd that

C
c

k [K] =
kX
i=1

wiCi

�
F
�1(�(k)K )

Xi

�
FSck(K)

��
; (178)

P
c

k [K] =
kX
i=1

wiP i

�
F
�1(�(k)K )

Xi

�
FSck(K)

��
; (179)

with �(k)K determined from

F
�1(�(k)K )

S
c
k

�
FSck(K)

�
= K: (180)

Theorem 8 can be applied to determine alternative expressions for C
c

k [K] and P
c

k [K].

In the following theorem we prove that calculating the upper bounds C
c
[K] and P

c
[K]

for the index call and put option prices reduces to the calculation of C
c

k [K] and P
c

k [K],
provided the �maximal�values Ki;mi+1; i = k + 1; : : : ; n, ful�ll the following condition:

max
i�k

FXi (Ki;mi
) < min

i>k
FXi (0) . (181)

From (172) it is clear that condition (181) is ful�lled provided the values Ki;1 of the last
(n� k) stocks are chosen su¢ ciently large.

Theorem 14 Suppose that mi > 0 for stocks i = 1; 2; : : : ; k, while mi = 0 for i =
k + 1; : : : ; n. Assume that the Ki;mi+1; i = 1; : : : ; n; are chosen su¢ ciently large in the

sense that (181) holds. In this case, we have that for any K 2
�
F
�1+
S
c (0);

Pk
i=1wiKi;mi+1

�
the upper bounds C

c
[K] and P

c
[K] for the index option prices C [K] and P [K] are given

by

C
c
[K] = C

c

k [K] +

nX
i=k+1

wiCi [0] (182)

and
P
c
[K] = P

c

k [K] ; (183)

respectively.
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Proof. Let K 2
�
F�1+
S
c (0) ;

Pk
i=1wiKi;mi+1

�
. Taking into account that F�1+

S
c
k
(0) �

F�1+
S
c (0) and F�1

S
c
k
(1) =

Pk
i=1wiKi;mi+1, we have that K 2

�
F�1+
S
c
k
(0) ; F�1

S
c
k
(1)
�
.

From assumption (181) we �nd that

0 < p < FXi (0) , p 2 Ak and i > k: (184)

From (172) it follows then that

F
�1
Xi
(p) = 0; p 2 Ak and i > k: (185)

Notice that we �nd from (145), that FSc(K) � FSck(K) always holds. On the other hand,
(185) leads to

FSck(K) = max

(
p 2 Ak j

kX
i=1

wiF
�1
Xi
(p) � K

)

= max

(
p 2 Ak j

nX
i=1

wiF
�1
Xi
(p) � K

)

� max
(
p 2 A j

nX
i=1

wiF
�1
Xi
(p) � K

)
= FSc(K):

We can conclude that
FSc(K) = FSck(K): (186)

We have that FSc(K) 2 Ak: We �nd from (184) that

F
�1(�K)
Xi

(FSc(K)) = 0; i > k;

from which it follows that

nX
i=1

F
�1(�K)
Xi

(FSc (K)) =

kX
i=1

F
�1(�K)
Xi

(FSc (K)) :

Taking into account (180), this equality also implies

�K = �
(k)
K : (187)

The equalities (186) and (187) lead to

F
�1(�K)
Xi

(FSc(K)) = F
�1(�(k)K )

Xi

�
FSck(K)

�
; i = 1; 2; : : : ; n:
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Hence, from Theorem 7 and (178), we �nally �nd that

C
c
[K] =

nX
i=1

wiCi

h
F
�1(�K)
Xi

(FSc(K))
i

=

kX
i=1

wiCi

�
F
�1(�(k)K )

Xi

�
FSck(K)

��
+

nX
i=k+1

wiCi [0]

= C
c

k [K] +

nX
i=k+1

wiCi [0] :

Similarly, one can prove that P
c
[K] = P

c

k [K].

From the previous theorem, we can conclude that under the assumption (181), the
calculation of the upper bounds C

c
[K] and P

c
[K] reduces to the calculation of C

c

k [K]

and P
c

k [K], if K 2
�
F�1+
S
c (0) ;

Pk
i=1wiKi;mi+1

�
. Notice that the requirement K <Pk

i=1wiKi;mi+1 will be met, provided the Ki;mi+1; i > k; are chosen su¢ ciently large.
Finally, notice that in case the last (n � k) stocks pay no dividends, each Ci [0] ; i =
k + 1; : : : ; n; in (182) is equal to the corresponding current stock price Xi (0). On the
other hand, in case of dividend-paying stocks, we have that Ci [0] � Xi (0) ; i = k+1; : : : ; n,
and replacing each Ci [0] by Xi (0) results in an upper bound for C

c
[K] and hence also

for the index option price C [K].

6 Final remarks

In a model-based approach, index (and other exotic) call option prices are determined via
simulation techniques or via an appropriate approximation technique. We refer to Deelstra
et al. (2004), where comonotonic approximations are used to determine the price of an
index option, given that the underlying stock prices are modelled by a multivariate Black-
Scholes model. Another approach consists of determining upper bounds for European-
type index option prices, which are only based on available market information, without
assuming any particular model for the underlying stock prices. Such an approach is called
model-free.

To the best of our knowledge, Simon et al. (2000) were the �rst to use the theory of
comonotonicity to derive model-free upper bounds for Asian options. They showed that
this upper bound can be expressed in terms of European options. Albrecher et al. (2005)
show that this model-independent upper bound for an Asian option price corresponds to
a static super-replicating strategy for this option. They explain how a long position in
an Asian option can be hedged by shorting a portfolio of European call options on the
underlying stocks.

Hobson et al. (2005) derive a model-independent upper bound for index options. They
considered Lagrange optimization techniques to construct an upper bound for the index
option price as well as the corresponding super-replicating strategy. These authors also
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presented a more realistic framework, where the set of traded European options is �nite.
They showed that their upper bound is the lowest upper bound for the price of the index
option which is consistent with the observed prices of the traded European options on the
individual stocks contained in the index.

Chen et al. (2008) unify the approaches of Simon et al. (2000) and Hobson et al. (2005)
by determining upper bounds for a general class of exotic options (including Asian and
index options), based on the theory on comonotonicity.

In the current paper, we have presented the above-mentioned results for index options
in a broader context. Di¤erent from the existing literature, we do not only consider index
calls but also index puts. Moreover, it is shown that treating the pricing of an index call
option and an index put option in an integrated framework results in an e¢ cient way to
calculate both upper bounds. We have added several extensions to the existing literature.
In particular, we have considered the situation where for some of the constituent stocks
in the index there are no options available.
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