THE MULTIVARIATE BLACK & SCHOLES MARKET: CONDITIONS
FOR COMPLETENESS AND NO-ARBITRAGE
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AnHoTAalsi. In order to price multivariate derivatives, there is need for a multivariate
stock price model. To keep the simplicity and attractiveness of the one-dimensional
Black & Scholes model, one often considers a multivariate model where each indivi-
dual stock follows a Black & Scholes model, but the underlying Brownian motions
might be correlated. Although the classical one-dimensional Black & Scholes model
is always arbitrage-free and complete, this statement does not hold true in a multi-
variate setting.

In this paper, we derive conditions under which the the multivariate Black &
Scholes model is arbitrage-free and complete.

1. INTRODUCTION

The origin of the one-dimensional Black & Scholes model goes back to the early
work of L. Bachelier in the beginning of the 20th century. His revolutionary idea of
using stochastic processes to model the behavior of a stock over time was the start
of a long tradition in developing stock price models; see Bachelier (1900). One of these
models is proposed in Samuelson (1965). The popularity of this model is to a large extent
influenced by the possibility to develop a sound theory of option pricing, which was first
introduced in Black and Scholes (1973) and extended in Merton (1973). Although there
is a variety of stochastic processes which might be more suitable for capturing the random
fluctuations of a stock or index, the one-dimensional Black € Scholes model still remains
the benchmark model, mainly due to its simplicity and the disposal of an option pricing
formula.

Various popular derivatives have a pay-off depending on several dependent assets. For
example, a basket (or index) option has a pay-off which depends on a basket of stocks.
Extrapolating the classical approach to higher dimensions asks for a multivariate Black
& Scholes model. It is shown that within this model, one can derive tight bounds for
various exotic options; see e.g. Carmona and Durrleman (2006), Deelstra et al. (2004),
Dhaene et al. (2002b) and Vanduffel et al. (2005) among others. In the aforementioned
papers, the price of a multivariate derivative is determined as the discounted expectation
under a risk-neutral probability measure. It is important to ensure that such a pricing
measure exists and if so, in which situations it is unique. From Delbaen and Schachermayer
(2008) it is known that the existence and uniqueness of the risk-neutral measure are
closely related to the absence of arbitrage opportunities and the completeness of the
market under consideration.
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In this paper we derive conditions for arbitrage and completeness for two popular
multivariate versions of the Black & Scholes model. Furthermore we discuss the exi-
stence and uniqueness of the risk-neutral pricing measure in both situations. We will
also derive conditions under which the two models are equivalent. Related results about
arbitrage and completeness can be found in Bjork (1998), Karatzas and Shreve (1998),
Musiela and Rutkowski (2005) and Shiryaev et al. (1995). To make the paper self contai-
ned, we will revisit some of the existing results and repeat the proofs.

The financial market that we consider throughout the paper is described in Secti-
on 2. In Section 3 we deal with the canonical form of the Black & Scholes model and
give conditions under which it is arbitrage-free and complete. This stock price model
describes each stock price by a linear combination of independent Brownian motions.
Alternatively, one can describe each individual stock by a single Brownian motion, but
these drivers might be correlated. In general, this multivariate Black & Scholes model is
not equivalent to the model considered in Section 3. In Section 4 we provide conditions
under which this model is arbitrage-free and complete. In Section 5, we derive reasonable
assumptions such that the multivariate Black & Scholes model can be equivalently descri-
bed by correlated Brownian motions or by a linear combination of independent Brownian
motion. Furthermore, we show that this version of the Black & Scholes model is always
arbitrage-free and complete.

2. THE FINANCIAL MARKET

Consider the filtered probability space (Q,f , (]:t)ogth ,P) to describe a financial

market consisting of n traded stocks and a bank account. We assume that the filtered
probability space satisfies the usual ‘technical’ conditions of completenss and right-
continuity, and also that F{ contains all P-null sets of 2 and all sets of P-probability
1. Furthermore, we take F; = F. Money can be deposited on or borrowed from the
bank at the continuously compounded interest intensity r > 0, which is assumed to be
deterministic and constant over time.

The current price of stock ¢, i =1,2,...,n, is given by X,(0), which is assumed to be
positive and nonrandom. The price of stock i at future dates t > 0 is described by the
adapted stochastic process {X;(¢) | 0 < ¢ < T} which is defined on the above mentioned
filtered probability space. Each stock ¢ pays a continuous dividend yield v;, which is
assumed to be deterministic and constant over time. Denoting the stochastic value of the
(non-discounted) dividends paid in (0,¢) by D; (t), we have that

The gains process {G;(t) | 0 <t < T} of stock i is defined by
t
Gilt) = X,(0) + [ 0D ), >0, 2
0

with initial value G;(0) = X;(0). If {X; (¢) | t > 0} has continuous paths, then the integral
in (2) is a path-wise Riemann integral, a.s.
Recall that a probability measure Q defined on (Q,}' , (]:t)ogth) is said to be an

equivalent martingale measure (or a risk-neutral measure) if Q is equivalent to P and
any gains process {G;(t) | 0 <t < T}, discounted at the risk-free rate, is a martingale
with respect to Q. In particular, under the risk-neutral measure Q we have that

Xi(0)=e "E[G;(t)] =e "E[X;(t)] + E {/o e "dD; (u)} . (3)



THE MULTIVARIATE BLACK & SCHOLES MARKET: CONDITIONS FOR COMPLETENESS AND NO-ARBITRAGRB

In this expression and also hereafter, expectations have to be interpreted as expectations
under the Q-measure. Also, the notation Fx, ;) will be used to denote the cdf of the stock
price X; (t) under Q.

From the First Fundamental Theorem of Asset Pricing we know that the no-arbitrage
condition is ‘essentially equivalent’ to the existence of an equivalent martingale measure
Q. For a detailed discussion of this fundamental theorem in mathematical finance, we
refer to Delbaen and Schachermayer (2008). Consider a traded contingent claim H which
has a pay-off of H (X (t)) at time ¢. If the risk-neutral pricing measure in the market
is given by Q, then the price of H (X (t)) at time s, where 0 < s < ¢, is equal to the
conditional expected value of its discounted pay-off at time ¢:

Price of H at time s = e "SR [H (X (t)) | FJ], (4)

where the expectation is taken with respect to Q.
For each ¢, let us now construct a synthetic stock with stochastic price process
{Yi(t) | 0 <t < T} defined by
dY;(t) dX;(t)
= ;dt, t>0, 5
v % " ®)

and with initial value given by Y;(0) = X;(0). This means that

Yi(t):Xi(O)—i—/O ;&Zédxi(u)wi/o Yi(wdu, 0<t<T, (6)

where the first integral on the right hand side is stochastic integral with respect to a
diffusion process and the second one is Lebesgue integral. We can interprete Y;(t) as
the value at time ¢ of an initial investment of amount X;(0) in stock i, where every
dividend payment is immediately reinvested in stock i. Hence, {Y;(¢) | 0 < ¢ < T} can
be interpreted as the price process of a non-dividend paying (synthetic) stock. From (4)
we find for any 0 < s <t that

Yi(s) =e "UIEYI(t) | F.
Taking into account (6), this expression can be transformed into
Xi(s) = TTIIRXG(8) | A (7)
In particular, we have that

X;(0) = e~ VIR (X4 (1)) (8)

Comparing (3) and (8) leads to the following expression for the time-0 market price of
the dividend payments in (0, ?):

E [ /O "eruap, (u)} = X,(0) [1— e ] )

In the sequel of this paper, we always assume that each stock X;, ¢ =1,2,...,n pays
no dividends in [0,7]. Our result remain valid in a more general context where some
of the stocks are paying dividends, provided the earned dividends are reinvested in the
stock.

2.1. Arbitrage-free and complete markets. Following Shiryaev et al. (1995), we
define self-financing strategies and the notions of arbitrage and completeness. Loosely
speaking, the financial market is said to be arbitrage-free if there is no trading strategy
that does not require the injection of capital at initiation, while it leads to a non-negative
gain with probability 1 and to a positive gain with a positive probability. The financial
market is said to be complete if any contingent claim admits a replicating strategy. A
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precise definition of these notions requires a careful specification of the set of admissible
investment strategies and admissible contingent claims.

Suppose that the total wealth of an investor at time ¢ is denoted by G (t) . This investor
has an initial capital of G (0) = x at time ¢ = 0. The available capital G (0) is invested in
a bank account M, with constant interest intensity r and M (t) = M (0)e", and in the
stocks X1, ..., X, according to the portfolio

T = (7r0,7r1,772,...77n)T.

Here, we use the superscript ‘T’ to denote the transpose of a vector or matrix. Throughout
the paper, all vectors have to be understood as column vectors.
The initial capital G (0) can be written as

G(O) =moM (0) + m X1 (0) + mXo (O) + .. 4T X, (0) .

In a similar way, let 7 (t) = (mo () ,m1 (£) , 72 (£) ;... 70 (£))” be the Fi-adapted collection
of random variables describing a state of investor’s securities portfolio at time ¢ > 0 :

Gt)=mo(t) M &)+ (6) X1 (t) +m2(t) Xo (6) + ...+ (1) X, (1) . (10)

The vector process (m (t)),s is called the investment strategy. Its components take any
values in (—o0, +00) . Following this investment strategy, the capital at time ¢ is denoted
by G (t) . We consider only self-financing strategies =, i.e. such that for the capital (10)
the integral representation

Gﬁ(t):Gﬁ(O)Jr/O ﬂo(u)dM(u)Jr/O 1 (u) dX; (u)+...+/0 7 (1) dX, (u)

holds under the conditions (P-a.s., ¢ > 0):
t t
/ |70 (w)] AM (u) < oo, / (s (u) X; (u))? du < 00, i =1,2,...,n.
0 0

The latter conditions provide the existence of the Lebesgue integral fot |70 (w)|dM (w)

P-a.s. and of the stochastic integrals f(f mi (u)dX; (u).
A self-financing strategy = is called admissible at the time interval [0, T if there exists
a non-random number C' > 0 such that

P[G. (t) > —C, forall0 <t <T]=1.
We denote the set of all such strategies by SF,.

Definition 1 (Arbitrage-free market). The strategy m € SF, is called an arbitrage on
[0,T] if P-a.s.

Gr(0)<0, Gr(T) 20
and if
P[G, (T) > 0] > 0.
If there are no arbitrage strategies in the market, then the market is called arbitrage-free.

Definition 2 (Complete market). The market is complete if for each Fr—measurable
payment function fr = fr (w) > 0, sucht that E [ 715"5] < 00, for some € > 0, there exists
a strateqgy m € SF, such that P-a.s.

Gr (T) = fT-
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3. THE MULTIVARIATE BLACK & SCHOLES MODEL: CANONICAL FORM

3.1. The real-world dynamics. Consider a market with n non-dividend paying stocks,
labeled from 1 to n. The price of stock ¢ at time ¢ is denoted by X; (¢). We assume that
the stock price dynamics can be described by the following set of stochastic differential
equations (SDE’s):

k
= p;dt + ZEi7dej (t) ,fort>0andi=1,2,...,n, (11)

j=1

dX; (¢)
X (1)

where W (t) = (Wy (t) ,Wa () ..., Wi (t))" and {W () | t > 0} is a standard k-dimensional
Brownian motion defined on the filtered probability space (€2, F,P). This probability
space is equiped with the filtration (]—'tW) 0<t<T of F which records the ‘the past behavior’
of the multivariate Brownian motion. This means that for 0 < ¢ < T, .FtW denotes the o-

algebra generated by {W (¢) | 0 < s < ¢}, which we also denote by o {W (s) | 0 < s < t},
completed by events of zero probability P. The vector u = (1, pi2, ..., ,un)T contains the

drift parameters of each stock and the matrix ¥ is defined as
Y= (Eid)i:l:n,j:l:k :

We have that 4 € R", 7; ; € R and ¥ e Rk,
Model (11) for the stock prices is called the canonical form of the multivariate Black
& Scholes model.

3.2. Risk-Neutral dynamics. The quantity p; — r is called the risk-premium of stock
1. It represents the excess return one receives in return for investing in stock 4. In the
Black & Scholes model (11), the market consists of k& random sources and each stock is
driven by a linear combination of these random sources. It is reasonable to assume that
the contribution of each random source to the risk premium is the same for each stock.
Otherwise stated, we should be able to find a vector vy € RF satisfying the following

condition:
k

pi—r =3 Ty, fori=12,.n (12)
j=1
The quantity «y; represents the effect on the risk-premium when the asset is exposed to
one unit of volatility of the j-th risk driver W;. If k = n and s exists, we have that
is unique and equal to v = 5! (H — rl).

Define the k-dimensional process {E(t) [t > O} as follows:

AWy (t) = dW; (t) 4+ mdt, (13)
AWy (t) = dWa (t) + 72dt,

AW (¢) = AWy, (£) + yedt.
It follows from Girsanov’s theorem that we can find a probability measure Q, equivalent
to P and such that {w t)|t> O} is a k-dimensional standard Brownian motion under

this new probability measure. If (12) holds, plugging (12) into (11) and using relation
(13) results in

k —
=rdt+ Y 7;,;dW; (t), fori=12,...,n. (14)

j=1
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Taking into account (14), it follows that {X (¢) | ¢ > 0} is an n-dimensional geometric
Brownian motion under the probability measure Q. Under this new probability measure,
all the drifts are replaced by the risk-free rates while the parameters o; ; are remaining
the same.

One can prove that in the Q-world, the discounted price process of each stock is a
martingale:

Eq [e "9 X; (1) |fu} = X; (), fori=1,2,...,n. (15)

The probability measure Q is equivalent to P and is called an equivalent martingale
measure. The following theorem gives necessary and sufficient conditions for the multi-
variate Black & Scholes model (11) to be arbitrage-free; see also Musiela and Rutkowski
(2005), Karatzas and Shreve (1998) and Bjork (1998).

Theorem 3 (Conditions for no arbitrage). In the multivariate Black € Scholes model
(11), the following statements are equivalent:
(1) The model is arbitrage-free.

(2) There exists an equivalent martingale measure.
(3) There exists a non-random vector vy satisfying

E
ui=r+25i7j’yj, fori=1,2,... n. (16)
j=1

Josederna. (3) =(2)
We already showed that if (16) holds, there exists a risk-neutral probability measure Q.

(2) =>(1) : The proof is standard; cf. Lemma 2 of Shiryaev et al. (1995).

(1) =)
A proof of this implication can also be found in Frey (2009). To make the paper self-
contained, we give a proof of this implication. What remains to be proven is that if (16)
does not hold, we always have a market where there are arbitrage opportunities. A proof
of this statement can be found in Karatzas and Shreve (1998). Here, we give a direct and
straightforward proof to make this paper self-contained.

Assume that we cannot find a vector 7 such that

k

Mi:T_FZEiJ’Yﬁ fori:1,2,...,n, (17)
j=1

holds. Consider the portfolio m (£) = (mo (t), 71 (£),m1 (t),..., 7 (£))" . The capital at
time ¢ is denoted by G™ (t) and can be expressed as

G™ (t) =m0 (t) B(t) + Zm (t) Xi (1), (18)

where B (t) represents the riskless asset and B (t) = €. In the next lines, we prove that
we can find an admissible, self-financing arbitrage strategy m, moreover we will have that

G"(0)=0, G™(t) >0, as., for all t>0.

The portfolio is assumed to be self-financing, hence

e”dwo (t) + i Xl (t) dTFZ (t) =0. (19)
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Combining (18) and (19) results in

n k
AG™ (t) = rG™dt + > i (8) Xi (t) | (i — ) dt + Y 7 ;dW; (1)

i=1 j=1

For the discounted capital Y (t) = e " G™, we have by Ito’s formula that

n k
AY () =e ™) m ()X (1) | (s —r)dt + > Fi;dW; (2) | - (20)
i=1 j=1
There is an arbitrage opportunity if
kE n
Z Z’ﬂ'i (t) Xz (t) Ei,dej (t) = 0,
j=1i=1
or
S omi(t) X ()7, =0, forall j=1,2,....k (21)
i=1

We denote by f the vector (my (1) X1 (t),ma (t) X2 (t),..., 7m0 (t) Xn ()" . Then (21) is
equivalent to iTi =0or f € Ker (ET) . Note that we also have that f 1R (f) Because
(17) does not hold,  —rl ¢ R(X). From the Fredholm Alternative, we find that there
exists a vector a such that a € Ker (ET) and Z?:l a; (p; — ) # 0. We can set

a
£= doigai(pi—r)’

so then f € Ker (iT) . The vector f is a constant vector. We have that m; (¢t) X; (t) = f;

and the strategy = (t) follows from ; (t) = Xf—zt), for i = 1,2,...,n and 7 (¢) can be

found from (19).
For such trading strategy = (¢), we find from (18) that

etdy (t) = Z fi (i — ) dt. (22)

We also have that > 1" | f; (u; — ) = 1, so we can write (22) as e"'dY (¢) = dt, from
which we find that

e—rt

1 —
Y(t)=T>O, for t > 0.
We can conclude that G™ (t) > 0 for ¢ > 0, while G™ (0) = 0. So the strategy = (¢) is an
arbitrage possibility, which proves that (16) should hold true if the market is assumed to
be arbitrage-free.
O

A particular choice for the Q-dynamics is to replace all the drift parameters u; by the
risk-free rate r. Furthermore, each solution 7 of (16) leads to an equivalent martingale
measure. B

The existence of a martingale measure is equivalent with stating that market (11) is
arbitrage free. In the following theorem, we provide conditions under which the market
is complete. We prove that the multivariate Black & Scholes model (11) can be complete
while there is no equivalent martingale measure.

Theorem 4 (Conditions for completeness). Consider the multivariate Black & Scholes
model (11). Then the following statements are equivalent:
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(1) The market is complete.
(2) The variance-covariance matriz Y. satisfies

rank (i) =k. (23)

Josedenna. (1) < (2): The sigma-algebra F;¥ denotes the filtration generated by the
stock price process {X (s) | 0 < s < ¢}. Assume now that rank(X) < k, then it follows
from (11) that
Fr#F,

implying that the market is incomplete. Indeed the claim f7 = [ (A) cannot be replicated
by admissible strategies, where the event A belongs to /¥ and not to F;¥.

If rank (3) = k, then we can form a submarket with k stocks and non-singular variance-
covariance matrix. It is proven in Karatzas and Shreve (1998) that such a market is
complete. As a consequence, the market (11) is also complete because the filtrations in

both situations coincide.
O

Condition (23) implies that & < n. To be complete, the number of random sources in
the multivariate Black & Scholes model (11) cannot exceed the number of traded stocks.

Corollary 1. Consider the multivariate Black & Scholes model (11). If the market is
arbitrage-free, the following statements are equivalent:

(1) The market is complete.
(2) There exists a unique martingale measure.

4. THE MULTIVARIATE BLACK & SCHOLES MODEL

In this section we describe an alternative version of the multivariate Black & Scholes
model. Here, each stock ¢ will be modelled by a one-dimensional standard Brownian
motion B;, where the different Brownian motions are assumed to be dependent. Consider
the financial market described in Section 2 and assume that the real world price dynamics
are given by the following set of SDE’s:

Xi(t)
Xi(t)

where p; > 0 is the drift and o; > 0 the volatility of stock i. The parameters p; and o;
are assumed to be deterministic and constant over time.

Furthermore, {(B1(t), Ba(t), ..., Bn(t)) | t > 0} is an n-dimensional correlated Brownian
motion process defined on the probability space (2, F,P). This means that the stochas-
tic processes {B;(t) | t > 0} are standard Brownian motions and that the dependence
structure is captured by

P-dynamics: = pu;dt + 0;dB;(t), fort >0and i =1,2,...,n, (24)

Ui,jt = Cov (O'iBi (t) ,O'ij (t + S)) R (25)

where s > 0. The process {B (t) | t > 0} is defined on a filtered probability space whi-
ch is equiped with the filtration (‘FtB)0<t<T of F. For 0 < t < T, .7-'tB is given by
o {B (s) | 0 < s < t}, completed by events of zero probability P.

The matrix ¥ is given by X = (O’i’j)i:172’m7n;j:172,_“7n and we use k to denote its rank.
The correlation p; ; is for every 4,5 =1,2,...,n defined as

pi; = Corr (0;B; (t) ,0;B; (t+s)),
and we can write that o, ; = p; j0;0;.

We prove that (24) can be rewritten in the canonical form (11). A related result can
be found in Bjork (1998).
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Theorem 5. Assume the dynamics of a multivariate stock price model are given by (24).
There always exists a matriz X = (T4 5),_1., Jelk with mnk(E) =k < mn, such that
the stock price dynamics can be described by

dX; (¢)
X (1)

k
:uidt+ZEinWj (t), fori=1,2,...,n, (26)
j=1
where {W (t) | t > 0} is a standard k-dimensional Brownian motion and the filtration
FV coincides with the filtration FP.

Hoeedenmna. For any t > 0, define the vector £ (t) as
§ (t) = (0’1Bl(t), UQBQ(t), NN ,U,LB.,L(t))T s

whereas £ (0) = 0. The orthogonal unit eigenvectors and eigenvalues of the matrix X are

denoted by e, and A;, respectively. Because the matrix X is a non-negative semidefinite

matrix, all eigenvalues are positive. The rank of ¥ is denoted by k. If Ay > Ao > ... > A,

we have that the first k eigenvalues are strictly positive and Ag11 = Ay = ... = A, = 0.
The vector W (t) = (Wi (t), Wa (t), ..., Wy, (¢))7 is defined as

\/7<£ ’ .7>

where (.,.) denotes the scalar product. It can be proven that W (¢) has a k-dimensional
standard normal distribution and W; (0) = 0. The process {W (¢) | t > 0} is a k-dimensional
standard Brownian motion with continuous sample paths

Let 3 be the n x k matrix of rank k containing the elements @; ; :

= [\/)\71§1§\/E§23-~-§\/E§k}'

Define the n-dimensional Brownian motion { t)|t> 0} as follows:

W, (¢ for j=1,2,...,k,

1 k
== 7 ;W;(t), fori=12,. (27)
U ':

We have

E [H§(t) —7E(t)“2} =E l Zn: (€ 76i>2] = 2": A = 0.

i=k+1 i=k+1

~ 2
So we find that E {HB (t) — E(t)H ] = 0, which implies that

[ e[l - B a-o

Applying Fubini’s theorem proves that f0+°° HE (t) B H dt = 0, almost surely and

P[ﬁ(t):f?(t), fora.e.tzo} =1

Both {B(t) | t > 0} and { ) |t> 0} have continuous paths, from which we can conclude
that

k
1
*—ZE , fori=1,2,...,n,

holds P-a.s. This proves (26).
The two filtrations coincide because {B(¢) |t > 0} and {W (¢) |t > 0} are linear
transformations of each other. O
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Assume that the dynamics can be described by the canonical form (11) of the Black
& Scholes model. Then it does not hold true that we can rewrite these dynamics in the
form of (24). Indeed, when k > n, it is not true that for each ¢, F}V = FP.

The following theorem gives necessary and sufficient condition for the multivariate
Black & Scholes model (24) to be arbitrage-free and complete.

Theorem 6. The multivariate Black & Scholes model (24) is complete. For this model,
the following statements are equivalent:

(1) The model is arbitrage-free.

(2) There exists an equivalent martingale measure.
(3) There exists a unique martingale measure Q.
(4) There exists a non-random vector ~y satisfying

k
1bi :r+25i7j’yj, fori=1,2,...,n.
j=1

Josedenna. We first write the dynamics (24) in the canonical form using Theorem 5. It
follows from Theorem 4 that the multivariate Black & Scholes model (24) is complete.

The equivalence relations (1) < (2) < (3) follow from Theorem 3.

The proof of (3) = (2) is trivial.

For a proof of (2) = (3), assume that there are two equivalent martingale measures,
which we denote by Q and Q*. Consider the event A € F be any random event.
Because the market is complete, the contingent claim fr = I(A) can be replicated by
the corresponding admissible self-financing strategy (m (t)),~,. The discounted capital
Yy (t) is martingale under both Q and Q* with underlying filtration. Then

e"TQ(A) = ¢ Eq [I(4)] = Y= (0),

and in a similar way we find e ""7Q*(A) = Y, (0). We can conclude that Q (A) = Q* (A)
for any A € F which proves that Q = Q*.
O

5. AN ARBITRAGE-FREE AND COMPLETE MULTIVARIATE BLACK & SCHOLES MODEL

In this section we will show that under reasonable assumptions, we arrive at a speci-
al multivariate Black & Scholes model for the stock price processes which is always
arbitrage-free and complete.

In the canonical multivariate Black & Scholes model (11), there are k random sources
for the n traded stocks. We will first elaborate on the choice of k. More precisely, it will
be shown that it is reasonable to assume that k = n and rank(i) = n. A first, intuitive,
argument to avoid the situation where k # n is the fact that it is not possible to construct
a market where all the assets are independent when k < n and if k > n, the market is
not complete anymore.

5.1. k > n. Remember that ¥ is an n x k matrix containing on row i and column j the
parameter @; ;. The rank of the matrix cannot exceed n. Assume for the moment that

rank (i) =n.

This means that all the rows are linearly independent, while there are (k — n) columns
which can be expressed as linear combinations (l.c.) of the remaining n columns. Without
loss of generality, we may assume that the first n columns are linearly independent, so
each column j=n+1,n+2,...,k can be expressed as a l.c. of the first n columns. To
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be more precise, for each j = n+1,n+2, ..., k, there exists a vector #) € R” such that

n
045 = § WZ(J)E“? fori=1,2,...,n.
=1

Using this relation in (11) and changing the order of summation leads to

dx (t) n n k ( -/)
i _ _ J
X (t) = pdt + Z Ui,dej (t) + Z i, Z m de/ (t)
v j=1 =1 j'=n+1
:dMl(t)

The n—dimensional stochastic process {M (t) | t > 0} is defined as M; (t) = Z?,:nﬂ wi(j )de, (t),
for i =1,2,...,n. We can now rewrite the multivariate price dynamics (11) as

dX; (t) . ,

A0 pidt + ;gi,jd (W; (t) + M; (1)), fori=1,2,...n. (28)

Although there are more than n random sources, each stock can be described by a linear
combination of n ‘funds’, where each fund is a blend of the original random sources Wj,
ji=12,...,k

When k > n, the market is incomplete. Expression (28) shows that we can use a
smaller number of financial instruments and change the filtration. As a result, the former
incomplete market becomes complete.

5.2. k < n. Consider the n x k matrix ¥ containing the parameter ;4 on row 4 and
column j. Assume that

rank (E) =k,

so all the columns are linearly independent and it is not possible to reduce the k random
sources as we showed in Subsection 5.1. Because k < n, there are (n — k) rows which can
be expressed as linear combinations of the remaining k rows. Without loss of generality we
may assume that the first k£ rows are linearly independent. For each i = k+1,k+2,...,n,
there exists a vector Q(i) € R* such that

k
Ei,j = Z Q;Z)El’j, for ] = 1, 2, ey k.
=1
Foreachi = k+1,k+2,...,nin (11), one obtains after changing the order of summation:

k k
dX; (t) i _
v =1 j=1

Note that Z?:l o, dW; (t) = d;i’((tg) — dt, so we can write

dx; (1) 0 <dxl () .
——= = udt + 0 ——= —qdt ), fori=k+1,k+2,...,n. (29)
X (t) ; ! Xi(t)

Expression (29) shows that if k& < n and rank(i) = k, only the first k assets can be
considered as primary assets. The remaining (n — k) assets behave as funds which hold
a portfolio consisting of the primary assets.
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5.3. An arbitrage-free and complete multivariate Black & Scholes model. Gi-
ven the discussion in Subsections 5.1 and 5.2, it is reasonable to assume that k£ = n and
rank(i) = n. Under these assumptions, the reduction techniques explained in Subsecti-
ons 5.1 and 5.2 cannot be applied and we are considering a market model which consists
of n primary assets which are driven by n different random sources. In Theorem 7, we
prove that in this situation, the stock price dynamics can be equivalently described by n
correlated Brownian motions or by n independent Brownian motions.

Theorem 7. The multivariate stock price dynamics can be equivalently described by the
following two models.

(1)

dx; (t) —~_ :

X it ;%dwj (t), fori=1.2,....n, (30)
where p € R™ and ¥ = (@ij)ijerm - The filtration at time t € [0,T] is Fi' and
rank(X) = n.

(2) 1
X, (t :
X:((t)) — ,Uzdt + 0,dB; (t) , for 1=1,2,...,n, (31)

where p € R™ and ¥ = (O-iaj)ijzlzn' The dependence structure between the
Brownian motions B; (t) is captured by (25). The filtration at time t € [0,T)
is F2 and rank(X) = n.

For each t € [0,T] we have that F)V = FP and ¥ =% x ol

Josedenns. From Theorem 5, we find in case the dynamics are described by model (31),
we can always find a matrix X, such that the dynamics are described by model (30),
where the filtrations coincide.

Assume for the moment that the stock price dynamics are described by (30). For each
i, we define o; as 0?7 = Z?Zl 7 ; and the stochastic process {B; (t) | t > 0} as

By () = - 3" oW (1), ()

It can be shown that {B; (t) | t > 0} is again a standard Brownian motion.
The process {B (t) | t > 0} is defined on a filtered probability space which is equiped
with the filtration (]:tB)O<t<T of F. From (32), it follows that we can take FZ = F}V,

for each ¢ € [0, T]. The quantity o; ; is defined as
(Ti7jt = Cov (0'132 (t) 7CTij (t + S))

and the variance-covariance matrix ¥ is given by

0% 012 **° O1n
02,1 U% 0 O2n
X= . . . . )
Oni1 On2 - On
. . = .7
which shows that we can rewrite (30) as (31), where X =% x X . O

A stock market where the different stocks are assumed to follow the multivariate Black
& Scholes model (30) or (31) is arbitrage-free and complete.

Theorem 8. The multivariate Black € Scholes models (30) and (31) are complete and
arbitrage-free.
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Zlosedenns. Both models are equivalent, so it suffices to prove that (iO) is always arbitrage-
free and complete. Note that rank(E) = rank(X) = n. The matrix ¥ is assumed to be of

full rank, which implies that 5! always exists. As a consequence, we find from Theorem
3 that the multivariate Black & Scholes model (30) is always arbitrage-free. Indeed, we
can always find a vector v € R" such that (16) holds. Because rank(E) = n, we find

from Theorem 4 that (30) is a complete market.
]
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