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Abstract

In this paper we show that under appropriate moment conditions, the supermod-
ular ordered random vectors X = (X3, X2,...,X,) and Y = (Y1,Ys,...,Y,) with
equal expected utilities (or distorted expectations) of the sums X1 + Xo + ...+ X,
and Y7 +Ya+ ... +Y,, for an appropriate utility (or distortion) function, must nec-
essarily be equal in distribution, that is X 4 Y. The results in this paper can be
considered as generalizations of the results of Cheung (2010]), who presents neces-
sary conditions related to the distribution of X7 + X5 + ... 4+ X,, for the random
vector X = (X1, Xs,...,X,) to be comonotonic.

Keywords: supermodular order, concordance order, expected utility, distorted
expectation, comonotonicity.

1 Introduction

Both expected utility theory and distorted expectation theory offer a framework to de-
scribe how economic agents make choices under risk. In these theories, a random vari-
able (r.v.) X describing a random future wealth is transformed into an expected utility
E [u(X)] or a distorted expectation p,[X], respectively. Preferences between random
wealths X and Y are then based on comparing the real numbers E [u(X)] and E [u(Y)]
(or py [X] and p, [Y]) corresponding to the alternatives.

In this paper, we investigate and repeat some results on how the expected utility
E [u(X)] can be decomposed in terms of the upper - and lower tails E [(X — K)_] and
E[(K — X),] of X, as well as how the distorted expecation p, [X] can be expressed in
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terms of the Tail Values-at-Risk of X. Furthermore, we consider ordering conditions un-
der which equality of the expected utililties E [u(X)] and E[u(Y')] (or of the distorted
expectations p, [X] and p, [Y]) of two r.v.’s X and Y implies that both are equally dis-
tributed.

Cheung (2010)) shows that, under mild conditions, a random vector X = (X1, Xo, ..., X,)
is comonotonic provided the sum S = X; 4+ X5+ ...+ X, has the same distribution as the
sum S¢ = X{+ X5+ ...+ X¢ of the comonontonic counterpart X< = (X7, X5, ..., X¢) of
X. Furthermore, he shows that under the appropriate conditions, equality of the expected
utilities E [u(5)] and E [u(S¢)] (or of the distorted expectations p, [S] and p, [S€]) implies
that the random vector X is comonotonic.

In this paper, we generalize some of Cheung’s results by establishing ordering condi-
tions under which two random vectors X and Y having equally distributed sums Sy =
Xi+Xo+...+X,and Sy =Y + Y5+ ... 47V, are equal in distribution. We also show
that under the appropriate conditions, equality of E [u(Sx)] and E [u(Sy)] (or of p, [Sx]
and p, [Sy]) implies that X and Y are equally distributed.

The remainder of this paper is organised as follows. In Section [2| it is shown that
expected utilities can be expressed as linear combinations of upper - and lower tails.
Furthermore, it is also shown that distorted expectations can be expressed in terms of
Tail Values-at-Risk. Some useful expressions for the expected value of a function of the
sum of the components of a random vector, in terms of its multivariate distribution, are
derived in Section [3| In Section [d] conditions are considered under which convex ordered
r.v.’s are necessary equal in distribution. Multivariate extensions of this result are derived
in Section [5], where conditions are considered under which supermodular ordered random
vectors are equal in distribution. Finally, Section [6] considers the special case where a
random vector and its comonotonic modification are compared.

2 Expected utilities and distorted expectations

2.1 Expected utilities and stop-loss premiums

Throughout this paper, we will use the notation I to denote an interval of the real line.
Furthermore, inf I = inf{z |z € I} and sup/ = sup{z |z € I}. The interval I may
be bounded or not, implying that inf / and sup I may be finite or infinite. Hereafter,
we will often consider functions f : I — R with absolutely continuous derivative. This
means that f’ is continuous on I, that f’ has a derivative f” a.e. on I, and that for
any elements x and a of I, we have that f'(z) = f'(a) + [ f” (K)dK. Continuity in an
eventual real-valued lower or upper endpoint of I has to be understood as right or left con-
tinuity, whereas differentiability in such an endpoint means right or left differentiability.
Differentiability in a point means that the derivative (resp. right or left derivative) is well-
defined and finite. Finally, notice that all integrals in this paper have to be interpreted
as Lebesgue integrals.

In the following lemma, it is shown that any sufficiently smooth function u(x) can be

expressed as a mixture of right and left tail functions of the form (v — K), and (K — ),
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K € R. Furthermore, E [u (X)] can be expressed in terms of the corresponding right -
and left tails B [(X — K),] and E [(K — X),].

Lemma 1 Let X be a r.v. with finite expectation and I an interval such that Pr[X € I| =
1. Furthermore, consider the function u : I — R with absolutely continuous derivative
u'.

(1) For any a € I, the r.v. u(X) can be expressed as

u(X):u(a)+u'(a)(X—a)+/ u" (K)(K - X), dK

inf I

+/Suplu”(K)(X—K)+dK a.s. (1)

(2) In case fsup[ " (K)dK is well-defined, we have that E[u (X)] is well-defined as well,

inf I
and for any a € I it can be expressed as

Bl (X)) = (o) + o/ () BY] — )+ [ (B[ - X),] dK

inf I

+ / (K E (X - K),] dK. (2)

For a proof of this lemma we refer to Appendix

When ' is absolutely continuous, convexity of u is equivalent with «”(x) > 0 a.e.
on I. Hence, flilf}l u” (K)dK is well-defined if v is convex, implying that the expression
for E[u (X)] holds in particular for convex functions u with an absolutely continuous
derivative u’. The function u (z) = e, t € R, is an example of such a function. Similarly,

expression holds for concave functions u with absolutely continuous derivative.

In case fli?}l u” (K) dK is finite, we have that E[u (X)] in (2)) is finite as well. This
condition is fulfilled in particular when [ is a closed and bounded interval.

A function with a continuous derivative is absolutely continuous. This implies that a
function u with continuous second derivative u” has an absolutely continuous derivative u'.
Hence, Lemma (1] holds in particular for the class of functions w with continuous second
derivative u”. The convex function u(z) = (z — K)?, with K a given real number, is
an example of such a function. On the other hand, Lemma [I] also holds for the convex
function v (z) = (x — K )i, where the notation y2 is used for [max (y,0)]?, although its
second second derivative does not exist in K.

Formula is well-known in the actuarial literature for the special case when u(x) =
(z —E[X])? and a = E[X], leading to an expression for the variance of a r.v. in terms of
its stop-loss premiums; see e.g. Kaas et al. (2008).

F'ollmer and Schied (2004) derive an expression similar to (1)) for increasing and convex
functions u with right-hand derivative; see also |(Cheung (2010)).

Formula has a ‘natural’ interpretation in terms of contingent claims and hedging;
see e.g. (Carr and Madan (2001)). Indeed, suppose that X is the price of a traded asset
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at a future time 7. The right hand side of expression is the pay-off at time T of a
static investment position, taken at time 0. Indeed, the first term is the pay-off of a long
position in u (a) zero coupon bonds, each with pay-off an amount of 1 at time 7. The
second term corresponds to the pay-off of a long position in v’ (a) calls with strike a and a
short position in u’ (a) puts with strike a. The third term is the pay-off of a long position
in u” (K)dK puts for all strikes less than a, while the fourth term is the pay-off of a long
position in u”(K)dK calls for all strikes greater than a, We can conclude that the right
hand side of formula (1)) corresponds with the pay-off at time 7" of a model-free static
replicating strategy for the contingent claim with pay-off u (X) at T

2.2 Distorted expectations and Tail Values-at-Risk

Lemma (1] can be interpreted in the framework of expected utility theory. In this section,
we consider a related lemma which allows an interpretation in terms of the dual theory
of choice under risk, where distorted expectations are used instead of expected utilities.

A distortion function is defined as a non-decreasing function g : [0,1] — [0, 1] such
that ¢(0) = 0 and g(1) = 1. For any r.v. X, the distorted expectation associated with
distortion function g, notation p, [X], is defined by

0 +o00
py [ X] = —/ [1—g(Fx(z))] dx—i—/ 9 (Fx(z)) dz, (3)

—00 0
provided at least one of the two integrals in is finite.

If g is absolutely continuous, it can be proven that p, [X] can be expressed as
Py [X] =E[Fy'(U)g' (1 -U)], (4)
where U is a r.v. which is uniformly distributed on the unit interval and
Fy'(p) =inf{z | Fx(z) 2 p},  pel0.1],
with inf @ = 400 by convention; see e.g. [Dhaene, Kukush, Linders and Tang (2012).
The distortion function g defined by

for some p € [0, 1), is absolutely continuous. The related distorted expectation p, [X] is
known as the Tail Value-at-Risk at level p, notation TVAR,, [X]. Taking into account (4)),
this distorted expectation can be expressed as

1 1

TVAR, [X] = - Fy'(q)dg. (5)

In the following lemma, we prove that distorted expectations related to a distortion
function with absolutely continuous derivative ¢’ can be expressed as a mixture of Tail

Values-at-Risk.



Lemma 2 Let X be a r.v. with finite expectation and g a distortion function with ab-
solutely continuous deriative g'. In this case, the distorted expectation p, [X] is finite and
can be expressed as

oy [X] = ¢/ (DE[X] - / (1-p)¢"(1 - p)TVAR, [X] dp. (6)

For a proof of this lemma, we refer to Appendix [A.2]

Lemma [2 holds in particular for convex and concave distortion functions with an ab-
solutely continuous derivative. On the other hand, convex and concave distortion functions
with continuous derivative do not necessarily satisfy the conditions of Lemma [2l Consider
e.g. the distortion function ¢ defined by

9(q) = Ly clo)dp

where ¢ is a singular continuous distortion function (e.g. the Cantor function). As ¢'(¢) =
(q)

fol c(p)dp

is singular continuous, which means that it does not satisfy the conditions of the lemma.

, 0 < g <1, we have that ¢’ is non-decreasing, and hence, g is convex. Further, ¢’

Lemma [2 holds in particular for the class of distortion functions g with continuous
second derivative (which implies that ¢’ is absolutely continuous), see e.g. Property 2.6.6
in Denuit et al.| (2005). For any ¢ # 0, the function g(q) = e:__ll, 0 < g <1,is an example
of a such a convex (if ¢ > 0) or concave (if ¢ < 0) distortion function.

3 Random vectors and the sum of their components

Hereafter, we use the notation X to denote the n-vector (X1, Xs, ..., X,,). The sum of its
components is denoted by Sy, i.e.

Sx=Xi+...+X,. (7)

The cumulative distribution function (cdf) and the decumulative distribution function
(ddf) of X are denoted by Fx and F'x, respectively.

In the following lemma we present expressions for E [(Sx — K )Tf:l] andE [(K — S X)Tl]
in terms of the ddf Fx and the cdf Fy of X, respectively. The notation y3 is used for
[max (y,0)]°. The first expression in the lemma was proven in Boutsikas and Vaggelatou
(2002). We repeat its proof in the appendix in order to make the paper self-contained.

n—1

Lemma 3 For any random vector X and any real K, we have that & [(SX - K)}

be expressed as

+oo +oo n—1
E[(SX—KXT_il} :(n—l)‘/ / F& (l’l,..‘,l‘n_l,K— E I'Z) dxl...dxn_l,
- % i=1

(8)

] can



while B [(K — SX)TI] can be expressed as

+oo “+o00o n—1
E[(K_SX)Z_I} :(n—l)!/ / Fx (a;l,...,xnl,K—in) dry...dz,_1.
(9)

For a proof of this lemma we refer to Appendix

The quantities E [(Sx — K)Tl} and E [(K — SX)zfl] in (8) and @ are well-defined,

but may eventually be equal to +o0o. Hereafter, we summarize several (necessary and)
sufficient conditions for these expectations to be finite.

First, we have that
E[(X:)7 '] < 4ooforalli =E[(Sx)T '] < +00 & E[(Sx — K)} '] < +oo for all K,

(10)
while

E[(X:)"'] < 4ooforalli = E [(Sx)" '] < +00 & E[(K — Sx)}'] < +oo for all K.

(11)

Here, the notation y* is used for [— min (y, 0)]°.

Further, the conditions
E[1X:|""] < +00,i=1,2,...,n, (12)
imply the first conditions in and , whereas the condition
E [|Sx|" '] < 400 (13)

implies the second conditions in and .

Finally, notice that any of the conditions that we considered in , , and
(13)) implies that this condition also holds if we replace the exponent n—1 by the exponent
kE,k=1,2,...,n— 1.

In case n = 2, expression @D reduces to :

—+00

E[(K—SX)J:/ Fx (z, K — x)dx.

Taking into account that E [(K — Sx).] =E [(Sx — K),] — E[Sx] + K, this expression
can be transformed in

+oo

E[(Sx — K),] :/ Fx (v, K —z)dz + E[Sx] — K,

o0

which can be found e.g. in Dhaene and Goovaerts| (1996)).

In the following lemma we derive expressions for [E [etSX } in terms of the cdf or the
ddf of X, depending on the value of ¢.



Lemma 4 Consider the n-vector X and the sum of its components Sx.
For any t <0, one has that E [etSX } can be expressed as

+o00 +o0
E [e"¥] = / / Hortten) Py (z) day . . . day,. (14)

For any t > 0, one has that & [etSX} can be expressed as
+oo “+o0o
o] = / / oo+ T (1) day . day. (15)

A proof of this lemma can be found in Appendix [A.4]

For any real ¢, the expectation [E [etSX } in Lemma (4] is well-defined and non-negative,
but eventually equal to +00. However, in case [ [e”tXi < 4o, foralle=1,2,...,n, the
generalized Holder inequality leads to

n
tSX H ntX 1/n<—i—oo.

=1
The relation between the conditions “E [(Sx)ifl} < +00” or “E [(SX)Tl} < +00”

at the one hand, and “E [etSX } < 400” at the other hand is explored in the following
lemma.

Lemma 5 For any r.v. X, the following implications hold:

]E[etX} < 400 for somet <0 =E (X)]i <400, k=1,2,... (16)
and ) )
E[etx] < 400 for some t > 0=E (X)i <400, k=1,2,... (17)

For a proof of this lemma, see Appendix

The results that we proved in this section will be used to prove results on conditions
under which convex ordered r.v.’s, or supermodular ordered random vectors, are equal in
distribution.

4 Convex order and equally distributed random vari-
ables

In this section, we consider conditions under which convex ordered r.v.’s are equal in dis-

tribution. We use the notation = to indicate ‘equality in distribution’. We first introduce
the definition of convex order.



Definition 6 The r.v. X is smaller than the r.v. Y in convex order, notation X <. Y,
if
EX]=E[Y] andE[(X — K),] <E[Y - K).], for dl K € R. (18)

A summary of other characterizations and properties of convex order can be found
e.g. in |Denuit et al. (2005)).

4.1 Convex order, expected utilities and equally distributed
random variables

In expected utility theory, a decision maker is risk averse if he has a (non-decreasing
and) concave utility function. Consider now the r.v.’s X and Y with equal expectations.
The ordering relation X <., Y means that all risk averse decision makers prefer random
wealth X over random wealth Y. In the following theorem we show that if X <., Y and
in addition, there is a particular risk averse decision maker (with an appropriate utility
function) who is indifferent between X and Y, then we can conclude that X and Y are
equal in distribution.

Theorem 7 Consider the r.v.’s X and 'Y with finite expectations and the interval I with
Pr[Y € I] = 1. Furthermore, let w : I — R be a strictly concave (or strictly convez)
function with absolutely continuous derivative u' and such that B [u (Y)] is finite. Then

we have that
X =Y andBu(X)] =Eu(Y) = X2V (19)

For a proof of this lemma, we refer to Appendix [A.6]

A proof of Theorem [7| for the narrower class of twice continuously differentiable func-
tions u can be found in |Cheung (2010)). This is result also follows from Theorem 3 A43
and Theorem 3 A60 in Shanthikumar and Shaked (2007)).

Theorem [7] requires that the expectations E[Y] and E [u (V)] are finite. If u is convex
and Y is bounded from below, we have that [E [u (Y')] is finite implies that E [Y] is finite.
Indeed, in this case a + bY < u (Y') holds a.e. for a constant a and a positive constant b,
while ¢ <Y holds a.e. for a constant c. These inequalities imply that E [Y] is finite. On
the other hand, if u is concave and u (Y") is bounded from below, we can prove in a similar
way that E[Y] is finite implies that E [u (Y')] is finite. Finally, notice that the condition
that « (Y') is bounded from below is satisfied when u is non-decreasing and Y is bounded
from below.

Consider a r.v. X with finite expectation | [X]. The function (z — E[X])” is an exam-
ple of a strictly convex function u with absolutely continuous derivative. From Theorem
[, we can conclude that for two r.v.’s X and Y with finite expectations and such that
Var[Y'] is finite, we have that

X =, Y and Var [X] = Var[Y] = X 2 V. (20)
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Similarly, for any r.v.’s X and Y with finite expectations and such that E [ety} is finite
for some t # 0, we have that

X =pY andE[eX] =B["] = X LY. (21)

Remark that the condition that u is strictly concave (resp. strictly convex) on [ in
Theorem [7| cannot be weakened to the condition that u is concave (resp. convex), i.e.
u’(K) > 0 a.e. (resp. v”/(K) < 0 a.e.), as in this case we cannot conclude from in
Appendix that E [(Y — K),| =E [(X — K)_] holds for all K.

4.2 Convex order, distorted expectations and equally distrib-
uted random variables

In the dual theory of choice under risk, a decision maker is risk averse if he has a (non-
decreasing and) convex distortion function. Consider now the r.v.s X and Y with equal
expectations. Also in this dual theory, the ordering relation X <. Y means that all
risk averse decision makers prefer gain X over gain Y. In the following theorem we show
that if X <. Y and in addition, there is a particular risk averse decision maker (with
an appropriate distortion function) who is indifferent between X and Y, then we can
conclude that X and Y are equal in distribution.

Theorem 8 Consider the r.v.’s X and Y with finite expectations. Furthermore, let g
be a strictly convex (or strictly concave) distortion function with absolutely continuous
derivative ¢'. Then we have that

X =uY and py[X] =p,[Y] = X 2 V. (22)
Proof. From Lemma [2 we know that p, [X] and p, [Y] are finite.
The convex order relation X <., Y means that E[X] = E[Y] and
TVAR, [X] < TVAR, [Y], for all p € (0,1),
see e.g. Dhaene et al.| (2006). Taking into account Lemma [2| we have that
0= py[Y] — py [X]

B / (1-p)g"(1 - p) (TVAR, [Y] - TVAR, [X]) dp. (23)

As the derivative ¢’ is absolutely continuous, we have that the condition that ¢ is a strictly
convex distortion function is equivalent with ¢”(p) > 0 almost everywhere. Hence, the
integrand is non-negative. Furthermore, as the function TVAR, [Y]| —TVAR, [X] is a
continuous function of p, we can conclude that

TVAR, [X] = TVAR, [Y], for all p € (0,1). (24)
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It is well-known that
E[(X-K),]<E[(Y -K),], forall K eR

is equivalent with

TVAR, [X] < TVAR, [Y], for all p € (0,1),
see e.g. Proposition 3.4.8 in Denuit et al.| (2005)). Hence, (24) is equivalent with
g 1Y ) q

E[(X-K),]=E[(Y-K),]|, forall K € R,

which in turn is equivalent with X dy. ]

A proof of Theorem [§| can also be found in |Cheung| (2010), under the following weaker
conditions on the distortion function: ¢ is continuously differentiable and strictly convex
(or strictly concave). Although somewhat less general, the proof presented here is more
transparent and elegant than the original proof.

The function g(q) = eetf:ll, 0 < ¢ <1 is an example of a distortion function satisfying

the conditions of Theorem [8. For any ¢ > 0, we have that g is strictly convex, while for
any t < 0, it is strictly concave.

Remark that the condition that g is strictly convex (resp. strictly concave) in Theorem
cannot be weakened to the condition that g is convex (resp. concave), i.e. ¢”(¢q) > 0 a.e.
(resp. ¢"(q) < 0 a.e.), as in this case, we cannot conclude from that TVAR,, [ X]| and
TVAR, [Y] are equal for all values of p.

5 Supermodular order and equally distributed ran-
dom vectors

Hereafter, we use the notations X and Y to denote the n-vectors (X3, Xs,...,X,,) and
(Y1,Y5,...,Y,), respectively. The sums of their components are denoted by Sx and Sy,
respectively:

Sx=X;+...+X,and Sy =Y, +...+Y,,. (25)

We start this section by repeating the definitions of some well-known orders between
(distributions of) random vectors.

Definition 9 Consider the random vectors X and Y .
(a) X is smaller than Y in the lower orthant order, notation X <0 Y, if

Fx (z) < Fy (2), for all z € R™. (26)
(b) X is smaller than Y in the upper orthant order, notation X <yo Y, if
Fx(z) <Fy(z),  foralzeR" (27)

(c) X is smaller than Y in the concordance order, notation X <¢ Y, if both X <10 Y
and X <yo Y hold.
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The concordance order was introduced by lJoe| (1997)). The order relation X <¢ Y

implies that X, 4 Y;, © = 1,2,...,n. Intuitively, X <70 Y means that joint small
outcomes are more likely to occur for Y than for X, while X <yo Y means that joint
large outcomes are more likely to occur for Y than for X. The ordering relation X <o Y
means that joint small outcomes as well as joint large outcomes are more likely to occur
for Y than for X. In this sense, X <¢ Y can be interpreted as Y is ‘more positive
dependent’ than X.

Before introducing the supermodular order, we have to define supemodular functions.
For any arbitrary function f : R" — R, real-valued n - vector z = (21,2 ..., ,), integer
i€{1,2,...,n} and positive real number ¢, the notation A f (x) is defined by

ASf(z)=f(r1, 0. 2+, mp1, .-, Tn) — [ (21,22, . 2y)

Definition 10 (Supermodular function) A function f : R" — R is said to be su-
permodular if

0 AE
Ainf (z) >0
holds for every x € R", 1 <i < j <n and all 6, > 0.

We are now ready to define the supermodular order.

Definition 11 (Supermodular order) Consider two random vectors X and Y. Then
X s said to be smaller in the supermodular order than Y, notation X <gp Y, if

E[f (X)] <E[f(Y)]

holds for all supermodular functions f : R — R for which the expectations exist.

It is well-known that supermodular order implies concordance order:

XY =X=cY

=

(28)

see e.g. Proposition 6.3.9 in Denuit et al.| (2005)). Since (T'chen| (1980)), it is known that
supermodular order and concordance order are equivalent in the bivariate case. In this case
case, both orders also coincide with the correlation order; see e.g. [Dhaene and Goovaerts
(1996, (1997). |Joe (1997) has shown that supermodular order is not equivalent with
concordance order for dimension n > 4. Miiller and Scarsini| (2000) have shown that the
non-equivalence statement also holds for dimension n = 3.

Supermodular order implies convex order of the sums of the respective components:
X 2sn Y = Sx 2 Sy,

see e.g. Proposition 6.3.9 in Denuit et al.| (2005). On the other hand, Miiller| (1997) has
shown that this implication can in general not be strenghtened to the concordance order:

chxﬁ S’X jcm SY'

In the following theorem we prove that under the appropriate conditions, lower orthant
orthant (resp. upper orthant) ordered random vectors with equally distributed sums are
equal in distribution.
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Theorem 12 Consider the n-vectors X and Y, as well as the respective sums of their
components Sx and Sy.
In case B [(Sy)i_l} < +00, we have that

X =poY and Sx £ Sy = X £Y. (29)

In case E[(Sy)7 '] < +o0, we have that

X=poY and Sx £ 5y = X2y, (30)

Proof. Let us prove , assuming that E [(Sy)ﬁ_l] < +4o00. From 1) and Sy 4 Sy
we find that B [(K — Sy)} '] and E [(K — Sx)" '] are equal and finite, for any value
of K. Expression @ in Lemma 3| leads to the following relation, which holds for any
particular value of K:

0=[(K—Sy)I '] -E[(K-Sx)} ]

+oo +oo
:(n—l)!/ da:l.../ dz,—1 (Fy (z1,...,2p_1,2)) — Fx (T1,.. ., Tp_1,2))),
(31)

with

The ordering relation X <;o Y implies that the integrand in is always non-negative.
Hence, we have that

*
n

Fx (z1,...,2p-1,2) = Fy (z1,...,2y_1,2}), for any (z1,...,2,-1) € R”_l\AK,

n

where \,_; is the Lebesgue measure on R"™! and Ag is a subset of R*! such that
An—1(Ak) = 0. Taking into account the continuity from above of the integrand in ,
we find that

Fx (x1,...,20 1,25) = Fy (z1,..., 2, 1,2%), for any (21,...,2, 1) € R" ! and any K.

This observation implies that Fy (z) = Fy (z), for any € R"”, which means that X dy.

The proof of , under the assumption that E [(Sy)i_l} < 400 holds, follows the
same lines as the proof above, taking into account expression in Lemma .

|

Suppose that one of the moment conditions in Theorem |12/ holds true. Then it follows

from the same theorem that in case X <gj; Y, it suffices to verify whether Sx and Sy

are equally distributed in order to be able to conclude that the random vectors X and Y
are equal in distribution.

Both moment conditions in Theorem[I2]can be replaced by the stronger, but somewhat
more obvious finite moment conditions or ; see the discussion after Lemma
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Combining Theorem [7] and Theorem [I2] while taking into account the properties of
supermodular and concordance order that were mentioned above, leads to the following
theorem.

Theorem 13 Consider the n-vectors X andY , with respective sums Sx and Sy which are
assumed to have finite expectations. Furthermore, consider the interval I with Pr [Sy € I] =
1, and the strictly concave (or strictly convex) function u : I — R with absolutely con-
tinuous derivative u' such that B [u (Sy)] is finite. Finally, suppose that either

E [(Sy)qfl] < +oo or E [(Sy)fl} < +o00. (32)
Then we have that
X <sn Y andBu(Sx) =Eu(Sy) = X2Y. (33)

The theorem above can be interpreted in terms of expected utility theory. It states
that under the appropriate conditions and when X <g,; Y, it suffices to verify whether
there is a particular risk averse decision maker who is indifferent between Sx and S, in
order to be able to conclude whether X and Y are equal in distribution or not.

Combining Theorem [§] and Theorem (12| leads to the following theorem which has a
similar interpretation in terms of the dual theory of choice under risk.

Theorem 14 Consider the n-vectors X and Y with sums Sx and Sy with finite expecta-
tions. Furthermore, let g be a strictly convex (or strictly concave) distortion function with
absolutely continuous derivative ¢'. Finally, suppose that

E [(Sy)’i_l} < +o00 or B [(Sy)i_l] < +o0. (34)

Then we have that

d

X 2sgm Y and py [Sx] = py [Sy] = X =Y. (35)

Notice that a slightly stronger version of both Theorems [13| and [14 may be derived in
the sense that when E [(Sy)ﬁ_l] < 400, we have that X <g5; Y may be replaced by the
weaker conditions that X <70 Y and Sx <., Sy. Similarly, when E [(Sy)fl] < 400,
we have that X <g3; Y may be replaced by X <pyo Y and Sx <. Sy.

From Lemma follows that the condition E [(Sy)" '] < +oo (resp. E [(Sy)} '] <
+00) in Theorem |12, Corollary and Corollary can be replaced by the stronger
condition [E [etSY} < 400 for some t < 0 (resp. E [etSY] < 400 for some t > 0). Notice
that a direct proof of Theorem [12] under these stronger conditions follows from Lemma [4]

Suppose that the r.v. Sy is bounded from below by a real number a. This situation will
occur in particular when all marginals of Y are bounded from below. In this case, we have
that 0 < [E [e*SY] < e % < 400 and hence, from Lemma |5 we find that E [(Sy)i_l} <
+00. We can conclude that the moment condition in |12, Theorem [13| and Theorem
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is always satisfied in case Sy is bounded from below. In a similar way, we can prove
that E [(Sy)i_l] < 400 in case Sy is bounded from above.

Finally, let us have a look at the bivariate case. Consider the random couples (X7, X5)
and (Y7, Y3), which are supermodularly ordered such that (X, X3) <gsa (Y1, Y2). The only
moment conditions that have to be assumed for Theorem [12[to hold is that E [(Sy).] <
+oo and E [(Sy)_] < +oc. Note that if Sy is bounded from below by a real number a, we
have that E [(Sy)_} < +o0. If Sy is bounded from above, we find that E [(Sy)_} < +00.
The only moment conditions for Theorem [13] and [I4] to hold is that Sx and Sy have finite
expectations.

6 Characterizing comonotonic random vectors

A subset A of R" is said to be comonotonic if any elements z and y of A are ordered
componentwise, i.e. either z; < y; for i = 1,2,...,n, or &; > y; for i = 1,2,...,n must
hold. A random vector X = (X7,...,X,,) is said to be comonotonic if it has a comonotonic
support. For a random vector X, we define its comonotonic modification X° as

Xe=(Fy, (U),....,Fx. (U)), (36)

where the r.v. U has a uniform(0,1) distribution. The comonotonic modification X*°
has the same marginal distributions as X, while its components are ‘maximally depen-
dent’. Hereafter, we will denote the sum of the components of X and X° by S and S¢,
respectively:

S=Xi+...+X, and S=F (U)+Fg (U)+...+F (U). (37)

For an overview of the theory of comonotonicity, we refer to Dhaene et al.| (2002a). Fi-
nancial and actuarial applications are described in Dhaene et al. (2002b). An updated
overview of applications of comonotonicity can be found in |Deelstra et al.| (2010).

It is well-known that the comonotonic modification X exceeds X in supermodular

order sense, hence
X jSM Xcv (38)

see e.g. Proposition 6.3.7 in Denuit et al.| (2005). Taking into account this result, we find
from Theorem that, provided S has a finite expectation and the moment condition
holds, we have that

S L 8¢ — X is comonotonic. (39)

Similarly, from Theorem [13| we find that, provided S has a finite expectation, u is strictly
concave (or strictly convex) with absolutely continuous derivative, [ [u (S5)] is finite and
the moment condition (32)) is satisfied, the following implication holds:

Eu(S)] =E[u(S°)] = X is comonotonic. (40)
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Finally, from Theorem [14] we find that, provided S has a finite expectation, g is strictly
convex (or strictly concave) with absolutely continuous derivative and the moment con-
dition holds, we have that

pg 1S] = py [5] = X is comonotonic. (41)

The implications (39), and remain to hold under weaker conditions than
the moment condition (32)). Indeed, Cheung (2010) proves that implication holds
when the marginals have finite first moments and the underlying probability space is
atomless. Mao and Hul (2011) prove Cheung’s result without having to assume that
the underlying probability space is atomless. |Cheung (2010)) also proves the implications
(40) and under less stringent conditions, in particular without having to assume the
moment condition (32)). Below, we give a simplified proof of Cheung’s theorem concerning
the implication (39) under slightly weaker conditions. We first give a new and simpler
proof for the following theorem, which was first considered in Mao and Hu (2011).

Lemma 15 (Mao and Hu) Consider the n-vector X = (Xy,...,X,). In case the ex-
pectations B [(Xl)Jr] ,1=1,2,...,n, are finite, we have that

Xid o X S X0+ X X4 A X S X+ X

Proof. Assume that .
Xi+ ...+ X #FX7 4+ X . (42)

Note that E [(X;), ] < oo implies that TVaR,, [X;] is finite for all p € (0,1). If
holds, there exists a p € (0,1) such that

n—1

TVaR, (X1 + ...+ X, < ) _ TVaR, [Xj]. (43)

Note that the subadditivity property of the TVaR leads to
TVaR, [ X1+ ...+ X1 + X,,) < TVaR, [X; + ...+ X,,-1] + TVaR, [X,].

If holds, we find that

TVaR, [X1 + ...+ X1+ X,] < ) TVaR, [X]],

=1

d
which implies that X; + ...+ X,, # X7 + ...+ X¢. This contradiction proves that 1)
cannot hold. [ ]

In the following theorem, we give a new proof of Cheung’s theorem, based on the
previous lemma.
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Theorem 16 Consider the n-vector X = (Xy,...,X,). In case all expectations E [(Xl)Jr] ,
1=1,2,...,n, are finite, we have that

. . d
X is comonotonic < S = S°.

Proof. The = - implication is straightforward. It remains to prove the other implication.
First, as X <gn X we have that

(X, X;5) =sm (X7, X5), foralli#jin {1,2,...,n}.
Furthermore, as S i ¢ we find from Lemma |15/ that
Xi—l—Xj%Xf—i—X;, forall i # j in {1,2,...,n}.
From Theorem [12] it follows then that
(X5, X;) £ (X5, X5) for all i # j in {1,2,...,n}.

As comonotonicity of the n-vector X is equivalent with comonotonicity of all couples
(X, X;), see Theorem 3 in|Dhaene et al. (2002al), we can conclude that X is comonotonic.

The implication holds without any conditions if the marginals are bounded from
below. In the following theorem, a proof for implication (39) is given in case the second-
order moments of all components X; are finite. Although the conditions are stronger than
the conditions in |Cheung (2010) and Mao and Hu (2011), we present this proof here
because of its amazing simplicity.

Theorem 17 Consider the n-vector X = (X1, ..., X,). In case all second-order moments
E[X?],i=1,2,...,n, are finite, we have that

X is comonotonic < S < 5° < Var [S] = Var [99] .

Proof. The second-order moment conditions imply that all covariances cov[X;, X;] and
cov[Xf,X;], i,7 =1,2,...,n, as well as Var[S]| and Var[S¢| are finite. The proof of the
= - implications is trivial. It remains to prove that Var[S] = Var[S°] implies that X is
comonotonic.

We first recall that cov[X;, X;] < cov [Xf,X JC] always holds. Furthermore, we have that

comonotonicity can be characterized as follows:
X is comonotonic & cov [X;, X;] = cov [X7, X§] foralli # j in {1,2,...,n}.

A proof of the above-mentioned properties can be found e.g. in in |Dhaene et al.| (2002a).
Taking into account these properties, we find that

Var [S] = Var [S°]

= 2”: cov (X;, X;) = Xn: cov (X57X;)

ij=1 ij=1
= cov (X;, X;) = cov (X7, X5) , forall i # j in {1,...,n}

= (Xi,...,X,) is comonotonic.
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The bivariate special case of Theorem [17| can be found in Dhaene et al.| (2002b)). A

proof of the equivalence S < §¢ < Var[S] = Var[S¢] can also be found in |[Cheung and
Vanduffel (2012). This equivalence was also derived in Dhaene, Linders, Schoutens and
Vyncke (2012) for the case where all marginals are non-negative.

We end this section by showing that the condition that [E [S] is finite is essential for
the implication to hold. In particular, we will show that this implication does not
hold for r.v.’s with a Cauchy distribution.

Recall that a r.v. X has a Cauchy distribution with location parameter 0 and scale
parameter o if its probability density function f is given by

1
fx () = R
To (1 + (f) )
or, equivalently, its characteristic function is given by

E [eitX] _ efa|t|'

r e R,

It is well-known that the expected value of the Cauchy distributed r.v. X does not exist.

Consider now the random couple X = (Xj, X3). Suppose that X; and X, have a
standard Cauchy distribution, which means that their scale and location parameters are
0 and 1, respectively. Furthermore, suppose that X; and X, are mutually independent.
The characteristic function of the sum S = X; + X, is given by

E [eitS] _ (E [eitXl})z _ e*2‘t|,
which means that S has a generalized Cauchy distribution with location parameter p = 0
and scale parameter o = 2.
Next, consider the comonotonic modifiation X = (X¢, X§) of X and its sum S¢ =
X7+ X5 As §°¢ dox 1, we find that the characteristic function of S¢ is given by

E [eitSC] ) [eitQXl] — o2t

Equality of the characteristic functions of S and 5S¢ allows us to conclude that S L g

From |Luan (2001)), we know that (X, X3) can only have the independent and the
comonotonic copula at the same time in case the marginal distribution F'x, is degenerate.
Obviously, this condition is not fulfilled here. Hence, for the couple (X7, X5) of indepen-

d
dent Cauchy distributed r.v.’s we have that S < 5°, but (X1, X2) # (X{, X§). This means
that the first order moment condition is crucial for the implication to hold.

We can conclude that when considering a random vector X and its comonotonic
modification X ¢, Theorems[12] [13]and [14] remain to hold under weaker moment conditions
than (32)), although the condition that S has a finite expectation cannot be relaxed.
These observations make us presume that the implications in Theorems [12] [13] and
might remain to hold under weaker moment conditions than (32)). Investigating this
presumption is a topic of future research.
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A Appendix

A.1 Proof of Lemma

Proof. (1) The absolute continuity of u' implies that also u is absolutely continuous and
can be expressed as

Partial integration leads to
u(x):u(a)+xu’(a:)—au’(a)+/ Ku" (K)dK, rel. (44)

Considering the cases * < a and x > a separately, one easily finds that can be
rewritten as

u(:};):u(a)—l—u'(a)(x—a)—i-/a u' (K)(K — ), dK

inf I

sup [
+/ u' (K)(z — K), dK, rzel.

Replacing x by X in this expression leads to the a.s. equality .
(2) Decomposing " into its positive and negative parts, i.e.
u' (K) = (u" (K)), — (u" (K))_, (45)

where (y), = max(y,0) and (y)_ = —min(y, 0), we find that

_l’_

sup I sup [ sup

/ v (K)dK = (" (K)), dK — (W' (K))_dK "% I, — L.
inf I inf I inf I

The assumption that the integral fli?}l u” (K)dK is well-defined implies that either

0<Ii<+ooand 0< Iy < 400

or
I, =4+occand 0 < [, < 400
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or
0<1I; <+o0and I, = +00

must hold. Using (45)), we can rewrite as
uw(X)=u(a)+u (a) (X —a)

+/a (u"(K)), (K- X),dK — ' (v (K))_(K - X),dK

+/Sup (u”(K))Jr(X—K)erK—/Sup (v (K))_ (X - K), dK.

Taking expectations and applying Fubini’s theorem to any of the four integrals on the
right hand side of this expression leads to

Eu(X)] = u(a) + v’ (a) (B[X] - a)

a

i /H (u" (K)), B[(K ~ X), ] dK /H (" (K))_E [(K - X),] di
. /sup (u// (K))+E [(X . K)_J dK — /Sup (u// (K))_E [(X _ K)+] dK.
(46)

Notice that any of the integrals in the right-hand side of this expression takes a value in
[0, +00]. Furthermore, the linear combination of these integrals, and hence, E [u (X)] is
well-defined. Consider e.g. the situation where I; = 400 and 0 < I, < +00. Then we find
that

0< /H (W' (K)) B[(K - X),]dK <E[(a - X),] /Hp (" (K))_dK < o0
and
0< /Sup (W' (K)) E[(X -K),]dK <E[(X —a),] /“p (" (K))_dK < +oo.

so that the right-hand side of is well-defined in this case. The other cases lead to the
same conclusion.

A.2 Proof of Lemma [2

Proof. Let U be a uniformly distributed r.v. on the unit interval. Taking into account
that ¢’ is absolutely continuous, ¢’ (1 — U) can be written as

g'(l—m:g'(l)—/o ¢' (1 p)dp

— g (1) - / ¢ (1—p)L(U > p) dp. (47)
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As ¢ is absolutely continuous, also ¢ is absolutely continuous. From and , it
follows that we can express p, [X] as

pe [X] =g (VE[X] - E UO 9" (1—p) Fx"(U)L(U > p) dp} : (48)

For any distortion function g with absolutely continuous derivative ¢’, we have that
fol g" (p)dp is finite. As E[X] is assumed to be finite as well, we find that

¢ [/ (1= ) L > )| ap] <BLx] [ o )] do < o

Hence, the second term in the right hand side of is finite, which implies that also
pg [ X] is finite. Applying Fubini’s theorem and taking into account leads to @ ]

A.3 Proof of Lemma [3

Proof. (a) We first prove by induction that for any k£ > 2, the relation

(Zf:l Ti— K)
(

k—1

+

kE—1)!
+o0 +oo k-1
:/ / ]I(xl>u1)...]1(xk_1>uk_1)]I<xk>K—Zui)dul...duk_l
—00 —o0 i=1
(49)

holds for any real numbers xq,xs, ...z, and K. Here, [ (A) has value 1 if A holds, while
it equals 0 in the other case.

Considering the cases x1 + o < K and x; + x5 > K separately, one can easily verify
that

= I (I‘l > Ul) (xg — (K — Ul))i__l du;. (50)

J —00
holds for any integer j > 1. In particular, for j = 1 this expression reduces to

(x1 4+ 29 — K)ﬁr /*OO

+oo
(x1+$2—K)+:/ I(zy > up)I(xe > K — uy) duy. (51)
We can conclude that expression holds for k = 2 and any real numbers z;, 7o and K.
Suppose now that for a particular value of £ > 2, expression holds for any real
numbers x1, T, ..., x; and K. Then for any real numbers x1, xs, ..., 2,1 and K, we have
that

+o0 +o0 k
/ / ]I(:z:l>u1)...]I(:Ek>uk)]I<xk+1>K—Zu,~)dul...duk

1=1

+oo +oo k
:/ ]I(x1>u1){/ H(ch>u2)...H(xk>uk)]I<a:k+1>K—u1—2ui>du2...duk}du1.

=2
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From relation , we find that the right hand side of this expression can be rewritten as

1 +Oo k1 k-l
m/ (x1 > uy) (Z T; — — U ) duy.
T +

Taking into account , we then find that

k

+oo +oo k <Zf+11$z K)
_ +
/ / I(zy >wuy)...I(zg > ug)l $k+1>K—ZU¢ duy ...dug = ,

k!
i=1

which means that expression also holds for k + 1.
We can conclude that expression holds for any & > 2 and any real numbers x1, zs, . .., T
and K. Replacing z; by X; and k£ by n in this expression, and taking expectations leads

to ().
(b) Applying expression to the vector —X and the retention — K, we find that

—+o00 —+o00 n—1
E[(K—Sx)ifl] :(n—1>'/ / F—K <$1,...,l‘n_1,—K—ZZL‘,‘> dl‘l...dl‘n_l.
o0 Yoo i=1

Taking into account that F_x has at most countably many jumps, we can replace
the integrand F_x (gcl, ey X1, =K =Y x@) by Fx (—xl, =T, K+ Z?:_f :L‘l)
in this expression. Substltutlng the x; by y; = —uz; leads to the expression @ for
E[(K - Sx)T .

A.4 Proof of Lemma 4

Proof. Let us first consider the case where ¢ > 0. For any ¢ we have that

X;
X — ¢ / eidg,
—0

+oo

—00

Taking into account these expressions for the e'*i, we can express E [etSX} as

e =om ([ o mpan) - ([ e = apan)] o

Using Fubini’s theorem to interchange the order of the expectation and the integrals leads

to (15).
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Next, we consider the case that ¢ < 0. In order to prove for t < 0, consider the
random vector —X = (=X, —X,...,—X,). Applying expression to E [e_t(_SX)}
leads to

400 +oo
E [etSX] = (—t)n/ X / e Mty (z)day . .. day,.

Taking into account that F_y has at most countably many jumps, we can replace F_x (x)
by Fx (—z) in this expression. Subsituting the z; by y; = —x; leads to expression .

A.5 Proof of Lemma [5

Proof. Let us first prove implication (L7)). For any positive real number ¢, we have that
et(a})+ S eta: +1.
From this inequality we find that

E [etx] <400 = E [et(X)Jr] < +o00.

k=0

we can conclude that the implication holds.
The proof of follows immediately from by rewriting & [etX } as K [e(*t)(’X )].

A.6 Proof of Theorem

Proof. We prove the case where u is strictly concave. The other case can be proven in a
similar way. In order to prove the implication ([19)), notice that the convex order relation
X = Y implies that E [X]| = E[Y]. Furthermore, the convex order relation X <., Y
together with Pr[Y € I] = 1 implies that Pr[X € I] = 1, so that the r.v.’s v (X) and
u (YY) are well-defined. Under the stated assumptions, we find from Lemma [I| that for
a = E[X] = E[Y], the following expressions hold for E [u (X)] and E [u (Y], respectively:

E[X] sup [
Eu(X)] =u(E[X])+ /H W (K)E[(K - X),]dK + /E[X] W (K)E[(X - K),]dK
and

E[X] sup /
Eu(Y)] =u(E[X])+ /“ W (K)E[(K-Y),]dK + /qu W (K)E[(Y - K),] dK,
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where E [u (X)] and E[u(Y)], as well as all integrals in these expressions for E [u (X)]
and E [u (Y )] are finite. From these expressions, taking into account the assumption that
E[u(X)] = E[u(Y)], we find that

E[X]
0 :/ W () (B [(K —Y),] ~E[(K - X),]) dK

N
inf I
- /E:]) W(K)(EB[(Y -K), ] -E[(X-K),])dK. (54)

The convex order relation X <., Y implies that

E[(X-K),]<E[(Y-K),], forall K eR.
E[(K—-X),]<E[(K-Y),], forall K € R.
Furthermore, as the function u’ is absolutely continuous, we have that the condition that
u is strictly concave on [ is equivalent with v”(x) < 0 a.e. on I. Hence, both integrands in
(54) are non-positive. Furthermore, as B [(K —Y),|-E [(K — X),] and E [(Y — K) | -
E [(X — K),] are continuous functions of K, we can conclude that
E[(K-Y),]=E[(K-X)
E[(Y -K), ] =E[(X - K)

for all K < E[X],
for all K > E[X],

4]
4]

which is equivalent with

E[(Y -K),]=E[(X-K),], forall K € R, (55)

which in turn is equivalent with X 2 Y'; see Property 1.7.3 in Denuit et al.| (2005).
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