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Abstract

In this paper we derive expressions for the Tail Variance and the
Tail Variance Premium of risks in a multivariate log-elliptical setting.
The theoretical results are illustrated by considering lognormal and
log-Laplace distributions. We also derive approximate expressions for
a Tail Variance - based allocation rule in a multivariate lognormal set-
ting. A numerical example ilustrates the accureteness of the proposed
approximations.

1 Introduction

Consider the random variable (r.v.) X representing the claims related to an
insurance policy or portfolio over a given insurance period. The cumulative
distribution function and the probability density function of X are denoted
by Fx(z) and fx(z), respectively. A premium principle transforms the r.v. X
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into a real number. It expresses the amount to be paid by the policyholder
(or insurer) as compensation for the transfer of his risk to the insurer (or
reinsurer).

Suppose that the insurer is concerned about the claims related to X
exceeding a certain threshold, e.g. the quantile F5;*(p), which is defined by

Fil'(p) = inf {z € R| Fx(z) > p}, pe (0,1).

It is well-known that the Tail Conditional Expectation (TCE), which is de-
fined by
TCE, [X]=E[X | X > F¢'(p)], pe(0,1),

is useful in measure the right-tail risk in this case.

The TCE has been studied thoroughly by various authors, see e.g. Dhaene
et al. (2006) and the references therein. Furman & Landsman (2006) observe
that in many cases the TCE does not provide adequate information about the
risks on the right tail. They illustrate their opinion by numerical examples.
In particular, TCE is a conditional expectation and hence, does not includes
information about deviation of the risk from its expectation in the upper tail.
In order to overcome this problem, Furman & Landsman (2006) introduce
two new risk measures, the (Conditional) Tail Variance and the (Conditional)
Tail Variance Premium. The first is defined by

TV, [X] = Var [X|X > F¢'(p)], »pe(0,1).
The latter combines the CTE and TV risk measures and is defined by
TVP, [X] = CTE, [X]|+ «a TV, [X], a>0,pe(0,1).

Furman & Landsman (2006) derive expressions for these new risk mea-
sures for the class of elliptical distributions. In this paper, we will consider
results related to the TV and the TVP risk measures within the class of
logelliptical distributions.

The remainder of this paper is structured as follows. In Section 2, we
recapitulate some results on (log-)elliptical distributions. Expressions for the
TV of univariate log-elliptical distributions are derived in Section 3. The
general results of Section 3 are illustrated in Section 4 where the TV for
lognormal and log-Laplace distribution functions are considered. A TV-based
allocation rule for comonotonic risks is considered in Section 5. Based on the
theoretical results of Section 5, we derive approximate expressions for the
TV-based allocation rule for general sums of lognormal r.v.’s. in Section 6.
A numerical illustration of our results is presented in Section 7.

2



2 Elliptical distributions

The random vector X = (X, Xy,..., X,,)" is said to have an elliptical dis-
tribution, written as X « E,,(u, X, 1), if its characteristic function can be
expressed as

px (t) = exp(it’ p)y (587 St) (1)
for some n-dimensional colum-vector p, some n x n positive-definite matrix
3 and scalar function 1 (t), which is called the characteristic generator. An
ellipticial distributed random vector X « E, (u,3,1)) does not necessarily
have a probability density. However, if X has a density fx (x), then it has
the following form:

f () = S [1 ()T s (x— ) @)

In
VIE[T L2

for some function g, (-), which is called the density generator. The condition
/ 2"? g, (x)dx < oo (3)
0

guarantees that g, () is a density generator (Fang, et al. 1987, Ch 2.2).
The normalizing constant ¢, in (2) is given by

o = z(:)é 2 [ /0 h x”/2_lgn(x)dx} o (@)

which is assumed to be finite. From (1) it follows that if X ~ E, (u, X, g,,) ,
Ais am xn matrix of rank m < n and b is an m-dimensional column-vector,
then

AX+b~ By (Ap+b,ASA” g,,) . (5)

In other words, any linear combination of elliptical distributions is again an
elliptical distribution with the same characteristic generator ¢/, or with same
sequence of density generators ¢y, ...g,, corresponding to .

Notice that condition (3) does not require the existence of the mean and
the covariance of vector X. It can be shown by a simple transformation in
the integral for the mean that the condition

/000 g1(z)dz < oo, (6)
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guarantees the existence of the mean. In this case, the mean vector of X ~
E, (@, %, g,) is given by E (X) = p. On the other hand, the condition

[¥'(0)] < o0, (7)
guarantees that the covariance matrix exists and is given by
Cov(X) = —¢' (0) X. (8)
Chosing the characteristic generator ¢ such that
¥ (0) = —1, (9)
implies that the covariance matrix is given by
Cov (X) = X.

More details on the elliptical family of distributions can be found in Kelker
(1970), Fang et al. (1987), Embrechts et al. (1999) and Landsman & Valdez
(2003), amongst others.

Recall that random vector X has a multivariate log elliptical distribu-
tion, written as X «~LE, (wu, 3,7), if log(X)« E, (p, 3,7) with expectations
u, generalized covariance matrix 3 and characteristic generator .

As special cases, consider the lognormal distribution LN, (u,¥) and log
Laplace distribution LN, (u,3). Their characteristic generators are given
by

¥(u) = exp(—u) (10)
and ]
V(W) = (1)
respectively.

3 The Tail Variance of univariate log-elliptical
distributions.

Throughout this paper we will only consider elliptical distributions which
have a probability density, and hence have a continuous cumulative distrib-
ution function.

We will use the notations Fx and Fx to denote the cumulative and the
decumulative distribution function of the random vector X.



Theorem 1 Let X ~ LEy(p,0,v), with o > 0. Suppose that the related

spherical distributed r.v. Z ~ Ey(0,1,1) is such that v (—20?) is finite. The
Tail Variance TV, [X] of X is then given by

TGN = (o (20 Fa (57 0) - | (<5 ) P (57 )2
p € (0,1),

where Z* and Z' are r.v.’s with respective probability densities given by

oz

fz+(2) = MfZ(Z> and fzi(2) = mfz(z). (13)

Proof. From Z < lnXT*“ it follows that

Felo) = g (IS, (14

Substituting = by z = MT_“ in the following integral expression, we find that

1 o 1 *
TCE,[X]| = rfx(v)dr = et % fr(2)dz
L=pJrsm L=pJr )
0.2
il )
= ﬁFZ*(FZ (), (15)

This expression for TCE, [ X|] can be found in Valdez et al. (2009).

Again substituting x by z = h‘%ﬁ, we find that £ [X?|X > Fy' (p)] can
be expressed as

1 [ I e

E[X?|X > F¢' (p)] = p 22 fx(z)dx = — 2o (%) dz
—PJFMp) —PJF;Np)
e2H

= 70 (-20%) Pz (R ) (16)

The expression (12) for the Tail Variance of X follows then from substituting
(14) and (12) in

TV, [X] = E[X?X > Fy'(0)] - [TCE, (). (17)



4 Examples

In this section, we will illustrate Theorem 1 by applying it to the case of
lognormal and log-Laplace distributions.

Example 1 (TV for lognormal distributions) Suppose that X ~ LE;(p,0,v) with
characteristic generator

(u) =e "
Then X is said to be lognormal distributed with parameters p and o, notation
X ~ LN(u,0).
In this case, Z ~ N(0,1) has probability density

Furthermore,

t2 2
o(-g) =
From the definition of Z* in Theorem 1, we obtain that

60’2

1 1 ,
fZ*(Z) = ?fZ(Z) = \/%exp(—i(z - 0) )7

ez

which means that
Z* ~ N(o,1),
and also )
Fz(F;' (p)) = ®(0 — @7 (p)),

where ®(x) is the standard normal cdf. Substituting these expressions in (15),
we find

2

et T
TCE,[X] = & (0 =97 (). (18)
This expression for TCE, [X] of X ~ LN(u,0) can be found in Dhaene et

al. (2008).
Similarly, we find that

6202

f2(2) = S ta(2) = ¢12—7Texp (_%(Z B 20)2) ’
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which means that Z' ~ N(20,1). Furthermore,
Fz(Fz' (p) =2 (20— @7 (p))

Substituting these expressions in (12), we find

TV, [X] = ® (20— & (p)) — [61

Example 2 (TV for log-Laplace distributions) The r.v. Y ~ Ey(u,0,)

with 1 given by
1
v =

is said to be Laplace distributed, notation Y ~ Lp(u,o0). The rv. Z ~
Lp(0,1) has probability density

(20)

)= L v

t2 1
: (‘5) —E
2

Moreover, in case Z ~ Lp(0,1), we have that

Fz_l(p):{ _%

Furthermore,

Sl

In(2p) :0<p<3,
1

n2(1-p) :i<p<l, (21

J—

Suppose now that X ~ LEy(u,0,1)) with characteristic generator 1 given by
(20). Then X is said to be log-Laplace distributed with parameters j and o,

notation X ~ LLp(u, o). Hereafter, we assume that o < ‘/75
From the definition of Z* in Theorem 1, we find that

*zzizz:i _0_2 05— V2l2|
) = iy 1) = g5 (125 ) e,

with Z ~ Lp(0,1). Substituting this expression in (15), we find

6’“’7\/1 —%2 o ek 00
ren- S n o 2 e
il
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Taking into account (21), we find

:O<p<%,
.1

(22)

)
TCE, [X] = VEI—pE=a?)
(

This expression of TCE, [X| for X ~ LL(j1,0) can be found in Dhaene et

al. (2008).
Similarly, we find that

0% 1—20?% , V2
, - - _ - “Y 20z 2|
fZ (Z) ¢(_20_2)fz(2) \/§ € )
Taking into account (16), the expressions derived above lead to

et

E[X*X > Fg'(p)] = Y (=20%) Fzr(F7'(p))

I—p

V2(1-p) (20+ﬂ) V2—20 (223)
V22 3<p<l
(2(1-p))V* (vV2-20) T2 = '

Combining (17), (22) and (23) leads to the following expression for TV:

(L <1_(2p)<ﬂa+1> . > (eu(m—(ﬂ—a)(zpw/ﬁ“))>2

V2(1-p) (204—\/5) T V2-20 V2(1—p)(2—02)
O<p<i
TV, [X] = . Per :
2eH _ 2 et
(=) (V2-20) ((2(1@)@«%))
\ s<p<l1
(24)

5 A TV-based allocation rule for comonotonic

r.v.’s

The capital allocation problem consists of allocating a given aggregate capital
K associated with an aggregate loss

S=X1+Xo+...+ X,
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to its different constituents X;, see e.g. Dhaene et al. (2011) for a general
introduction to capital allocation. Tasche (2004) introduced the TCE based
allocation rule, where the aggregate capital K is determined as

K=TCE,|9], p € (0,1),
whereas the capital K; that is located to X; is determined by
K;=FE[X;|S>F;'(p)], i=1,2,...,nand p € (0,1).

It is clear that K; can be interpreted as the contribution of X; to TCE, [S].
Landsman & Valdez (2003) derived a closed-form expression for the TCE
based allocation rule in case X «~ E, (u, 3, 9).

Furman & Landsman (2006) introduced the tail covariance allocation rule
in order to allocate the tail variance TV, [S] of a portfolio of risks to its differ-
ent components. In particular, they propose to allocate C'ov [Xi, S|S > Fg ! (p)}
to risk ¢ . This rule is additive in the sense that

TV, [S] =Y Cov [X; 8|S > Fg'(p)] = > Cov [X;, X;|S > F5'(p)] .
i=1 ij=1
(25)

They derived expressions for C'ov [Xz-, X;18 > Fs’l(p)} incase X v E, (u, X, 1).

Let us now have a look at the allocation rule (25) of Furman and Lands-
man (2006) in the log-elliptical case and hence, suppose that X «~ LE,,(pu, 3, 1).
Unfortunately, explicit formula for Cov[X;, X;|S > Fg'(p)] are not avail-
able in this case. Dhaene et al (2008) proposed an approximate formula for
E[X;|S > F5'(p)] based on the theory of comonotonicity. In the remainder
of this section we will follow and generalize their approach in order to obtain
an approximation for Cov[X;, X;|1S > Fg'(p)], i,j = 1,...,n.

Recall that the random vector X is said to be comonotonic in case there
exist non-decreasing functions fi, fo, ..., f, and a r.v. Z such that

X L (f1(2), [2(2), ..., [a(2)). (26)

Equivalently, comonotonicity can be characterized as

X £ (FlU), FeLU), ..., Fx (U)), (27)
where U is a r.v. which is uniformly distributed over the unit interval (0, 1).
For more details on the notion of comonotonicity, we refer to Dhaene et al.
(2002a,b). Hereafter, we will restrict to comonotonic random vectors with
continuous marginal cdf’s.



Theorem 2 Let X be a comonotonic random vector with continuous mar-
ginal cdf’s Fx, (x). Let S be defined by S = X1 + ...+ X,,. Furthermore, let
g(x1, ..., Tm), m = 1,...,n be a measurable function such that E [g(X;,, ..., X;, )] <
oo for any {i1,...,im} C{1,...,m}. Then one has that

= B |g(Xi o, X ) Xe > Fl (), X, > FXL )], pe(01).

Proof. As X is comonotonic we have that Fg'(p) = ZF ' (p). Further-
i=1

more, the continuity of the marginal cdf’s implies that each F )Ez_l (p) is a
strictly increasing function in p, 0 < p < 1. Combining these results we find
that the the following equivalence relations hold for each :

Y FNU)>Y Fyl(p) e U>pe= FI(U) > Filp), i=1,...,n.
= =1

Taking into account that X is comonotonic, we have that

1

(9(Xip,e o X5 ), S) 2 (g (F);l (U),... . Fx" (U)) > Fle(U)> .

Hence,

E[9(Xiy, ..., X;,)|S > F5'(p)]

9 (F5L (U)o FRL () | Y FRH0) > Y Pl )

11 im

= K

J=1

= Elg(FclU)..... Fx, () | FxL(U) > F5 (), .., Fxl, (U) > Fxl, (7))

1 im

_ E [g(Xil,...,Xim) Xi, > Fxl(p),--.. X, > F)Eilm(p)} .

Theorem 2 is a generalisation of Theorem 3.1 in Dhaene et al. (2008),
who proved this result for the special case g(x) = x.
As a corollary of the previous theorem, we immediately find the following

result, by choosing m = 2 and ¢(x1, z2) = (21 —TCE, [X;])(x2—TCE, [X,]).

10



Corollary 1 Let X be a comonotonic random vector with continuous mar-
ginal cdf’s Fx, (x). For anyp € (0,1), the contribution Cov [XZ-, X;|S > Fs_l(p)]
of risks i and j to the Tail Variance TV, [S] of S is given by

Cov [X;, X;|S > Fg'(p)] = Cov (X, X;|X; > F);j(p),Xj > F);;(p)) ,

1,7 = 1,...n,

In the sequel we will call Cov [X;, X;|S > Fg'(p)] the tail-covariance of
X; and X, and denote it by TCov, [X;, X].

6 A TV based allocation rule for sums of log-
normal r.v.’s.

Let the random vector X = (X, ..., X,,) be defined by
X = (M, ..., e™), (29)
where Y = (V3,...,Y,) ~ N, (p,%) is an n - dimensional normal vector.

Furthermore, S is defined by
S=3 e (30)
k=1

In general, it is not possible to derive an analytical expression for E[X}, | S >
F3'(p)] in this case. Therefore, we follow the idea presented in Kaas et al.
(2000) to approximate (the distribution of) the r.v. S by (the distribution
of) the r.v. T which is defined by

T=E[S|A =) El™ A=) T, (31)

where T}, = E[X} | A] and the conditioning r.v. A is a linear combination of
the Y;:

A=) B Y (32)
k=1

for appropriate constants 3,, k=1,...,n.
Let us denote the elements of the vector p by p;, and the elements of the
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positive definite assumed matrix ¥ by oy, k,l = 1,2, ...,n. The correlation
between Y, and A is denoted by 7:

1 n
ri = corr [Yi, A] = ZBZ Okis k=1,2,..,n, (33)
=1

Ok OA

with o3 given by

or=>_> B Bion. (34)

k=1 I=1
One possible choice for the coefficients 3, is given by
By = emt3oh k=1, ..n. (35)

This choice of the coefficients is proposed in Vanduffel et al. (2005), as a slight
numerical improvement to the original choice proposed in Kaas et al. (2000)
which is such that A is a linear transformation of a first-order approximation
to the sum S. In the Theorem below we will need the assumption that the
correlation coefficients 7, defined in (33) are positive. This assumption is
fulfilled when the 3, are given by (35).

Dhaene et al. (2008) approximated E[Xj | S > Fg'(p)] as follows:

BlX, | S>Fg'(p)=E[T|T > Fr'(p)]
= TCE,[T}], E=1,2,...,n. (36)
Based on this observation, we propose to approximate the tail-covariance of
X, and X in the following way:
TCov, [Xy, Xj] = E[E("* ™5 |A)|T > F:*(p)] — TCE, (T,) TCE, (T}) .
(37)

In the following theorem we derive an expression for this approximation.

Theorem 3 Let the random vector X be defined by (29). Furthermore, let

T be defined by (31), where A is such that all correlations 1y, defined in (33)

are positive. The approximation (37) for TCov, [ Xy, X;| can be expressed as
follows:
1

L—=p

2 4 ;2
ak—i—aj)

exp <,Uk + oyt 5

X {exp(okj)q) (O']J’k + orj — o1 (p)) - %(I) (O'krk — ot (p)) P (Ujrj — 3! <p>)

12
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Proof. Denote by Y;; = Y, + Y. It is clear that
Yij o N (g + 1y, 0;)  with 63, = o} + 2045 + 07 (39)

We easily find that

Cov(Yyi, A Cov? (Yi; \)
A A

Furthermore, one has that
Cov (Yi;, A) = (rh0k + 1j0;) OA.
Hence,

)()‘ B :uA)7 5%3

ij|A:)\mN<(,uk+,uj—i—(rkak+7‘jaj _(Tk0k+rj0-j)2>.

Now we define the r.v.’s Wj; as follows:

. 1
Wi = E (e"|A) = exp (uk tptg (0%, — (reow +1j0;)?) + (reow + rjaj)Z> :

where

OA
Taking into account (37) we find that

TCov, Xy, X;| = TCE,(Wy,) — TCE, (T) TCE, (T}). (40)
To determine TC'E, (W};) we notice that
1
Wij « LN (Mk + 1y + 5(% — (reok +104)%), (riow + TjUj)Q) -

Now using the formula (18) for the TCE of a lognormal distribution, we
obtain

1

1 )
exp (ﬂk + oy + 5512“‘) ® (o4rs +0m — 7 (p)) -
(41)
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Combining (41) and (18) we finally obtain the following expression from (40):

TCovy [ X, Xj]
1
L—=p

Q

1 )
exp (Mk + o+ 55%) ® (o4ri + 0 — 7 (p))

1 o} + 03 . .
T IR R @ (o — @7 (p)) @ (0m5 — 27" (p)) .

Taking into account the expression for 5% ; given in (39), we find the approx-
imation (38) for the tail-covariance T'Couv, [ Xy, X;|. =

From this Theorem we can immediately derive the following approximate
expression for Var(X;|S > F5'(p)) in the multivariate lognormal case:

exp (241 + 07) {exp(ai)q) (20 — D71 (p)) — %p (@ (oxre — 27" (1))’

From this Theorem, we also find the following approximation for the tail-
variance T'V,(S):

R oy +0o?

X |:6Xp(0'kj>q) (O'ka + o;rj — o1 (p)) - %q) (O'ka — ot (p)) P (Ujrj — 3! <p>)

(42)

7 Numerical illustration

In this section we give a numerical illustration of our theoretical results.
We use the example of a company with 4 business lines that was presented
in Dhaene et al. (2008). We illustrate the appropriateness of the proposed
approximation for the TV - based allocation rule in a multivariate lognormal
setting.

Let us assume that the multivariate risk X = (X, ..., Xy) faced by the
company has a multivariate lognormal distribution, X ~ LN, (i, ), with
marginal expectations and variances given by

(E [Xl] B [X2] B [X3] B [X4]) = (207407 10, 5)
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and
(Var [Xi],Var [Xa], Var [Xs], Var [X4]) = (5%, 15%,2%,2?),

respectively. Furthermore, the correlation between any pair (X;, X;) is given
by
corr [ X;, X;] = 0.75, 1# 7,

which means that the different business lines are rather strongly positive
dependent.
It is our goal to calculate the tail variance

TV,(S) = Zn: Cov [X;, X;[S > Fg'(p)]

4,j=1

for the probability levels p = 0, 0.6, 0.9 and 0.95, respectively.

We first determine 7'V,(S) by Monte-Carlo simulation. We use a large
sample of 10° realizations in order to minimize the standard deviation of
the sampling error. The numerical values for the conditional covariances
Cov [X;,X;|S > Fg'(p)] and for the tail variance T'V,,(S) obtained by sim-
ulation are given in Table 1.

Next, we determine the conditional covariances Cov [X;, X;|S > Fg ' (p)]
and the conditional variance T'V,(S) approximately by formulae (38) and
(42), respectively. The coefficients [, are chosen as in (35). The numerical
values for these quantities are presented in Table 2.
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Table 1

Table 2

Monte Carlo Estimation of

Comonotonic Approximation of

Cov [Xk;,Xj|S > Fs_l(p)]

Cov [Xk,Xj|S > Fgl(p)}

p =095

22.621 10.409 3.356  4.414
10.409 170.686 5.700  7.736
3356  5.700  3.262  1.814
4414 7736  1.814  5.730
TV, (S) 269.158

p =005
20.909 9.186  2.924  3.957
0.186 172.575 5.413  7.710
2.924 5413  3.153  1.669
3.957 7.710  1.669  5.577

TV, (S) 263.931

p=0.9
20.626 13.563  3.323 4.225
13.563 162.453 6.629 8.593
3.323  6.629 3.098 1.737
4.225  8.593 1.737 5.001
TV, (S) 267.317

p=0.9
19.727 13.516  3.077 3.986
13.516 165.018  6.660 8.965
3.077  6.660 3.019 1.659
3.986  8.965 1.659 4.895
TV, (S) 268.383

p=0.6
18.769 25.501  3.903 4.525
25.501 163.507 10.654 12.498
3.903 10.654  2.924 1.820
4.525 12.498  1.820 3.831
TV, (S) 306.835

p=0.6
18.656 25.810  3.901 4.523
25.810 164.318 10.702 12.647
3.901 10.702  2.929 1.826
4.523 12.647  1.826 3.837
TV, (S) 308.559

p=20
25.000 55.423  7.450 7.373
55.423 225.000 22.142  22.100
7.450 22.142  4.000 2.945
7.373 22100 2.945 4.000
TV, (S) =V(S) 492.865

p=20
25.000 55.423  7.450 7.373
55.423 225.000 22.142  22.100
7.450 22.142  4.000 2.945
7.373 22100  2.945 4.000
TV, (S) =V(S) 492.865

Table 3

Level (p) | The relative difference
0.95 1.942%

0.9 —0.399%

0.6 —0.562%

0 0%

In Table 3 the relative difference between the results of the Monte-Carlo
simulation and the results obtained via the comonotonic approximations are
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given. From Tables 1, 2 and 3 one can conclude that the proposed approxima-
tions based on the theory of comonotonicity perform well. This is particularly
true because the comonotonic approximations reduce the n -dimensional ran-
domness of the problem to a univariate randomness via the introduction of
the condition r.v. A defined in (32).

Acknowledgement 4 Jan Dhaene acknowledges the financial support of the
Onderzoeksfonds K.U. Leuven (GOA/07: Risk Modeling and Valuation of Insur-

ance and Financial Cash Flows, with Applications to Pricing, Provisioning and
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