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Abstract

This paper contains an overview and an extension of the theory on comonotonicity-
based model-free upper bounds and super-replicating strategies for stock index op-
tions, as presented in Hobson et al. (2005) and (Chen et al. (2008). Whereas these
authors only consider index call options, here a unified approach for call and put
options is presented. Considering a unified framework gives rise to an efficient algo-
rithm for calculating upper bounds and for determining the corresponding super-
hedging strategies for both cases. The unified framework also allows to extend sev-
eral existing results, in particular on the optimality of the superhedging strategies.
Several practical issues concerning the implementation of the results are discussed.
In particular, a simplified algorithm is presented for the situation where for some of
the constituent stock in the index there are no options available.

Keywords: index call and put options, comonotonicity, model-free approach, static
super-replicating strategies.

1 Introduction

In this paper we investigate European-type options on an index which is a weighted
sum of stock prices. The usual setup for determining the arbitrage-free price of such an
option consists of first postulating a risk-neutral measure and then determining its price
as the expected value of its discounted pay-off, where discounting is performed at the
risk-free rate and the expectation is taken with respect to the risk-neutral measure. We
will consider a different approach. Instead of postulating a risk-neutral measure, we will
look for the best upper bound for the price of the index option under consideration, based
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on available market information. In particular, we will determine the lowest upper bound
for the price of the index option which is consistent with the observed prices of traded
European options on the individual stocks contained in the index. We will prove that this
upper bound corresponds to the price of the cheapest strategy in a broad class of static
investment strategies with a pay-off that super-replicates the pay-off of the index option.

We first consider the infinite market case, where the prices of the options on the stocks
of which the index is composed are available for all strikes. We prove that in this case,
the cheapest super-replicating strategy for the index option consists of buying for each
individual stock only one type of option on that stock. Armed with the results of the
infinite market case, we are able to investigate the more realistic finite market case, where
only a finite number of options on each individual stock are traded. In the finite market
case, it turns out that the cheapest super-replicating strategy consists of buying for each
individual stock options with at most two different strike prices.

The approach followed in this chapter is a model-free approach in the sense that the
upper bound for the index option price and the corresponding super-hedging strategy are
determined from the observed option prices on the individual stocks, without making any
assumption about the underlying risk-neutral measure.

This paper is of a pedagogical nature. It is closely related to earlier work of [Hobson
et al.| (2005) and (Chen et al. (2008). In order to make this paper self-contained, we repeat
their results on index call options. Furthermore, we develop corresponding results for index
put options. Considering the pricing of index call and put options in a unified framework
gives rise to an efficient algorithm for calculating upper bounds and for determining the
corresponding superhedging strategies for both cases. The unified framework also allows
us to extend existing optimality results concerning these superhedging strategies. We
also consider the situation where for some of the constituent stocks in the index there
are no options available. We show how the algorithm for calculating bounds and super-
replicating strategies can be further simplified in this case. One of the aims of our paper is
to make this extended version of the work of Hobson et al.| (2005) and |Chen et al.| (2008)
accessible to a broader audience by simplifying the original proofs and presentations and
by considering several practical aspects concerning the implementation of these results.
Based on the results presented in this paper,|[Dhaene et al.| (2011) and |Dhaene et al.| (2012)
propose an easy to calculate measure for the implied degree of co-movement behavior in
stock markets.

2 Stocks, the market index and options

Throughout this chapter, we assume a financial marketﬂ where n different (dividend or
non-dividend paying) stocks, labeled from 1 to n, are traded. Current time is 0, while

'We use the common approach to describe the financial market via a filtered probability space
(Q, F, (Fe)o<t<r ,IP’), which satisfies the usual technical conditions of completeness and right-continuity,

and where Fy contains all P - null sets of €. Price processes of traded financial instruments are modeled

as stochastic processes on that probability space which are adapted to the filtration (F3),<;<qp-
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the time span under consideration is 7" years. The price of stock 7 at time ¢, 0 <t < T, is
denoted by the non-negative random variable (r.v.) X; (¢). The stochastic price process
of stock i is denoted by {X; (t) | 0 <t < T}.

In this market, there is a market index which is a linear combination of the n traded
stocks. Denoting the price of this index at time ¢ by S (), 0 <t < T, we have that

S(t) =u Xy (t) + weXo (1) + ... + wp, X, (1), (1)

where w;, 1 = 1,2, ...,n, are positive weights that are fixed up front.

We assume that market participants have access to a number of European options
with maturity T'. More precisely, they can trade in European calls and puts on the index
as well as on the individual stocks. We recall that the pay-off at time T of a European
call with maturity 7" and strike K on the index is given by (S (7') — K),, whereas the
pay-off of the corresponding index put option is given by (K — S (7')), . The time-0 prices
of these index options are denoted by C' [K,T| and P [K, T}, respectively. Similar pay-offs
and notations hold for calls and puts on the constituent stocks. In particular, the time-0
prices of calls and puts on stock i are denoted by C; [K,T] and P, [K, T}, respectively.

It is assumed that the financial market is arbitrage-free and that there exists a pricing
measure Q, equivalent to the physical probability measure P, such that the current price
of any pay-off at time 7" can be represented as the expectation of the discounted pay-off. In
this price-recipe, the discounting factor is e™"7, where r is the continuously compounded
time-0 risk-free interest rate to expiration 7', whereas expectations are taken with respect
to Q. For simplicity in notation and terminology, we assume deterministic interest rates.
Notice however that all results hereafter remain to hold in case interest rates are stochastic,
provided the discounting factor e~"7 is interpreted as the time-0 price of a T-year zero
coupon bond and the pricing measure Q is interpreted as a ‘I-year forward measure’
instead of a ‘risk-neutral measure’.

The no-arbitrage condition gives rise to the following expressions for the European
call and put option prices:

Ci[K,T] = e ™" B[(Xi(T) — K)4], (2)

P [K,T) = e E[(K — Xi(T))4], (3)
and

C[K,T] = e ""B[(S(T) — K)4], (4)

P[K,T] = e "E[(K — S(T))4]. (5)

In formulae (2), (), () and (§) as well as in the remainder of this text, expectations
of functions of (X3 (T'),..., X, (7)) have to be understood as expectations under the Q-
measure. We call such expectations risk-neutral expectations. Furthermore, the notations
Fx,r) (x) and Fg(ry will be used for the time-0 cumulative distribution functions (cdf’s) of
X; (T) and S (T) under Q. We will call Fx, ) (x) and Fgy the risk-neutral distributions
of the stock and index prices at time 7T, respectively.



In order to avoid unnecessary overloading of the notations, from here on we will omit
the time index 7" when no confusion is possible. This means e.g. that we will use the
notations X;, C; [K] and FY, (x) for X; (T'), C; [K,T| and Fx, ) (), respectively.

One of the goals of this chapter is to determine the smallest upper bound for the
index call and put option prices C'[K] and P [K| which can be expressed as the price of a
portfolio of individual stocks and options on these individual stocks, with a pay-off that
super-replicates the pay-off of the index option under consideration. Solving this problem
numerically by considering any feasible combination of stock options is practically impos-
sible. Indeed, let us consider the simpler problem where we want to determine the lowest
upper bound for the call index option price C'[K] which can be expressed as the price
Yo w;C; [K;] of a super-replicating strategy for this index call option consisting of buy-
ing for each stock 7 in the index a number of w; call options C; [K;] with strike K;. From a
practical point of view, solving this problem numerically by considering any feasible vector
(K1, K, ..., K,) of available strikes is impossible. Assuming that the number of traded
strikes per vanilla option is equal to m, this problem comes down to finding the price of
the cheapest super-replicating strategy among a set of m" possible combinations. In case
of the Dow Jones Index (DJI), which has 30 stocks in the index and an average number
of around 10 traded strikes per individual stock, the number of possible combinations is
of the order 10%°. The problem that we want to solve in this chapter is even much more
complex, in the sense that we will not restrict to super-replicating strategies consisting
of only one strike per stock. Instead, we will consider super-replicating strategies which
allow to buy stock options for any traded strike. This example, which is described in
Hobson et al.| (2005), clearly illustrates the need for deriving an anaytical solution to the
above-mentioned super-replication problem.

3 Convex order, inverse distributions and comonotonic-
ity

In this section we summarize some definitions and results concerning convex order, in-
verse distributions and comonotonicity that will be needed in later sections. All random
variables are assumed to have finite means.

A r.v. X is said to precede a r.v. Y in convex order sense, notation X <. Y, if

{E[(X—K)JJ SE[(Y—K)J
B[(k - X)] <m[0c )]

From @ it is clear that X <. Y intuitively means that ¥ has larger (upper and lower)
tails than X.

The usual inverse F'y L of the cdf Fy of a r.v. X is defined by
Fyl(p) =inf{z e R| Fx,(z) >p}, pel0,1], (7)

with inf ) = +o00, by convention. For any = € R and p € [0, 1], the following equivalence
relation holds:

for all K € R. (6)

Fil(p) <5 4= p < F (1), (®)
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An alternative definition for the inverse distribution function of F'x is given by:
Fy'* (p)=sup{z eR | Fx,(z) <p}, pe[0,1], (9)

with sup() = —oo, by convention. Both inverses and (9) only differ on horizontal
segments of the distribution function Fy. The interval [F'* (0), Fx' (1)] is a support
of X.

For any number « € [0, 1], the alpha inverse F’ ;1

and (9):

@) is defined as a linear combination of

B () = aFt () + (L= ) F' (), pe(0.1). (10)
The random vector (Y7, ...,Y,) is said to be comonotonic if
d (e _
Y1,....Y,) = (' (U),...,Fy, 1 (U)), (11)

where U is a uniform (0,1) r.v. and L+ is used to denote ‘equality in distribution’.

Consider the random vector (Xji,...,X,) and the positive weights w; > 0. The
weighted sum S is defined by
i=1

The comonotonic modification S¢ of the weighted sum S is defined by

S¢=w Fgl (U) +weFy) (U) + ...+ w, Fx' (U). (12)
Taking into account that
X, i=1,2,...,n, (13)

we immediately find that
E[S]=E[5]. (14)

Furthermore, the comonotonic sun is always larger in convex order than the sum S:
S < S (15)

The convex order inequality can be generalized as follows:

XiSex Yifori=1,...,n =Y wX; <o Y wiFy'(U). (16)
=1 =1

For any « € [0,1], the inverse distribution function £ S_Cl(a) of a comonotonic sum can

be expressed in terms of the marginal inverse distribution functions F);l(a), 1=1,2,...,n:
Fol(p) =Y wF [ (p),  pe(0,1). (17)
i=1
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For K € (F3.'"(0), F5.' (1)), the stop-loss premium E [(S¢ — K)_ | of the comonotonic
sum S¢ can be decomposed into a linear combination of stop-loss premiums of the mar-
ginals involved:

E[(S—K), ] = Z wE [(X; - K7),], (18)
where
K; = F 9 (B (K)),  i=1,...,n, (19)

and ag is any element in [0, 1] that satisfies the following relation:
> wiK; =K. (20)

For an extensive overview of the theory of comonotonicity, including proofs of the
results mentioned in this subsection, we refer to Dhaene et al. (2002a)). Financial and
actuarial applications of the concept of comonotonicity are described in [Dhaene et al.

(2002b)). An updated overview of applications of comonotonicity can be found in |Deelstra
et al.| (2010).

4 The infinite market case

4.1 From option prices to risk-neutral distributions

In this section, we consider the situation where for each stock i, the prices C; [K] and
P, [K] of the stock options are known for any strike KX > 0. For obvious reasons, we
call this situation the infinite market case. All these option prices are known because we
either assume that any strike is traded so that the price of any put and call is observed in
the market, or we assume that Q is known. The first approach is called model-free as it
is based on the observed stock option prices, without making any assumption concerning
the pricing measure Q that is actually used by the market. The second approach is called
model-based, as it is based on a particular stock price model, such as the Black & Scholes
model e.g.

From and it follows that
Ci[K|+e ™K = P [K]+ e TE[X]]. (21)

This relation between the call and the put option prices with the same strike and maturity
is known as the put-call parity. The term e " [X;] can be interpreted as the zero-strike
call option price:

Ci[0] = e " TE[X,]. (22)

In case it is known that stock ¢ will pay no dividends in [0, 7], we have that C;[0] = X (0).
In general however, one has that

Cil0] < X; (0). (23)
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The put-call parity can also be proven via a no-arbitrage argument. Indeed,
consider the time zero strategy consisting of buying C; [K; ;] and investing K; je~"” in the
risk-free account. The pay-off at time T of this strategy is equal to the pay-off at time T’
of the time zero strategy consisting of buying the options P; [K; ;] and C;[0]. Given that
both strategies have the same pay-off at time 7', they must have the same price at time
0.

The risk-neutral expectation E [X;] in can also be interpreted as the time-0 forward
price of stock i at time 7. Indeed, consider the contract set up at time 0, of which the
buyer pays the stock price X; at time 7', while the seller in return pays a fixed amount P
at time T', which was agreed upon at the deal’s inception. Assuming that P is determined
such that the price of the contract is 0 at time 0, i.e.

0=c¢"TE[X; - P], (24)

leads to the following expression for P:
P=E[X,]. (25)
This contract is called a T-year forward contract on stock ¢, while E[X;] is called the

time-0 forward price of stock i at time 7.

The put-call parity with K = 0 connects the time-0 call option price C;[0] and
the forward price E [X;] with the prices of call and put options on stock i.

The risk-neutral distribution function Fx, of X; can be determined from the corre-
sponding call option curve by the following equation:

Fx,(z) =1+ eTClz+], (26)

where C![z+] is the right derivative of C; at x; see e.g. Breeden and Litzenberger| (1978)).
Using the put-call parity, it follows that Fx, can also be derived from the corresponding

put option curve:
Fx,(z) = e Pl[a+]. (27)

Given the call or the put option curve, the risk-neutral marginal distribution function
Fx, is fully determined. However, the observed stock option prices do not allow us to
specify the multivariate pricing distribution Fx, x, . x,(%1,%2,...,%,).

In practice, it will never be the case that stock options are traded for all K > 0. Instead,
only at most a finite number of such options will be traded per individual stock. This more
realistic situation will be investigated in the next section, where we will consider the finite
market case. However, we will consider the infinite market case first as the results for the
finite market case will follow rather straightforward from transforming the finite market
in an (artificial) infinite market. Furthermore, the results for the infinite market case
presented in this section may be useful in a model-based approach, where a specific pricing
measure QQ is assumed. In this case the multivariate pricing distribution of the random
vector X = (Xj, Xo,..., X, ) is specified. Nevertheless, determining the price of the index
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option analytically in this situation is in most cases still not a straightforward exercise,
mainly because of the dependence that exists between the stock prices X;, 71 =1,2,...,n.
Even in a Black & Scholes setting where the stock prices are driven by correlated geometric
Brownian motions and the stock option prices C;[K] and P; [K] can easily be obtained
for all K, the index option prices C[K| and P [K] are difficult to evaluate analytically.
Therefore, the use of an easy computable upper bound in terms of the stock option prices
involved may also in a model-based approach be very helpful as an approximation for the
real price of the index option.

4.2 Upper bounds for index option prices

As before, the notation S is used to denote the value of the index at time T'. Hence,
S = 'lUle —+ U}2X2 + ...+ wan, (28)

where w;, © = 1,2,...,n, are positive weights that are fixed up front. The comonotonic
modification S¢ of S is defined by

S¢ = wlF);j (U) + ngg U)+...+ wnF);j (U), (29)

where U is a uniform (0, 1) random variable. We will call S¢ the comonotonic index price
at time 7.

In practice, we will never observe the outcome of S¢, unless all stock prices (X1, X, ..., X,,)
are comonotonic. Our goal is to find reasonable upper bounds for the index option prices
C[K] and P [K] which can be expressed in terms of the information contained in the

observed stock option prices. We start our search for such bounds by deriving upper
bounds for C'[K] and P [K] in terms of the cdf of S°.

Theorem 1 (Upper bounds for index option prices) The prices C'[K] and P [K]

of the index options with pay-off at time T' given by (S — K), and (K — S) ., respectively,
are constrained from above as follows:
CIK]<eE[(S°-K),], (30)
PIK]<eE[(K-5°,]. (31)

Proof. The inequalities and follow immediately from the characterization @
of the convex order relation and by taking into account the expressions and
for index call and put options prices. [

The right hand sides of and correspond to the prices of an index call and
put option with strike K in case the dependence structure is the comonotonic one. In the
sequel, we will denote these prices by C°[K] and P°[K], respectively:

C°K]=e¢""E[(S° - K),], (32)

P K] =e¢"E[(K-59,],



and call them the comonotonic call and put option prices.

For K ¢ (F&.'*(0), Fg.' (1)), we know the exact values of the index option prices C' [K]
and P [K]. Indeed, it is straightforward to verify that

e (B[S] - K), K < Fe*(0),
while
RS, KA.
In these expressions, e "TE[S ] is equal to the zero-strike index call option price C|0]. I
can be determined from the zero-strike stock option prices:
e TEIS] =) wCi[0]. (36)
i=1

The quantity E [S] can be interpreted as the time-0 forward price of the market index at
time 7'. From the put-call parity

CIK]|+e™K=P[K]|+e™E[9] (37)

for index options, it follows that E[S] can also be determined from observed index call
and put option prices. Notice that for the comonotonic index and its related comonotonic
option prices, the following put-call parity holds:

C¢[K]+e ™K = P [K] + e "TE[S]. (38)

It is straightforward to prove that
C[K)=C°[K] and P[K] = PPIK], i K ¢ (F5™(0). F5'(L).  (39)

This means that the upper bounds in Theorem (1| coincide with the exact option prices in
this case.

As the values of C'[K] and P [K] are explicitely known for K ¢ (Fg'"(0), Fg.'(1)),
in the sequel we will focus on the case where K € (Fg'"(0), Fg.'(1)) When considering
upper bounds for index option prices.

In the following theorem, we show that both upper bounds for index options that were
derived in Theorem |l| can be expressed as a linear combination (l.c.) of observed stock
option prices.

Theorem 2 (C° and P¢ are l.c.’s of stock option prices) Forany K € (Fg.'7(0), F5.'(1))
the comonotonic index option prices C° K| and P° K] can be expressed as

= > wCilK), (40)
=D _wihi[K], (41)



with the K given by
K :F);il(aK) (FSC<K))7 1=1,2,...,n (42)

and where o is any element in [0, 1] such that
> wiK; =K. (43)
i=1

Proof. Taking into account expression for the stock option curve C;, we can rewrite
the decomposition formula as follows:

C°[K] = Z w;C; [KY], (44)

which proves (40). Using the put-call parities and ([38)), one can transform into
PeK)+eBIS] - " K =) w; (P[K]+e"E[X)] - eTKT).
=1

Combining this expression with proves assertion (41]). ]

From the additivity property of quantiles of a comonotonic sum, it follows that
relation which is used for determining ax can be rewritten as

F.' (Fge(K)) = K. (45)

In order to be able to calculate the optimal strike prices K one has to determine Fs (K)
and ag. The determination of these quantities is considered in Section [4.5

The comonotonic call option price C¢ [K] corresponds to the price of a super-replicating
strategy for the index call option with pay-off (S — K), at time 7', whereas the comonotonic
put option price P¢[K] corresponds to the price of a super-replicating strategy for the
index put option with pay-off (K —5), at time T'. These statements are proven in the
following theorem.

Theorem 3 (C° and P° are the prices of static super-replicating strategies) Let
K e (F§1+(0), Fs_cl(l)) and consider the index call and put options with pay-off at time
T given by (S — K), and (K — S),, respectively.

1. The pay-off of the static strategy where at time 0, for each stock i, i € {1,2,... ,n},
one buys w; calls C;[K}] and holds these positions until they expire at time T,
super-replicates the pay-off of the index call option with price C'|[K]. The price of
this super-replicating strategy is given by C°[K].

2. The pay-off of the the static strateqy where at time 0, for each stocki,i € {1,2,...,n},
one buys w; puts P; [K}] and holds these positions until they expire at time T, super-
replicates the pay-off of the index put option with price P[K]. The price of this
super-replicating strategy is given by P¢[K].
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Proof. The pay-off at time T" of the index option C'[K] is given by (37, wiX; — K)_,
while the pay-off at time T of the time-0 strategy consisting of buying w; call options
C;[K}] and holding these options until maturity is given by > " wi(X; — KF);. As
Yo, w; K = K, we have that the following inequality holds:

(Z w X; — K> <> wi( X - K4, (46)
i=1 4 1=1

which proves that the pay-off of this time-0 strategy super-replicates the pay-off of the
index call option. Obviously, the price of this strategy is given by > w;C; [K}], which
according to (40) is equal to C° [K].

From one finds that

The left hand side of this inequality is the pay-off at time 7" of the index put option P [K],
whereas its right hand side equals the pay-off at time T of the time-0 strategy consisting
of buying w; vanilla put options P; [K}] and holding these options until they expire at
time T'. Hence, this static time-0 strategy super-replicates the index put option pay-off
(K — S).. The price of this super-replicating strategy is given by Y7, w;P; [K}], which
according to (41)) is equal to P°[K]. [ |

<> wi(K - X)) (47)
+ =1

Theorem [3|shows that in the presence of traded call and put options on the constituent
stocks of the index, an index call option can be superhedged with stock call options, while
an index put option can be superhedged with stock put options. From this observation
we find that the price inequalities

ClK] < szci (K]
i=1

and
n

PIK] < Zwipi [K7]
i=1

remain to hold, without having to make the explicit assumption that the involved option
prices are expectations of discounted pay-offs under some Q-measure. The only assumption
that we have to make is that all option prices involved are traded prices in an arbitrage-
free market, implying that a superhedging strategy for the index option is more expensive
than the index option itself. Notice however that in order to prove the equalities
and , we have to assume that option prices can be expressed as expectations of their
discounted pay-offs.

4.3 The upper bound is the price of the cheapest super-replicating

strategy

The upper bounds that we derived for the index call and put option prices are linear
combinations of n observed stock option prices. To be more precise, the linear combination
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contains w; options on the underlying X; with strike price K. The question arises whether
it is possible to derive better upper bounds for the price of both types of index options
within a general class of superhedging strategies consisting of buying or selling call and
put options on the underlying stocks. In order to be able to answer this question, we first
have to define this general class of superheding strategies. Hereafter, we use ‘r.c.” as an
abbreviation for ‘right continuous’.

Definition 1 (The class Z) The class T consists of all 2n-dimensional functions v =
(Vie, Vips Vacs Vap - - - Une, Unp), Of which for each i, the functions v : R — R and vy, : R —
R are r.c. jump functions with v,.(y) = vi,(y) = 0 for any y < 0, and having only a finite
number of jumps in [0, +00). Jumps upwards as well as downwards are allowed.

We will consider the class of investment strategies where for each stock ¢ at current
time 0, stock options can be bought (i.e. holding a long position) or sold (i.e. holding
a short position) for any strike y > 0. The positions taken are assumed to be held until
time 7', and then eventually exercised. We describe any such investment strategy by a
vector of functions v € Z, where for any stock i and any strike y > 0, we interprete v;. (v)
as the number of call options purchased with a strike price smaller than or equal to y.
Similarly, for any stock i and any strike y > 0, the value of v;;, (y) is the number of put
options purchased with a strike price smaller than or equal to y. Notice that selling a
number of n options of a certain type can be expressed as buying (—n) of these options.
A jump upwards in one of the components of v corresponds to a long position, whereas
a jump downwards corresponds to a short position. Although the assumption about the
finite number of jumps can be relaxed, we will keep it here as it is a reasonable assumption
which will always be met in real-life investment strategies where obviously only a finite
number of strikes will be purchased per stock.

For each stock 7, we use the symbol J,, to denote the finite set containing all values
of y at which the function v;. (y) jumps, whereas Av;.(y) is used to denote the magnitude
of the jump at y:

Ayic(y) = Vic(y) - Vic<y_)' (48)
The notation v;.(y—) is used for the left limit lim.ov;.(y — €) at y. A positive value
of Av,.(y) means that an amount of Av,.(y) call options C; [y] is purchased, whereas a
negative value of Av;.(y) corresponds with selling short an amount of Av;(y) of these
options. The functions J,, and Av;,(y) are defined analogously.

The pay-off at time T' of the investment strategy v € 7 is given by

n

Pay-off [, X] = | Y (Xi—u)y Avic(y) + D (y—Xi)s Awp(y) |, (49)

i=1 yeJ,,l.C yEinp

where X = (X1, Xy,...,X,) is the vector of the individual stock prices at time 7. The
corresponding price of this investment strategy is given by

n

Price (1) = 3" | 32 Cily) Avily) + - Pily) Al | - (50)

i=1 Y€y, yGinp
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Introducing Riemann-Stieltjes integrals, we can rewrite the expressions for the pay-off
and the price of the investment strategy v € Z as follows:

Pay-off [, X] = 2_; ( / :o (Xi=v), diel)+ [ :O (y—X0), dv, (y)) (51)

and

price 1 =3 ([ e an+ [ R an). 52)

Herafter, we will use the expressions and to denote pay-offs and prices of invest-
ment strategies in Z.

Example 1 (Two simple investment strategies ) The investment strategy

J— * * *
V= (Ve Vi Vs V) €L

15 defined such that fori=1,2,...,n, we have that

. 0 y<K .
vi(y) = { 0, z > K and Vi = 0,

with the K defined in (@) This strategy consists of buying w; calls C; [K}| for any
stock i, whereas no put option is purchased. This investment strategy is the one that is
considered in the first part of Theorem|[3 Taking into account {40), we find that the price
of the investment strategy v* is given by

Price [v*] =Y w,C; [K;] = C°[K].
i=1
At time T, this strateqy will generate the following pay-off:
Pay-off [, X] =Y wi(X; — K);.
i=1

Similarly, we define the investment strategy
0= (e M- s e hp) €L
by
R sy ) 0 y<K],

ni.(y) =0 and Uip(y) = { w; y > K.
The investment strateqy n* is the one that was considered in the second part of Theorem
@. The price of n* is given by

Price [n*] =Y w;P[K}] = P°[K],
i=1

13



while its pay-off at time T equals
Pay-off [n*, X| = wi(K; — Xi).
i=1

From Theorem |3 it follows that:

(S — K), < Pay-off [v*, X],
(K —S), < Pay-off [Q*,X] ,

which means that the strateqy v* is a super-replicating strategy for the index call option
with pay-off (S — K),, whereas n* is a super-replicating strategy for the index put option
with pay-off (K —S), . \%

The question arises whether it is possible to find better super-replicating strategies for
the index options than the one that were considered in the previous example. Hence, can
we find other strategies v € 7 which super-replicate the pay-off of the corresponding index
option but are cheaper than v*, resp. n*? In order to be able to answer this question, we
first have to define the subsets Cx and Pk of Z, containing all super-replicating strategies
for the index call option C'[K| and put option P [K], respectively. Obviously, v* € Ck
and 1" € Pk, but are they the cheapest element in their respective classes?

Definition 2 (The classes Cx and Px) For any K > 0, the classses Cx and Py are

defined by
Cx = {g €T (Zwl T — K) < Pay-off [v,z] for allg}
=1 +
and
P = {y €T <K — Zwi xl> < Pay-off [v,x] for allg} ,
=1 +
respectively. In these definitions, x = (x1, %2, ...,2,) and ‘for all x’ has to be interpreted
as

)

‘for all x with x; € Support [X;],i=1,2,...,n".

From the assumptions we made concerning the infinite market case it follows that we
know the supports of any stock price X; in the Q-world, and hence, also in the P-world.
The latter conclusion follows from the fact that P and Q are equivalent, which implies
that they agree on sure events and hence, also on supports. The set of x-values for which
the inequalities in the definitions above have to hold is a support of (X7, Xs, ..., X,,). We
can conclude that

P[(S — K), < Pay-off [y, X]] =1, for any v € Ck, (53)

which means that the pay-off of any investment strategy v € Cx almost surely super-
replicates the pay-off of the index call option. A similar remark holds for the pay-off of
any investment strategy v € Pg.

14



Example 2 (Super-replicating strategies) Consider the investment strategy

v= (l/lml/lpa'-'?yncaynp) A
where fori=1,2,...,n, the functions v,. and v;, are given by
0 Y < Ki7 —
Vie(y) = { wi  y> K, and v, = 0,

and where the K; > 0 are such that they satifsy

Zn:wiKi <K. (54)

=1

By a triangle inequality, one can prove that condition leads to

<Z WiT; — K) < Zwi (2 — Ki)+ = Pay-off [v, ],
=1 + =1

which holds for any x. Hence we can conclude that v belongs to Cx . In particular, we find
from that the investment strateqy v* defined in Example|1| belongs to the set Cx. V

Now we are equipped with the tools required for finding the cheapest super-replicating
investment strategy for the index call and put options C'[K] and P [K], respectively.

Theorem 4 (The price of the cheapest super-replicating strategy) Let v* € Ck
and n* € Px be the investment strategies defined in Example .
For any K € (Fg"(0), F&.'(1)) it holds that

min Price [v] = Price [v*] = C°[K] (55)
veCyi
and
min Price [v] = Price [n*] = P°[K]. (56)
vePK -

Proof. Consider the super-replicating investment strategy v € Cx. Replacing the z; by
F )}il(U ) in the pay-off inequality

(émm—f() Sé(/:o(?ﬁ—yh dvic(y)+/

—00

—+00

(=X, dy ()

and taking expectations leads to

E[(5-K),] < Z:; (/_:O]E (X —y)4] dvie(y) + /m

—00

By — X)) duip<y>) .
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Multiplying the left- and the right hand side by e~"7, this inequality can be rewritten as
C°[K] < Price [v].
As this inequality holds for any v € C, we can conclude that

C°|K] < inf Price [v].

veCk

On the other hand, as v* € Cx, we have that

inf Price [v] < Price [v*] = C°[K].

veCk
Combining these results, it follows that the stated results hold true for the call option
case. The put option case can be proven in a similar way. [

From Theorem {4} it is clear that the cheapest super-replicating strategy contained in
Ck, resp. P, is the one that we considered in Example[I] The price of this cheapest super-
replicating strategy is equal to the upper bound C°[K], resp. P¢[K], that we derived in
Theorem (1} for the index option price. Hence, we must answer ‘no’ to the question whether
it is possible to improve the upper bounds derived in Theorem [1| by allowing for more
than one type of option per individual stock. Although we allow portfolios consisting of an
arbitrary number of calls and puts per stock, the cheapest of these strategies only invests
in a single type of option (calls or puts) and a single strike per stock. This is a somewhat
surprising result. Notice that this result does not mean that we limit the information
used for deriving the upper bounds to a single option price per stock. Indeed, in order
to determine the optimal strikes K, we also need the additional information see in
Theorem [2

Theorem [4] can easily be generalized to the broader class of static super-replicating
strategies which also contains investments in the risk-free account and in any contin-
gent claim generating a pay-off H (X;) at time T provided that the time-0 price of this
contingent claim is given by

Price[H (X;)] = e ""E [H (X;)]. (57)

In this more general case, we simply have to redefine 7, Cx and Pk in terms of the available
investment instruments, whereas the proof of the generalized optimisation result proceeds
in the same way as the proof of Theorem [4

Let us now suppose that neither the index call option C' [K| nor the index put option
P K] is traded in the market. In case C'[K] is sold over-the-counter, then C¢[K| may
be a reasonable price for the index call option, both from the viewpoint of the seller and
the buyer. Indeed, the seller can use this amount to acquire the portfolio v*, which will
always super-replicate the pay-off of the index option that he is due to the buyer. On
the other hand, the buyer of the index call option cannot find a cheaper super-replicating
strategy in the market. In case the index option was sold over-the-counter at a higher
price than the comonotonic price C° [K], the buyer may prefer to buy the cheaper super-
replicating portfolio v*. A similar argument holds for the index put option that is sold
over-the-counter.
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4.4 The upper bound is the least upper bound for the index
option price

We introduce the symbol D,, to denote the class of all n-dimensional cdf’s on the non-
negative orthant of R", whereas the symbols F;,7 = 1,...,n are used to denote the
marginal cdf’s of F' € D,,. The Fréchet class R,, is defined as follows:

R,={F €D, |F,=Fyx,i=1,...,n}. (58)

It is the class of all n-dimensional distribution functions F' with marginals F; equal to the
observed risk-neutral distributions Fl, of the r.v.’s Xj.

Because the stop-loss premium E [(Xl - K) JJ can be expressed as follows,

+o0

E[(X; - K),] :/ (1 — Fy, (v))dx.

K

any cdf F; is unambiguously determined by its call or its put option curve. We can define
R,, also as follows:

R,={F€D,|e"Ep[(X;—K),] =Ci[K] forall K andi=1,...,n},
or
R,={F€D,|e " Ep[(K-X;),]=PF[K] forall K andi=1,...,n},

where the subscript denotes the cdf which has to be used to determine the expectation.

For example, the notation Ep, [(XZ — K) +] is the stop-loss premium of X; with retention
K, where the cdf of X is given by F;.

This means that R,, is the class of all n-dimensional cdf’s F' which produce the ob-
served call and put option curves on the different stocks. In other words, R, is the class
of all feasible multivariate risk-neutral distributions for X, given that the only informa-
tion that we have about Fy are its marginal distributions Fl,. Obviously, the cdf of
(Fx(U), Fl(U),...,Fx!(U)) is an element of R,. Knowing that Fx € R, does not
allow us to determine the index option prices P [K]| or C [K], however it allows us to
determine the comonotonic index option prices C°[K] and P°[K].

Theorem 5 (The least upper bound for the index option price) For any K > 0
it holds that

max e ""Er [(S— K),]| = C°[K] (59)
and
max e ""Er [(K - 5),] = P°[K] (60)

Moreover, in both cases the mazimum is obtained for the cdf of (Fx!(U), F}(U),..., Fx'(U)).
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Proof. For any multivariate distribution F' belonging to R,, we find from the convex
order relation that

Er [(S—K), ] <E[(S°—K),],
with $¢ = F! (U) + ...+ Fx (U). Hence,

sup Bp [(S — K), ] <B[(S° - K)4].

FeRn,

On the other hand, the multivariate distribution of X° = (Fy! (U),...,Fy! (U)) is an
element of R,,. This implies that

E[(S° - K)4] < sup Ep[(S — K)4].

FeRn

Combining these observations leads to the call option result in . The put option case
is proven in a similar way. [

Theorem [5] states that both upper bounds derived in Theorem [I] can be interpreted
as least upper bounds in the sense that they correspond to the largest possible expected
discounted pay-off of the corresponding index option, given the risk-neutral distributions
of the underlying stocks. Somewhat loosely speaking, C¢[K] is the lowest upper bound
for the index call option price C' [K] in the class of all models which are consistent with the
observed stock option prices. A similar remark holds for the upper bound P¢[K] for the
index put option price P[K]. The upper bound C¢[K], resp. P¢[K], coincides with the
index option prices C [K], resp. P [K], in case the risk-neutral multivariate distribution
of the price vector X is comonotonic. Notice that in a comonotonic market, all stocks
move perfectly together and there is no diversification possible. The question whether
it is always possible or not to construct such an arbitrage-free comonotonic market is
considered in Hobson et al.| (2005) and in Dhaene and Kukush| (2010).

4.5 Computational aspects

4.5.1 Numerical evaluation of the upper bounds

In order to be able to calculate the upper bounds C¢ [K] and P [K] for K € (Fg.'*(0), Fg.' (1)),
one has to determine the probability Fs.(K) and the coefficient .

The coefficient ax was implicitely defined as any element in [0, 1] that satisfies (45).
Taking into account the definition of the a-inverse, expression leads to

Fg* (Fse(K)) = K
o =y BT (R () = R () i
, otherwise.

if Fg™ (Fse(K)) # Fg (Fse(K)),

(61)

The coefficient o follows from this expression, provided we know Fs.(K), Fg.' (Fs-(K))
and Fg't (Fse(K)).
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Concerning Fs.(K), notice that
Fse(K) = sup{p € [0,1] | Fse(K) > p}.

Using and taking into account the additivity property of quantiles of a comonotonic
sum, this relation can be transformed into

FSC(K)—sup{pE 0, 1] |sz )<K} (62)

=1

Hence Fs:(K) can be determined from the inverse marginal distribution functions F' );il.

From , we find that Fg.! (Fse(K)) and Fg.'t (Fs:(K)) are given by

F FSC Zw, FSC ))

and

Fallt (Fse (K Zwl * (Fse(K)),

respectively.

4.5.2 The upper bounds in terms of the inverses F)}Z_l

The upper bounds and can also be written in terms of the inverses F )}il, as is
shown in the following corollary.

Corollary 1 For any K € (Fg.'"(0), Fg.'(1)) one has that
Zwl [l (Fse(K))]

— T (K — F3 (Fse(K))) (1 — Foe(K)) (63)

and

Zwl ) FSC(K))]

+e (K — Fg! (Fse(K))) Fse(K). (64)
Proof. From Dhaene et al.| (2000)), we find that
Zwl (X = P (Fse(K)), |
— (1 — Fse(K)) (K — Fg.' (Fse(K))) -
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Combining this expression with proves .
Using the put-call parities and (38), expression (63)) can be transformed into expres-
sion ([64)). n

By definition of the a-inverse, it holds that
Fg! (Fse(K)) < K = F!) (Fge(K)), (65)

which implies that the second term in the right hand side of is non-negative. Hence,
we find from 1} that Y1 w;C; [F (Fse(K))] is also an upper bound for the index
option price C'K], although it is not necessarily the optimal one in the sense that the
time - 0 price of this portfolio of stock options C;[Fi'(Fs-(K))] may not be the the price
of the cheapest super-replicating strategy for the 1ndex call option C'[K].

Let K € (Fg.""(0), F&.' (1)) and let us assume that all marginal cdf’s Fy, are strictly
increasing on (Fy'*(0), F'(1)). This assumption implies that Fg. is strictly increasing
on (Fg'*(0), F51(1)). In this case, any a-inverse Fiy @ (Fs.(K)) and Fg.'“ (Fge(K))
coincides with the usual inverse ' (Fs(K)) and F S_Cl(a) (Fse(K)), respectively. Fur-
thermore, the comonotonic index option prices and reduce to

C[K] = Z wiC; [Fx! (Fse(K))] (66)

and

sz [Pyt (Fse(K)] (67)

respectively. From it follows that Fg.' (Fs.(K)) = K in this case. Taking into
account the additivity property of quantiles of a comonotonic sum, the value Fsc(K') can
be obtained from

sz ' (Fse(K)) = K. (68)
If we now additionally assume that at least one cdf Fl, is continuous on R, then one can
prove that also Fs. is continuous on R and Fy.(K) is the unique solution of (68).
A particular situation where the assumptions about the strictly increasingness and the

continuity of the marginals Fx, are met and hence, where the expressions and @
hold is the Black & Scholes model.

5 The finite market case

5.1 Traded options and approximations

In the preceding section, we assumed that the prices C; [K] and P, [K] of the stock options
with maturity T are known for any strike K > 0. In this section we will investigate the
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more realistic situation where only finitely many strikes are traded per stock. More
specifically, we will assume that for each stock 7, only the strikes K;;, j = 0,1,...,m;,
are traded and hence, only the prices C; [K; ;] and P; [K;;|,j =0,1,...,m;, are observed.
We call the situation where only a finite number of option prices is observed the finite
market case. As before, we assume that the traded option prices can be expressed as

Ci [Kij)
P [K; ]

R [(X; — Kiy),] i=1,...,n; j=0,1,...,my, (69)
e B [(Ki; — X)), ], i=1,...,n; j=0,1,...,my, (70)

where for each 7, the value of stock i at time T' is denoted by X; and the expectations are
taken with respect to the distributions Fly, of the stock prices X; under the risk-neutral
measure Q. The only information that we have about these risk-neutral distributions is
contained in the observed option prices. Notice that we assume that the sets of traded
strikes for the call and put options are identical. This assumption will be relaxed in

Section [5.5]
For each stock i, we denote the ‘maximal value’ of the stock price X; at time T' by
Ki,mi—H:
Fy! (1) = Kiita- (71)

Any value K ,,,+1 may be finite or infinite. In the sequel, we will take a practical approach
and assume that all K ,,,+1 are known and have a finite value, which is sufficiently large.
Loosely speaking, K ,,,+1 is the maximal possible value for stock ¢ at time 7T". Appropriate

choices for the K;,,, 41 are discussed in Section
We assume that the chain of traded strikes is such that

0= Ki70 < Ki71 < Ki,2 <0 K Ki,mi < Kz}m;--i—l = F);Zl (1) < 0. (72)

In particular we assume that for each stock 7, the smallest traded strike K o is equal to 0.

From and we find that the zero-strike stock option prices are given by
C;[0)=e " E[X;] and P;[0] =0. (73)

Furthermore, from and it follows that the prices of the stock options with strike
K; m,+1 are given by

Pi[Kime1] = ¢ (Kimen —E[X)])  and G [Kim41] = 0. (74)

Obviously, the put options with strike 0 and the call options with strike K ,,, 41 are not
traded. In practice, also the call options with strike 0 and the put options with strike
K ym;+1 are not traded directly. However, these options can be constructed artificially by
a combination of traded instruments. For more details we refer to Section [5.5

An example of observed option curves corresponding to a particular stock at a partic-
ular date is given in Figure [, where the NYSE midquote closing prices for puts and calls
on Walt Disney Company are shown. Time 0 is January 23, 2012, whereas the expiration
date T' is February 17, 2012. The numerical values of these option prices are listed in
Table Il
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Walt Disney Co: 23/01/2012
Time to maturity: 25 days

+ Call Prices

x Put Prices

_12

Strike

Figure 1: Option curves Walt Disney Co., January 23, 2012.

Strike

Call Price Put Price

28
29
30
33
34
35
36
37
38
39
40
42
44

11.3
10.3
9.3
6.35
5.425
4.45
3.525
2.68
1.915
1.265
0.775
0.23
0.06

0.015
0.025
0.035
0.08
0.11
0.17
0.265
0.41
0.65
1.01
1.52
2.955
4.825

Table 1: Option prices Walt Disney Co., January 23, 2012.
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For each i, we first define the convex functions C; and P; by
CilKl=¢"E[(X;,-K),], K >0 (75)

and
P[Kl=e"E[(K-X,),], K=>0. (76)

Notice that in the infinite market case, the value of these functions is known for all K, or
equivalently, the risk-neutral distribution Fl, is completely specified for any stock . On
the other hand, in the finite market case, the functions C; [K] and P, [K] are known only
for the values K, 7 = 0,1,...,m; + 1, implying that the risk-neutral distributions F,
are not completely specified.

In Figure [2] the dashed curve corresponds to a possible shape of the curve C;, of which
only the values C; [K; ], j =0,1,...,m; + 1, are explicitely known.

Let S be the weighted sum of the stock prices X; at time 7', as defined earlier. Suppose
that the index call and put options with strike K and respective pay-offs (S — K), and
(K —S), at time T are traded in the market. Their prices are denoted by C'[K] and
P [K]. As before, we assume that these prices can be expressed as

CIK]=¢"E[(S—-K),] (77)

and
PK]=e¢"E[(K-25),], (78)

where the expectations are taken with respect to the distribution Fg of S under the
Q-measure.

It is our goal to find upper bounds for the index option prices C'[K]| and P [K]
which can be expressed in terms of the available stock option prices C; [K; ;] and P, [K; ;]
7 =0,1,...,m; + 1. We will show that the solution to this problem follows in a rather
straightforward way from the results derived for the infinite market case.

From Theorem [2| we find the following upper bounds for the index option prices :

<sz K; andP[K]SZn:wiPi[Ki*],
i=1

with the K defined in . In the finite market case, it is in general not possible to
determine these upper bounds numerically, because the distribution function of S¢ is not
completely specified. In order to solve this problem, in a first step we construct approxi-
mations C; and P; for the functions C; and P; respectively, which are fully specified. In
particular, we define C; and P; as the piecewise linear functions connecting the observed
points (K, C;[K;;]) and (K;;, P [K;;]), j = 0,1,...,m; + 1, respectively. Hence, C;
and P; are piecewise linear functions, changing their slope only in the observed strikes
K; ; and such that

61’ [Ki,j] = C’L [Ki,j] ) j = 07 17 S (e 17 (79)
Fz' [Ki,j] :Pi[Ki,j]7 j :0,1,,mz—|—1 (80)
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Figure 2: The option curves C; [K] (dashed curve) and C; [K] (solid curve).

From and it follows that
Ci[K] = Ci[0] —e ™ K and P;[K] =0, if K <0,
whereas
Ci[K]=0and P [K] =e¢""K — C;[0], if K> Kim,i1-

Therefore, we define C; and P; as follows in the region outside (0, K my+1):

P;[K] = P [K] if K¢ (0, Kim+1) (82)

In Figure [, the dashed curve corresponds to the (unknown) option curve C; K],
whereas the solid curve corresponds to the piecewise linear approximation C; [K].

The results for the infinite market case derived in the previous section will be applied
to the piecewise linear curves C; and P;. This will lead to upper bounds in terms of stock
options for appropriately defined strikes K. At first sight, one may end up with the
case where the upper bounds contain stock options with strikes K that are not traded in
the market. However, we will show that for any ‘unreachable’ strike, the corresponding
call or put stock option price can be expressed in terms of a convex combination of its
neighbouring observed stock option prices.

In the following lemma, we consider the piecewise linear approximation C; for the call
option curve Cj.
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Lemma 1 (Piecewise linear approximation for the call option curve) The piece-
wise linear approximation C; for the stock option curve C; is given by

Ci [Kiji1] — Ci [Kij)

Ci|K] = Koo — Ky, (K = Kij) + Ci[Kig], (83)
in case K; j; < K < K, j11, j=0,1,...,m,.
For K <0, it is given by
Ci[K]=Ci[K] = C;[0] —e 'K, (84)
while for K > K, ,11, one has that
Ci[K] =Ci[K]=0. (85)

The function C'; is conver and decreasing. Furthermore,

Ci|K] > Ci[K] for all K.

Proof. Expression follows from the fact that the line that connects the observed
points (K, ;; C; [K;;]) and (K j41; Ci [Kij11]) is given by (83). The expressions and

hold by definition of C;. The convexity and decreasingness of C; follows from the
corresponding properties of Cj. [

Next, we consider the piecewise linear approximation P; for the put option curve P,.

Lemma 2 (Piecewise linear approximation for the put option curve) The piece-
wise linear approximation P; for the option curve P; is given by

e DKl = PG|
P, K] = - LK — K, ;) + P [K;
[ ] Ki7j+1 o KZJ ( 1]) + [ 1.7] )

m case K@j <K< Ki,j-‘,—la j=0,1,...,m;.

For K <0, it is given by

while for K > K, ,11, one has that
Pi[K]=P[K]=e¢e""K - C;[0].

The function P; is convex and increasing. Furthermore,

P;|K] > BK] for all K.
Proof. The proof is similar to the proof of Lemma [I} [

From the previous lemma’s one can prove that the following put-call parity holds for
the approximated stock option curves:

Ci[K]|+e ™K =P;[K|+eE[X]]. (86)
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In the infinite market case, we were able to obtain the risk-neutral cdf Flx, of X, from
the observed stock option curve C; [K] via expression or from the observed put option
curve P; [K] via expression (27). In the finite market case, we are not able to determine
Fx,. In a first step, we proposed to approximate the partially known call and put option
curves C; [K] and P; [K] by the completely specified piecewise linear functions C,;[K] and
P;[K], respectively. In a second step, we will determine the distribution functions F,
such that the approximated option prices C;[K] and P;[K] can be expressed as expected
values of the respective discounted pay-offs, where the expectations are taken with respect
to that distribution. In the following lemma, we consider the call option case.

Lemma 3 (The cdf Fy, of X; corresponding to C;) Let Fx, be the cdf of X; deter-
maned such that

e "By, [(Xi—K),] =Ci[K], for all K. (87)
Then we have that
0 ifx <0,
- Ci|Kij1] — Ci [ Ky . .
F)Q(I‘) = 1+ GTT [ JJFI] [ J] ZfKiJ' <z< Ki,j-i-lv ] = O, 1, ey My,
Kij— Ky
1 ZfﬁU 2 Ki,mﬁ»l-
(88)

Proof. For the particular situation at hand, the expression translates into
Fy(z) =14 TC,[z+].

The proof of follows immediately from applying this expression to the function C;[K]
defined in Lemma [Il n

Let us now consider the put option case.

Lemma 4 (The cdf in of X, corresponding to Fi) Let in be the cdf of X; deter-
mined such that

e*”TEFXi (K - X;),] = P; [K] for all K. (89)
Then we have that
0 ifx <0,
- Pi[Kijn] = Pi[Kiy] |
FXZ(SC) = €TT [KJ-H] K[ 7]] ZfK@j <z < Ki,jJrl; ] = O, 1, e, My, (90)
ij+1 — 45
1 ZfCC Z Ki,mi—i—l-

Proof. Translating expression to the situation at hand, we find that

Fx,(z) = eTTF; [z+].
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The proof of follows then from applying this expression to the function P;[K] defined
in Lemma, 2l [ |

Important to notice is that the put-call parity allows us to prove that the underly-
ing distribution F'y, derived from the call option curve C;[K] is equal to the distribution
function that emerged from the put option curve P;[K].

From Lemma 1] we find the following ordering relations between the distributions F,
and F'x,:

X & P U) <o Fro(U), (91)
where as usual, U is a r.v. which is uniformly distributed over the unit interval.

For any stock i, we have that Fx, is a discrete distribution function, with possible
outcomes given by the traded strikes K; ;. For any z € [K;;, K, 1), j =0,1,...,my,
one has that 0 < Fx,(z) < 1. The first strictly positive jump upwards of Fx,(z) does
not necessarily occurs at 0, but the last strictly positive jump upwards of F'x,(x) always

occurs at K ,,+1. Therefore, we have to determine F;JF(O) and F;(l) as follows:

Fyl(0)= Jnin (I | Ty (Kig) > 0} and Fyo(1) = K- (92)
7€0,1,..., m;

A possible shape of the risk-neutral cdf F'x, of stock i is shown in Figure . In this

particular case, we have that F;JF(O) = K, . Figure {4 shows the corresponding option

curves C;[K] and P;K].

Hereafter, we will always silently assume that
Fx,(Kipm) >0, i=12,...,n (93)

This assumption means that no marginal cdf Fy, has a one-point distribution. Notice
that this assumption can always be satisfied by chosing the maximal values K11,
1=1,2,...,n, sufficiently large.

Taking into account Lemma [3) and expression for the call option prices, we find
the following relation between the cdf’s F'x, and Fl;,:

o 1 K11
Fx, (K, :—/ Fx, (x)dz, 7=0,1,...,m;, 94
(£ 5) Ko — Koy i, (x) (94)
where we used the following representation for the stop-loss premiums of X;:
+oo
E [(XZ — K)+] = / (1 - Fy, (x))dx.
K
From (92)) we find that for any j = 0,1,...,m;, it holds that
F;(}JF(O) = Ki,j < FXi(Ki,j—l) =0 and FXi(Ki,j) > 0, (95)

where K; _; is defined by
Ki1=—1. (96)
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t,m+1

Figure 3: The cdf Fy, of X;.

Figure 4: The curves C; [K] and P; [K] under F'y,.
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Obviously, one has that N

Taking into account ([94)), the equivalence relations can be rewritten as

F;(j+(0> = K@j < Ki,j < F)zllJr(O) < Kz’,j+17 j = 0, 1, cee,my. (98)

This means that F_H(O) is equal to K ; when the ‘smallest value’ of X; is contained in
the interval (K ;, K; j+1). In particular, we have that

Fe'(0)=0 < 0<F'*(0) < K. (99)

Hence, F;+(0) = 0 if the ‘minimal possible value’ of the price X; of stock 7 at time 7 is
strictly smaller than strike K ;.

5.2 An upper bound for the index option price

Our goal is to find the best possible upper bound for the prices C' [K] and P [K] of the
traded index options in terms of the observed stock option prices C; [ i.;] and P [K; ;].
This upper bound will be expressed in terms of the comonotonic sum S, which is deﬁned

by

1

The extreme outcomes of S° fulfill the followmg conditions:
SHH0) =Y wiFy, (0) < Y wFH(0) = Fg(0) < FgH0), (101)
i=1 i=1
Fg'(1) < Fg (1) = ) wiKimi1 = F'(1). (102)
=1

In the following theorem, we derive upper bounds for the index option prices C [K] and
P[K] in terms of the distribution function of S°.

Theorem 6 (An upper bound for the index option price) The prices C'[K] and

P[K] of the traded index options with pay-off (S — K), and (K —S), at time T are
constrained from above as follows:

CIK] < e E [(Ec - K)+] : (103)

PIK] <e B |(K -5°),]. (104)
Proof. From (17), and we find that
i=1 i—1 i—1
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or equivalently, B
S < S° < S (105)

The stated inequalities follow from (6). N

The right-hand sides of and correspond to the prices of an index call and
put option with strike K in case the stock option curves are piecewise linear and moreover,
the dependence structure between the stock prices is the comonotonic one. In the sequel
we will use the notations C* [K] and P [K] for options written on S':

C

C° K] = ¢'TE [(? - K)+] , (106)

P'IK] = ¢ [(K - EC)J , (107)

and call them the comonotonic index call and put option prices. Notice that the following
put-call parity holds for these comonotonic option prices:

C'IK]+e""K =P [K] +e " TE[S]. (108)

S

For K ¢ (ng}*(O), F;1(1)> , we know the exact value of the index option prices C' [K]
and P [K]; see and (35). Furthermore, one has that

CIK|=C°[K] K¢ (Fgﬁ(@),pg)@)) ,
PlK|=P K] ifK¢ (Fgﬁ((}), Fggu)) .

As the values of C'[K] and P [K] are explicitely known when K ¢ (Fch(O), Fg}(l)),

in the sequel we will focus on the case where K € (Fch(O), F§1(1)> when considering

upper bounds for the index option prices. When not explicitely mentioned, we will always

suppose that K € <Fg_cl+(0),F§_C1(1)>.

In the following theorem, we show that the upper bounds derived in Theorem [6] can
be expressed in terms of stock option prices.

Theorem 7 (Expressions for C° and P°) Forany K € <F§_cl+(0), Fgf(l)), the comonotonic

option prices C° K| and P [K] can be expressed as

CU K =Y wili[K], (109)
=1
PUK] =Y wP; K], (110)
i=1
with the K given by
Kr =T (Fe(K)),  i=12...n (111)



and where o is any element in [0, 1] such that

> wiK; =K. (112)
i=1
Proof. The proof of the stated results is similar to the proof of Theorem [2| |

From Lemma , we know that for each 4, the comonotonic option price C; [K] can be
expressed in terms of at most two observed option prices C; [K; ], j = 0,1,...,m; + 1.
Hence, the upper bound C* [K] for the index call option price C' [K] is a linear combination
of observed stock call option prices. A similar remark holds for the index put option.

Taking into account the additivity property for quantiles of a comonotonic sum,
relation (112) can be rewritten as

FH) (Fge(K) = K. (113)

Hereafter, we explain how to determine the upper bounds 6_6 [K] and P°[K]. There-
fore, we first introduce the indices j;(K) and the sets Nx and Nk.

Let K € (Fg_CH(O), F:cl(l)), then we have that Fge(K) € (0,1). For any such K and

S
any stock i, we define j;(K) = j; as the unique element contained in the set {0, 1,...,m;+
1} that satisfies B B
Fx (Kiji—1) < Fge(K) < Fx,(Kyj,). (114)
Further, we define the set N as follows:
Ng = {Z S {]_, 2,... ,TL} | FXi(Ki,ji—l) < FgC(K) < FXl(KZ,]Z)} . (115)

Its complement N g is the set given by
Nig={ie{l,2,....,n} | Fg«(K) = Fx,(Ki;,)} . (116)
Notice that i € N implies that j; € {0,1,...,m;}.

In Figures [5] and [6] we illustrate how to determine the indices j;. In Figure [5] we
consider the case where F'x,(K;; 1) < Fgo(K) < Fx,(K;), hence i € Nk. In Figure
we have that Fge(K) = Fx, (K ;), which implies that i € N.

_In the following theorem, we prove that the comonotonic option prices C°[K] and
P° [K] for the index call and put options can be expressed in terms of traded stock option
prices.

Theorem 8 (C° and P are l.c.’s of stock option prices) For any K € (Fg’c”(()), ity

the comonotonic option prices C* K] and P [K] can be expressed as

CUK = Y wiCi[Kij )+ > wiaxC; [Kiy) + (1 — ak)Ci [Ki 1)), (117)
iGNK ZENK

PR =Y wiP [Kig)+ Y wi (P [Kig) + (1= ak) P [Kij)), (118)
i€ENK iENK

where ag is any element in [0, 1] such that holds.
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-1 63, K j+1

Figure 5: The cdf Fx,(z) in case i € Nk.

Figure 6: The cdf F'y,(z) in case i € N.
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Proof. Let K € (Fch(O), Fg}(l)) From Lemma [3| it follows that for any o € [0, 1],

the a-quantile F;(a) (p), 0 < p < 1, is given by

W) K. . if Fx,(Kij-1) <p < Fx,(Kij),
Fy, "(p) = " J=0,1,...,m;+1, (119)
ozKi,j + (1 —Q)Ki7j+1 lfp: FXi(Ki,j)a j IO,TTLZ

Taking into account the definitions of the indices j; and the sets Nx and N in (114),
(115) and (116)), we find that

—=—1a)

as _ K, j, ifi € Ng

o P (K)) = { aK;j+ (1 —a)K; 1 ifie Ng (120)
holds for any « € [0, 1]. -
Combining (120) with Lemma |I| and using the linearity of the function C;, we arrive at

= [, _ [ CilKi)] ifi € Nk
O, |:FX (Fg (K))] = { CilaK;; + (1—a)Kij1] ifie Ng

[ CilKiy) if i € N (121)
N O[Ci [sz] + (]_ — Od)CZ [Ki,ji—‘rl] 1fl < NK.

which holds for any « in [0, 1]. The proof of follows from Theorem m and expression
for « = ag.

Expression can be proven in a similar way or via the put-call parities for stock
option prices and for comonotonic index option prices. [

In order to calculate the comonotonic option prices and in Theorem , we
first have to determine Fge(K) and ax. Knowledge of Fge(K) allows to determine the
indices j;, as well as the sets Nx and N . The numerical valuation of these quantities is
considered in Section [5.5

In the following theorem we prove that each upper bound presented in the previous
theorem corresponds to the price of a static super-replicating strategy for the index option
under consideration.

Theorem 9 (66 and P° are the prices of static super-replicating strategies) Let
K e (Fg_cp“(()), Fg}(l)) and consider the index call and put options with pay-off at time
T given by (S — K), and (K — S)

., respectively.

1. Consider the strategy where at time 0, for any stock i € Nk one buys w; calls
C; [K; ], while for any stock i € N one buys axw; calls C; [K; ;] and (1 — ax) w;
calls C; [K; j,+1]. Furthermore, these positions are held until they expire at time T
This static strategy super-replicates the pay-off of the index call option with price
C'[K]. Its price is given by C" [K].
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2. Consider the pay-off of the strategy where at time 0, for any stock i € Nk one buys
w; puts P;[K; ], while for any stock i € Ng one buys axw; puts P, (K j,] and
(1 — ak)w; puts P, [K; j,+1]. Furthermore, these positions are held until they expire
at time T'. This static strategy super-replicates the pay-off of the index put option
with price P [K]. Its price is given by P [K].

Proof. The pay-off of the first strategy described in the theorem is given by

M oowi (X = Kig), + D wi(ax (X — Kij), + (1= ax) (Xi — Kiji),)

1ENK ZENK

while from Theorem [§it follows that its price is given by C* [K].
Taking into account (112)) we find that the pay-off at time 7" of the index option C'[K]

can be expressed as
(- K), = (Z w (X = K:)) , (122)
=1 +

with the K defined in (111).
It remains to prove that

(S—K), <> wi(Xi=Kij), + Y wi(ox(Xi—Kiy), +(1—ax) (X = Kij),)

1€ENK ’LGNK
(123)
In order to prove this inequality, observe from ((120)) that
« _ o lak) H . Ki,ji ifi € NK,
Ki o FXi (FS (K)> o { OéKKi’ji -+ (1 — OéK)Ki,jq; le € NK (124)
Taking into account ((112)) and ((124)), we find from (122]) that
(S—K), <> w(X;— K;)
i=1
= wi(Xi = Kig), + Y wi (X —axKij, — (1 - ag)Kij),
1E€ENK ’LENK
S Zwi<Xi_sz)++ Z ( (X th) (1_aK) (X KZ]z ) )7
i€ENK iEN K

so we have proven that the first strategy in the theorem indeed super-replicates the index
call option pay-off.

Let us now consider the put option case. Using the relation
(S—K),=(K-5,+S—K,
one immediately finds from (123]) that

K S < Z ’U),L ’L_] z>++ Z W; (OéK (K’L,Jz — X1>+ + (1 - OéK) (Ki,ji+1 - XZ)+) .

1€ENK iENfK

34



This inequality proves that the second strategy in the theorem is indeed a super-replicating
strategy for the the index put option P |K]. From Theorem [§] it follows that the price of
this strategy is given by P°[K]. |

From our previous derivations, we can conclude that the following inequalities hold
concerning the index option prices:

CIKI <Y wili[Kij)+ > wilak Ci[Kig] + (1 — ag)Ci [Kij]). (125)
1ENK Z'ENK

PIK] < Y wP[Kij)+ Y wiloag P[Kiy]+ (1= ag)Pi[Kija)) . (126)
1€ENK iGNK

The right hand side of equation is the price of a static super-replicating strategy
for the index call option with pay-off (S — K') | at time 7', whereas the right hand side of
equation is the price of a static super-replicating strategy for the index put option
with pay-off (K — S), at time 7. From these observations we can conclude that the upper
bound inequalities and remain to hold, without having to make the explicit
assumption that the involved option prices are expected discounted pay-offs under some
@Q-measure. The only assumption that we have made is that the market is free of arbitrage.
Remark however that in order to prove the equalities and , we have to make
the assumption that any option price can be expressed as an expectation of its discounted
pay-off.

5.3 The upper bound is the price of the cheapest super-replicating
strategy

The upper bounds and for the index option prices C[K] and P [K] are both
linear combinations of observed stock options prices. Each bound can be interpreted as
the price of a static strategy that super-replicates the pay-off of the corresponding index
option; see Theorem [9} The question arises whether it is possible to derive better up-
per bounds within a general class of superhedging strategies consisting of buying/selling
available stock call and put options. In order to be able to answer this question, we have
to introduce the class of admissible strategies Z.

Definition 3 (The class ) The class I consists of all 2n-dimensional functions v =
(Vies Vips - -+ s Unes Vnp), Of which for each i, the functions v;. : R — R and v;, : R — R are
r.c. jump functions, only having jumps at K; ;, j =0,1,2,...,m; + 1. Jumps upwards as
well as downwards are allowed.

We will consider the class of investment strategies where for each stock ¢ at current
time 0, calls and/or puts can be bought (i.e. holding a long position) or sold (i.e. holding
a short position). The positions taken are assumed to be held until time 7', and then exer-
cised. Any such static investment strategy can be uniquely described by a 2n-dimensional
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function v € Z, where for any stock i and any strike y > 0, we interprete v (y) as the
number of call options purchased with a strike smaller than or equal to y. Similarly,
for any stock ¢ and any strike y > 0, the value of v;, (y) is the number of put options
purchased with a strike price smaller than or equal to .

The pay-off at time T of the investment strategy v € 7 is given by

n m;+1

Pay-off [v, X] =) ) ((X L Av(K ) + (K — X))y Avg (K, ), (127)

=1 7=0

where X = (X1, Xs,...,X,,) is the vector of the individual stock prices at time 7" and
where Av,.(K; ;) and Av,,(K; ;) are the magnitudes of the jumps of the function v, and
Vic at K; ;. The corresponding price of this investment strategy is given by

n m;+1

Price Z Z Z i AV,C( )‘l‘ P [Ki,j] Ayip(Ki,j)) . (128)

=1 7=0

As before, we will write these sums in terms of Riemann-Stieltjes integrals. This means
that we rewrite the pay-off and the price formulas as follows:

paroft X1 = 3 ([ - e+ [T X0, anw) a2

i=1 —o0 oo

and

Price [1] = 3 ([ c ant+ [ il ). (130)

We are only interested in investment strategies that super-replicate the pay-off (S — K)
of the index call option or the pay-off (K — 5) . of the index put option. Therefore, we
define the subclass C of super-replicating strategies for the index call option with pay-
off (S — K), and the subclass P of super-replicating strategies for the index put option
with pay-off (K —5),.

Definition 4 (The classes Cx and Py ) For any K > 0, the classes Cx and Py are

defined by
Cx = {y 7| (Z w; T; — ) < Pay-off [v,x] for allg} : (131)
_l’_
Py = {y cT| (K - Zwi xz> < Pay-off [v,x] for all g} : (132)
=1 +
In this definition, x = (1,2, ...,x,) and ‘for all z’ has to be understood as

“for all x with x; € [F;?(O),F;(l)] . (133)

36



As we have from that F;JF(O) < Fx"(0) and from that F;(l) =Fl(1) =
K m,+1, we find that the set of z-values for which the inequalities in the definitions above
have to hold is a support of (X1, X5, ..., X,,) in the Q-world and hence, also in the P-world.
We can conclude that

P[(S - K), < Pay-off [v,X]] =1, forany v € Ck. (134)

A similar remark holds for any v € Pg.

In the following example, we show that the super-replicating strategies that were
considered in Theorem @ are elements of the class Cx and P, respectively.

Example 3 (Two simple investment strategies) Consider the investment strateqy v* =

* *

(e, Vlpse s Upes V ) € Z, where for any i € Nk, the functions v}, and vy, are defined by

) nc’ np
« 0 =2 < }<z i
(y) = { f Y ¥

ic w; Zf Y Z Ki,jp (I’fld Vip(y) = Oa

while for any i € N, the functions v}, and vy, are defined by

0 Zf Yy < Ki,jia
v, (y) = AW; Zf Ki,ji <y< Ki7ji+1, and V:p(y) =0.
w; if y > Kijii1,

Obuviously, v* is the super-replicating strategy for the index call option that was considered
in Theorem[9 and hence,
v* e Ck. (135)

The pay-off of this strategy is given by:
Pay—off [Z*,X] = Z W; (X,L — Kiuji)—‘,—
1€ENK
+ Y w (o (X = Kig), + (1= ag) (Xi = Kij), ),
iENgK
whereas its price is given by B
Price [v*] = C°[K]. (136)

Similarly, we define the investment strateqy n* = (nfc,nfp, o ,77;6:77;;;;) € I, where for

any i € Nk, the functions n;, and n;, are defined by

. B . 0 if y<K,j
i) =0 and ) = { Y5

while for any i € N, the functions v:, and vy, are defined by
0 y < Kiji,
Me(y) =0 and n;,(y) = § axw; if Kij <y < Kij,
w; if y 2> Kijit1
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The investment strategy 1" is the super-replicating strategy for the index put option that
was considered in Theorem[9 and hence,

n" € Pk. (137)

Its price is given by .

Price [n*] = P°[K]. (138)
The investment strategies v* and n* will turn out to be optimal super-replicating strategies
for the index call and put option, respectively. \Y%

In the following theorem, we look for the cheapest strategy contained in Cx which
super-replicates the pay-off (S — K') | of the index option C' [K], as well as for the cheapest

strategy contained in Py which super-replicates the pay-off (K — S) . of the index option
PIK].

Theorem 10 Let v* € Cx and nte Pk be the investment strategies defined in Example
H. For any K € <F§21+(0), F:cl(l)) it holds that

S
min Price [v] = Price [v*] = C" [K] (139)
veCr
and
min Price [v] = Price [n*] = P°[K]. (140)
vePk -

Proof. Consider the investment strategy v € Cx. Replacing the z; by F}I(U ) in the
pay-off inequality
n n “+00 “+oo
Zwixi_K SZ(/ (Xi—y). de‘c(?J)"‘/
=1 + =1 -

—00

=X, dy )
and taking expectations leads to

B[ -0, ] <3 ([ 7B -0 )+ [ Bl 0] dn).

i=1 00 —o0
Multiplying the left and right hand side by e~"7, this inequality can be rewritten as
C°[K] < Price [1].
As this inequality holds for any v € Ck, we can conclude that

C°|K] < inf Price [1].

veCk
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On the other hand, as v* € Ck, we have that

inf Price [v] < Price [v*] = C°[K].

veCk
Combining these results, we can conclude that the stated results holds true for the call
option case.
The put option case can be proven in a similar way. [ ]

From Theorem it follows that the cheapest super-replicating strategy contained in
Cx is given by v*, whereas the cheapest super-replicating strategy contained in P is given
by n*. The prices of these cheapest super-replicating strategies are equal to the upper
bounds C* [K] and P°[K] that we derived in Theorem @ Although we allow portfolios
consisting of any available strike per individual stock, the cheapest of these strategies only
invests in at most two strikes per stock.

Suppose for a moment that the index call option C'[K] is not traded in the market,
but sold over-the-counter. In this case, both the seller and the buyer of this option may
think of C° [K] as a fair price for the index option. Indeed, from the seller’s point of view,
C°[K] may be a reasonable price for the index call option as he can use this amount
to acquire the portfolio v*, resulting in a pay-off which always exceeds the pay-off of the
index option that he is due to the buyer. On the other hand, the buyer of the index option
cannot find a cheaper super-replicating strategy in the market. In case the index option
was sold over-the-counter at a higher price than its comonotonic price C* [K], the buyer
may prefer to buy the cheaper investment portfolio v*. A similar reasoning can be made
concerning the over-the-counter index put option price.

5.4 The upper bound is the least upper bound for the index
option price
As before, we use the symbol D,, to denote the class of all n-dimensional cdf’s on the

non-negative orthant of R", whereas the symbols F;, 7 =1,...,nare used to denote the
marginal cdf’s of F' € D,,. We first define the subclass R,, of D,.

Definition 5 (The Fréchet class generated by the observed stock option prices)
The class R,, of n-dimensional cdf’s F is defined as
i=1,...,nandj=0,1,... ,m; +1}.

The Fréchet class R, consists of all multivariate distributions F' which are consistent
with the observed call option prices C; [K; ;].

From the put-call parity , it follows that the class R,, can also be seen as the class
of all multivariate distributions F, which are consistent with the observed put option
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prices P; [K; |

i=1,....,nand j=0,1,...,m; + 1}.

Taking into account and (87), we find that the cdf of the comonotonic random
vector (F; (U), F;(i 0),... ,F;(i (U )) with marginal distributions F'x, defined in l) is
an element of R,,.

In the finite market case that we consider in this section, the only information that
we have about the cdf of (X1, X,..., X,,) is that it belongs to R,,. This information does
not allow us to determine the index option prices C' [K] and P [K], neither does it allow
us to derive C°[K] and P¢[K]. However, this information is sufficient to specify the cdf
of S unambigously and hence, it allows us to determine the comonotonic index option
prices C° [K] and P° [K].

Theorem 11 (The least upper bound for the index option price) For any K >
0, one has that

max e "Er [(S - K),| = C[K] (142)
and
max ¢ ""Bp [(K - 5),] = P IK]. (143)

FeRy
Moreover, in both cases the mazimum is obtained for the cdf of (F; (U), F;i {v),... ,FZ(U)) .
Proof. Suppose that F € R, is the cdf of (X1, Xs,...,X,). The stop-loss relation
S <& S in (105) implies that
Er [(S - K),] <B[(5"- K),]
As this inequality holds for any F' € R,,, we find that

sup Br [(S — K),] SE[(EC—K)J.

FER,

On the other hand, from the fact that the cdf of (f;(U),FXQ(U), e ,FXH(U)> is an

element of R,,, we also have that

E[(S" — K)4] < sup Ep[(S — K)4].

FER,

Combining these observations leads to (142)).
The put option case is proven in a similar way.

40



Theorem (11| states that both the upper bounds C° [K] and P°[K] that we derived in
Theorem [6] can be interpreted as least upper bounds in the sense that they correspond to
the largest possible expected discounted pay-off of the corresponding index option, given
the limited information about the marginal distributions of the underlying stocks that is
contained in the observed stock option prices. Somewhat loosely speaking, C° (K] is the
lowest upper bound for the index call option price with strike K in the class of all models
which are consistent with the observed stock option prices. A similar interpretation holds
true for the upper bound P [K].

The upper bound C° [K], resp. P°[K], coincides with the index option price C [K],

resp. P [K], in case the risk-neutral multivariate distribution of the price vector X is equal
1 1

to the distribution of (F;(U ), Fy,U),....Fx (U )) The question whether this upper
bound is reachable in the sense that it is possible to construct an arbitrage-free market
with the observed index and stock option prices and with this risk-neutral multivariate
pricing distribution is considered in [Hobson et al.| (2005)).

5.5 Computational and practical aspects

In this section we will consider several computational aspects related to the finite market
case. We first prove the following lemma, which will be needed hereafter. The notations
used in this section correspond to the notations introduced before.

Lemma 5 Consider a real number x which can be expressed as
T = Z Wi (144)
i=1

with = (x1,xs...,x,) being an element of a comonotonic support of
1 1

<F;(U),F)_(2(U), . ,F;H(U)) Then one has that

Fse (r) = min  Fy (7). (145)

i€{1,2,...n}

Proof. Any two elements z and y of a given comonotonic support of (F; (U), F}i {v),..., F; (U )>

are ordered componentwise. Hence either x; < y; must hold for all ¢ or y; < x; must hold
for all i. Let x be defined by 1) then the componentwise ordering of z and y leads to

Zwiyigx@yigxi, foralli=1,2,...,n, (146)
i=1
or, equivalently,
H(Zwiyi§$)Z]I(yl§371,Z/2§$2,'-->yn§9€n)> (147)
i=1
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where the notation I(A) is used to denote the indicator function which equals 1 when A

holds true and 0 otherwise. Replacing each y; by F; (U) in (147 and taking expectations
on both sides leads to

Fgo(2) =P |Fx(U) <21, Fry(U) < w2, Fxh (U) <

where in the last step we made use of the well-known expression for the multivariate cdf
of a comonotonic vector. [ ]

5.5.1 Numerical evaluation of the upper bounds for C' [K] and P [K]

In this subsection, we explain how to determine the comonotonic index option prices
C°[K] and P°[K] as well as the corresponding super-replicating strategies v* and 7* for
the index options C'[K] and P [K], respectively. B

Starting from either the observed stock option prices C; [K; ;| or the observed stock
put options P; [K; ], we can determine all F, (K;;) from Lemma 3| In a second step,
the extreme outcomes F§c1+(0) and Fgcl(l) are obtained from

_ S o 1t . =
FM(0) = wiFy, (0) with Fyy, " (0) = min }{KM | Fx,(K;;) >0}
=1

€101 mm;

and

ng;l (1) = Z wiKi,m¢+1-
i=1

For K ¢ (Fg_cH(O), Fgﬂl))7 the comonotonic index option prices C [K] and P° [K]

are equal to the exact index option prices:

ClK] =0,

K 1)
P[K]=0, K

—1

Fl (1),
—1+

Fo 0),

IN IV

and
ClK|=e"T(E[S|-K), K<Fi(0),
P[K]=e (K -E[S]), K=>F.(1).

In the remainder of this section, we assume that K € <F§CI+(O), Fg}(l)), except if ex-

plicitely stated otherwise. This assumption implies that Fge(K) € (0,1).

In order to be able to determine the upper bounds C* [K] and P°[K] for the index
call and put options C'[K] and P [K], one has to determine Fg(K), the indices j;, i =
1,2,...,n, the corresponding sets Nx and N, and also the coefficient a. Let us first
consider the problem of determining Fge(K).
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Lemma 6 For any K € (Fg_cH(O), Fg}(l)) one has that

Fee(K) = min } {Fx, (Kij,)}. (148)

ie{l,....n
Proof. First notice that
Fge (K) = Fye (Fg! (Fg (K)))

—1 —1

As Fg! (Fg (K)) = S0y wiF ! (B (K)) and (Fy, (Fge (K)) ..., Fx., (Fge (K))) is an

element of a comonotonic support of (F; ),... ,F; (U )>, a direct application of
Lemma [5] leads to )
Fg (K) = Fx,(Fy, (Fg (K
5 ( 16{3121’.1.1””} x (Fy, (Fg (K)))
Expression ((148)) follows then from (120)). n

Unfortunately, Lemma [6] does not provide us with a straightforward way for determin-
ing Fge(K). Indeed, the j; depend on the value of Fge(K) and hence, only gives an
implicit expression for Fige(K). In the following theorem we present an explicit expression
for Fge(K). The proof of the theorem makes use of Lemma [6]

Theorem 12 Let A be the set defined by
A={Fx, (Ki;)|i=1,....,nand j =0,1,...,m;} \ {0}. (149)

For any K € (Fg_cH(O), Fg_cl(l)), the value of Fge(K) follows from

Fge(K) = max {pEA| iwiﬁ)é (p) SK}. (150)

Proof. From Lemma [f] it follows immediately that Fg(K) is equal to one of the
Fyx, (Kij),i=1,...,n;5=0,1,...,m;+1. Furthermore, for any K € (FS_CH(O), F§1(1)>
one has that 0 < Fge(K) < 1. These observations imply that

Fge(K) € A.
Obviously it holds that
Fge(K) =max{p € A|p < Fg:(K)}.
Taking into account (), this relation can be transformed into
Fee(K) = max {p € A|Fl(p) < K} .

Combining this expression with the additivity property for the quantiles of a comonotonic
sum leads to (|150)). [ ]

Combining the previous results and Theorem [12| allows us to write down the following
algorithm for determining Fee(K).
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Algorithm 1 (Determining Fge(K)) Forany K € (Fg_cH(O), Fg_cl(l)), determine Fge(K)

as follows:

1. Calculate all elements F'y, (K ;) of the set A defined in (149):
1

Foranyi=1,...,nand j =0,1,...,m;, we have that

o1 Ci [Ki ja] — Ci [K ]
Kijp — K; ’

’j

Fx, (Kij)=1+e

or, equivalently, P i
F, (K,;) = "2 [gﬂ L
Z7] 17‘7

3

2. Calculate F; (p) forany i = 1,...,n and any p € A:

——1

FXi (p) = Ki,j if FXi(Ki,jfl) <p< FXi(Ki,j)a j = O7 1, e, my + 1.

3. Calculate Fge(K) from (150)):

Fge(K) = max {p e A Y wFy (p) < K}

i=1

In case K ¢ <F§_51+(0), Fg_cl(l)), it is straightforward to determine Fge(K'). Indeed,

Fge(K) = 1if K > FZ.'(1),

whereas
Fge(K) = 0if K < F2.'*(0)
and RV
Py (F%H(o)) = min T, (FXl, (0)) (151)

This last expression follows from Lemma

A computationally better but more complicated algorithm for determining Fge(K)
is described in |Chen et al| (2008). After having calculated Fge(K), the indices j;,i =
1,2,...,n, can be determined from (114)), while the sets Nx and N are given by (115)

and ((116)), respectively. From (111]), together with (112)) and ((120) we find that

K= Z wiKim + Z w; (OéKKiJ'i + (1 - aK)Ki,ji—&-l) . (152)

1ENgK iENK
Solving this equation for a leads to
K = i wiliy,
Dieny Wi (Kijior — Kij,)
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From Lemma [6] it follows that the set N contains at least one element. Furthermore,
recall that we assumed that all K ,,,;1 are finite. Both observations guarantee that o is
well-defined.

In practice, it may happen that the chain of traded strikes is different for the stock
calls and puts. In order to explain how to cope with this problem, let us suppose that
P, [K] is traded, while C; [K] is not. As long as there is at least one strike K for which
the prices C; [K*] and P [K}] are traded, the forward price E [X;] can be calculated in a
model-free way from the put-call parity applied to this couple:

e TE[X;] = C; [K*] — B [K*] + e T K.

The pay-off of receiving X; at time 7T can be replicated by an investment strategy con-
sisting of buying the call C; [K*], selling the put P; [K*] and putting e "7 K* on the bank
account. The price C; [K] of the non-traded call option can then be backed out of the
traded put option P; [K| with the help of the put-call parity:

Ci|[K] =P K| +e™E[X;] —e ™K.

In this case, a long position in the non-traded call option C; [K] has to be understood
as a long position in the traded put option P; [K], receiving the stock i at time 7" and
borrowing e "7 K.

5.5.2 On the choice of the maximal values K ,,, 11

In this subsection we make the following assumption concerning the choice of the ‘maxi-
mal’ values K ,,+1 of the stock prices X;:
max Fy, (Kim,_1) < min Fx, (Kim,). (154)
i€{1,...,n} ie{l,...,n}
Notice that we implicitely assume here that all m; > 0. From we find that any
Fx, (Kinm,) is given by

Fx. (Klymb) =1- erT

k3

K’i,mi+1 - Ki,mi ‘

This implies that F, (Kim,;) is an increasing function of K ,,,+1 and by choosing K ,,,,+1
sufficiently large, the value of F'x, (K ,,,) can be made as close to 1 as desired. This means
that the assumption (154]) will be fulfilled, provided all K;,,, 1 are chosen sufficiently
large.

Taking into account , we can rewrite the assumption ((154]) as follows:

Kjm, — Kjm.—1 .
Kimit1 > K, + Ci [Ki ;] X  max ! ! , 1=1,2,...,n.
Cj [Kjm,-1] = Cj [Kjm,]
(155)
Throughout this subsection, we will also silently assume that F;JF(O) < K, for any
i =1,...,n. This assumption implies that Fy, (K;,,,) > 0 for all 4.
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Lemma 7 Assume that the K; .41, @ = 1,...,n, are sufficiently large in the sense that
holds. Then one has that

Fe(K) < min Fy, (Kim,), ifK<Y wkKin, (156)

ie{1,...,n}

while

-----

Fae <Z me) = Zegmn }FX (Kim,) - (157)
=1

Proof. (a) We first prove that (157 holds.
Let pmin be defined by

Pmin = 26?11,111,71} FXZ- (Kz,mz> .

Notice that 0 < ppuin < 1. From assumption ((154) we find that

Fx, (K1) < Pain < Fx, (Kim,) , i=1,...,n. (158)

?

This implies that

Hence,
n
Z wiKi,m Z wzFX pmm

These last two expressmns combined with Lemma 1mply that ( - ) holds true.

(b) The r.v. S° is a comonotonic sum of discrete r.v.’s and hence, also has a discrete
distribution. As F ' (Pmin) = Do lwlF; (Pmin) = Y5y Wi K 1, we have that gc has a
strictly positive probablhty mass at y ., w;K; ,,,. This observation implies (|1 [

Based on the results derived above, we are now able to prove that, under rather general
conditions, the upper bounds for the index option prices will not depend on the particular
choices for the values of the K ,,,11.

Theorem 13 Assume that the K; 41, 1 = 1,...,n, are chosen sufficiently large in the
sense that (154]) holds. In this case, we have that for any K € (F§3+(0), Yo Wik
the upper bounds C* K] and P [K| for the index option prices C'[K] and P [K] and also

the corresponding super-replicating strategies do not depend on the particular choices for
the values of the Ky, 41.

Proof. (a) When K < """ | w; K, we know from Lemma m that
Fee(K) < Fx, (Kim,), i=1,...,n.

From the definitions of the j; it follows then that for each ¢ € {1,...,n} either ‘j; = m;
and i € Ng’ or ‘j; < m; — 1’ holds. Hence, the indices j; as well as the sets Nx and

46



Nk do not depend on the choices of the values of the K m;+1. From it follows that
also ax does not depend on the choice of the K ,,,.1. We can conclude that the upper
bounds C* [K] and P° [K] for the index option prices C'[K] and P [K] and the associated
super-replicating strategies do not depend on the particular choice of the K ,,,11.

(b) Let us now consider the limiting case where K = 7" | w; K ,,. From Lemma 7]
we know that Fge has a positive jump at K. Taking into account the definition (113]) of
ag, we find that ax = 1 in this case. Furthermore, from assumption (154)) and expression

(157) we find that
FX:‘ (Ki,mi—l) < Fgc (K) < FX:‘ (Kl,mz) , 1=1,...,n,

which implies that j; = m; for any ¢ = 1,...,n in this case. Hence, we can again
conclude that the upper bounds C°[K] and P°[K], as well as the associated optimal
super-replicating strategies, do not depend on the particular choice of the K, 41. [ ]

_ From the previous lemma, we know that under reasonable assumptions the bounds
C° [K] and P [K], as well as the corresponding super-replicating strategies, do not depend
on the particular choices of the values of the K ,,,, 41.

5.5.3 Determining the stock option prices C; [0] and P; [K; ;1]

Until here we assumed that the stock option prices
Ci[0] = 7B [X] (159)

and
P [Kims1] = €7 (K1 — B[X3)) (160)

are known for any stock 7. In practice however, these options are not traded and hence,
their prices cannot be observed. Hereafter, we will explain how to derive these prices, or
equivalently, how to determine the forward prices E [X;], from information that is available
in the market. Notice from the previous subsection that under appropriate choices for
the K ,,,+1, our results will not depend on the explicit values of these K ,,,+1 and hence,
knowledge of the P; [K; ,,,+1] will not be required. Nevertheless, for reasons of completeness
hereafter we will not only explain how to cope with the problem of unobserved values of
the option prices C; [0], but we will also have a look at the problem of unknown values of
B {Ki,mﬂrl]-

Let us first consider the simple case where stock ¢ pays no dividends in the period
[0, 7. In this case, ‘buying the call C;[0] at time 0 and holding it until maturity 7” or
‘buying the stock ¢ at time 0 and selling it at time 77 leads to the same pay-off X, at
time T'. A no-arbitrage argument leads to the conclusion that the call option price C; [0]
is equal to the spot price of the underlying stock in this case:

C;[0] = X;(0), for a non-dividend-paying stock. (161)
From (159) and (160)) it follows that the put option price P; [K; ,+1] is then given by
P [Kim,41) = ¢ K1 — X;(0), for a non-dividend-paying stock. (162)
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Let us now consider the general case where stock ¢ may or may not pay dividends in
the period [0, 7. In order to determine the value of C; [0] in this case, let y be any strike
for which calls and puts with expiration date T" are traded on stock 7. From the put-call

parity we find that
Ci[0] = Cily] = P ly) +ye™". (163)

Taking into account (159)) and (160)), this expression leads to
Pi[Kim41] = P ly] — Ci[y] + et (Kim1 —Y) - (164)

The relations and express the option prices C; [0] and P; [K; ,+1] in terms of
observed prices. Furthermore, it is straightforward to prove that the pay-offs of both C; [0]
and P; [K; ,+1] can be replicated by the pay-offs of time-0 strategies consisting of trading
the stock options C; [y] and P, [y] and investing in the risk-free T-year zero coupon bond,

the prices of which are given by the right hand sides of (163]) and (164)), respectively.

In principle C;[0] and P, [K;,,+1] can be determined from and for any
traded strike y. However, in order to guarantee that the strike y is sufficiently traded,
in practice one often prefers to choose the strike y as close as possible to E[X;], or
equivalently, to choose y such that |C; [y] — P; [y]| is as small as possible. This means that
the strike y € {K;; | j =0,1,...,m; + 1} that is used to determine C; [0] and P; [K; 1, +1]
is defined as follows:

y= argmin |C;[K;;] — P [K,;]|. (165)
j€{0,1,....,m;+1}
Having determined the values of C; [0] or P, [K; m,+1], we immediately find the correspond-
ing value of E [X;].

A first way to circumvent the problem that C;[0] and P, [Kj,,,+1] are not directly
observed is to consider strategies that replicate the pay-offs of these options. This proce-
dure was explained above. A second way of solving this problem consists of determining
upper bounds for the unobservable option prices C; [0] and P; [K ;,,,+1]. This procedure is
considered hereafter.

A first upper bound that we considered already for C; [0] is given by
C; [0] < X;(0), (166)

where the inequality can be replaced by an equality in case stock ¢ pays no dividends.
Another upper bound can be constructed for C; [0] by considering its largest possible value
CM [0] which is consistent with the available information. Taking into account that C; [y]
is convex and decreasing, that (K;1,C;[K;1]) is an element of the curve (y,C;[y]) and
that the slope of C; [y] is given by —e™"" for y < 0, we find that

Cily] < C’iM [l , for all y < K1,

with CM [y] defined by



In particular, we find that the maximal value for C; [0] is given by
CM0] = C; [Kiy] +e ™K.
Hence, we find the following upper bound for the zero-strike call option:
Ci[0] < Ci [Kia] + e ™K 4, (167)

see Figure E] This upper bound for C; [0] is the price of a super-replicating strategy for
the pay-off X; at time T, consisting of buying the call C; [K; ] and investing e "7 K; ; in
the risk-free zero coupon bond at time 0.

In a similar way, we can derive an upper bound for the unobserved option price
P; [K;m,+1] by considering its largest possible value PM [K; ,,,+1] which is consistent with
the available information. Taking into account that P; [y] is convex and increasing, that
(Kim,, Pi [Kim,;]) is an element of the curve (y, P, [y]) and that the slope of P, [y] is equal
to e for y > K, +1, we find that

Pyl <PMlyl,  forally> K,
with PM [y] defined by
PMly) = P [Kim] + e (y = Kim,) -
In particular, we find that the maximal value for P; [K; 1] is given by

PM [Kimis1] = P [Kim,) + € (Kimis1 — Kigm,) -

(2

Hence, we find the following upper bound:
Py [Ki 1) < P [Kim ] + ¢ (K1 — Kim,) - (168)

This upper bound for P, [K;,,,+1] is the price of a super-replicating strategy for the
pay-off (K;m,+1 — X;) at time 7', consisting of buying the put P, [K;,,,] and investing
e (Kim,+1 — Kim,) in the risk-free zero coupon bond at time 0.

Most of the results that we derived concerning upper bounds for index options in
the finite market case remain to hold if we replace C;[0] and P; [K; ,,+1] by CM [0] and
PM K, +1], respectively, and replace ‘buying the call C;[0]’ by ‘buying C; [K;,] and
investing e ™" K ,in the risk-free zero coupon bond’, while replacing ‘buying the put
P;[K;m;+1] by ‘buying the put P; [K;,,,] and investing e "7 (K ,+1 — K;m,) in the risk-
free zero coupon bond at time 0.

Notice that replacing C; [0] by X; (0) and ‘buying C; [0]’ by ‘buying X; (0)’ in all our
previous results will not always be appropriate as it may lead to a non-convex call option
curve. This situation will arise when X; (0) > CM [0]. This inequality will be fulfilled in

particular when a substantial part of the stock price X; (0) consists of the market price
for the future dividend payments in the period [0, 7.
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Figure 7: Upper bounds for the call price C; [0].

5.5.4 The upper bounds in terms of the inverses F;

From Theorem @ it follows that the comonotonic index option prices C° [K] and P°[K]
1ex) with a defined in (153). In the following

corollary, we show that these upper bounds can also be expressed in terms of the usual

1
inverses F— X,

are expressed in terms of the inverses F

Corollary 2 For any K € (F 27(0), Fgcl(l)), one has that

zwz K] ( Zwl ) (1 Fe(K)  (169)
and

szi il —’“T( sz W) -(K), (170)

where the indices j; are deﬁned as before.

Proof. From Corollary (1 applied to the vector (F;(U ) F;(i(U )y ,in(U )) we find

that C° [K] can be expressed as

- Z w0 [Fy (Fs(K))]

_ ,TT<K P2t (P (K))) (1— Fge(K)).

From (121 for o = 1, we find that C; [7; (Fgc(K))} = C; K, ]. Furthermore, from

the additivity property for quantiles of a comonotonic sum and from (119) for o = 1, we
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have that Fgcl (Fge(K)) = > 7, w; K;j,. Combining these observations leads to (169).
The expression 1D for P°[K] can be proven in a similar way. ]

From (152) it follows that Y , w;K; ;, < K. This implies that the second term in the
right hand side of (170]) is non-negative. Hence, we find that

C K] < zn:wioz‘ [ 5] (171)

and Y w; C; [K; ;] is also an upper bound for the index option price C'[K], although it
is not the optimal one in the sense that the time-0 price of the portfolio of stock options
C; [K;,j,] will not be the price of the cheapest super-replicating strategy for the index call
option C'[K].

5.5.5 The case when no option data are available for some stocks

Recall that for any stock ¢, the chain of traded strikes is given by
0= Ki,O < KZ'71 < Ki,2 <0 < Ki,mi < Ki7mi+1 = F);Zl (1) < Q.

In practice, there may be stocks ¢ for which m; = 0, which means that there is no couple
(C; K ], Pi[K;;]) of option prices available with 0 < K; ; < K ,,,+1. This situation will
occur in particular when there are only options available on a subset of the constituent
stocks of the index. An example in that respect is the S&P 500 index. Hereafter, we
show how the calculations of the index option upper bounds can be simplified in this
case, provided the K, 1 fulfill an appropriate condition. Without lack of generality,
throughout this section we assume that m; > 0 for stocks i = 1,2, ..., k, while m; = 0 for
1=k+1,...,n.

The discrete distributions Fy, of the stocks i = k + 1,...,n, follow from Lemma :

0 r <0,

— C; |0

FXi (Ji) = 1—e7T K[l] 0<xr< Ki,l, (172)
1 7 T 2 Ki,l-

As before, we assume that no marginal distribution Fy, is a one-point distribution, see
. For the stocks i = k4 1,...,n, this implies that 0 < F'x,(0) < 1.

We introduce the notation S, for the comonotonic sum of the first & stocks:
—e ——1 =1 ——1
Sp=wiFy (U) +weFx,(U) + - +wpFx (U). (173)

Furthermore, we use the symbol C), [K] and P}, [K] to denote the corresponding comonotonic
call and put option prices:

C' K] = ¢ E [(@; - K)+] (174)
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e PoIK] = ¢ TE [(K . E;)J . (175)

For any K € ( Fg—zhr(()), Fg};(l)) , the value of Fge(K) follows from algorithm , where

we replace n, A and S° by k, A, and gz, respectively:

k
Fse (K) = max {p e A | Y wiFy (p) < K} : (176)
i=1
with the set A, given by
Ay ={Fx,(K;j)|i=1,...,kand j =0,1,...,m;} \ {0}. (177)
From Theorem [7, we find that
k
—c - ——1(Oé(k))
Gyl = Y uis [P (R )] (173)
=1
k
—c - ——l(a(k))
Py [K] =Y wpP; {FX x <FS;(K)>} , (179)
i=1

with a%ﬂ) determined from
—=-1

(af))
Fy (ng([()> - K. (180)

Theorem |8 can be applied to determine alternative expressions for C;, [K] and P, [K].

In the following theorem we prove that calculating the upper bounds ¢ C° K] andfc (K]
for the index call and put option prices reduces to the calculation of C) [K] and P}, [K],

provided the ‘maximal’ values K, +1, ¢ = K+ 1,...,n, fulfill the following condition:
maxFy, (K;,) < minFy, (0). (181)
i<k i>k

From (172)) it is clear that condition ([181)) is fulfilled provided the values K;; of the last
(n — k) stocks are chosen sufficiently large.

Theorem 14 Suppose that m; > 0 for stocks ¢+ = 1,2,... k, while m; = 0 for 1 =
kE+1,...,n. Assume that the K m,+1, 1 = 1,...,n, are chosen sufficiently large in the

sense that (181|) holds. In this case, we have that for any K € (Fch(O), Zle wiKi,miH)
the upper bounds C* [K] and P [K] for the index option prices C' [K] and P [K] are given
by

C° K] =CL K]+ > wiC;[0] (182)
i=k+1
and B B
P'[K] = P, [K], (183)
respectively.
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Proof. Let K € <F§_CI+ 0),3F, wiKi,mi+1>~ Taking into account that F .'*(0) <
k
P (0) and Fg'(1) = S0 w41, we have that K € (ngH (0), £y (1)).
From assumption (181]) we find that
0<p<Fx, (0), pcAzandi>k. (184)

From ([172)) it follows then that

——1

Fy. (p) =0, p € Ay and i > k. (185)

Notice that we find from (145)), that Fge(K) < Fge (K) always holds. On the other hand,
(185)) leads to

k
ng(K) = max {p € Ay | Zwif)_(: (p) < K}

=1

s 13T 0 < 1|

=1

< max {pe ALY wFy (p) < K}

1=1

= Fge(K).
We can conclude that
Fee(K) = ng(K). (186)
We have that Fge(K) € A;. We find from (184) that

—=—1(ak)

Fo ) (Fge(K) =0, i>k,

from which it follows that
—1(a —1(o

> F M (Fge (K)) = Y Fy ™ (Fge (K).

i=1 =1
Taking into account ((180)), this equality also implies

ag = ay;). (187)

The equalities (186 and (187)) lead to
Fo1ek)

Py ™ (Fg (1) = Ty (Pse(K)) . i=12,.0m.

k3
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Hence, from Theorem [7] and (178)), we finally find that

Similarly, one can prove that P°[K] = P}, [K]. n
From the previous theorem, we can conclude that under the assumption (181)), the
calculation of the upper bounds C° [K] and P°[K] reduces to the calculation of C’k[ ]

and P, [K], if K € (Fgc”r 0),3F wiKi,miH). Notice that the requirement K <

Zle w; K m,+1 will be met, provided the K;,,,+1, ¢ > k, are chosen sufficiently large.
Finally, notice that in case the last (n — k) stocks pay no dividends, each C;[0], i =
k+1,...,n, in (182)) is equal to the corresponding current stock price X; (0). On the
other hand, in case of dividend-paying stocks, we have that C; [0] < X (0),i = k+1,...,n
and replacing each C; [0] by X; (0) results in an upper bound for C° [K] and hence also
for the index option price C' [K].

6 Final remarks

In a model-based approach, index (and other exotic) call option prices are determined via
simulation techniques or via an appropriate approximation technique. We refer to Deelstral
et al. (2004), where comonotonic approximations are used to determine the price of an
index option, given that the underlying stock prices are modelled by a multivariate Black-
Scholes model. Another approach consists of determining upper bounds for European-
type index option prices, which are only based on available market information, without
assuming any particular model for the underlying stock prices. Such an approach is called
model-free.

To the best of our knowledge, Simon et al.| (2000) were the first to use the theory of
comonotonicity to derive model-free upper bounds for Asian options. They showed that
this upper bound can be expressed in terms of European options. |Albrecher et al.| (2005)
show that this model-independent upper bound for an Asian option price corresponds to
a static super-replicating strategy for this option. They explain how a long position in
an Asian option can be hedged by shorting a portfolio of European call options on the
underlying stocks.

Hobson et al.| (2005) derive a model-independent upper bound for index options. They
considered Lagrange optimization techniques to construct an upper bound for the index
option price as well as the corresponding super-replicating strategy. These authors also
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presented a more realistic framework, where the set of traded European options is finite.
They showed that their upper bound is the lowest upper bound for the price of the index
option which is consistent with the observed prices of the traded European options on the
individual stocks contained in the index.

Chen et al.| (2008) unify the approaches of |Simon et al.| (2000)) and Hobson et al.| (2005])
by determining upper bounds for a general class of exotic options (including Asian and
index options), based on the theory on comonotonicity.

In the current paper, we have presented the above-mentioned results for index options
in a broader context. Different from the existing literature, we do not only consider index
calls but also index puts. Moreover, it is shown that treating the pricing of an index call
option and an index put option in an integrated framework results in an efficient way to
calculate both upper bounds. We have added several extensions to the existing literature.
In particular, we have considered the situation where for some of the constituent stocks
in the index there are no options available.
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