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Abstract

This paper addresses the issue of lifetime ruin, which is defined as running out of money before
death. Taking into account the random nature of the remaining lifetime, we discuss how a
retiree should invest in order to avoid lifetime ruin. We also discuss the conditional time of
lifetime ruin and the notion of bequest or wealth at death.

Using analytical approximations based on comonotonicity, we provide a new approach
which is easy to understand and leads to very accurate results without computationally com-
plex calculations. Our analytical approach avoids simulation, which allows to solve very gen-
eral optimal portfolio selection problems.

1 Introduction

A growing challenge to most industrialized countries is population aging: in virtually
every developed country, a significant aging is expected over the next 30 years, as
birth rates drop and life expectancy increases. Mortality figures show significantly
decreasing annual death probabilities at adult and old ages (see e.g., McDonald et al.,
1998). This leads to an increasing pressure on social security pension schemes, as they
are typically financed by transfers from the working population and their employers
to the retired population. As the population ages, one may wonder whether these
schemes can continue providing sufficient benefits to retirees in the not-so-distant
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future. Moreover, employer-based pensions are shifting increasingly from a defined
benefit regime to a defined contribution. With this decline in traditional defined
benefit plans comes the greater individual responsibility of planning one’s retirement.
Overall, retirees are increasingly burdened with the task of managing their personal
assets. Therefore, in our aging society understanding and managing retirement risk
has become very important, not only at the population level, but also in terms of
individual retirees.

In this paper, we address an issue perfectly captured by the following quotation of
the Wall Street Journal journalist Jonathan Clements: ‘Retirement is like a long
vacation in Las Vegas. The goal is to enjoy it the fullest, but not so fully that you run out
of money.” Running out of money before death is what is called lifetime ruin. We
discuss how a retiree should invest, given his wealth at retirement and his desired
consumption scheme, in order to minimize the probability of lifetime ruin. Related to
this is the determination of a sustainable spending rate: how much can a retiree safely
spend without running out of money during his lifetime? How fast can a retiree spend
what he has accumulated at retirement if he wishes to have some of it last as long as
he lives? And how should he invest his wealth such that this sustainable spending
rate is maximized? Asset allocation and related return assumptions have an impact
on the durability of the investor’s portfolio: a more aggressive portfolio may be able
to support higher levels of consumption, but will also result in higher variability of
returns. A retiree who withdraws too much will die ruined, whereas a retiree who
withdraws too little unnecessarily sacrifices a higher standard of living.

However, a retiree is generally not only interested in the likelihood of financial
ruin. Hence, a second topic addressed in this paper is the conditional time of ruin.
Given that financial ruin occurs, the moment at which this is likely to happen can also
be an important factor when making investment decisions. To illustrate this point, we
will give an example of two investment strategies leading to a comparable ruin
probability, while having a significantly different expected conditional time of ruin.

The third and final topic addressed in this paper is the notion of bequest, or wealth
at death. Generally, a retiree will primarily aim to avoid running out of money during
his lifetime. However, as a second step, an investor might also want to have a
reasonable degree of assurance of leaving a sufficient amount of money to his heirs if
he dies.

The topics discussed in this paper have been studied in previous literature, using
various techniques. Therefore, we start by giving a literature overview and comparing
previous results with our approach. The approach that we propose in this paper
uses analytical approximations based on comonotonicity, as discussed in, e.g.,
Dhaene et al. (20024, b) and Dhaene et al. (2005). As explained and illustrated later
on, our approach provides very accurate approximations that are intuitive and can
easily be computed. It is important that by avoiding simulation, very general optimal
portfolio selection problems can be solved without any computationally complex
calculations. A decision-maker can therefore quickly get a complete picture of the
different aspects that might influence his investment decisions. This is important,
since different criteria can lead to opposing investment decisions, as will be illustrated
by an intuitive example in Sections 6.1 and 7.1. In this sense, we believe that our
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results can provide a valuable tool, helping retirees in making conscious investment
decisions.

In Sections 3 and 4 the analytical framework in which we will work and the
approximations based on comonotonicity are introduced. Contrary to a large part of
the existing literature, as also pointed out in Section 3, we work in a discrete-time
setting and assume that the retiree consumes his wealth at discrete points in time. This
is, in our opinion, more realistic and more intuitive to understand than to assume
a continuous consumption rate. In Section 5, we investigate how a retiree should
invest in order to avoid outliving his money. Using analytical approximations based
on the concept of comonotonicity, we solve the optimization problem of finding the
investment strategy leading to a minimal probability of lifetime ruin or to a maximal
sustainable spending rate. In Sections 6 and 7 we discuss the conditional time of
lifetime ruin and wealth at death respectively. To conclude, in Section 8, we apply our
results to optimal portfolio selection problems.

2 Literature overview

The probability of lifetime ruin and the derivation of a sustainable spending rate for a
retirement portfolio have been examined in several earlier research papers. Many
authors have discussed this topic using a fixed payout period. Few studies, however,
have dealt with the problem of outliving one’s wealth under a realistic assumption of
a random lifetime. Often a fixed moment of death is assumed, or results are restricted
to the assumption of a constant force of mortality. Furthermore, even fewer papers
have applied this issue within a framework of optimal portfolio selection.

Milevsky et al. (1997) discuss problems that are very similar to those discussed in
our paper. They consider a random time of death based on Canadian mortality data
and report the optimal two-asset portfolio allocation using Monte Carlo simulation,
based on lognormal Canadian asset returns. The authors observe that the probability
of lifetime ruin is minimal (among the strategies they consider) for 60—100% of
wealth invested in equities. Our work differs from Milevsky et al. (1997) in that we use
analytical approximations instead of simulation, which is much less time-consuming,
allowing us to solve more general optimization problems. As we will see in Section 8,
our approach allows us, for example, to optimize over the whole spectrum of
investment portfolios, whereas through simulation the analysis is typically restricted
to a subset of the admissible portfolios. Also, our approach allows us to consider a
high number of assets or asset classes without significantly increasing the computa-
tional complexity.

Other studies considering related problems are Milevsky and Robinson (2000) and
Milevsky and Robinson (2005), where the probability of lifetime ruin is stochastically
approximated by the reciprocal gamma distribution. Albrecht and Maurer (2001)
discuss the lifetime ruin probability with respect to German mortality and capital
market conditions.

Young (2004) considers the problem of minimizing the probability of lifetime ruin
in case the individual continuously consumes either a constant real dollar amount or
a constant proportion of wealth, applying techniques from optimal stochastic control
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and partial differential equations, and assuming a constant force of mortality. In this
framework, Young (2004) also discusses the distribution of the conditional time of
lifetime ruin, given that ruin does occur, and the conditional distribution of bequest,
given that ruin does not occur. In this paper, the author models the time of ruin
following an inverse Gaussian distribution. As shown for a related problem in
Milevsky et al. (2005), the shape of the force of mortality has a significant impact on
optimal investment strategies, which means that the assumption of a constant force of
mortality is unrealistic. Therefore, Moore and Young (2006) build on the work of
Young (2004) and study the lifetime ruin probability and an optimal asset allocation
under general mortality assumptions. Our approach differs from Young (2004) and
Moore and Young (2006) mainly in the fact that we work in a discrete-time setting.
As explained in Dhaene ef al. (2002 b), most results on comonotonic approximations
have a continuous counterpart. However, we will restrict this study to a discrete
setting and hence assume that the retiree consumes his wealth at discrete points in
time, since this is more realistic and more intuitive to understand than a continuous
consumption rate.

Another recent study that builds on Young (2004) is Bayraktar and Young (2009).
In this paper, the problem of wealth at death is addressed, and the shortfall at death is
minimized.

Related studies in which the distribution of a life annuity or a portfolio of
life annuities is studied under stochastic interest rates are Dufresne (2004a),
Hoedemakers et al. (2005) and Goovaerts and Shang (2010). To conclude, we men-
tion Stout and Mitchell (2006), who introduce a model employing Monte Carlo
simulation of both investment returns and mortality that incorporates adjustable
withdrawal rates based on both portfolio performance and remaining life expectancy.

3 General framework and notations
3.1 Log-normal framework

In this paper, we take the view of an individual who is about to retire (at time =0),
and has a deterministic amount R, available at time 0. Furthermore, suppose the
retiree has a deterministic consumption scheme; he wants to withdraw predetermined
pension amounts a,;>0 at discrete times i=1,2,3, .... For simplicity, we assume that
the time unit is 1 year. Obviously the retiree would like to outlive his money; he wants
to be able to withdraw the amounts a; as long as he is alive.

In our examples we will often work with constant yearly consumptions, which we
express as a percentage r of the initial wealth: a;=rR, for all i. The percentage r is
called the consumption rate or spending rate. In this case, results will be independent
of the initial wealth R,,.

We assume that the return on investments is log-normally distributed: the return in
a year i is modeled by the random variable Y;. Investing an amount of 1 at time k—1
will grow to e¥* at time k. The variables Y;, i>1, are assumed to be independent and
normally distributed, with the expected value E[Y;]=u—1/20> and variance
Var[Y;]=0%
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Since we are considering a long time period (1 year) as well as a long investment
horizon (remaining lifetime of a retiree), modeling stochastic returns using a
Gaussian model may be justified by Central Limit Theorem arguments. Empirical
evidence supporting this Gaussian setup can be found in, e.g., Cesari and Cremonini
(2003), Lévy (2004) and McNeil et al. (2005).

In this framework, the amount of money available in the account, or available
wealth at time 7, is given by the random variable R;:

. i-1 .
Ri=RyeXi-Vi— Y aqpeli-enl, (1)
k=1
Note that R; corresponds to the available wealth at time i before withdrawal of the
amount a;.

In the following sections, we will need the distribution function of random vari-
ables R;. For each i>0, R;is a sum of dependent log-normal random variables, which
makes it impossible to determine its distribution function analytically. Therefore, we
will use approximations. Several approximation techniques have been proposed
throughout the literature, see e.g., Asmussen and Rojas (2005), Dufresne (2004 5),
Milevsky and Posner (1998 ) and Milevsky and Robinson (2000). In this paper, we
will use convex lower bound approximations based on comonotonicity, as proposed
in Kaas et al. (2000) and Dhaene et al. (20024, b). See also Huang et al. (2004) or
Vanduffel et al. (2005) for a comparison of some approximation techniques. In
Section 4 a brief description is given of these comonotonic approximations. Since
these results are analytical, we avoid simulation and hence reduce the computing
effort drastically.

3.2 Mortality table

Throughout this paper we illustrate results using the Standard Ultimate Survival
Model as proposed in Dickson et al. (2009). This mortality model follows Makeham’s
law, which means that the force of mortality, u,, is modeled as

U, =A+Bc*, 2)

where A >0, B>0 and ¢> 1. Hence the force-of-mortality is assumed to consist of a
positive constant and a term that increases exponentially with age. The constant term
refers to age-independent causes of death, whereas the exponentially growing term
describes the increasing mortality caused by aging. The probabilities of survival for
this law are given by

Px=exp| —At—

BE | o,
Inc
where ,p. is the probability that an x-year old will survive for ¢ years. We denote the
probability that an x-year old will die within ¢ years as ,g,. Obviously it holds that
P~x=1—,q4.. Throughout this paper we will work in a discrete setting, with time in-
tervals of 1 year.

In the Standard Ultimate Survival Model of Dickson et al. (2009) the following
constants are used in (2): A=22x 1073, B=2.7x10"%and ¢=1.124.
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The ultimate age w of the yearly life table is defined as the nonnegative integer that
satisfies ¢, _1=1¢,—1=1. In our examples we take w =120.

Throughout this paper we assume that biometrical and financial risks are mutually
independent; the return process of our investments is not influenced by lower or
higher mortality and vice versa.

4 Comonotonic approximations

In this section we briefly describe the approximations we use to approximate the
distribution function of the random variables R; as defined by (1). For more detailed
information we refer to Dhaene et al. (20024, b) and Dhaene et al. (2005). Through-
out this paper, we use the same notation and terminology as were used in the latter
paper.

From Dhaene et al. (2005) we know that

P(Ri<a))=P(SiZR,)=1—Fs,(Ry), (3)

with S; being the stochastically discounted value of all future payments until time 7:

i ,
_NV

Si= ) aje Vet Ve =

=1 J

1
ae?, )
J =1
with Z; = —22:1 Yx. As proposed in Kaas et al. (2000), we will use a comonotonic
lower bound to approximate S; which we denote as S’ This approximation is a
conditional expected value: S'= E[S;A,]. For each random variable A;, S!is a lower
bound for S;in the convex order sense:

Si= o St=E[Si|A]. )

According to the definition of convex order, this means that E[S;] = E[S!] and that S;
has higher stop-loss premiums than S': E[(S;—d),]=E[(S'—d).] for all deR. The
conditioning random variable A, is typically chosen as a linear combination of the
yearly returns Y;. Assuming that A;=)"!_,4;Y;, S}is given by

Si= 3 gyt (g )iot +nnor @), ©)
j=1
with U uniformly distributed on the unit interval and r; being the correlation
between A; and Z;. If all coefficients, r;, are positive, the terms in the sum St are
non-decreasing functions of the same random variable U and hence form a como-
notonic random vector. In this case we call St the comonotonic lower bound. The main
advantage of this comonotonic dependency structure is that any distortion risk
measure applied to such a comonotonic sum equals the sum of the risk measures of
the marginals involved, see, e.g., Dhaene et al. (2006). This property makes it
straightforward to determine the distribution function of our approximation.

As explained in Dhaene et al. (2005), maximizing (an appropriate approximation
of) the variance of S; leads to the optimal A;=Y)'_,4;Y;, with coefficients 4,
given by

Aj=— Z akek(_”+02), j=1, ..., (7

k=j
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If the variables Yj are i.i.d., for k=1, ..., i, the correlation coefficients r; are given by
SV 2
I‘jj=42k:1 Y . ]=1, ,l (8)
i ] —
Vi Z,[’<=1;Lij

Using the optimal 4;, coefficients (8) are non-negative, which means that (6) is a
comonotonic sum. Hence, because of the aforementioned additivity property of
comonotonic risks, the quantiles of (6) are given by

0(S1)= 3. aye IHOFI IO peo, 1) ©)
j=1
Using (9) we can easily determine the distribution function of S. As is illustrated in
Dhaene et al. (2005) and Vanduffel er al. (2005), using these results leads to an ex-
tremely accurate approximation of (the distribution function of) S;.

As explained in Dhaene et al. (2005), the random variable S/ is obtained
from S; by changing the marginal distributions of the discount factors Z; in (4)
and replacing the copula describing the dependency structure of the vector
(Z,, ..., Z;) by the comonotonic copula. Important to note is that, when using a
comonotonic lower bound, it is not the original marginals Z; that are assumed to
be comonotonic but the transformed marginals. The concept of comonotinicity is
therefore used only to obtain an accurate approximation of which the distribution
function can easily be determined. Assuming that the cumulative returns or dis-
count factors itself are comonotonic, which is not realistic, this is what is done
when using the so-called comonotonic upper bound, see Kaas et al. (2000). Since
the upper bound approximation is in general not very accurate, we do not use
it here.

As a final step, we propose to approximate R; by R, of which the distribution
function is given by

P(Rj<a;)=1—Fg(Ry). (10)

In the following section we will use (10) to approximate (3).

5 Lifetime ruin
5.1 Problem description

Recall that the available wealth on the account of the retiree at time 7 is given by R;, as
defined by (1). Lifetime ruin occurs at a certain time j if the retiree is still alive at that
time and if R;<a;, which means that the available wealth is not sufficient to make the
desired withdrawal a;.

The moment of ruin, N, which is a random variable, is the first moment in time, »n,
when the available assets, R, are less than the desired consumption, a,,:

N:inf{n|Rn <an}
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Note that N is a discrete random variable, since in our setting ruin can only occur at
these discrete times where a withdrawal is made.

The probability that the retiree outlives his money, or the probability of lifetime
ruin, 1s

w—X

Pain= Y. ipxP(N=0), (11)

=1

where p, denotes the probability that an x-year old individual is still alive at age x +1i
and w is the ultimate age of the life table. Our definition of the probability of lifetime
ruin corresponds to the definition given by Milevsky et al. (1997).

A retiree obviously wants his lifetime ruin probability to be as low as possible. In
Section 8.2 we will discuss as to how the probability of lifetime ruin can be minimized
in a framework of optimal portfolio selection.

To determine a value of P,,;,, we need the distribution function of N, which can be
determined using the following result.

Theorem 1. The distribution of N is given by

P(N=1)=P(R, < ay),
and

P(N= l) =P(Rl < a,-)—P(Ri,l < a,-,l)i>2.

Proof. It is trivial that P(N=1)= P(R,;<a,). For i=2, we find that

P(N=i)=P(R,->alﬂ...ﬂR,-,1>a,-,1ﬂR,-<a,-)

The cash-flows a; are positive for all j, which means that recovery from ruin is not
possible. Therefore, the event R, >a;N...NR;_;>a;_, is equivalent to R;_;>a;_;.
Using this, we get

PIN=i)=PR;_1Zza;_ 1 NR;<a;)
=P(Ri<a;))—PRi_1<a;-1NR;<a;)
=P(R;<0;)—P(Ri_1<a;_1).

The last equality follows again from the fact that recovery from ruin is not poss-
ible. H

Using Theorem 1, we can rewrite the probability of lifetime ruin (11) as

w—

w—X X
Prin= Y, (iPx—i+1p0)P(Ri<a)= Y, ipxqx+iP(Ri <), (12)
=1

i= i=1

where ¢, ;=1—p,,; is the probability that a person of age x+i will die within 1
year.
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To determine P.,;, we need the distribution function of the random variables R;,
for all i>0. As seen in Section 4, we can, for each i, accurately approximate the
available wealth R; by the comonotonic lower bound R.. Next, we approximate the
moment of ruin N by N:

N'=inf{n|R’ <a,}.
Finally, we find an approximate value P, for the probability of lifetime ruin Py, :

w—X

Y ipxqrs i P(RE< ). (13)

o—X
Piuin: Z ipxP(Nl:i):
i=1 i=1
In Section 8, a brief explanation is given of how our results can be translated into a
framework of optimal portfolio selection.

5.2 Example

Suppose a retiree wants to withdraw a constant yearly amount of 1, or a;=1 for all
i>1. Assume mortality is modeled by the Standard Ultimate Survival Model, as
described in Section 3.2. In Figure 1, the lifetime ruin probability is depicted for a
range of initial wealths R,. Figure 1(A) gives the results for different retirement ages
between 55 and 75, with given 4 =0.05 and 0=0.10. We can see that increasing the
retirement age leads to lower lifetime ruin probabilities; if consumption starts at an
older age, the probability that a given R, is sufficient will clearly be higher.

In Figure 1(B) the retirement age is fixed at 65, and 0=0.10. Results are given for
different values of 4. We can see that an increase in the drift of the return process
leads to a decrease in the lifetime ruin probability. Finally, Figure 1(C) shows the
lifetime ruin probability for different values of o, with 4 =0.05 and the retirement age
equal to 65. We see that if the initial wealth R, is large enough, higher volatility leads
to a higher ruin probability. For small values of R,, the opposite holds: higher
volatility leads to a slightly lower ruin probability.

5.3 Accuracy of analytical approximations

In this paragraph we use a numerical example to illustrate the accuracy of our ap-
proximation for the probability of lifetime ruin, as described in Section 5.1. For more
general information on the accuracy of convex order approximations based on co-
monotonicity, and in particular the convex lower bound approximation (6), we refer
to Dhaene et al. (2005).

Assume a retiree aged 65, who withdraws a constant yearly amount of 1 (a;=1
for all i>1) and invests his wealth in an investment portfolio with drift 4 =0.05
and standard deviation 0=0.10. In Table 1, the probability of lifetime ruin is com-
puted for initial wealths R, between 2 and 50. For each value of R,, P.,;, corresponds
to the probability of lifetime ruin obtained using the analytical approximation (13),
whereas P is obtained through Monte Carlo simulation. This simulation was
performed by generating 1,000 x 10,000 sample paths. Note that this simulation, and
simulation in general, is much more time-consuming compared to our analytical
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Figure 1. (A) Probability of lifetime ruin (©=0.05, 0=0.1, retirement age
€ (55,75)). (B) Probability of lifetime ruin (« € (0.02, 0.10), 0=0.1, retirement
age=065). (C) Probability of lifetime ruin («=0.05, o € (0.05, 0.25), retirement
age=065)
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Table 1. Probability of lifetime ruin: comparison between analytical approximation
and simulation (u=0.05, 0=0.1, retirement age =65)

Ry Plyin P AD (x10%) RD
2 98.217% 98.217% 0.004 0.000
4 96.169 % 96.169 % —0.013 0.000
6 92.882% 92.881 % —0.109 0.000
8 87.067 % 87.036 % —3.161 0.000
10 76.540 % 76.492 % —4.813 —0.001
12 61.328 % 61.317% —1.074 0.000
14 44.812% 44.836 % 2.344 0.001
16 30.428 % 30.431 % 0.306 0.000
18 19.617 % 19.629 % 1.119 0.001
20 12.227% 12.239 % 1.192 0.001
22 7.467 % 7.480 % 1.379 0.002
24 4.510% 4.538% 2.785 0.006
26 2.713% 2.720% 0.743 0.003
28 1.632% 1.647 % 1.493 0.009
30 0.985% 0.988 % 0.290 0.003
32 0.598 % 0.594 % —0.361 —0.006
34 0.366 % 0.368 % 0.226 0.006
36 0.225% 0.232% 0.725 0.031
38 0.140 % 0.143% 0.309 0.022
40 0.088 % 0.092% 0.446 0.048
42 0.055% 0.059 % 0.320 0.055
44 0.035% 0.038 % 0.236 0.063
46 0.023 % 0.025% 0.262 0.103
48 0.015% 0.018% 0.275 0.157
50 0.010 % 0.011 % 0.104 0.097

approximations. In the table, the absolute difference (AD) and relative difference

(RD) between the different methods are given. The latter is determined as
P:l\:; fP/ruin — AD
Prin Prin

The results in Table 1 clearly show that our convex order approximations are very
accurate.

6 Conditional time of lifetime ruin

In the previous section we have seen how we can accurately approximate the prob-
ability of lifetime ruin. However, only looking at the probability of lifetime ruin can
give an incomplete view, and can be misleading. For a retiree, it is not only important
to know how likely he is to experience financial ruin before he dies. A second concept
that can be useful is the time of ruin: if ruin occurs, if a retiree runs out of money
while he is alive, when is it most likely to take place?

Denote the moment of lifetime ruin by 7. This means that P,,;, =Pr(7'< o). The
conditional probability that lifetime ruin happens at time j, given that ruin occurs,
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is equal to

_ _/pxPr[N :]]
Pruin ’

Similarly, the conditional probability that ruin occurs before or at time j equals

Pr[T=/j|T < 0] I1<j<w—x.

Yi_1 PN =1]
Pruin ’
To determine the distribution function of this conditional time of lifetime ruin we use
the lower bound approximations of Section 4. We denote the approximated time of
lifetime ruin by 7"
The following example shows that restricting attention to the probability of life-
time ruin can give an incomplete view.

PHT</|T< 0]=

I<j<w—x.

6.1 Example

Suppose a 65-year old retiree has an initial wealth R,=20 and suppose that he wants
to withdraw an amount of 1 every year; a;=1 for all i. In other words, the retiree has
a spending rate r equal to 5%. If he invests his wealth according to a conservative
strategy with drift £ =0.025 and standard deviation 0=0.01, the retiree has a lifetime
ruin probability Pl of 27.72%. If he invests more aggressively, with u=0.045 and
0=0.15, his ruin probability is almost the same: Pl of 27.75%. Based on this, the
retiree is indecisive between the two strategies, as the difference in ruin probability is
negligible.

However, the conditional time of ruin is significantly different, as can be seen from
Figure 2. White bars depict the conservative investment strategy, black bars depict
the more aggressive one. The retiree will clearly prefer the first strategy, as ruin is
likely to occur significantly later. If the unlikely event of ruin occurs, it is very unlikely
to happen before the retiree reaches the age of 90 in the first case. In the second case,
if ruin occurs, it will most likely (almost 90 % probability) occur before he reaches age
90. The expected value and standard deviation of the conditional time of ruin equal,
respectively, 20.30 and 5.29 in the first case and 28.52 and 1.18 in the second case.

7 Wealth at death

In previous sections, we have discussed lifetime ruin and the conditional time of ruin.
A related concept a retiree might be interested in is that of knowing how much wealth
he will leave to his heirs at his death. The bequest or wealth at time of death, denoted
by B, is a random variable, from which we will determine the distribution function in
this section. Given that the retiree dies in the period (i — 1, i), which happens with the
probability ;_1p.¢.4;_1, the bequest B corresponds to R;, which is the available
wealth at time i. Therefore we have for any b:

Pr[B<b]= Z i—1Pxqx+i-1PT(R; < D).

i=1

In practice, we are only interested in positive values of b.
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Figure 2. Conditional time of ruin: conservative strategy (white bars) versus
aggressive strategy (black bars), with comparable lifetime ruin probability

Note that the probability of lifetime ruin as defined by (11) corresponds to the
probability of having a bequest smaller than or equal to zero:

PriB<0]= i i—1Pxqx+i—1Pr(R; <0)
i=1
w—X v
Z iPxqx+PT(R; —a)e’*1 <0)

i=1

w—x (12)
Z iPXQX+iPr(Ri<ai) = Pruin,

i=1

where the second equality follows because Pr(R; <0)=0.
To determine the distribution function of the bequest B we use the lower bound

approximations described in Section 4. Denoting the approximated bequest by B,
we get

w—X

PrB'<bl= Y i 1paquriaPr(RI<D).

i=1
As an alternative, we can also look at the distribution of the conditional bequest,
conditioned on the event that lifetime ruin does not occur. It can easily be seen that,
for any b>0,
YO Y im1pxqx+i—1 PI[R; =]

Pr[B=b|T=w]= -
rum

) (14)

and
Z?)=_1xi71pqu+iflpr[Ri < b] — Prin
1 _Pruin .

Again, we can use our comonotonic approximations to compute (14) and (15).

(15)

Pr[B<b|T= o] =
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Figure 3. Distribution of bequest: conservative strategy (full line) versus
aggressive strategy (dashed line), with comparable lifetime ruin prob-
ability

7.1 Example

Consider the same setting as in the example in Section 6.1. We have seen that the two
strategies described in Section 6.1 lead to (approximately) the same lifetime ruin
probability. Based on the distribution of the conditional time of lifetime ruin, the
retiree prefers the more conservative strategy. However, looking at the distribution of
the bequest leads to the opposite conclusion, as can be seen clearly from Figure 3. The
probability of leaving a positive wealth at death is significantly higher for the more
aggressive strategy. For example, for the conservative strategy, the probability of
leaving more than 20 is equal to zero, whereas this is more or less 30 % for the more
aggressive strategy. Note that, as explained above, the intersection of the distribution
function with zero corresponds to the lifetime ruin probability, which, indeed, is more
or less equal for both strategies.

We come to the same conclusion by, e.g., comparing the expected value and stan-
dard deviation of the conditional bequest. For the conservative strategy, we find that
the expected conditional bequest equals 8.45, with a standard deviation of 5.37. For
the aggressive strategy, both values are significantly higher: an expected value of
25.85, with a standard deviation of 27.77.

8 Optimal portfolio selection problems
8.1 Framework and notation

Optimal portfolio selection corresponds to finding the best allocation of the available
wealth in a basket of risky or risk-free assets or asset classes. In this paper we work
with so-called constant mix strategies: the investment proportions are kept constant
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by continuously rebalancing the assets. At each time instant, assets have to be bought
or sold, to keep the asset mix at the initial level. In Dhaene et al. (2005) optimal
portfolio selection problems in a provisioning and saving context are discussed using
the same setting.

As explained in Section 5, we work in a lognormal setting. We assume the
classical multi-period, continuous-time framework of Merton (1971), also known as
the Black and Scholes (1973) setting. See e.g., Bjork (1998) for more details on this
setting. When the portfolio is continuously rebalanced such that the investment
proportions are kept constant, it can be shown that the portfolio return is also log-
normally distributed. This was derived in Merton (1971, 1990), see also Rubinstein
(1991), using stochastic arguments and It6’s Lemma. Milevsky and Posner (1998 b)
derived the same result using more elementary arguments, by taking limits of log-
normal sums.

We assume there are m risky assets or asset classes available in the market. In
our examples, we assume there is no risk-free asset class available. An investment
portfolio is described by a vector ET = (1, ..., 7T,,), Where 7, is the proportion invested
in risky asset i. Obviously it must hold that " z;=1. Although our results also
hold in the general case, we assume short-selling is not allowed, which means
o<m<1.

Investing an amount of 1 at time k—1 in asset i will grow to e at time k.
The return in a given year k is assumed to be independent of the return in any year,
[#k:

Cov(Y,, Y)=0, [#k, i=1,...,m, j=1,...,m.
In a given year k, however, the returns of the different asset classes are correlated:
Cov(Yy, Y)=0y, k=1, i=1,....m, j=1,...,m.

We use the notation o2 =0y,

For a fixed asset i, the random variables Y%, k>1, are assumed i.i.d., normally
distributed with mean u;—J0% and variance of. The drift vector and variance-
covariance matrix of the risky assets are denoted by ﬁT=(,ul, ..-» W) and X respect-
ively, with (Z); ;=0 Note that X has to be positive-semidefinite, which means that
ETEE?O for all m-dimensional vectors x.

The drift vector and volatility corresgonding to an investment portfolio 7 are
written as u(r) and o*(7r). We find that

uw@=x"-pand @ =a"-%-x (16)

The yearly returns, Y,(7), of an investment portfolio 7, are independent and normally
distributed random variables, with expected values E[Y ()] =u(T) —%02(Q) and vari-
ance Var[Y{(m)]=0*(n).

To use the random variables introduced in Section 4 in our optimal portfolio
selection setting, we make them dependent on an investment portfolio 7 by adapting
the notation; we use, e.g., R{(7), Sf(g) and Pryin(71).
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8.2 Minimizing lifetime ruin probability
8.2.1 Problem description
As a first optimization problem, we consider the following:

min Pruin (E) (1 7)

We want to find the strategy that minimizes the probability that the retiree outlives
his money. We denote the optimal strategy by z* and the corresponding minimal
probability of lifetime ruin by P*.

Using classical Markowitz mean-variance analysis, we can reduce this optimization
problem (17) to a one-dimensional optimization. Consider two portfolios, 7z; and s,
with o(mt;) = 0(s,) and u(s;) <u(ms). As is discussed in Dhaene et al. (2005), we find
that

Fs,2)(X) < Fs,(z,)(x), x=0,

which means that
P(Ri(ry) <a;) = P(Ri(ry) <a;), for all i.
Hence, using (12) we get

Pruin(ﬂl): Z (jpx_i+1px) P(Ri(ﬂl) <OL,')
D S

=0

= Z (L-px - i+1px)P(Ri(lz) < OC,‘) = Pruin(@z)
i=1

This means that for each o we only have to consider the corresponding portfolio with
maximal drift, which we denote by

7’ =argmax u(m).
7, o(m) =0 (18)

Optimization problem (17) can therefore be reduced to
P*= min Pruin(EU)- (19)
o

Finally, we approximately solve optimization problem (17) using results from
Section 4:

P =min P (7°) ~ P*. (20)

The resulting optimal investment portfolio is denoted by g’.

8.2.2 Numerical example

Suppose we have two risky asset classes available in which we can invest, with drift
vector u”=(0.06, 0.10), standard deviations ¢o”=(0.10, 0.20) and correlation
p12=0.50. Suppose a 65-year old retiree wants to withdraw a constant amount
per year, expressed as a percentage r of his initial wealth: a;=rR, for all i. Solving
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Table 2. Optimal strategy leading to minimal lifetime ruin probability for range of
spending rates, with retirement age 65

r

0.04 0.05 0.06 0.07 0.08 0.09 0.1
7 0.7638  0.6935  0.5930 04573  0.2814  0.0854  0.0000
7 02362 03065 04070  0.5427  0.7186 09146  1.0000
() 0.0694  0.0723  0.0763  0.0817  0.0887  0.0966  0.1000
o) 0.1080  0.1132  0.1224  0.1372  0.1597  0.1873  0.2000
PF 0.0079  0.0383  0.1042  0.1981  0.2994 03923  0.4729

E[T'|T' < 0] 26.51 24.18 21.86 19.55 17.31 15.33 14.07
Var[T|T'<w]  23.16 25.33 27.01 28.18 28.82 28.85 27.97

07

o
(2]

o
n

o
w

Lifetime ruin probability
o
F =N

o
[N]

0.1 C 1 1 1 1 1 1 1 1 1 -
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Percentage in asset class 2

Figure 4. Lifetime ruin probability for spending rate x (upper full line:
x=0.1, dashed line: x=0.09, dotted line: x=0.08, dash-dotted line:
x=0.07, lower full line: x=0.06)

optimization problem (20) in this setting leads to the following results. In Table 2, the
optimal strategies and their corresponding minimal lifetime ruin probabilities P;" are
given in terms of a range of spending rates r. We see for example that if the retiree
wants to spend 5% of his initial wealth per year, he should invest according to the
strategy (0.6935, 0.3065), with corresponding drift 0.0723 and standard deviation
0.1132. This leads to a lifetime ruin probability of 3.83%. If he would invest his
wealth according to a different strategy, the ruin probability associated with the
spending rate of 5% would be higher. From the results we can see that width in-
creasing r the minimal lifetime ruin probability increases, and that the retiree has to
invest increasingly aggressively (more in the second asset class) to realize this minimal
ruin probability. Figure 4 illustrates the optimization problem graphically.
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Table 3. Optimal strategy leading to minimal lifetime ruin probability for range of
retirement ages, with spending rate equal to 0.05

Retirement age

55 60 65 70 75
af 0.6231 0.6583 0.6935 0.7286 0.7638
2y 0.3769 0.3417 0.3065 0.2714 0.2362
u(T*) 0.0751 0.0737 0.0723 0.0709 0.0694
o(7*) 0.1194 0.1162 0.1132 0.1105 0.1080
Plin 0.0816 0.0595 0.0383 0.0207 0.0087
E[T|T' < 0] 27.06 25.68 24.18 22.59 20.94
Var[T'|T' < 0] 44.17 33.83 25.33 18.55 13.30

In Table 2, the expected value and the variance of the conditional time of ruin are
also given for the optimal strategies. We can see that an increase in the spending rate r
leads not only to higher lifetime ruin probabilities but also to lower conditional ex-
pected times of ruin. This indicates that, even if the optimal investment strategy is
followed, the more a retiree spends, the more likely he is to experience financial ruin
and, moreover, the earlier this ruin is likely to happen.

In Table 3 optimization problem (20) is solved for a range of retirement ages. The
spending rate r is chosen to be equal to 0.05. We see that a higher retirement age leads
to a lower minimal lifetime ruin probability. Retiring at a higher age also means the
retiree has to follow a more conservative strategy to obtain his minimal lifetime ruin
probability.

Adding the retirement age to the expected conditional time of ruin, we see from
Table 3 that, given that ruin occurs, the expected age at the moment of lifetime ruin
increases with an increasing retirement age.

8.3 Maximizing sustainable spending rate

8.3.1 Problem description

As a second optimization problem we maximize the sustainable spending rate.
Although a retiree wants the highest spending rate possible, he also wants to sustain
his spending throughout his retirement years. Incorporating a predetermined lifetime
ruin probability e, we determine the investment strategy s leading to a maximal
spending rate r. Recalling that a;=rR, for all i, we can rewrite P,,i(7r) as

Pain@ =3 (pe—i0p)P(Si@)>Y).

which is increasing in r. Assuming a ruin probability &, we denote, for each invest-
ment strategy & the spending rate is such that P.,(7)=¢ as r(). Denoting the
maximal spending rate by r*, we get the following optimization problem:

r¥= max (7). 20
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Table 4. Optimal strategy leading to maximal sustainable withdrawal for range of
lifetime ruin probabilities, with retirement age 65

0.2 0.15 0.1 0.05 0.01
af 0.4523 0.5276 0.6030 0.6734 0.7538
ey 0.5477 0.4724 0.3970 0.3266 0.2462
u(m™®) 0.0819 0.0789 0.0759 0.0731 0.0698
o(z*) 0.1378 0.1292 0.1214 0.1149 0.1087
7 0.0702 0.0651 0.0595 0.0523 0.0412
E[T'|T' < 0] 19.50 20.67 22.00 23.65 26.21
Var[T|T' < 0] 28.21 27.68 26.91 25.76 23.47

Following reasoning similar to that in Section 8.2, we can show that (21) is equivalent
to the following one-dimensional optimization problem:

r* = max r(z%),
o

with 717 given by (18). As in Section 8.2 we use the comonotonic lower bound ap-
proximations to find an approximation for r*, which we will denote by r;". We denote
the strategy leading to this maximal spending rate by E/-

8.3.2 Numerical example

As in Section 8.2.2, suppose we have two risky asset classes available in which we can
invest, with drift vector u" =(0.06, 0.10), standard deviations o' =(0.10, 0.20) and
correlation p, ,=0.50. Suppose a 65-year old retiree wants to withdraw each year a
percentage r of his initial wealth: a,=rR, for all i. In Table 4, the optimal investment
strategies and corresponding maximal sustainable spending rates rf are given for a
range of lifetime ruin probabilities e. For example, if we consider a lifetime ruin
probability of 10%, we see that the retiree can, each year, withdraw 5.95% of his
initial wealth if he invests according to the strategy (0.6030, 0.3970). If he invests
according to a different strategy, the sustainable spending rate will be lower than
5.95%. From these results we see that decreasing the lifetime ruin probability de-
creases the maximal sustainable spending rate and leads to a more conservative op-
timal investment strategy. Investing more conservatively also leads to respectively a
higher expected value and lower variance of the conditional time of ruin. Figure 5
illustrates the optimization problem graphically.

In Table 5, optimization problem (21) is solved for a range of retirement ages. The
lifetime ruin probability ¢ is taken to be equal to 0.10. We see that increasing the
retirement age increases the maximal sustainable spending rate. In this example the
retirement age only slightly influences the optimal investment strategy.

Adding the retirement age to the expected conditional time of ruin, we see that,
given that ruin occurs, the expected age at the moment of lifetime ruin increases with
increasing retirement age.
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Table 5. Optimal strategy leading to maximal sustainable spending rate for range of
retirement ages, with lifetime ruin probability equal to 0.10
Retirement age

55 60 65 70 75
af 0.6195 0.6117 0.6030 0.5931 0.5829
ey 0.3805 0.3883 0.3970 0.4069 0.4174
() 0.0752 0.0755 0.0759 0.0763 0.0767
o(7*) 0.1198 0.1205 0.1214 0.1224 0.1234
7 0.0521 0.0552 0.0595 0.0653 0.0735
E[T'|T' < 0] 26.57 24.35 22.00 19.57 17.05
Var[T|T' < 0] 44.58 35.00 26.91 20.15 14.59
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Figure 5. Sustainable consumption for given lifetime ruin probabilities
Pruin (upper full line: Py, =0.20, dashed line: Py, =0.15, dotted line:
Puin=0.10, dash-dotted line: P, =0.05, lower full line: P,;,=0.01)

8.4 Maximizing conditional expected time of lifetime ruin

As a third optimization problem, we maximize the expected conditional time of ruin,
as described in Section 6. Again, we solve this problem using the comonotonic ap-
proximations defined in Section 4. The maximal expected conditional time of lifetime
ruin ET" is given by

ET = max E[T(n)|T' () < 0]

(22)

Considering two portfolios with the same standard deviation, o, the portfolio with
the highest drift x unfortunately does not necessarily result in the highest conditional
expected time of lifetime ruin. Therefore, unlike the optimization problems in the
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Table 6. Optimal strategy leading to maximal expected conditional time of ruin for
range of spending rates

r

0.04 0.05 0.06 0.07 0.08 0.09 0.1
7 0.9447 09196  0.8894  0.8543  0.8090  0.7538  0.6884
7 0.0553  0.0804  0.1106  0.1457  0.1910  0.2462  0.3116
() 0.0622  0.0632  0.0644 00658  0.0676  0.0698  0.0725
o(at) 0.1005  0.1010  0.1018  0.1031  0.1053  0.1087  0.1136
ET 26.99 24.85 22.83 20.91 19.09 17.41 15.86

Var[T|T' < 0] 22.38 24.08 25.01 25.13 24.51 23.36 21.95

Ploin 0.0107 00497  0.1326 02517  0.3814 04995  0.5951

previous sections, (22) can, in general, not be reduced to a one-dimensional optimi-
zation problem, which makes solving (22) much more time-consuming.

8.4.1 Numerical example

As in Section 8.2.2, suppose we have two risky asset classes available in which we can
invest, with drift vector x"=(0.06, 0.10), standard deviations o" =(0.10, 0.20) and
correlation p, ,=0.50. As mentioned above, (22) can, in general, not be reduced to a
one-dimensional optimization. However, since we only have two asset classes, fixing a
value for o also fixes ¢, which means (22) is reduced to a one-dimensional problem in
this case.

Suppose a 65-year old retiree wants to withdraw, each year, a percentage r of his
initial wealth: a;=rR, for all i. In Table 6, the optimal investment strategies and
corresponding maximized conditional expected times of ruin are given for a range of
spending rates r. We see the same dynamics as in Table 2: increasing the spending rate
leads to a more aggressive optimal strategy. We also see that the resulting maximized
expected conditional times of ruin decrease with increasing spending rates, whereas
probabilities of lifetime ruin increase. Hence, increasing the desired spending rate
implies an increasing probability of financial ruin, and moreover, if ruin happens, it is
likely to happen at an earlier age. Figure 6 illustrates the optimization problem
graphically.

9 Conclusion

In this paper, we started by discussing the concept of lifetime ruin. From the point of
view of an individual retiree, we defined lifetime ruin as running out of money while
being alive. In a multivariate lognormal setting, we investigated the probability of
lifetime ruin and the determination of a sustainable spending rate. In relation to this
concept, we discussed the conditional time of lifetime ruin and the notion of bequest
or wealth at death. Using an intuitive numerical example, we illustrated that making
investment decisions is not always straightforward. Depending on the criterion used,
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Expected conditional time of ruin
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Figure 6. Expected conditional time of ruin for spending rate x (lower

full line: x=0.1, dashed line: x=0.09, dotted line: x=0.08, dash-dotted
line: x=0.07, upper full line: x=0.06)

a retiree might have different investment preferences. Our example indicates that a
retiree should always make well-considered decisions, balancing between the most
relevant criteria.

In the last part of our paper we have discussed several optimal portfolio selection
problems. We explained how to minimize the probability of lifetime ruin, maximize
the sustainable spending rate and maximize the conditional expected time of lifetime
ruin. Each of these optimization problems is illustrated with intuitive numerical ex-
amples. By solving these general optimization problems, we believe that our results
provide a valuable tool, helping retirees to make conscious investment decisions.

As pointed out in Section 2, the problems discussed in this paper have been ex-
amined in earlier research papers. Our paper provides a new approach to solving
problems related to the probability of lifetime ruin, using analytical approximations
based on the concept of comonotonicity. Our paper is an addition to existing litera-
ture primarily because we take the random lifetime of the retiree into account when
considering lifetime ruin, as well as its related problems. As explained in the intro-
duction, few papers in the current literature have followed this realistic approach.
Often a fixed moment of death is assumed, or results are restricted to the assumption
of a constant force of mortality. As shown for a related problem in Milevsky et al.
(2005), the shape of the force of mortality has a significant impact on optimal in-
vestment strategies, which means that the assumption of a constant force of mortality
is unrealistic. Second, our analytical approach allows to solve more general optimal
portfolio selection problems compared to earlier studies. Typically, optimization
problems such as those discussed in our paper are solved using Monte Carlo simu-
lation. Since this is generally very time-consuming, a trade-off often has to be made
between speed and accuracy. Moreover, using simulation, it is hard to obtain results
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for the whole range of admissible investment portfolios, meaning that the analysis is
usually restricted to a subset of the admissible portfolios. Also, determining
the optimal portfolio when more than two asset classes are available can become
too cumbersome when using simulation. Our approach allows to consider a
higher number of asset classes without significantly increasing the computational
complexity. In our paper we avoid simulation using analytical approximations
based on comonotonicity. The analytical nature of our expressions means
that they can be computed very quickly. Furthermore, we have seen that our ap-
proximations are highly accurate. Using our approach, a decision-maker can quickly
acquire a complete picture of the different aspects that might influence his investment
decisions.

Also, contrary to a large part of the existing literature, our approach allows us to
work in a discrete-time setting, and to assume that the retiree consumes his wealth at
discrete points in time. This is, in our opinion, more realistic and more intuitive to
understand than assuming a continuous consumption rate.

Further research could consists in generalizing our results allowing for the con-
sumption scheme to be stochastic or in extending our results to more general return
processes, e.g., to a Lévy-type or elliptical-type setting. Bounds and approximations
for sums of random variables with distributions of this type are considered in
Albrecher et al. (2005) and Valdez er al. (2009). Another possible extension is to
use a projected life table to model mortality, modeling future survival pro-
babilities as random variables. To conclude, future work could also include
generalizing our results to multiple life states, where individual lives can be mutually
dependent.
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