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Abstract

This paper addresses the issue of lifetime ruin, which is defined as running out of money before
death. Taking into account the random nature of the remaining lifetime, we discuss how a
retiree should invest in order to avoid lifetime ruin. We also discuss the conditional time of

lifetime ruin and the notion of bequest or wealth at death.
Using analytical approximations based on comonotonicity, we provide a new approach

which is easy to understand and leads to very accurate results without computationally com-

plex calculations. Our analytical approach avoids simulation, which allows to solve very gen-
eral optimal portfolio selection problems.

1 Introduction

A growing challenge to most industrialized countries is population aging: in virtually

every developed country, a significant aging is expected over the next 30 years, as

birth rates drop and life expectancy increases. Mortality figures show significantly

decreasing annual death probabilities at adult and old ages (see e.g., McDonald et al.,

1998). This leads to an increasing pressure on social security pension schemes, as they

are typically financed by transfers from the working population and their employers

to the retired population. As the population ages, one may wonder whether these

schemes can continue providing sufficient benefits to retirees in the not-so-distant
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future. Moreover, employer-based pensions are shifting increasingly from a defined

benefit regime to a defined contribution. With this decline in traditional defined

benefit plans comes the greater individual responsibility of planning one’s retirement.

Overall, retirees are increasingly burdened with the task of managing their personal

assets. Therefore, in our aging society understanding and managing retirement risk

has become very important, not only at the population level, but also in terms of

individual retirees.

In this paper, we address an issue perfectly captured by the following quotation of

the Wall Street Journal journalist Jonathan Clements: ‘Retirement is like a long

vacation in Las Vegas. The goal is to enjoy it the fullest, but not so fully that you run out

of money.’ Running out of money before death is what is called lifetime ruin. We

discuss how a retiree should invest, given his wealth at retirement and his desired

consumption scheme, in order to minimize the probability of lifetime ruin. Related to

this is the determination of a sustainable spending rate : how much can a retiree safely

spend without running out of money during his lifetime? How fast can a retiree spend

what he has accumulated at retirement if he wishes to have some of it last as long as

he lives? And how should he invest his wealth such that this sustainable spending

rate is maximized? Asset allocation and related return assumptions have an impact

on the durability of the investor’s portfolio: a more aggressive portfolio may be able

to support higher levels of consumption, but will also result in higher variability of

returns. A retiree who withdraws too much will die ruined, whereas a retiree who

withdraws too little unnecessarily sacrifices a higher standard of living.

However, a retiree is generally not only interested in the likelihood of financial

ruin. Hence, a second topic addressed in this paper is the conditional time of ruin.

Given that financial ruin occurs, the moment at which this is likely to happen can also

be an important factor when making investment decisions. To illustrate this point, we

will give an example of two investment strategies leading to a comparable ruin

probability, while having a significantly different expected conditional time of ruin.

The third and final topic addressed in this paper is the notion of bequest, or wealth

at death. Generally, a retiree will primarily aim to avoid running out of money during

his lifetime. However, as a second step, an investor might also want to have a

reasonable degree of assurance of leaving a sufficient amount of money to his heirs if

he dies.

The topics discussed in this paper have been studied in previous literature, using

various techniques. Therefore, we start by giving a literature overview and comparing

previous results with our approach. The approach that we propose in this paper

uses analytical approximations based on comonotonicity, as discussed in, e.g.,

Dhaene et al. (2002a, b) and Dhaene et al. (2005). As explained and illustrated later

on, our approach provides very accurate approximations that are intuitive and can

easily be computed. It is important that by avoiding simulation, very general optimal

portfolio selection problems can be solved without any computationally complex

calculations. A decision-maker can therefore quickly get a complete picture of the

different aspects that might influence his investment decisions. This is important,

since different criteria can lead to opposing investment decisions, as will be illustrated

by an intuitive example in Sections 6.1 and 7.1. In this sense, we believe that our
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results can provide a valuable tool, helping retirees in making conscious investment

decisions.

In Sections 3 and 4 the analytical framework in which we will work and the

approximations based on comonotonicity are introduced. Contrary to a large part of

the existing literature, as also pointed out in Section 3, we work in a discrete-time

setting and assume that the retiree consumes his wealth at discrete points in time. This

is, in our opinion, more realistic and more intuitive to understand than to assume

a continuous consumption rate. In Section 5, we investigate how a retiree should

invest in order to avoid outliving his money. Using analytical approximations based

on the concept of comonotonicity, we solve the optimization problem of finding the

investment strategy leading to a minimal probability of lifetime ruin or to a maximal

sustainable spending rate. In Sections 6 and 7 we discuss the conditional time of

lifetime ruin and wealth at death respectively. To conclude, in Section 8, we apply our

results to optimal portfolio selection problems.

2 Literature overview

The probability of lifetime ruin and the derivation of a sustainable spending rate for a

retirement portfolio have been examined in several earlier research papers. Many

authors have discussed this topic using a fixed payout period. Few studies, however,

have dealt with the problem of outliving one’s wealth under a realistic assumption of

a random lifetime. Often a fixed moment of death is assumed, or results are restricted

to the assumption of a constant force of mortality. Furthermore, even fewer papers

have applied this issue within a framework of optimal portfolio selection.

Milevsky et al. (1997) discuss problems that are very similar to those discussed in

our paper. They consider a random time of death based on Canadian mortality data

and report the optimal two-asset portfolio allocation using Monte Carlo simulation,

based on lognormal Canadian asset returns. The authors observe that the probability

of lifetime ruin is minimal (among the strategies they consider) for 60–100% of

wealth invested in equities. Our work differs fromMilevsky et al. (1997) in that we use

analytical approximations instead of simulation, which is much less time-consuming,

allowing us to solve more general optimization problems. As we will see in Section 8,

our approach allows us, for example, to optimize over the whole spectrum of

investment portfolios, whereas through simulation the analysis is typically restricted

to a subset of the admissible portfolios. Also, our approach allows us to consider a

high number of assets or asset classes without significantly increasing the computa-

tional complexity.

Other studies considering related problems are Milevsky and Robinson (2000) and

Milevsky and Robinson (2005), where the probability of lifetime ruin is stochastically

approximated by the reciprocal gamma distribution. Albrecht and Maurer (2001)

discuss the lifetime ruin probability with respect to German mortality and capital

market conditions.

Young (2004) considers the problem of minimizing the probability of lifetime ruin

in case the individual continuously consumes either a constant real dollar amount or

a constant proportion of wealth, applying techniques from optimal stochastic control
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and partial differential equations, and assuming a constant force of mortality. In this

framework, Young (2004) also discusses the distribution of the conditional time of

lifetime ruin, given that ruin does occur, and the conditional distribution of bequest,

given that ruin does not occur. In this paper, the author models the time of ruin

following an inverse Gaussian distribution. As shown for a related problem in

Milevsky et al. (2005), the shape of the force of mortality has a significant impact on

optimal investment strategies, which means that the assumption of a constant force of

mortality is unrealistic. Therefore, Moore and Young (2006) build on the work of

Young (2004) and study the lifetime ruin probability and an optimal asset allocation

under general mortality assumptions. Our approach differs from Young (2004) and

Moore and Young (2006) mainly in the fact that we work in a discrete-time setting.

As explained in Dhaene et al. (2002b), most results on comonotonic approximations

have a continuous counterpart. However, we will restrict this study to a discrete

setting and hence assume that the retiree consumes his wealth at discrete points in

time, since this is more realistic and more intuitive to understand than a continuous

consumption rate.

Another recent study that builds on Young (2004) is Bayraktar and Young (2009).

In this paper, the problem of wealth at death is addressed, and the shortfall at death is

minimized.

Related studies in which the distribution of a life annuity or a portfolio of

life annuities is studied under stochastic interest rates are Dufresne (2004a),

Hoedemakers et al. (2005) and Goovaerts and Shang (2010). To conclude, we men-

tion Stout and Mitchell (2006), who introduce a model employing Monte Carlo

simulation of both investment returns and mortality that incorporates adjustable

withdrawal rates based on both portfolio performance and remaining life expectancy.

3 General framework and notations

3.1 Log-normal framework

In this paper, we take the view of an individual who is about to retire (at time t=0),

and has a deterministic amount R0 available at time 0. Furthermore, suppose the

retiree has a deterministic consumption scheme; he wants to withdraw predetermined

pension amounts ai>0 at discrete times i=1,2,3, …. For simplicity, we assume that

the time unit is 1 year. Obviously the retiree would like to outlive his money; he wants

to be able to withdraw the amounts ai as long as he is alive.

In our examples we will often work with constant yearly consumptions, which we

express as a percentage r of the initial wealth: ai=rR0 for all i. The percentage r is

called the consumption rate or spending rate. In this case, results will be independent

of the initial wealth R0.

We assume that the return on investments is log-normally distributed: the return in

a year i is modeled by the random variable Yi. Investing an amount of 1 at time kx1

will grow to eYk at time k. The variables Yi, io1, are assumed to be independent and

normally distributed, with the expected value E[Yi]=mx1/2s2 and variance

Var[Yi]=s2.
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Since we are considering a long time period (1 year) as well as a long investment

horizon (remaining lifetime of a retiree), modeling stochastic returns using a

Gaussian model may be justified by Central Limit Theorem arguments. Empirical

evidence supporting this Gaussian setup can be found in, e.g., Cesari and Cremonini

(2003), Lévy (2004) and McNeil et al. (2005).

In this framework, the amount of money available in the account, or available

wealth at time i, is given by the random variable Ri :

Ri=R0e
; i

j=1Yjx ;
ix1

k=1
ake

; i
j=k+1Yj : (1)

Note that Ri corresponds to the available wealth at time i before withdrawal of the

amount ai.

In the following sections, we will need the distribution function of random vari-

ables Ri. For each i>0, Ri is a sum of dependent log-normal random variables, which

makes it impossible to determine its distribution function analytically. Therefore, we

will use approximations. Several approximation techniques have been proposed

throughout the literature, see e.g., Asmussen and Rojas (2005), Dufresne (2004b),

Milevsky and Posner (1998a) and Milevsky and Robinson (2000). In this paper, we

will use convex lower bound approximations based on comonotonicity, as proposed

in Kaas et al. (2000) and Dhaene et al. (2002a, b). See also Huang et al. (2004) or

Vanduffel et al. (2005) for a comparison of some approximation techniques. In

Section 4 a brief description is given of these comonotonic approximations. Since

these results are analytical, we avoid simulation and hence reduce the computing

effort drastically.

3.2 Mortality table

Throughout this paper we illustrate results using the Standard Ultimate Survival

Model as proposed in Dickson et al. (2009). This mortality model follows Makeham’s

law, which means that the force of mortality, mx, is modeled as

mx=A+Bcx, (2)

where A>0, B>0 and c>1. Hence the force-of-mortality is assumed to consist of a

positive constant and a term that increases exponentially with age. The constant term

refers to age-independent causes of death, whereas the exponentially growing term

describes the increasing mortality caused by aging. The probabilities of survival for

this law are given by

tpx=exp xAtx
Bcx

lnc
(ctx1)

� �
to0,

where tpx is the probability that an x-year old will survive for t years. We denote the

probability that an x-year old will die within t years as tqx. Obviously it holds that

tpx=1xtqx. Throughout this paper we will work in a discrete setting, with time in-

tervals of 1 year.

In the Standard Ultimate Survival Model of Dickson et al. (2009) the following

constants are used in (2) : A=22r10x5, B=2.7r10x6 and c=1.124.
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The ultimate age v of the yearly life table is defined as the nonnegative integer that

satisfies qvx1=1qvx1=1. In our examples we take v=120.

Throughout this paper we assume that biometrical and financial risks are mutually

independent; the return process of our investments is not influenced by lower or

higher mortality and vice versa.

4 Comonotonic approximations

In this section we briefly describe the approximations we use to approximate the

distribution function of the random variables Ri as defined by (1). For more detailed

information we refer to Dhaene et al. (2002a, b) and Dhaene et al. (2005). Through-

out this paper, we use the same notation and terminology as were used in the latter

paper.

From Dhaene et al. (2005) we know that

P(Rifai)=P(SioRo)=1xFSi
(R0), (3)

with Si being the stochastically discounted value of all future payments until time i :

Si= ;
i

j=1
aje

x; j
k=1Yk � ;

i

j=1
aje

Zj , (4)

with Zj=x;j
k=1Yk. As proposed in Kaas et al. (2000), we will use a comonotonic

lower bound to approximate Si, which we denote as Si
l. This approximation is a

conditional expected value: Si
l=E [Si|Li]. For each random variable Li, Si

l is a lower

bound for Si in the convex order sense:

SiocxS
l
i=E [SijLi]: (5)

According to the definition of convex order, this means that E [Si]=E [Si
l ] and that Si

has higher stop-loss premiums than Si
l : E [(Sixd)+]oE [(Si

lxd)+] for all d2R. The

conditioning random variable Li is typically chosen as a linear combination of the

yearly returns Yj. Assuming that Li=;i
j=1lijYj, Si

l is given by

Sl
i= ;

i

j=1
aje

xjm+ 1x1
2r

2
ij

� �
js2+rij

ffi
j

p
sWx1(U), (6)

with U uniformly distributed on the unit interval and rij being the correlation

between Li and Zj. If all coefficients, rij, are positive, the terms in the sum Si
l are

non-decreasing functions of the same random variable U and hence form a como-

notonic random vector. In this case we call Si
l the comonotonic lower bound. The main

advantage of this comonotonic dependency structure is that any distortion risk

measure applied to such a comonotonic sum equals the sum of the risk measures of

the marginals involved, see, e.g., Dhaene et al. (2006). This property makes it

straightforward to determine the distribution function of our approximation.

As explained in Dhaene et al. (2005), maximizing (an appropriate approximation

of) the variance of Si
l leads to the optimal Li=;i

j=1lijYj, with coefficients lij
given by

lij=x ;
i

k=j

ake
k(xm+s2), j=1, . . . , i: (7)
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If the variables Yk are i.i.d., for k=1, …, i, the correlation coefficients rij are given by

rij=
x;j

k=1lijffiffi
j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
;i

k=1l
2
ij

q , j=1, . . . , i: (8)

Using the optimal lij, coefficients (8) are non-negative, which means that (6) is a

comonotonic sum. Hence, because of the aforementioned additivity property of

comonotonic risks, the quantiles of (6) are given by

Qp(S
l
i)= ;

i

j=1
aje

xjm+(1x1
2r

2
ij)js

2+rij
ffi
j

p
sWx1(p), p2(0, 1): (9)

Using (9) we can easily determine the distribution function of Si
l. As is illustrated in

Dhaene et al. (2005) and Vanduffel et al. (2005), using these results leads to an ex-

tremely accurate approximation of (the distribution function of) Si.

As explained in Dhaene et al. (2005), the random variable Si
l is obtained

from Si by changing the marginal distributions of the discount factors Zj in (4)

and replacing the copula describing the dependency structure of the vector

(Z1, …, Zi) by the comonotonic copula. Important to note is that, when using a

comonotonic lower bound, it is not the original marginals Zj that are assumed to

be comonotonic but the transformed marginals. The concept of comonotinicity is

therefore used only to obtain an accurate approximation of which the distribution

function can easily be determined. Assuming that the cumulative returns or dis-

count factors itself are comonotonic, which is not realistic, this is what is done

when using the so-called comonotonic upper bound, see Kaas et al. (2000). Since

the upper bound approximation is in general not very accurate, we do not use

it here.

As a final step, we propose to approximate Ri by Ri
l, of which the distribution

function is given by

P(Rl
ifai)=1xFSl

i
(R0): (10)

In the following section we will use (10) to approximate (3).

5 Lifetime ruin

5.1 Problem description

Recall that the available wealth on the account of the retiree at time i is given by Ri, as

defined by (1). Lifetime ruin occurs at a certain time j if the retiree is still alive at that

time and if Rj<aj, which means that the available wealth is not sufficient to make the

desired withdrawal aj.

The moment of ruin, N, which is a random variable, is the first moment in time, n,

when the available assets, Rn, are less than the desired consumption, an :

N=inf{njRnfan}
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Note that N is a discrete random variable, since in our setting ruin can only occur at

these discrete times where a withdrawal is made.

The probability that the retiree outlives his money, or the probability of lifetime

ruin, is

Pruin= ;
vxx

i=1
ipxP(N=i), (11)

where ipx denotes the probability that an x-year old individual is still alive at age x+i

and v is the ultimate age of the life table. Our definition of the probability of lifetime

ruin corresponds to the definition given by Milevsky et al. (1997).

A retiree obviously wants his lifetime ruin probability to be as low as possible. In

Section 8.2 we will discuss as to how the probability of lifetime ruin can be minimized

in a framework of optimal portfolio selection.

To determine a value of Pruin, we need the distribution function of N, which can be

determined using the following result.

Theorem 1. The distribution of N is given by

P(N=1)=P(R1<a1),

and

P(N=i)=P(Ri<ai)xP(Rix1<aix1)io2:

Proof. It is trivial that P(N=1)=P(R1fa1). For io2, we find that

P(N=i)=P(Rioa1 \ . . . \ Rix1oaix1 \ Ri<ai)

The cash-flows aj are positive for all j, which means that recovery from ruin is not

possible. Therefore, the event R1>a1\…\Rix1>aix1 is equivalent to Rix1>aix1.

Using this, we get

P(N=i)=P(Rix1oaix1 \ Ri<ai)

=P(Ri<ai)xP(Rix1<aix1 \ Ri<ai)

=P(Ri<ai)xP(Rix1<aix1):

The last equality follows again from the fact that recovery from ruin is not poss-

ible. &

Using Theorem 1, we can rewrite the probability of lifetime ruin (11) as

Pruin= ;
vxx

i=1
(ipxxi+1px)P(Ri<ai)= ;

vxx

i=1
ipxqx+iP(Ri<ai), (12)

where qx+i=1xpx+i is the probability that a person of age x+i will die within 1

year.
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To determine Pruin we need the distribution function of the random variables Ri,

for all i>0. As seen in Section 4, we can, for each i, accurately approximate the

available wealth Ri by the comonotonic lower bound Ri
l. Next, we approximate the

moment of ruin N by Nl :

Nl=inf{njRl
n<an}:

Finally, we find an approximate value Pruin
l for the probability of lifetime ruin Pruin :

Pl
ruin= ;

vxx

i=1
ipxP(N

l=i)= ;
vxx

i=1
ipxqx+iP(R

l
i<ai): (13)

In Section 8, a brief explanation is given of how our results can be translated into a

framework of optimal portfolio selection.

5.2 Example

Suppose a retiree wants to withdraw a constant yearly amount of 1, or ai=1 for all

io1. Assume mortality is modeled by the Standard Ultimate Survival Model, as

described in Section 3.2. In Figure 1, the lifetime ruin probability is depicted for a

range of initial wealths R0. Figure 1(A) gives the results for different retirement ages

between 55 and 75, with given m=0.05 and s=0.10. We can see that increasing the

retirement age leads to lower lifetime ruin probabilities ; if consumption starts at an

older age, the probability that a given R0 is sufficient will clearly be higher.

In Figure 1(B) the retirement age is fixed at 65, and s=0.10. Results are given for

different values of m. We can see that an increase in the drift of the return process

leads to a decrease in the lifetime ruin probability. Finally, Figure 1(C) shows the

lifetime ruin probability for different values of s, with m=0.05 and the retirement age

equal to 65. We see that if the initial wealth R0 is large enough, higher volatility leads

to a higher ruin probability. For small values of R0, the opposite holds : higher

volatility leads to a slightly lower ruin probability.

5.3 Accuracy of analytical approximations

In this paragraph we use a numerical example to illustrate the accuracy of our ap-

proximation for the probability of lifetime ruin, as described in Section 5.1. For more

general information on the accuracy of convex order approximations based on co-

monotonicity, and in particular the convex lower bound approximation (6), we refer

to Dhaene et al. (2005).

Assume a retiree aged 65, who withdraws a constant yearly amount of 1 (ai=1

for all io1) and invests his wealth in an investment portfolio with drift m=0.05

and standard deviation s=0.10. In Table 1, the probability of lifetime ruin is com-

puted for initial wealths R0 between 2 and 50. For each value of R0, Pruin
l corresponds

to the probability of lifetime ruin obtained using the analytical approximation (13),

whereas Pruin
sim is obtained through Monte Carlo simulation. This simulation was

performed by generating 1,000r10,000 sample paths. Note that this simulation, and

simulation in general, is much more time-consuming compared to our analytical
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(A)

(B)

(C)

Figure 1. (A) Probability of lifetime ruin (m=0.05, s=0.1, retirement age

s(55,75)). (B) Probability of lifetime ruin (ms(0.02, 0.10), s=0.1, retirement
age=65). (C) Probability of lifetime ruin (m=0.05, ss(0.05, 0.25), retirement
age=65)
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approximations. In the table, the absolute difference (AD) and relative difference

(RD) between the different methods are given. The latter is determined as
Psim
ruin

xPl
ruin

Psim
ruin

=AD
Psim
ruin

.

The results in Table 1 clearly show that our convex order approximations are very

accurate.

6 Conditional time of lifetime ruin

In the previous section we have seen how we can accurately approximate the prob-

ability of lifetime ruin. However, only looking at the probability of lifetime ruin can

give an incomplete view, and can be misleading. For a retiree, it is not only important

to know how likely he is to experience financial ruin before he dies. A second concept

that can be useful is the time of ruin: if ruin occurs, if a retiree runs out of money

while he is alive, when is it most likely to take place?

Denote the moment of lifetime ruin by T. This means that Pruin=Pr(T<O). The

conditional probability that lifetime ruin happens at time j, given that ruin occurs,

Table 1. Probability of lifetime ruin: comparison between analytical approximation

and simulation (m=0.05, s=0.1, retirement age=65)

R0 Pruin
l Pruin

sim AD (r104) RD

2 98.217% 98.217% 0.004 0.000
4 96.169% 96.169% x0.013 0.000
6 92.882% 92.881% x0.109 0.000

8 87.067% 87.036% x3.161 0.000
10 76.540% 76.492% x4.813 x0.001
12 61.328% 61.317% x1.074 0.000
14 44.812% 44.836% 2.344 0.001

16 30.428% 30.431% 0.306 0.000
18 19.617% 19.629% 1.119 0.001
20 12.227% 12.239% 1.192 0.001

22 7.467% 7.480% 1.379 0.002
24 4.510% 4.538% 2.785 0.006
26 2.713% 2.720% 0.743 0.003

28 1.632% 1.647% 1.493 0.009
30 0.985% 0.988% 0.290 0.003
32 0.598% 0.594% x0.361 x0.006

34 0.366% 0.368% 0.226 0.006
36 0.225% 0.232% 0.725 0.031
38 0.140% 0.143% 0.309 0.022
40 0.088% 0.092% 0.446 0.048

42 0.055% 0.059% 0.320 0.055
44 0.035% 0.038% 0.236 0.063
46 0.023% 0.025% 0.262 0.103

48 0.015% 0.018% 0.275 0.157
50 0.010% 0.011% 0.104 0.097

Comonotonic approximations for the probability of lifetime ruin 295



is equal to

Pr[T=jjT<O]= jpxPr[N=j]

Pruin
, 1fjfvxx:

Similarly, the conditional probability that ruin occurs before or at time j equals

Pr[TfjjT<O]=
;j

i=1 ipxPr[N=t]

Pruin
, 1fjfvxx:

To determine the distribution function of this conditional time of lifetime ruin we use

the lower bound approximations of Section 4. We denote the approximated time of

lifetime ruin by Tl.

The following example shows that restricting attention to the probability of life-

time ruin can give an incomplete view.

6.1 Example

Suppose a 65-year old retiree has an initial wealth R0=20 and suppose that he wants

to withdraw an amount of 1 every year ; ai=1 for all i. In other words, the retiree has

a spending rate r equal to 5%. If he invests his wealth according to a conservative

strategy with drift m=0.025 and standard deviation s=0.01, the retiree has a lifetime

ruin probability Pruin
l of 27.72%. If he invests more aggressively, with m=0.045 and

s=0.15, his ruin probability is almost the same: Pruin
l of 27.75%. Based on this, the

retiree is indecisive between the two strategies, as the difference in ruin probability is

negligible.

However, the conditional time of ruin is significantly different, as can be seen from

Figure 2. White bars depict the conservative investment strategy, black bars depict

the more aggressive one. The retiree will clearly prefer the first strategy, as ruin is

likely to occur significantly later. If the unlikely event of ruin occurs, it is very unlikely

to happen before the retiree reaches the age of 90 in the first case. In the second case,

if ruin occurs, it will most likely (almost 90% probability) occur before he reaches age

90. The expected value and standard deviation of the conditional time of ruin equal,

respectively, 20.30 and 5.29 in the first case and 28.52 and 1.18 in the second case.

7 Wealth at death

In previous sections, we have discussed lifetime ruin and the conditional time of ruin.

A related concept a retiree might be interested in is that of knowing how much wealth

he will leave to his heirs at his death. The bequest or wealth at time of death, denoted

by B, is a random variable, from which we will determine the distribution function in

this section. Given that the retiree dies in the period (ix1, i), which happens with the

probability ix1pxqx+ix1, the bequest B corresponds to Ri, which is the available

wealth at time i. Therefore we have for any b :

Pr[Bfb]= ;
vxx

i=1
ix1pxqx+ix1Pr(Rifb):

In practice, we are only interested in positive values of b.
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Note that the probability of lifetime ruin as defined by (11) corresponds to the

probability of having a bequest smaller than or equal to zero:

Pr[Bf0]= ;
vxx

i=1
ix1pxqx+ix1Pr(Rif0)

= ;
vxx

i=1
ipxqx+iPr((Rixai)e

Yi+1f0)

= ;
vxx

i=1
ipxqx+iPr(Rifai)=

(12)
Pruin,

where the second equality follows because Pr(R1f0)=0.

To determine the distribution function of the bequest B we use the lower bound

approximations described in Section 4. Denoting the approximated bequest by Bl,

we get

Pr[Blfb]= ;
vxx

i=1
ix1pxqx+ix1Pr(R

l
ifb):

As an alternative, we can also look at the distribution of the conditional bequest,

conditioned on the event that lifetime ruin does not occur. It can easily be seen that,

for any bo0,

Pr[BobjT=O]=
;vxx

i=1 ix1pxqx+ix1Pr[Riob]

1xPruin
, (14)

and

Pr[BfbjT=O]=
;vxx

i=1 ix1pxqx+ix1Pr[Rifb]xPruin

1xPruin
: (15)

Again, we can use our comonotonic approximations to compute (14) and (15).
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Figure 2. Conditional time of ruin: conservative strategy (white bars) versus
aggressive strategy (black bars), with comparable lifetime ruin probability
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7.1 Example

Consider the same setting as in the example in Section 6.1. We have seen that the two

strategies described in Section 6.1 lead to (approximately) the same lifetime ruin

probability. Based on the distribution of the conditional time of lifetime ruin, the

retiree prefers the more conservative strategy. However, looking at the distribution of

the bequest leads to the opposite conclusion, as can be seen clearly from Figure 3. The

probability of leaving a positive wealth at death is significantly higher for the more

aggressive strategy. For example, for the conservative strategy, the probability of

leaving more than 20 is equal to zero, whereas this is more or less 30% for the more

aggressive strategy. Note that, as explained above, the intersection of the distribution

function with zero corresponds to the lifetime ruin probability, which, indeed, is more

or less equal for both strategies.

We come to the same conclusion by, e.g., comparing the expected value and stan-

dard deviation of the conditional bequest. For the conservative strategy, we find that

the expected conditional bequest equals 8.45, with a standard deviation of 5.37. For

the aggressive strategy, both values are significantly higher: an expected value of

25.85, with a standard deviation of 27.77.

8 Optimal portfolio selection problems

8.1 Framework and notation

Optimal portfolio selection corresponds to finding the best allocation of the available

wealth in a basket of risky or risk-free assets or asset classes. In this paper we work

with so-called constant mix strategies : the investment proportions are kept constant

P
r[

B
�

b]

b

Figure 3. Distribution of bequest: conservative strategy (full line) versus
aggressive strategy (dashed line), with comparable lifetime ruin prob-

ability
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by continuously rebalancing the assets. At each time instant, assets have to be bought

or sold, to keep the asset mix at the initial level. In Dhaene et al. (2005) optimal

portfolio selection problems in a provisioning and saving context are discussed using

the same setting.

As explained in Section 5, we work in a lognormal setting. We assume the

classical multi-period, continuous-time framework of Merton (1971), also known as

the Black and Scholes (1973) setting. See e.g., Björk (1998) for more details on this

setting. When the portfolio is continuously rebalanced such that the investment

proportions are kept constant, it can be shown that the portfolio return is also log-

normally distributed. This was derived in Merton (1971, 1990), see also Rubinstein

(1991), using stochastic arguments and Itô’s Lemma. Milevsky and Posner (1998b)

derived the same result using more elementary arguments, by taking limits of log-

normal sums.

We assume there are m risky assets or asset classes available in the market. In

our examples, we assume there is no risk-free asset class available. An investment

portfolio is described by a vector pT=(p1, …, pm), where pt is the proportion invested

in risky asset i. Obviously it must hold that ;m
i=1pi=1. Although our results also

hold in the general case, we assume short-selling is not allowed, which means

0fpif1.

Investing an amount of 1 at time kx1 in asset i will grow to eY
i
k at time k.

The return in a given year k is assumed to be independent of the return in any year,

llk :

Cov(Yi
k,Y

j
l)=0, llk, i=1, . . . ,m, j=1, . . . ,m:

In a given year k, however, the returns of the different asset classes are correlated:

Cov(Yi
k,Y

j
l)=sij, ko1, i=1, . . . ,m, j=1, . . . ,m:

We use the notation si
2=sii.

For a fixed asset i, the random variables Yk
i , ko1, are assumed i.i.d., normally

distributed with mean mix
1
2s

2
i and variance si

2. The drift vector and variance-

covariance matrix of the risky assets are denoted by mT=(m1, …, mm) and S respect-

ively, with (S)i,jwsij. Note that S has to be positive-semidefinite, which means that

xT.S.xo0 for all m-dimensional vectors x.

The drift vector and volatility corresponding to an investment portfolio p are

written as m(p) and s2(p). We find that

m(p)=pT � m and s2(p)=pT � S � p (16)

The yearly returns, Yi(p), of an investment portfolio p, are independent and normally

distributed random variables, with expected values E[Yi(p)]=m(p)x1
2s

2(p) and vari-

ance Var[Yi(p)]=s2(p).

To use the random variables introduced in Section 4 in our optimal portfolio

selection setting, we make them dependent on an investment portfolio p by adapting

the notation; we use, e.g., Ri(p), Si
l(p) and Pruin(p).
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8.2 Minimizing lifetime ruin probability

8.2.1 Problem description

As a first optimization problem, we consider the following:

min
p

Pruin(p) (17)

We want to find the strategy that minimizes the probability that the retiree outlives

his money. We denote the optimal strategy by p* and the corresponding minimal

probability of lifetime ruin by P*.

Using classical Markowitz mean-variance analysis, we can reduce this optimization

problem (17) to a one-dimensional optimization. Consider two portfolios, p1 and p2,

with s(p1)=s(p2) and m(p1)<m(p2). As is discussed in Dhaene et al. (2005), we find

that

FSo(p1)
(x)fFSo(p2)

(x), xo0,

which means that

P(Ri(p1)<ai)oP(Ri(p2)<ai), for all i:

Hence, using (12) we get

Pruin(p1)= ;
vxx

i=1
(ipxxi+1px)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

o0

P(Ri(p1)<ai)

o ;
vxx

i=1
(ipxxi+1px)P(Ri(p2)<ai)=Pruin(p2):

This means that for each s we only have to consider the corresponding portfolio with

maximal drift, which we denote by

ps=argmax m(p):

p, s(p)=s (18)

Optimization problem (17) can therefore be reduced to

P*=min
s

Pruin(p
s): (19)

Finally, we approximately solve optimization problem (17) using results from

Section 4:

Pl
*=min

s
Pl
ruin(p

s) � P*: (20)

The resulting optimal investment portfolio is denoted by pl.

8.2.2 Numerical example

Suppose we have two risky asset classes available in which we can invest, with drift

vector mT=(0.06, 0.10), standard deviations sT=(0.10, 0.20) and correlation

r1,2=0.50. Suppose a 65-year old retiree wants to withdraw a constant amount

per year, expressed as a percentage r of his initial wealth: ai=rR0 for all i. Solving
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optimization problem (20) in this setting leads to the following results. In Table 2, the

optimal strategies and their corresponding minimal lifetime ruin probabilities Pl
* are

given in terms of a range of spending rates r. We see for example that if the retiree

wants to spend 5% of his initial wealth per year, he should invest according to the

strategy (0.6935, 0.3065), with corresponding drift 0.0723 and standard deviation

0.1132. This leads to a lifetime ruin probability of 3.83%. If he would invest his

wealth according to a different strategy, the ruin probability associated with the

spending rate of 5% would be higher. From the results we can see that width in-

creasing r the minimal lifetime ruin probability increases, and that the retiree has to

invest increasingly aggressively (more in the second asset class) to realize this minimal

ruin probability. Figure 4 illustrates the optimization problem graphically.

Table 2. Optimal strategy leading to minimal lifetime ruin probability for range of

spending rates, with retirement age 65

r

0.04 0.05 0.06 0.07 0.08 0.09 0.1

p1
l 0.7638 0.6935 0.5930 0.4573 0.2814 0.0854 0.0000

p2
l 0.2362 0.3065 0.4070 0.5427 0.7186 0.9146 1.0000

m(pl) 0.0694 0.0723 0.0763 0.0817 0.0887 0.0966 0.1000
s(pl) 0.1080 0.1132 0.1224 0.1372 0.1597 0.1873 0.2000
Pl* 0.0079 0.0383 0.1042 0.1981 0.2994 0.3923 0.4729

E[Tl|Tl<O] 26.51 24.18 21.86 19.55 17.31 15.33 14.07
Var[Tl|Tl<O] 23.16 25.33 27.01 28.18 28.82 28.85 27.97

Figure 4. Lifetime ruin probability for spending rate x (upper full line:

x=0.1, dashed line: x=0.09, dotted line: x=0.08, dash-dotted line:
x=0.07, lower full line: x=0.06)
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In Table 2, the expected value and the variance of the conditional time of ruin are

also given for the optimal strategies. We can see that an increase in the spending rate r

leads not only to higher lifetime ruin probabilities but also to lower conditional ex-

pected times of ruin. This indicates that, even if the optimal investment strategy is

followed, the more a retiree spends, the more likely he is to experience financial ruin

and, moreover, the earlier this ruin is likely to happen.

In Table 3 optimization problem (20) is solved for a range of retirement ages. The

spending rate r is chosen to be equal to 0.05. We see that a higher retirement age leads

to a lower minimal lifetime ruin probability. Retiring at a higher age also means the

retiree has to follow a more conservative strategy to obtain his minimal lifetime ruin

probability.

Adding the retirement age to the expected conditional time of ruin, we see from

Table 3 that, given that ruin occurs, the expected age at the moment of lifetime ruin

increases with an increasing retirement age.

8.3 Maximizing sustainable spending rate

8.3.1 Problem description

As a second optimization problem we maximize the sustainable spending rate.

Although a retiree wants the highest spending rate possible, he also wants to sustain

his spending throughout his retirement years. Incorporating a predetermined lifetime

ruin probability e, we determine the investment strategy p leading to a maximal

spending rate r. Recalling that ai=rR0 for all i, we can rewrite Pruin(p) as

Pruin(p)= ;
vxx

i=1
(ipxxi+1px)P Si(p)o1

r

� �
,

which is increasing in r. Assuming a ruin probability e, we denote, for each invest-

ment strategy p the spending rate is such that Pruin(p)=e as r(p). Denoting the

maximal spending rate by r*, we get the following optimization problem:

r*=max
p

r(p): (21)

Table 3. Optimal strategy leading to minimal lifetime ruin probability for range of

retirement ages, with spending rate equal to 0.05

Retirement age

55 60 65 70 75

p1* 0.6231 0.6583 0.6935 0.7286 0.7638
p2* 0.3769 0.3417 0.3065 0.2714 0.2362

m(p*) 0.0751 0.0737 0.0723 0.0709 0.0694
s(p*) 0.1194 0.1162 0.1132 0.1105 0.1080
Pruin* 0.0816 0.0595 0.0383 0.0207 0.0087

E[Tl|Tl<O] 27.06 25.68 24.18 22.59 20.94
Var[Tl|Tl<O] 44.17 33.83 25.33 18.55 13.30
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Following reasoning similar to that in Section 8.2, we can show that (21) is equivalent

to the following one-dimensional optimization problem:

r*=max
s

r(ps),

with ps given by (18). As in Section 8.2 we use the comonotonic lower bound ap-

proximations to find an approximation for r*, which we will denote by rl*. We denote

the strategy leading to this maximal spending rate by pl.

8.3.2 Numerical example

As in Section 8.2.2, suppose we have two risky asset classes available in which we can

invest, with drift vector mT=(0.06, 0.10), standard deviations sT=(0.10, 0.20) and

correlation r1,2=0.50. Suppose a 65-year old retiree wants to withdraw each year a

percentage r of his initial wealth : at=rR0 for all i. In Table 4, the optimal investment

strategies and corresponding maximal sustainable spending rates rl* are given for a

range of lifetime ruin probabilities e. For example, if we consider a lifetime ruin

probability of 10%, we see that the retiree can, each year, withdraw 5.95% of his

initial wealth if he invests according to the strategy (0.6030, 0.3970). If he invests

according to a different strategy, the sustainable spending rate will be lower than

5.95%. From these results we see that decreasing the lifetime ruin probability de-

creases the maximal sustainable spending rate and leads to a more conservative op-

timal investment strategy. Investing more conservatively also leads to respectively a

higher expected value and lower variance of the conditional time of ruin. Figure 5

illustrates the optimization problem graphically.

In Table 5, optimization problem (21) is solved for a range of retirement ages. The

lifetime ruin probability e is taken to be equal to 0.10. We see that increasing the

retirement age increases the maximal sustainable spending rate. In this example the

retirement age only slightly influences the optimal investment strategy.

Adding the retirement age to the expected conditional time of ruin, we see that,

given that ruin occurs, the expected age at the moment of lifetime ruin increases with

increasing retirement age.

Table 4. Optimal strategy leading to maximal sustainable withdrawal for range of

lifetime ruin probabilities, with retirement age 65

e

0.2 0.15 0.1 0.05 0.01

p1* 0.4523 0.5276 0.6030 0.6734 0.7538
p2* 0.5477 0.4724 0.3970 0.3266 0.2462

m(p*) 0.0819 0.0789 0.0759 0.0731 0.0698
s(p*) 0.1378 0.1292 0.1214 0.1149 0.1087
rl* 0.0702 0.0651 0.0595 0.0523 0.0412

E[Tl|Tl<O] 19.50 20.67 22.00 23.65 26.21
Var[Tl|Tl<O] 28.21 27.68 26.91 25.76 23.47
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8.4 Maximizing conditional expected time of lifetime ruin

As a third optimization problem, we maximize the expected conditional time of ruin,

as described in Section 6. Again, we solve this problem using the comonotonic ap-

proximations defined in Section 4. The maximal expected conditional time of lifetime

ruin ETl is given by

ETl=max
p

E [Tl(p)jTl(p)<O] (22)

Considering two portfolios with the same standard deviation, s, the portfolio with

the highest drift m unfortunately does not necessarily result in the highest conditional

expected time of lifetime ruin. Therefore, unlike the optimization problems in the

Table 5. Optimal strategy leading to maximal sustainable spending rate for range of

retirement ages, with lifetime ruin probability equal to 0.10

Retirement age

55 60 65 70 75

p1* 0.6195 0.6117 0.6030 0.5931 0.5829
p2* 0.3805 0.3883 0.3970 0.4069 0.4174

m(p*) 0.0752 0.0755 0.0759 0.0763 0.0767
s(p*) 0.1198 0.1205 0.1214 0.1224 0.1234
rl* 0.0521 0.0552 0.0595 0.0653 0.0735

E[Tl|Tl<O] 26.57 24.35 22.00 19.57 17.05
Var[Tl|Tl<O] 44.58 35.00 26.91 20.15 14.59
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Figure 5. Sustainable consumption for given lifetime ruin probabilities
Pruin (upper full line: Pruin=0.20, dashed line: Pruin=0.15, dotted line:
Pruin=0.10, dash-dotted line: Pruin=0.05, lower full line: Pruin=0.01)
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previous sections, (22) can, in general, not be reduced to a one-dimensional optimi-

zation problem, which makes solving (22) much more time-consuming.

8.4.1 Numerical example

As in Section 8.2.2, suppose we have two risky asset classes available in which we can

invest, with drift vector mT=(0.06, 0.10), standard deviations sT=(0.10, 0.20) and

correlation r1,2=0.50. As mentioned above, (22) can, in general, not be reduced to a

one-dimensional optimization. However, since we only have two asset classes, fixing a

value for s also fixes m, which means (22) is reduced to a one-dimensional problem in

this case.

Suppose a 65-year old retiree wants to withdraw, each year, a percentage r of his

initial wealth: ai=rR0 for all i. In Table 6, the optimal investment strategies and

corresponding maximized conditional expected times of ruin are given for a range of

spending rates r. We see the same dynamics as in Table 2: increasing the spending rate

leads to a more aggressive optimal strategy. We also see that the resulting maximized

expected conditional times of ruin decrease with increasing spending rates, whereas

probabilities of lifetime ruin increase. Hence, increasing the desired spending rate

implies an increasing probability of financial ruin, and moreover, if ruin happens, it is

likely to happen at an earlier age. Figure 6 illustrates the optimization problem

graphically.

9 Conclusion

In this paper, we started by discussing the concept of lifetime ruin. From the point of

view of an individual retiree, we defined lifetime ruin as running out of money while

being alive. In a multivariate lognormal setting, we investigated the probability of

lifetime ruin and the determination of a sustainable spending rate. In relation to this

concept, we discussed the conditional time of lifetime ruin and the notion of bequest

or wealth at death. Using an intuitive numerical example, we illustrated that making

investment decisions is not always straightforward. Depending on the criterion used,

Table 6. Optimal strategy leading to maximal expected conditional time of ruin for

range of spending rates

r

0.04 0.05 0.06 0.07 0.08 0.09 0.1

p1
l 0.9447 0.9196 0.8894 0.8543 0.8090 0.7538 0.6884

p2
l 0.0553 0.0804 0.1106 0.1457 0.1910 0.2462 0.3116

m(pl) 0.0622 0.0632 0.0644 0.0658 0.0676 0.0698 0.0725
s(pl) 0.1005 0.1010 0.1018 0.1031 0.1053 0.1087 0.1136
ETl 26.99 24.85 22.83 20.91 19.09 17.41 15.86

Var[Tl|Tl<O] 22.38 24.08 25.01 25.13 24.51 23.36 21.95
Pruin
l 0.0107 0.0497 0.1326 0.2517 0.3814 0.4995 0.5951
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a retiree might have different investment preferences. Our example indicates that a

retiree should always make well-considered decisions, balancing between the most

relevant criteria.

In the last part of our paper we have discussed several optimal portfolio selection

problems. We explained how to minimize the probability of lifetime ruin, maximize

the sustainable spending rate and maximize the conditional expected time of lifetime

ruin. Each of these optimization problems is illustrated with intuitive numerical ex-

amples. By solving these general optimization problems, we believe that our results

provide a valuable tool, helping retirees to make conscious investment decisions.

As pointed out in Section 2, the problems discussed in this paper have been ex-

amined in earlier research papers. Our paper provides a new approach to solving

problems related to the probability of lifetime ruin, using analytical approximations

based on the concept of comonotonicity. Our paper is an addition to existing litera-

ture primarily because we take the random lifetime of the retiree into account when

considering lifetime ruin, as well as its related problems. As explained in the intro-

duction, few papers in the current literature have followed this realistic approach.

Often a fixed moment of death is assumed, or results are restricted to the assumption

of a constant force of mortality. As shown for a related problem in Milevsky et al.

(2005), the shape of the force of mortality has a significant impact on optimal in-

vestment strategies, which means that the assumption of a constant force of mortality

is unrealistic. Second, our analytical approach allows to solve more general optimal

portfolio selection problems compared to earlier studies. Typically, optimization

problems such as those discussed in our paper are solved using Monte Carlo simu-

lation. Since this is generally very time-consuming, a trade-off often has to be made

between speed and accuracy. Moreover, using simulation, it is hard to obtain results

Figure 6. Expected conditional time of ruin for spending rate x (lower
full line: x=0.1, dashed line: x=0.09, dotted line: x=0.08, dash-dotted

line: x=0.07, upper full line: x=0.06)
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for the whole range of admissible investment portfolios, meaning that the analysis is

usually restricted to a subset of the admissible portfolios. Also, determining

the optimal portfolio when more than two asset classes are available can become

too cumbersome when using simulation. Our approach allows to consider a

higher number of asset classes without significantly increasing the computational

complexity. In our paper we avoid simulation using analytical approximations

based on comonotonicity. The analytical nature of our expressions means

that they can be computed very quickly. Furthermore, we have seen that our ap-

proximations are highly accurate. Using our approach, a decision-maker can quickly

acquire a complete picture of the different aspects that might influence his investment

decisions.

Also, contrary to a large part of the existing literature, our approach allows us to

work in a discrete-time setting, and to assume that the retiree consumes his wealth at

discrete points in time. This is, in our opinion, more realistic and more intuitive to

understand than assuming a continuous consumption rate.

Further research could consists in generalizing our results allowing for the con-

sumption scheme to be stochastic or in extending our results to more general return

processes, e.g., to a Lévy-type or elliptical-type setting. Bounds and approximations

for sums of random variables with distributions of this type are considered in

Albrecher et al. (2005) and Valdez et al. (2009). Another possible extension is to

use a projected life table to model mortality, modeling future survival pro-

babilities as random variables. To conclude, future work could also include

generalizing our results to multiple life states, where individual lives can be mutually

dependent.
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