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Abstract

In this paper we derive expressions for the Tail Variance and the
Tail Variance Premium of risks in a multivariate log-elliptical setting.
The theoretical results are illustrated by considering lognormal and
log-Laplace distributions. We also derive approximate expressions for
a Tail Variance - based allocation rule in a multivariate lognormal set-
ting. A numerical example ilustrates the accureteness of the proposed
approximations.

1 Introduction

Consider the random variable (r.v.) X representing the claims related to an
insurance policy or portfolio over a given insurance period. The cumulative
distribution function and the probability density function of X are denoted
by FX(x) and fX(x), respectively. A premium principle transforms the r.v. X
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into a real number. It expresses the amount to be paid by the policyholder
(or insurer) as compensation for the transfer of his risk to the insurer (or
reinsurer).
Suppose that the insurer is concerned about the claims related to X

exceeding a certain threshold, e.g. the quantile F�1X (p), which is de�ned by

F�1X (p) = inf fx 2 R j FX(x) � pg ; p 2 (0; 1):
It is well-known that the Tail Conditional Expectation (TCE), which is de-
�ned by

TCEp [X] = E
�
X j X > F�1X (p)

�
; p 2 (0; 1);

is useful in measure the right-tail risk in this case.
The TCE has been studied thoroughly by various authors, see e.g. Dhaene

et al. (2006) and the references therein. Furman & Landsman (2006) observe
that in many cases the TCE does not provide adequate information about the
risks on the right tail. They illustrate their opinion by numerical examples.
In particular, TCE is a conditional expectation and hence, does not includes
information about deviation of the risk from its expectation in the upper tail.
In order to overcome this problem, Furman & Landsman (2006) introduce
two new risk measures, the (Conditional) Tail Variance and the (Conditional)
Tail Variance Premium. The �rst is de�ned by

TVp [X] = Var
�
XjX > F�1X (p)

�
; p 2 (0; 1):

The latter combines the CTE and TV risk measures and is de�ned by

TVPp [X] = CTEp [X] + � TVp [X] ; � � 0, p 2 (0; 1):
Furman & Landsman (2006) derive expressions for these new risk mea-

sures for the class of elliptical distributions. In this paper, we will consider
results related to the TV and the TVP risk measures within the class of
logelliptical distributions.
The remainder of this paper is structured as follows. In Section 2, we

recapitulate some results on (log-)elliptical distributions. Expressions for the
TV of univariate log-elliptical distributions are derived in Section 3. The
general results of Section 3 are illustrated in Section 4 where the TV for
lognormal and log-Laplace distribution functions are considered. A TV-based
allocation rule for comonotonic risks is considered in Section 5. Based on the
theoretical results of Section 5, we derive approximate expressions for the
TV-based allocation rule for general sums of lognormal r.v.�s. in Section 6.
A numerical illustration of our results is presented in Section 7.
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2 Elliptical distributions

The random vector X = (X1; X2; :::; Xn)
T is said to have an elliptical dis-

tribution, written as X v En(�;�; ), if its characteristic function can be
expressed as

'X (t) = exp(it
T�) 

�
1
2
tT�t

�
(1)

for some n-dimensional colum-vector �; some n�n positive-de�nite matrix
� and scalar function  (t), which is called the characteristic generator. An
ellipticial distributed random vector X v En(�;�; ) does not necessarily
have a probability density. However, if X has a density fX (x), then it has
the following form:

fX (x) =
cnp
j�j

gn

�
1

2
(x� �)T ��1 (x� �)

�
; (2)

for some function gn (�), which is called the density generator. The conditionZ 1

0

xn=2�1gn(x)dx <1 (3)

guarantees that gn(x) is a density generator (Fang, et al. 1987, Ch 2.2).
The normalizing constant cn in (2) is given by

cn =
� (n=2)

(2�)n=2

�Z 1

0

xn=2�1gn(x)dx

��1
; (4)

which is assumed to be �nite. From (1) it follows that if X � En (�;�; gn) ;
A is am�n matrix of rankm � n and b is anm-dimensional column-vector,
then

AX+ b � Em
�
A�+ b;A�AT ; gm

�
: (5)

In other words, any linear combination of elliptical distributions is again an
elliptical distribution with the same characteristic generator  , or with same
sequence of density generators g1; :::gn, corresponding to  :
Notice that condition (3) does not require the existence of the mean and

the covariance of vector X. It can be shown by a simple transformation in
the integral for the mean that the conditionZ 1

0

g1(x)dx <1; (6)
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guarantees the existence of the mean. In this case, the mean vector of X �
En (�;�; gn) is given by E (X) = �: On the other hand, the condition

j 0(0)j <1; (7)

guarantees that the covariance matrix exists and is given by

Cov (X) = � 0 (0)�: (8)

Chosing the characteristic generator  such that

 0 (0) = �1; (9)

implies that the covariance matrix is given by

Cov (X) = �:

More details on the elliptical family of distributions can be found in Kelker
(1970), Fang et al. (1987), Embrechts et al. (1999) and Landsman & Valdez
(2003), amongst others.
Recall that random vector X has a multivariate log elliptical distribu-

tion, written as X vLEn(�;�; ), if log(X)v En(�;�; ) with expectations
�, generalized covariance matrix � and characteristic generator  .
As special cases, consider the lognormal distribution LNn(�;�) and log
Laplace distribution LNn(�;�). Their characteristic generators are given
by

 (u) = exp(�u) (10)

and
 (u) =

1

1 + u
; (11)

respectively.

3 The Tail Variance of univariate log-elliptical
distributions.

Throughout this paper we will only consider elliptical distributions which
have a probability density, and hence have a continuous cumulative distrib-
ution function.
We will use the notations FX and FX to denote the cumulative and the

decumulative distribution function of the random vector X.
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Theorem 1 Let X � LE1(�; �;  ), with � > 0. Suppose that the related
spherical distributed r.v. Z � E1(0; 1;  ) is such that  (�2�2) is �nite. The
Tail Variance TVp [X] of X is then given by

TVp [X] =
e2�

1� p
 
�
�2�2

�
�FZ0
�
F�1Z (p)

�
�
�
1

1� p
 

�
��

2

2

�
�FZ�
�
F�1Z (p)

��2
;(12)

p 2 (0; 1);

where Z� and Z 0 are r.v.�s with respective probability densities given by

fZ�(z) =
e�z

 
�
��2

2

�fZ(z) and fZ0(z) =
e2�z

 (�2�2)fZ(z): (13)

Proof. From Z
d
= lnX��

�
it follows that

fX(x) =
1

�x
fZ

�
lnx� �

�

�
: (14)

Substituting x by z = lnx��
�

in the following integral expression, we �nd that

TCEp [X] =
1

1� p

Z 1

F�1X (p)

xfX(x)dx =
1

1� p

Z 1

F�1Z (p)

e�+�zfZ(z)dz

=
e� 

�
��2

2

�
1� p

FZ�(F
�1
Z (p)); (15)

This expression for TCEp [X] can be found in Valdez et al. (2009).
Again substituting x by z = lnx��

�
, we �nd that E

�
X2jX > F�1X (p)

�
can

be expressed as

E
�
X2jX > F�1X (p)

�
=

1

1� p

Z 1

F�1X (p)

x2fX(x)dx =
1

1� p

Z 1

F�1Z (p)

e2(�+�z)fZ(z)dz

=
e2�

1� p
 
�
�2�2

�
�FZ0(F

�1
Z (p)) (16)

The expression (12) for the Tail Variance of X follows then from substituting
(14) and (12) in

TVp [X] = E
�
X2jX > F�1X (p)

�
� [TCEp(x)]2 : (17)
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4 Examples

In this section, we will illustrate Theorem 1 by applying it to the case of
lognormal and log-Laplace distributions.

Example 1 (TV for lognormal distributions) Suppose thatX � LE1(�; �;  ) with
characteristic generator

 (u) = e�u:

Then X is said to be lognormal distributed with parameters � and �, notation
X � LN(�; �).
In this case, Z � N(0; 1) has probability density

fZ(z) =
1p
2�
e�

1
2
z2 :

Furthermore,

 

�
�t

2

2

�
= e

t2

2
:

From the de�nition of Z� in Theorem 1, we obtain that

fZ�(z) =
e�z

e
�2

2

fZ(z) =
1p
2�
exp(�1

2
(z � �)2);

which means that
Z� � N(�; 1);

and also
�FZ�(F

�1
Z (p)) = �(� � ��1 (p));

where �(x) is the standard normal cdf. Substituting these expressions in (15),
we �nd

TCEp [X] =
e�+

�2

2

1� p
�
�
� � ��1 (p)

�
: (18)

This expression for TCEp [X] of X � LN(�; �) can be found in Dhaene et
al. (2008).
Similarly, we �nd that

fZ0(z) =
e2�z

e2�2
fZ(z) =

1p
2�
exp

�
�1
2
(z � 2�)2

�
;

6



which means that Z 0 � N(2�; 1). Furthermore,

�FZ0(F
�1
Z (p)) = �

�
2� � ��1 (p)

�
Substituting these expressions in (12), we �nd

TVp [X] =
e2(�+�

2)

1� p
�
�
2� � ��1 (p)

�
�
"
e�+

�2

2

1� p
�(� � ��1 (p))

#2
(19)

Example 2 (TV for log-Laplace distributions) The r.v. Y � E1(�; �;  )
with  given by

 (u) =
1

1 + u
(20)

is said to be Laplace distributed, notation Y � Lp(�; �). The r.v. Z �
Lp(0; 1) has probability density

fZ(z) =
1p
2
e�

p
2jzj:

Furthermore,

 

�
�t

2

2

�
=

1

1� t2

2

Moreover, in case Z � Lp(0; 1); we have that

F�1Z (p) =

(
1p
2
ln(2p) : 0 < p < 1

2
;

� 1p
2
ln(2(1� p)) : 1

2
� p < 1:

(21)

Suppose now that X � LE1(�; �;  ) with characteristic generator  given by
(20). Then X is said to be log-Laplace distributed with parameters � and �,
notation X � LLp(�; �). Hereafter, we assume that � <

p
2
2
.

From the de�nition of Z� in Theorem 1, we �nd that

fZ�(z) =
e�z

 
�
��2

2

�fZ(z) = 1p
2

�
1� �2

2

�
e�z�

p
2jzj;

with Z � Lp(0; 1). Substituting this expression in (15), we �nd

TCEp [X] =
e� 

�
��2

2

�
1� p

FZ�(F
�1
Z (p)) =

e�

(1� p)
p
2

Z 1

F�1Z (p)

e�z�
p
2jzjdz:
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Taking into account (21), we �nd

TCEp [X] =

8><>:
e�
�
2
p
2�(

p
2��)(2p)(�=

p
2+1)

�
p
2(1�p)(2��2) : 0 < p < 1

2
;

p
2 e�

(2(1�p))
�p
2 (
p
2��)

: 1
2
� p < 1:

(22)

This expression of TCEp [X] for X � LL1(�; �) can be found in Dhaene et
al. (2008).
Similarly, we �nd that

fZ0(z) =
e2�z

 (�2�2)fZ(z) =
1� 2�2p

2
e2�z�

p
2jzj;

Taking into account (16), the expressions derived above lead to

E
�
X2jX > F�1X (p)

�
=

e2�

1� p
 
�
�2�2

�
�FZ0(F

�1
Z (p))

=

8><>:
e2�p
2(1�p)

�
1�(2p)(

p
2�+1)

(2�+
p
2)

+ 1p
2�2�

�
: 0 < p < 1

2
;

p
2e2�

(2(1�p))
p
2�(
p
2�2�)

: 1
2
� p < 1:

(23)

Combining (17), (22) and (23) leads to the following expression for TV:

TVp [X] =

8>>>>>><>>>>>>:

e2�p
2(1�p)

�
1�(2p)(

p
2�+1)

(2�+
p
2)

+ 1p
2�2�

�
�
�
e�
�
2
p
2�(

p
2��)(2p)(�=

p
2+1)

�
p
2(1�p)(2��2)

�2
;

0 < p < 1
2

p
2e2�

(2(1�p))
p
2�(
p
2�2�)

�
� p

2 e�

(2(1�p))
�p
2 (
p
2��)

�2
1
2
� p < 1

(24)

5 A TV-based allocation rule for comonotonic
r.v.�s

The capital allocation problem consists of allocating a given aggregate capital
K associated with an aggregate loss

S = X1 +X2 + : : :+Xn

8



to its di¤erent constituents Xi, see e.g. Dhaene et al. (2011) for a general
introduction to capital allocation. Tasche (2004) introduced the TCE based
allocation rule, where the aggregate capital K is determined as

K = TCEp [S] ; p 2 (0; 1);

whereas the capital Ki that is located to Xi is determined by

Ki = E
�
Xi j S > F�1S (p)

�
; i = 1; 2; : : : ; n and p 2 (0; 1):

It is clear that Ki can be interpreted as the contribution of Xi to TCEp [S].
Landsman & Valdez (2003) derived a closed-form expression for the TCE
based allocation rule in case X v En(�;�; ).
Furman & Landsman (2006) introduced the tail covariance allocation rule

in order to allocate the tail variance TVp [S] of a portfolio of risks to its di¤er-
ent components. In particular, they propose to allocateCov

�
Xi; SjS > F�1S (p)

�
to risk i . This rule is additive in the sense that

TVp [S] =
nX
i=1

Cov
�
Xi; SjS > F�1S (p)

�
=

nX
i;j=1

Cov
�
Xi; XjjS > F�1S (p)

�
:

(25)
They derived expressions forCov

�
Xi; XjjS > F�1S (p)

�
in caseX v En(�;�; ).

Let us now have a look at the allocation rule (25) of Furman and Lands-
man (2006) in the log-elliptical case and hence, suppose thatX v LEn(�;�; ).
Unfortunately, explicit formula for Cov[Xi; XjjS > F�1S (p)] are not avail-
able in this case. Dhaene et al (2008) proposed an approximate formula for
E[XijS > F�1S (p)] based on the theory of comonotonicity. In the remainder
of this section we will follow and generalize their approach in order to obtain
an approximation for Cov[Xi; XjjS > F�1S (p)], i; j = 1; :::; n.
Recall that the random vector X is said to be comonotonic in case there

exist non-decreasing functions f1; f2; : : : ; fn and a r.v. Z such that

X
d
= (f1(Z); f2(Z); : : : ; fn(Z)) : (26)

Equivalently, comonotonicity can be characterized as

X
d
=
�
F�1X1 (U); F

�1
X2
(U); : : : ; F�1Xn (U)

�
; (27)

where U is a r.v. which is uniformly distributed over the unit interval (0; 1).
For more details on the notion of comonotonicity, we refer to Dhaene et al.
(2002a,b). Hereafter, we will restrict to comonotonic random vectors with
continuous marginal cdf�s.
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Theorem 2 Let X be a comonotonic random vector with continuous mar-
ginal cdf�s FXi (x). Let S be de�ned by S = X1 + : : :+Xn. Furthermore, let
g(x1; :::; xm); m = 1; : : : ; n be a measurable function such that E [g(Xi1 ; :::; Xim)] <
1 for any fi1; : : : ; img � f1; : : : ;mg. Then one has that

E
�
g(Xi1 ; : : : ; Xim)jS > F�1S (p)

�
(28)

= E
h
g(Xi1 ; : : : ; Xim)jXi1 > F�1Xi1

(p); : : : ; Xim > F�1Xim (p)
i
; p 2 (0; 1):

Proof. As X is comonotonic we have that F�1S (p) =
nX
i=1

F�1Xi (p). Further-

more, the continuity of the marginal cdf�s implies that each F�1Xi (p) is a
strictly increasing function in p, 0 < p < 1. Combining these results we �nd
that the the following equivalence relations hold for each i:

nX
j=1

F�1Xj (U) >
nX
j=1

F�1Xj (p), U > p() F�1Xi (U) > F�1Xi (p); i = 1; : : : ; n.

Taking into account that X is comonotonic, we have that

(g(Xi1 ; : : : ; Xim); S)
d
=

 
g
�
F�1Xi1

(U); : : : ; F�1Xim (U)
�
;
nX
j=1

F�1Xj (U)

!
:

Hence,

E
�
g(Xi1 ; :::; Xim)jS > F�1S (p)

�
= E

"
g
�
F�1Xi1

(U); : : : ; F�1Xim (U)
�
j

nX
j=1

F�1Xj (U) >
nX
j=1

F�1Xj (p)

#
= E

h
g
�
F�1Xi1

(U); : : : ; F�1Xim (U)
�
j F�1Xi1 (U) > F�1Xi1

(p); : : : ; F�1Xim(U) > F�1Xim(p)
i

= E
h
g(Xi1 ; : : : ; Xim) j Xi1 > F�1Xi1

(p); : : : ; Xim > F�1Xim (p)
i
:

Theorem 2 is a generalisation of Theorem 3.1 in Dhaene et al. (2008),
who proved this result for the special case g(x) = x.
As a corollary of the previous theorem, we immediately �nd the following

result, by choosing m = 2 and g(x1; x2) = (x1�TCEp [Xi])(x2�TCEp [Xj]).
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Corollary 1 Let X be a comonotonic random vector with continuous mar-
ginal cdf�s FXi (x). For any p 2 (0; 1), the contribution Cov

�
Xi; XjjS > F�1S (p)

�
of risks i and j to the Tail Variance TVp [S] of S is given by

Cov
�
Xi; XjjS > F�1S (p)

�
= Cov

�
Xi; XjjXi > F�1Xi (p); Xj > F�1Xj (p)

�
;

i; j = 1; :::; n;

In the sequel we will call Cov
�
Xi; XjjS > F�1S (p)

�
the tail-covariance of

Xi and Xj, and denote it by TCovp [Xi; Xj].

6 A TV based allocation rule for sums of log-
normal r.v.�s.

Let the random vector X = (X1; : : : ; Xn) be de�ned by

X = (eY1 ; : : : ; eYn); (29)

where Y = (Y1; : : : ; Yn) � Nn (�;�) is an n - dimensional normal vector.
Furthermore, S is de�ned by

S =
nX
k=1

eYk : (30)

In general, it is not possible to derive an analytical expression for E[Xk j S >
F�1S (p)] in this case. Therefore, we follow the idea presented in Kaas et al.
(2000) to approximate (the distribution of) the r.v. S by (the distribution
of) the r.v. T which is de�ned by

T = E[S j �] =
nX
k=1

E[eYk j �] =
nX
k=1

Tk; (31)

where Tk = E[Xk j �] and the conditioning r.v. � is a linear combination of
the Yi:

� =

nX
k=1

�k Yk (32)

for appropriate constants �k; k = 1; : : : ; n.
Let us denote the elements of the vector � by �k and the elements of the
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positive de�nite assumed matrix � by �kl, k; l = 1; 2; :::; n. The correlation
between Yk and � is denoted by rk:

rk = corr [Yk;�] =
1

�k ��

nX
l=1

�l �kl; k = 1; 2; :::; n; (33)

with �2� given by

�2� =
nX
k=1

nX
l=1

�k �l �kl: (34)

One possible choice for the coe¢ cients �k is given by

�k = e�k+
1
2
�2k ; k = 1; :::; n: (35)

This choice of the coe¢ cients is proposed in Vandu¤el et al. (2005), as a slight
numerical improvement to the original choice proposed in Kaas et al. (2000)
which is such that � is a linear transformation of a �rst-order approximation
to the sum S. In the Theorem below we will need the assumption that the
correlation coe¢ cients rk de�ned in (33) are positive. This assumption is
ful�lled when the �k are given by (35).
Dhaene et al. (2008) approximated E[Xk j S > F�1S (p)] as follows:

E[Xk j S > F�1S (p)] � E
�
Tk j T > F�1T (p)

�
= TCEp [Tk] ; k = 1; 2; : : : ; n: (36)

Based on this observation, we propose to approximate the tail-covariance of
Xk and Xj in the following way:

TCovp [Xk; Xj] t E[E(eYk+Yj j�)jT > F�1T (p)]� TCEp (Tk)TCEp (Tj) :
(37)

In the following theorem we derive an expression for this approximation.

Theorem 3 Let the random vector X be de�ned by (29). Furthermore, let
T be de�ned by (31), where � is such that all correlations rk de�ned in (33)
are positive. The approximation (37) for TCovp [Xk; Xj] can be expressed as
follows:

1

1� p
exp

�
�k + �j +

�2k + �2j
2

�
�
�
exp(�kj)�

�
�krk + �jrj � ��1 (p)

�
� 1

1� p
�
�
�krk � ��1 (p)

�
�
�
�jrj � ��1 (p)

��
(38)
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Proof. Denote by Ykj = Yk + Yj: It is clear that

Ykj v N
�
�k + �j; �

2
kj

�
with �2kj = �2k + 2�kj + �2j : (39)

We easily �nd that

Ykjj� = � v N

�
�k + �j +

Cov(Ykj;�)

�2�
(�� ��) ; �

2
kj �

Cov2 (Ykj;�)

�2�

�
:

Furthermore, one has that

Cov (Ykj;�) = (rk�k + rj�j)��:

Hence,

Ykjj� = � v N

�
(�k + �j + (rk�k + rj�j)

(�� ��)

��
; �2kj � (rk�k + rj�j)

2

�
:

Now we de�ne the r.v.�s Wkj as follows:

Wkj = E
�
eYkj j�

�
= exp

�
�k + �j +

1

2

�
�2kj � (rk�k + rj�j)

2
�
+ (rk�k + rj�j)Z

�
;

where

Z =
�� ��
��

v N(0; 1):

Taking into account (37) we �nd that

TCovp [Xk; Xj] t TCEp(Wkj)� TCEp (Tk)TCEp (Tj) : (40)

To determine TCEp (Wkj) we notice that

Wkj v LN

�
�k + �j +

1

2
(�2kj � (rk�k + rj�j)

2); (rk�k + rj�j)
2

�
:

Now using the formula (18) for the TCE of a lognormal distribution, we
obtain

TCEp (Wkj) =
1

1� p
exp

�
�k + �j +

1

2
�2kj

�
�
�
�krk + �jrj � ��1 (p)

�
:

(41)

13



Combining (41) and (18) we �nally obtain the following expression from (40):

TCovp [Xk; Xj]

t
1

1� p
exp

�
�k + �j +

1

2
�2kj

�
�
�
�krk + �jrj � ��1 (p)

�
� 1

(1� p)2
exp

�
�k + �j +

�2k + �2j
2

�
�
�
�krk � ��1 (p)

�
�
�
�jrj � ��1 (p)

�
:

Taking into account the expression for �2kj given in (39), we �nd the approx-
imation (38) for the tail-covariance TCovp [Xk; Xj].
From this Theorem we can immediately derive the following approximate

expression for V ar(XkjS > F�1S (p)) in the multivariate lognormal case:

1

1� p
exp

�
2�k + �2k

� �
exp(�2k)�

�
2�krk � ��1 (p)

�
� 1

1� p

�
�
�
�krk � ��1 (p)

��2�
From this Theorem, we also �nd the following approximation for the tail-
variance TVp(S):

1

1� p

nX
k;j=1

exp

�
�k + �j +

�2k + �2j
2

�
�
�
exp(�kj)�

�
�krk + �jrj � ��1 (p)

�
� 1

1� p
�
�
�krk � ��1 (p)

�
�
�
�jrj � ��1 (p)

��
(42)

7 Numerical illustration

In this section we give a numerical illustration of our theoretical results.
We use the example of a company with 4 business lines that was presented
in Dhaene et al. (2008). We illustrate the appropriateness of the proposed
approximation for the TV - based allocation rule in a multivariate lognormal
setting.
Let us assume that the multivariate risk X = (X1; :::; X4) faced by the

company has a multivariate lognormal distribution, X � LN4 (�;�) ; with
marginal expectations and variances given by

(E [X1] ; E [X2] ; E [X3] ; E [X4]) = (20; 40; 10; 5)

14



and
(V ar [X1] ; V ar [X2] ; V ar [X3] ; V ar [X4]) =

�
52; 152; 22; 22

�
;

respectively. Furthermore, the correlation between any pair (Xi; Xj) is given
by

corr [Xi; Xj] = 0:75; i 6= j;

which means that the di¤erent business lines are rather strongly positive
dependent.
It is our goal to calculate the tail variance

TVp(S) =
nX

i;j=1

Cov
�
Xi; XjjS > F�1S (p)

�
for the probability levels p = 0; 0:6; 0:9 and 0:95, respectively.
We �rst determine TVp(S) by Monte-Carlo simulation. We use a large

sample of 106 realizations in order to minimize the standard deviation of
the sampling error. The numerical values for the conditional covariances
Cov

�
Xi; XjjS > F�1S (p)

�
and for the tail variance TVp(S) obtained by sim-

ulation are given in Table 1.
Next, we determine the conditional covariances Cov

�
Xi; XjjS > F�1S (p)

�
and the conditional variance TVp(S) approximately by formulae (38) and
(42), respectively. The coe¢ cients �k are chosen as in (35). The numerical
values for these quantities are presented in Table 2.
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Table 1 Table 2
Monte Carlo Estimation of Comonotonic Approximation of
Cov

�
Xk; XjjS > F�1S (p)

�
Cov

�
Xk; XjjS > F�1S (p)

�
p = 0:95����������

22:621 10:409 3:356 4:414
10:409 170:686 5:700 7:736
3:356 5:700 3:262 1:814
4:414 7:736 1:814 5:730

TVp (S) 269:158

����������

p = 0:95����������
20:909 9:186 2:924 3:957
9:186 172:575 5:413 7:710
2:924 5:413 3:153 1:669
3:957 7:710 1:669 5:577

TVp (S) 263:931

����������
p = 0:9����������

20:626 13:563 3:323 4:225
13:563 162:453 6:629 8:593
3:323 6:629 3:098 1:737
4:225 8:593 1:737 5:001

TVp (S) 267:317

����������

p = 0:9����������
19:727 13:516 3:077 3:986
13:516 165:018 6:660 8:965
3:077 6:660 3:019 1:659
3:986 8:965 1:659 4:895

TVp (S) 268:383

����������
p = 0:6����������

18:769 25:501 3:903 4:525
25:501 163:507 10:654 12:498
3:903 10:654 2:924 1:820
4:525 12:498 1:820 3:831

TVp (S) 306:835

����������

p = 0:6����������
18:656 25:810 3:901 4:523
25:810 164:318 10:702 12:647
3:901 10:702 2:929 1:826
4:523 12:647 1:826 3:837

TVp (S) 308:559

����������
p = 0����������

25:000 55:423 7:450 7:373
55:423 225:000 22:142 22:100
7:450 22:142 4:000 2:945
7:373 22:100 2:945 4:000

TVp (S) = V (S) 492:865

����������

p = 0����������
25:000 55:423 7:450 7:373
55:423 225:000 22:142 22:100
7:450 22:142 4:000 2:945
7:373 22:100 2:945 4:000

TVp (S) = V (S) 492:865

����������
Table 3
Level (p) The relative di¤erence
0:95 1:942%
0:9 �0:399%
0:6 �0:562%
0 0%

In Table 3 the relative di¤erence between the results of the Monte-Carlo
simulation and the results obtained via the comonotonic approximations are
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given. From Tables 1, 2 and 3 one can conclude that the proposed approxima-
tions based on the theory of comonotonicity perform well. This is particularly
true because the comonotonic approximations reduce the n -dimensional ran-
domness of the problem to a univariate randomness via the introduction of
the condition r.v. � de�ned in (32).
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