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Abstract

In this paper we show that under appropriate moment conditions, the supermod-
ular ordered random vectors X = (X1; X2; : : : ; Xn) and Y = (Y1; Y2; : : : ; Yn) with
equal expected utilities (or distorted expectations) of the sums X1 +X2 + : : :+Xn
and Y1 + Y2 + : : :+ Yn for an appropriate utility (or distortion) function, must nec-

essarily be equal in distribution, that is X d
= Y . The results in this paper can be

considered as generalizations of the results of Cheung (2010), who presents neces-
sary conditions related to the distribution of X1 + X2 + : : : + Xn for the random
vector X = (X1; X2; : : : ; Xn) to be comonotonic.

Keywords: supermodular order, concordance order, expected utility, distorted
expectation, comonotonicity.

1 Introduction

Both expected utility theory and distorted expectation theory o¤er a framework to de-
scribe how economic agents make choices under risk. In these theories, a random vari-
able (r.v.) X describing a random future wealth is transformed into an expected utility
E [u(X)] or a distorted expectation �g [X], respectively. Preferences between random
wealths X and Y are then based on comparing the real numbers E [u(X)] and E [u(Y )]
(or �g [X] and �g [Y ]) corresponding to the alternatives.

In this paper, we investigate and repeat some results on how the expected utility
E [u(X)] can be decomposed in terms of the upper - and lower tails E

�
(X �K)+

�
and

E
�
(K �X)+

�
of X, as well as how the distorted expecation �g [X] can be expressed in
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terms of the Tail Values-at-Risk of X. Furthermore, we consider ordering conditions un-
der which equality of the expected utililties E [u(X)] and E [u(Y )] (or of the distorted
expectations �g [X] and �g [Y ]) of two r.v.�s X and Y implies that both are equally dis-
tributed.

Cheung (2010) shows that, under mild conditions, a random vectorX = (X1; X2; : : : ; Xn)
is comonotonic provided the sum S = X1+X2+ : : :+Xn has the same distribution as the
sum Sc = Xc

1 +X
c
2 + : : :+X

c
n of the comonontonic counterpart X

c = (Xc
1; X

c
2; : : : ; X

c
n) of

X. Furthermore, he shows that under the appropriate conditions, equality of the expected
utilities E [u(S)] and E [u(Sc)] (or of the distorted expectations �g [S] and �g [Sc]) implies
that the random vector X is comonotonic.

In this paper, we generalize some of Cheung�s results by establishing ordering condi-
tions under which two random vectors X and Y having equally distributed sums SX =
X1 +X2 + : : :+Xn and SY = Y1 + Y2 + : : :+ Yn; are equal in distribution. We also show
that under the appropriate conditions, equality of E [u(SX)] and E [u(SY )] (or of �g [SX ]
and �g [SY ]) implies that X and Y are equally distributed.

The remainder of this paper is organised as follows. In Section 2 it is shown that
expected utilities can be expressed as linear combinations of upper - and lower tails.
Furthermore, it is also shown that distorted expectations can be expressed in terms of
Tail Values-at-Risk. Some useful expressions for the expected value of a function of the
sum of the components of a random vector, in terms of its multivariate distribution, are
derived in Section 3. In Section 4, conditions are considered under which convex ordered
r.v.�s are necessary equal in distribution. Multivariate extensions of this result are derived
in Section 5, where conditions are considered under which supermodular ordered random
vectors are equal in distribution. Finally, Section 6 considers the special case where a
random vector and its comonotonic modi�cation are compared.

2 Expected utilities and distorted expectations

2.1 Expected utilities and stop-loss premiums

Throughout this paper, we will use the notation I to denote an interval of the real line.
Furthermore, inf I = inf fx j x 2 Ig and sup I = sup fx j x 2 Ig. The interval I may
be bounded or not, implying that inf I and sup I may be �nite or in�nite. Hereafter,
we will often consider functions f : I �! R with absolutely continuous derivative. This
means that f 0 is continuous on I, that f 0 has a derivative f 00 a.e. on I, and that for
any elements x and a of I, we have that f 0(x) = f 0(a) +

R x
a
f 00 (K)dK. Continuity in an

eventual real-valued lower or upper endpoint of I has to be understood as right or left con-
tinuity, whereas di¤erentiability in such an endpoint means right or left di¤erentiability.
Di¤erentiability in a point means that the derivative (resp. right or left derivative) is well-
de�ned and �nite. Finally, notice that all integrals in this paper have to be interpreted
as Lebesgue integrals.

In the following lemma, it is shown that any su¢ ciently smooth function u(x) can be
expressed as a mixture of right and left tail functions of the form (x�K)+ and (K � x)+ ;
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K 2 R. Furthermore, E [u (X)] can be expressed in terms of the corresponding right -
and left tails E

�
(X �K)+

�
and E

�
(K �X)+

�
.

Lemma 1 Let X be a r.v. with �nite expectation and I an interval such that Pr [X 2 I] =
1. Furthermore, consider the function u : I �! R with absolutely continuous derivative
u0.
(1) For any a 2 I, the r.v. u (X) can be expressed as

u (X) = u (a) + u0 (a) (X � a) +
Z a

inf I

u00 (K) (K �X)+ dK

+

Z sup I

a

u00 (K) (X �K)+ dK a.s. (1)

(2) In case
R sup I
inf I

u00 (K)dK is well-de�ned, we have that E [u (X)] is well-de�ned as well,
and for any a 2 I it can be expressed as

E [u (X)] = u (a) + u0 (a) (E [X]� a) +
Z a

inf I

u00 (K)E
�
(K �X)+

�
dK

+

Z sup I

a

u00 (K)E
�
(X �K)+

�
dK: (2)

For a proof of this lemma we refer to Appendix A.1.

When u0 is absolutely continuous, convexity of u is equivalent with u00(x) � 0 a.e.
on I. Hence,

R sup I
inf I

u00 (K)dK is well-de�ned if u is convex, implying that the expression
(2) for E [u (X)] holds in particular for convex functions u with an absolutely continuous
derivative u0. The function u (x) = etx, t 2 R, is an example of such a function. Similarly,
expression (2) holds for concave functions u with absolutely continuous derivative.

In case
R sup I
inf I

u00 (K) dK is �nite, we have that E [u (X)] in (2) is �nite as well. This
condition is ful�lled in particular when I is a closed and bounded interval.

A function with a continuous derivative is absolutely continuous. This implies that a
function u with continuous second derivative u00 has an absolutely continuous derivative u0.
Hence, Lemma 1 holds in particular for the class of functions u with continuous second
derivative u00. The convex function u (x) = (x�K)2, with K a given real number, is
an example of such a function. On the other hand, Lemma 1 also holds for the convex
function u (x) = (x�K)2+, where the notation y2+ is used for [max (y; 0)]

2, although its
second second derivative does not exist in K.

Formula (2) is well-known in the actuarial literature for the special case when u(x) =
(x� E [X])2 and a = E [X], leading to an expression for the variance of a r.v. in terms of
its stop-loss premiums; see e.g. Kaas et al. (2008).

Föllmer and Schied (2004) derive an expression similar to (1) for increasing and convex
functions u with right-hand derivative; see also Cheung (2010).

Formula (1) has a �natural�interpretation in terms of contingent claims and hedging;
see e.g. Carr and Madan (2001). Indeed, suppose that X is the price of a traded asset
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at a future time T . The right hand side of expression (1) is the pay-o¤ at time T of a
static investment position, taken at time 0. Indeed, the �rst term is the pay-o¤ of a long
position in u (a) zero coupon bonds, each with pay-o¤ an amount of 1 at time T . The
second term corresponds to the pay-o¤ of a long position in u0 (a) calls with strike a and a
short position in u0 (a) puts with strike a. The third term is the pay-o¤ of a long position
in u00 (K)dK puts for all strikes less than a, while the fourth term is the pay-o¤ of a long
position in u00(K)dK calls for all strikes greater than a, We can conclude that the right
hand side of formula (1) corresponds with the pay-o¤ at time T of a model-free static
replicating strategy for the contingent claim with pay-o¤ u (X) at T .

2.2 Distorted expectations and Tail Values-at-Risk

Lemma 1 can be interpreted in the framework of expected utility theory. In this section,
we consider a related lemma which allows an interpretation in terms of the dual theory
of choice under risk, where distorted expectations are used instead of expected utilities.

A distortion function is de�ned as a non-decreasing function g : [0; 1] ! [0; 1] such
that g(0) = 0 and g(1) = 1. For any r.v. X, the distorted expectation associated with
distortion function g, notation �g [X], is de�ned by

�g [X] = �
Z 0

�1

�
1� g

�
FX(x)

��
dx+

Z +1

0

g
�
FX(x)

�
dx; (3)

provided at least one of the two integrals in (3) is �nite.

If g is absolutely continuous, it can be proven that �g [X] can be expressed as

�g [X] = E
�
F�1X (U)g0 (1� U)

�
; (4)

where U is a r.v. which is uniformly distributed on the unit interval and

F�1X (p) = inf fx j FX(x) � pg ; p 2 [0; 1] ;

with inf ? = +1 by convention; see e.g. Dhaene, Kukush, Linders and Tang (2012).

The distortion function g de�ned by

g(q) = min

�
q

1� p; 1
�
; 0 � q � 1;

for some p 2 [0; 1), is absolutely continuous. The related distorted expectation �g [X] is
known as the Tail Value-at-Risk at level p, notation TVARp [X]. Taking into account (4),
this distorted expectation can be expressed as

TVARp [X] =
1

1� p

Z 1

p

F�1X (q)dq: (5)

In the following lemma, we prove that distorted expectations related to a distortion
function with absolutely continuous derivative g0 can be expressed as a mixture of Tail
Values-at-Risk.
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Lemma 2 Let X be a r.v. with �nite expectation and g a distortion function with ab-
solutely continuous derivative g0. In this case, the distorted expectation �g [X] is �nite and
can be expressed as

�g [X] = g
0(1)E [X]�

Z 1

0

(1� p) g00(1� p)TVARp [X] dp: (6)

For a proof of this lemma, we refer to Appendix A.2.

Lemma 2 holds in particular for convex and concave distortion functions with an ab-
solutely continuous derivative. On the other hand, convex and concave distortion functions
with continuous derivative do not necessarily satisfy the conditions of Lemma 2. Consider
e.g. the distortion function g de�ned by

g(q) =

R q
0
c(p)dpR 1

0
c(p)dp

; 0 � q � 1;

where c is a singular continuous distortion function (e.g. the Cantor function). As g0(q) =
c(q)R 1

0 c(p)dp
; 0 � q � 1, we have that g0 is non-decreasing, and hence, g is convex. Further, g0

is singular continuous, which means that it does not satisfy the conditions of the lemma.

Lemma 2 holds in particular for the class of distortion functions g with continuous
second derivative (which implies that g0 is absolutely continuous), see e.g. Property 2.6.6
in Denuit et al. (2005). For any t 6= 0, the function g(q) = etq�1

et�1 ; 0 � q � 1, is an example
of a such a convex (if t > 0) or concave (if t < 0) distortion function.

3 Random vectors and the sum of their components

Hereafter, we use the notation X to denote the n-vector (X1; X2; : : : ; Xn). The sum of its
components is denoted by SX , i.e.

SX = X1 + : : :+Xn: (7)

The cumulative distribution function (cdf) and the decumulative distribution function
(ddf) of X are denoted by FX and FX , respectively.

In the following lemma we present expressions for E
�
(SX �K)n�1+

�
and E

�
(K � SX)n�1+

�
in terms of the ddf FX and the cdf FX of X, respectively. The notation ys+ is used for
[max (y; 0)]s. The �rst expression in the lemma was proven in Boutsikas and Vaggelatou
(2002). We repeat its proof in the appendix in order to make the paper self-contained.

Lemma 3 For any random vector X and any real K, we have that E
�
(SX �K)n�1+

�
can

be expressed as

E
�
(SX �K)n�1+

�
= (n� 1)!

Z +1

�1
: : :

Z +1

�1
FX

 
x1; : : : ; xn�1; K �

n�1X
i=1

xi

!
dx1 : : : dxn�1;

(8)
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while E
�
(K � SX)n�1+

�
can be expressed as

E
�
(K � SX)n�1+

�
= (n� 1)!

Z +1

�1
: : :

Z +1

�1
FX

 
x1; : : : ; xn�1; K �

n�1X
i=1

xi

!
dx1 : : : dxn�1:

(9)

For a proof of this lemma we refer to Appendix A.3.

The quantities E
�
(SX �K)n�1+

�
and E

�
(K � SX)n�1+

�
in (8) and (9) are well-de�ned,

but may eventually be equal to +1. Hereafter, we summarize several (necessary and)
su¢ cient conditions for these expectations to be �nite.

First, we have that

E
�
(Xi)

n�1
+

�
< +1 for all i) E

�
(SX)

n�1
+

�
< +1, E

�
(SX �K)n�1+

�
< +1 for all K;

(10)
while

E
�
(Xi)

n�1
�
�
< +1 for all i) E

�
(SX)

n�1
�
�
< +1, E

�
(K � SX)n�1+

�
< +1 for all K:

(11)
Here, the notation ys� is used for [�min (y; 0)]

s.

Further, the conditions

E
�
jXijn�1

�
< +1; i = 1; 2; : : : ; n; (12)

imply the �rst conditions in (10) and (11), whereas the condition

E
�
jSX jn�1

�
< +1 (13)

implies the second conditions in (10) and (11).

Finally, notice that any of the conditions that we considered in (10), (11), (12) and
(13) implies that this condition also holds if we replace the exponent n�1 by the exponent
k, k = 1; 2; : : : ; n� 1.
In case n = 2, expression (9) reduces to :

E
�
(K � SX)+

�
=

Z +1

�1
FX (x;K � x)dx:

Taking into account that E
�
(K � SX)+

�
= E

�
(SX �K)+

�
� E [SX ] +K, this expression

can be transformed in

E
�
(SX �K)+

�
=

Z +1

�1
FX (x;K � x)dx+ E [SX ]�K;

which can be found e.g. in Dhaene and Goovaerts (1996).

In the following lemma we derive expressions for E
�
etSX

�
in terms of the cdf or the

ddf of X, depending on the value of t.
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Lemma 4 Consider the n-vector X and the sum of its components SX .
For any t < 0, one has that E

�
etSX

�
can be expressed as

E
�
etSX

�
= (�t)n

Z +1

�1
: : :

Z +1

�1
et(x1+���+xn)FX (x)dx1 : : : dxn: (14)

For any t > 0, one has that E
�
etSX

�
can be expressed as

E
�
etSX

�
= tn

Z +1

�1
: : :

Z +1

�1
et(x1+���+xn)FX (x)dx1 : : : dxn: (15)

A proof of this lemma can be found in Appendix A.4.

For any real t, the expectation E
�
etSX

�
in Lemma 4 is well-de�ned and non-negative,

but eventually equal to +1. However, in case E
�
entXi

�
< +1, for all i = 1; 2; : : : ; n; the

generalized Hölder inequality leads to

E
�
etSX

�
�

nY
i=1

�
E
�
entXi

��1=n
< +1.

The relation between the conditions �E
�
(SX)

n�1
+

�
< +1�or �E

�
(SX)

n�1
�
�
< +1�

at the one hand, and �E
�
etSX

�
< +1�at the other hand is explored in the following

lemma.

Lemma 5 For any r.v. X, the following implications hold:

E
�
etX
�
< +1 for some t < 0) E

h
(X)k�

i
< +1; k = 1; 2; : : : (16)

and
E
�
etX
�
< +1 for some t > 0) E

h
(X)k+

i
< +1; k = 1; 2; : : : (17)

For a proof of this lemma, see Appendix A.5

The results that we proved in this section will be used to prove results on conditions
under which convex ordered r.v.�s, or supermodular ordered random vectors, are equal in
distribution.

4 Convex order and equally distributed random vari-
ables

In this section, we consider conditions under which convex ordered r.v.�s are equal in dis-
tribution. We use the notation d

= to indicate �equality in distribution�. We �rst introduce
the de�nition of convex order.
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De�nition 6 The r.v. X is smaller than the r.v. Y in convex order, notation X �cx Y ,
if

E [X] = E [Y ] and E
�
(X �K)+

�
� E

�
(Y �K)+

�
; for all K 2 R. (18)

A summary of other characterizations and properties of convex order can be found
e.g. in Denuit et al. (2005).

4.1 Convex order, expected utilities and equally distributed
random variables

In expected utility theory, a decision maker is risk averse if he has a (non-decreasing
and) concave utility function. Consider now the r.v.�s X and Y with equal expectations.
The ordering relation X �cx Y means that all risk averse decision makers prefer random
wealth X over random wealth Y . In the following theorem we show that if X �cx Y and
in addition, there is a particular risk averse decision maker (with an appropriate utility
function) who is indi¤erent between X and Y , then we can conclude that X and Y are
equal in distribution.

Theorem 7 Consider the r.v.�s X and Y with �nite expectations and the interval I with
Pr [Y 2 I] = 1. Furthermore, let u : I �! R be a strictly concave (or strictly convex)
function with absolutely continuous derivative u0 and such that E [u (Y )] is �nite. Then
we have that

X �cx Y and E [u (X)] = E [u (Y )] =) X
d
= Y: (19)

For a proof of this lemma, we refer to Appendix A.6.

A proof of Theorem 7 for the narrower class of twice continuously di¤erentiable func-
tions u can be found in Cheung (2010). This is result also follows from Theorem 3 A43
and Theorem 3 A60 in Shanthikumar and Shaked (2007).

Theorem 7 requires that the expectations E [Y ] and E [u (Y )] are �nite. If u is convex
and Y is bounded from below, we have that E [u (Y )] is �nite implies that E [Y ] is �nite.
Indeed, in this case a+ bY � u (Y ) holds a.e. for a constant a and a positive constant b,
while c � Y holds a.e. for a constant c. These inequalities imply that E [Y ] is �nite. On
the other hand, if u is concave and u (Y ) is bounded from below, we can prove in a similar
way that E [Y ] is �nite implies that E [u (Y )] is �nite. Finally, notice that the condition
that u (Y ) is bounded from below is satis�ed when u is non-decreasing and Y is bounded
from below.

Consider a r.v. X with �nite expectation E [X]. The function (x� E [X])2 is an exam-
ple of a strictly convex function u with absolutely continuous derivative. From Theorem
7, we can conclude that for two r.v.�s X and Y with �nite expectations and such that
Var[Y ] is �nite, we have that

X �cx Y and Var [X] = Var [Y ]) X
d
= Y: (20)
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Similarly, for any r.v.�s X and Y with �nite expectations and such that E
�
etY
�
is �nite

for some t 6= 0, we have that

X �cx Y and E
�
etX
�
= E

�
etY
�
) X

d
= Y: (21)

Remark that the condition that u is strictly concave (resp. strictly convex) on I in
Theorem 7 cannot be weakened to the condition that u is concave (resp. convex), i.e.
u00(K) � 0 a.e. (resp. u00(K) � 0 a.e.), as in this case we cannot conclude from (54) in
Appendix A.6 that E

�
(Y �K)+

�
= E

�
(X �K)+

�
holds for all K.

4.2 Convex order, distorted expectations and equally distrib-
uted random variables

In the dual theory of choice under risk, a decision maker is risk averse if he has a (non-
decreasing and) convex distortion function. Consider now the r.v.s X and Y with equal
expectations. Also in this dual theory, the ordering relation X �cx Y means that all
risk averse decision makers prefer gain X over gain Y . In the following theorem we show
that if X �cx Y and in addition, there is a particular risk averse decision maker (with
an appropriate distortion function) who is indi¤erent between X and Y , then we can
conclude that X and Y are equal in distribution.

Theorem 8 Consider the r.v.�s X and Y with �nite expectations. Furthermore, let g
be a strictly convex (or strictly concave) distortion function with absolutely continuous
derivative g0. Then we have that

X �cx Y and �g [X] = �g [Y ] =) X
d
= Y: (22)

Proof. From Lemma 2, we know that �g [X] and �g [Y ] are �nite.

The convex order relation X �cx Y means that E [X] = E [Y ] and

TVARp [X] � TVARp [Y ] ; for all p 2 (0; 1) ;

see e.g. Dhaene et al. (2006). Taking into account Lemma 2, we have that

0 = �g [Y ]� �g [X]

=

Z 1

0

(1� p) g00(1� p) (TVARp [Y ]� TVARp [X])dp: (23)

As the derivative g0 is absolutely continuous, we have that the condition that g is a strictly
convex distortion function is equivalent with g00(p) > 0 almost everywhere. Hence, the
integrand is non-negative. Furthermore, as the function TVARp [Y ]�TVARp [X] is a
continuous function of p, we can conclude that

TVARp [X] = TVARp [Y ] ; for all p 2 (0; 1) : (24)
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It is well-known that

E
�
(X �K)+

�
� E

�
(Y �K)+

�
; for all K 2 R

is equivalent with
TVARp [X] � TVARp [Y ] ; for all p 2 (0; 1) ;

see e.g. Proposition 3.4.8 in Denuit et al. (2005). Hence, (24) is equivalent with

E
�
(X �K)+

�
= E

�
(Y �K)+

�
; for all K 2 R;

which in turn is equivalent with X d
= Y .

A proof of Theorem 8 can also be found in Cheung (2010), under the following weaker
conditions on the distortion function: g is continuously di¤erentiable and strictly convex
(or strictly concave). Although somewhat less general, the proof presented here is more
transparent and elegant than the original proof.

The function g(q) = etq�1
et�1 ; 0 � q � 1 is an example of a distortion function satisfying

the conditions of Theorem 8. For any t > 0, we have that g is strictly convex, while for
any t < 0, it is strictly concave.

Remark that the condition that g is strictly convex (resp. strictly concave) in Theorem
8 cannot be weakened to the condition that g is convex (resp. concave), i.e. g00(q) � 0 a.e.
(resp. g00(q) � 0 a.e.), as in this case, we cannot conclude from (23) that TVARp [X] and
TVARp [Y ] are equal for all values of p.

5 Supermodular order and equally distributed ran-
dom vectors

Hereafter, we use the notations X and Y to denote the n-vectors (X1; X2; : : : ; Xn) and
(Y1; Y2; : : : ; Yn), respectively. The sums of their components are denoted by SX and SY ,
respectively:

SX = X1 + : : :+Xn and SY = Y1 + : : :+ Yn: (25)

We start this section by repeating the de�nitions of some well-known orders between
(distributions of) random vectors.

De�nition 9 Consider the random vectors X and Y .
(a) X is smaller than Y in the lower orthant order, notation X �LO Y , if

FX (x) � FY (x) ; for all x 2 Rn. (26)

(b) X is smaller than Y in the upper orthant order, notation X �UO Y , if

FX (x) � F Y (x) ; for all x 2 Rn. (27)

(c) X is smaller than Y in the concordance order, notation X �C Y , if both X �LO Y
and X �UO Y hold.
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The concordance order was introduced by Joe (1997). The order relation X �C Y
implies that Xi

d
= Yi, i = 1; 2; : : : ; n. Intuitively, X �LO Y means that joint small

outcomes are more likely to occur for Y than for X, while X �UO Y means that joint
large outcomes are more likely to occur for Y than for X. The ordering relation X �C Y
means that joint small outcomes as well as joint large outcomes are more likely to occur
for Y than for X. In this sense, X �C Y can be interpreted as Y is �more positive
dependent�than X.

Before introducing the supermodular order, we have to de�ne supemodular functions.
For any arbitrary function f : Rn �! R, real-valued n - vector x = (x1; x2 : : : ; xn), integer
i 2 f1; 2; : : : ; ng and positive real number ", the notation �"

if (x) is de�ned by

�"
if (x) = f (x1; x2 : : : ; xi + "; xi+1; : : : ; xn)� f (x1; x2; : : : ; xn) :

De�nition 10 (Supermodular function) A function f : Rn �! R is said to be su-
permodular if

��
j�

"
if (x) � 0

holds for every x 2 Rn; 1 � i < j � n and all �; " > 0:

We are now ready to de�ne the supermodular order.

De�nition 11 (Supermodular order) Consider two random vectors X and Y : Then
X is said to be smaller in the supermodular order than Y ; notation X �SM Y ; if

E [f (X)] � E [f (Y )]

holds for all supermodular functions f : Rn �! R for which the expectations exist.

It is well-known that supermodular order implies concordance order:

X �SM Y ) X �C Y ; (28)

see e.g. Proposition 6.3.9 in Denuit et al. (2005). Since Tchen (1980), it is known that
supermodular order and concordance order are equivalent in the bivariate case. In this case
case, both orders also coincide with the correlation order; see e.g. Dhaene and Goovaerts
(1996, 1997). Joe (1997) has shown that supermodular order is not equivalent with
concordance order for dimension n � 4. Müller and Scarsini (2000) have shown that the
non-equivalence statement also holds for dimension n = 3.

Supermodular order implies convex order of the sums of the respective components:

X �SM Y ) SX �cx SY ;

see e.g. Proposition 6.3.9 in Denuit et al. (2005). On the other hand, Müller (1997) has
shown that this implication can in general not be strenghtened to the concordance order:

X �C Y ; SX �cx SY :

In the following theorem we prove that under the appropriate conditions, lower orthant
orthant (resp. upper orthant) ordered random vectors with equally distributed sums are
equal in distribution.

11



Theorem 12 Consider the n-vectors X and Y , as well as the respective sums of their
components SX and SY .
In case E

�
(SY )

n�1
�
�
< +1, we have that

X �LO Y and SX
d
= SY =) X

d
= Y : (29)

In case E
�
(SY )

n�1
+

�
< +1, we have that

X �UO Y and SX
d
= SY =) X

d
= Y : (30)

Proof. Let us prove (29), assuming that E
�
(SY )

n�1
�
�
< +1. From (11) and SX

d
= SY

we �nd that E
�
(K � SY )n�1+

�
and E

�
(K � SX)n�1+

�
are equal and �nite, for any value

of K. Expression (9) in Lemma 3 leads to the following relation, which holds for any
particular value of K:

0 =
�
(K � SY )n�1+

�
� E

�
(K � SX)n�1+

�
= (n� 1)!

Z +1

�1
dx1 : : :

Z +1

�1
dxn�1 (FY (x1; : : : ; xn�1; x�n)� FX (x1; : : : ; xn�1; x�n)) ;

(31)

with

x�n = K �
n�1X
i=1

xi:

The ordering relation X �LO Y implies that the integrand in (31) is always non-negative.
Hence, we have that

FX (x1; : : : ; xn�1; x
�
n) = FY (x1; : : : ; xn�1; x

�
n) ; for any (x1; : : : ; xn�1) 2 Rn�1nAK ;

where �n�1 is the Lebesgue measure on Rn�1 and AK is a subset of Rn�1 such that
�n�1 (AK) = 0. Taking into account the continuity from above of the integrand in (31),
we �nd that

FX (x1; : : : ; xn�1; x
�
n) = FY (x1; : : : ; xn�1; x

�
n) ; for any (x1; : : : ; xn�1) 2 Rn�1 and any K:

This observation implies that FX (x) = FY (x) ; for any x 2 Rn, which means that X
d
= Y .

The proof of (30), under the assumption that E
�
(SY )

n�1
+

�
< +1 holds, follows the

same lines as the proof above, taking into account expression (8) in Lemma 3.

Suppose that one of the moment conditions in Theorem 12 holds true. Then it follows
from the same theorem that in case X �SM Y , it su¢ ces to verify whether SX and SY
are equally distributed in order to be able to conclude that the random vectors X and Y
are equal in distribution.

Both moment conditions in Theorem 12 can be replaced by the stronger, but somewhat
more obvious �nite moment conditions (12) or (13); see the discussion after Lemma 3.

12



Combining Theorem 7 and Theorem 12, while taking into account the properties of
supermodular and concordance order that were mentioned above, leads to the following
theorem.

Theorem 13 Consider the n-vectors X and Y , with respective sums SX and SY which are
assumed to have �nite expectations. Furthermore, consider the interval I with Pr [SY 2 I] =
1, and the strictly concave (or strictly convex) function u : I �! R with absolutely con-
tinuous derivative u0 such that E [u (SY )] is �nite. Finally, suppose that either

E
�
(SY )

n�1
�
�
< +1 or E

�
(SY )

n�1
+

�
< +1: (32)

Then we have that

X �SM Y and E [u (SX)] = E [u (SY )] =) X
d
= Y : (33)

The theorem above can be interpreted in terms of expected utility theory. It states
that under the appropriate conditions and when X �SM Y , it su¢ ces to verify whether
there is a particular risk averse decision maker who is indi¤erent between SX and SX , in
order to be able to conclude whether X and Y are equal in distribution or not.

Combining Theorem 8 and Theorem 12 leads to the following theorem which has a
similar interpretation in terms of the dual theory of choice under risk.

Theorem 14 Consider the n-vectors X and Y with sums SX and SY with �nite expecta-
tions. Furthermore, let g be a strictly convex (or strictly concave) distortion function with
absolutely continuous derivative g0. Finally, suppose that

E
�
(SY )

n�1
�
�
< +1 or E

�
(SY )

n�1
+

�
< +1: (34)

Then we have that

X �SM Y and �g [SX ] = �g [SY ] =) X
d
= Y : (35)

Notice that a slightly stronger version of both Theorems 13 and 14 may be derived in
the sense that when E

�
(SY )

n�1
�
�
< +1, we have that X �SM Y may be replaced by the

weaker conditions that X �LO Y and SX �cx SY . Similarly, when E
�
(SY )

n�1
+

�
< +1,

we have that X �SM Y may be replaced by X �UO Y and SX �cx SY .
From Lemma 5 it follows that the condition E

�
(SY )

n�1
�
�
< +1 (resp. E

�
(SY )

n�1
+

�
<

+1) in Theorem 12, Corollary 13 and Corollary 14 can be replaced by the stronger
condition E

�
etSY

�
< +1 for some t < 0 (resp. E

�
etSY

�
< +1 for some t > 0). Notice

that a direct proof of Theorem 12 under these stronger conditions follows from Lemma 4.

Suppose that the r.v. SY is bounded from below by a real number a. This situation will
occur in particular when all marginals of Y are bounded from below. In this case, we have
that 0 � E

�
e�SY

�
� e�a < +1 and hence, from Lemma 5 we �nd that E

�
(SY )

n�1
�
�
<

+1. We can conclude that the moment condition (32) in 12, Theorem 13 and Theorem
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14 is always satis�ed in case SY is bounded from below. In a similar way, we can prove
that E

�
(SY )

n�1
+

�
< +1 in case SY is bounded from above.

Finally, let us have a look at the bivariate case. Consider the random couples (X1; X2)
and (Y1; Y2), which are supermodularly ordered such that (X1; X2) �SM (Y1; Y2). The only
moment conditions that have to be assumed for Theorem 12 to hold is that E

�
(SY )+

�
<

+1 and E
�
(SY )�

�
< +1. Note that if SY is bounded from below by a real number a; we

have that E
�
(SY )�

�
< +1. If SY is bounded from above, we �nd that E

�
(SY )�

�
< +1.

The only moment conditions for Theorem 13 and 14 to hold is that SX and SY have �nite
expectations.

6 Characterizing comonotonic random vectors

A subset A of Rn is said to be comonotonic if any elements x and y of A are ordered
componentwise, i.e. either xi � yi for i = 1; 2; : : : ; n, or xi � yi for i = 1; 2; : : : ; n must
hold. A random vectorX = (X1; : : : ; Xn) is said to be comonotonic if it has a comonotonic
support. For a random vector X, we de�ne its comonotonic modi�cation Xc as

Xc =
�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
; (36)

where the r.v. U has a uniform(0; 1) distribution. The comonotonic modi�cation Xc

has the same marginal distributions as X, while its components are �maximally depen-
dent�. Hereafter, we will denote the sum of the components of X and Xc by S and Sc,
respectively:

S = X1 + : : :+Xn and Sc = F�1X1 (U) + F
�1
X2
(U) + : : :+ F�1Xn (U) . (37)

For an overview of the theory of comonotonicity, we refer to Dhaene et al. (2002a). Fi-
nancial and actuarial applications are described in Dhaene et al. (2002b). An updated
overview of applications of comonotonicity can be found in Deelstra et al. (2010).

It is well-known that the comonotonic modi�cation Xc exceeds X in supermodular
order sense, hence

X �SM Xc; (38)

see e.g. Proposition 6.3.7 in Denuit et al. (2005). Taking into account this result, we �nd
from Theorem 12 that, provided S has a �nite expectation and the moment condition
(32) holds, we have that

S
d
= Sc =) X is comonotonic: (39)

Similarly, from Theorem 13 we �nd that, provided S has a �nite expectation, u is strictly
concave (or strictly convex) with absolutely continuous derivative, E [u (S)] is �nite and
the moment condition (32) is satis�ed, the following implication holds:

E [u (S)] = E [u (Sc)] =) X is comonotonic. (40)
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Finally, from Theorem 14 we �nd that, provided S has a �nite expectation, g is strictly
convex (or strictly concave) with absolutely continuous derivative and the moment con-
dition (32) holds, we have that

�g [S] = �g [S
c] =) X is comonotonic. (41)

The implications (39), (40) and (41) remain to hold under weaker conditions than
the moment condition (32). Indeed, Cheung (2010) proves that implication (39) holds
when the marginals have �nite �rst moments and the underlying probability space is
atomless. Mao and Hu (2011) prove Cheung�s result without having to assume that
the underlying probability space is atomless. Cheung (2010) also proves the implications
(40) and (41) under less stringent conditions, in particular without having to assume the
moment condition (32). Below, we give a simpli�ed proof of Cheung�s theorem concerning
the implication (39) under slightly weaker conditions. We �rst give a new and simpler
proof for the following theorem, which was �rst considered in Mao and Hu (2011).

Lemma 15 (Mao and Hu) Consider the n-vector X = (X1; : : : ; Xn). In case the ex-
pectations E

�
(Xi)+

�
; i = 1; 2; : : : ; n; are �nite, we have that

X1 + : : :+Xn
d
= Xc

1 + : : :+X
c
n ) X1 + : : :+Xn�1

d
= Xc

1 + : : :+X
c
n�1:

Proof. Assume that

X1 + : : :+Xn�1
d

6= Xc
1 + : : :+X

c
n�1: (42)

Note that E
�
(Xi)+

�
< 1 implies that TVaRp [Xi] is �nite for all p 2 (0; 1). If (42)

holds, there exists a p 2 (0; 1) such that

TVaRp [X1 + : : :+Xn�1] <
n�1X
i=1

TVaRp [Xi] : (43)

Note that the subadditivity property of the TVaR leads to

TVaRp [X1 + : : :+Xn�1 +Xn] � TVaRp [X1 + : : :+Xn�1] + TVaRp [Xn] :

If (43) holds, we �nd that

TVaRp [X1 + : : :+Xn�1 +Xn] <
nX
i=1

TVaRp [Xi] ;

which implies that X1 + : : : + Xn

d

6= Xc
1 + : : : + X

c
n: This contradiction proves that (42)

cannot hold.

In the following theorem, we give a new proof of Cheung�s theorem, based on the
previous lemma.
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Theorem 16 Consider the n-vectorX = (X1; : : : ; Xn). In case all expectations E
�
(Xi)+

�
;

i = 1; 2; : : : ; n; are �nite, we have that

X is comonotonic, S
d
= Sc:

Proof. The) - implication is straightforward. It remains to prove the other implication.
First, as X �SM Xc we have that

(Xi; Xj) �SM
�
Xc
i ; X

c
j

�
; for all i 6= j in f1; 2; : : : ; ng :

Furthermore, as S d
= Sc; we �nd from Lemma 15 that

Xi +Xj
d
= Xc

i +X
c
j ; for all i 6= j in f1; 2; : : : ; ng :

From Theorem 12 it follows then that

(Xi; Xj)
d
=
�
Xc
i ; X

c
j

�
; for all i 6= j in f1; 2; : : : ; ng :

As comonotonicity of the n-vector X is equivalent with comonotonicity of all couples
(Xi; Xj), see Theorem 3 in Dhaene et al. (2002a), we can conclude that X is comonotonic.

The implication (39) holds without any conditions if the marginals are bounded from
below. In the following theorem, a proof for implication (39) is given in case the second-
order moments of all components Xi are �nite. Although the conditions are stronger than
the conditions in Cheung (2010) and Mao and Hu (2011), we present this proof here
because of its amazing simplicity.

Theorem 17 Consider the n-vector X = (X1; : : : ; Xn). In case all second-order moments
E [X2

i ] ; i = 1; 2; : : : ; n; are �nite, we have that

X is comonotonic, S
d
= Sc , Var [S] = Var [Sc] :

Proof. The second-order moment conditions imply that all covariances cov[Xi; Xj] and
cov
�
Xc
i ; X

c
j

�
, i; j = 1; 2; : : : ; n, as well as Var[S] and Var[Sc] are �nite. The proof of the

) - implications is trivial. It remains to prove that Var[S] = Var[Sc] implies that X is
comonotonic.
We �rst recall that cov[Xi; Xj] � cov

�
Xc
i ; X

c
j

�
always holds. Furthermore, we have that

comonotonicity can be characterized as follows:

X is comonotonic, cov [Xi; Xj] = cov
�
Xc
i ; X

c
j

�
for all i 6= j in f1; 2; : : : ; ng :

A proof of the above-mentioned properties can be found e.g. in in Dhaene et al. (2002a).
Taking into account these properties, we �nd that

Var [S] = Var [Sc]

)
nX

i;j=1

cov (Xi; Xj) =
nX

i;j=1

cov
�
Xc
i ; X

c
j

�
) cov (Xi; Xj) = cov

�
Xc
i ; X

c
j

�
, for all i 6= j in f1; : : : ; ng

) (X1; : : : ; Xn) is comonotonic.
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The bivariate special case of Theorem 17 can be found in Dhaene et al. (2002b). A

proof of the equivalence S d
= Sc , Var[S] = Var[Sc] can also be found in Cheung and

Vandu¤el (2012). This equivalence was also derived in Dhaene, Linders, Schoutens and
Vyncke (2012) for the case where all marginals are non-negative.

We end this section by showing that the condition that E [S] is �nite is essential for
the implication (39) to hold. In particular, we will show that this implication does not
hold for r.v.�s with a Cauchy distribution.

Recall that a r.v. X has a Cauchy distribution with location parameter 0 and scale
parameter � if its probability density function f is given by

fX (x) =
1

��
�
1 +

�
x
�

�2� ; x 2 R;

or, equivalently, its characteristic function is given by

E
�
eitX
�
= e��jtj:

It is well-known that the expected value of the Cauchy distributed r.v. X does not exist.

Consider now the random couple X = (X1; X2). Suppose that X1 and X2 have a
standard Cauchy distribution, which means that their scale and location parameters are
0 and 1, respectively. Furthermore, suppose that X1 and X2 are mutually independent.
The characteristic function of the sum S = X1 +X2 is given by

E
�
eitS
�
=
�
E
�
eitX1

��2
= e�2jtj;

which means that S has a generalized Cauchy distribution with location parameter � = 0
and scale parameter � = 2.

Next, consider the comonotonic modi�ation Xc = (Xc
1; X

c
2) of X and its sum Sc =

Xc
1 +X

c
2. As S

c d
= 2X1, we �nd that the characteristic function of Sc is given by

E
�
eitS

c�
= E

�
eit2X1

�
= e�2jtj:

Equality of the characteristic functions of S and Sc allows us to conclude that S d
= Sc.

From Luan (2001), we know that (X1; X2) can only have the independent and the
comonotonic copula at the same time in case the marginal distribution FX1 is degenerate.
Obviously, this condition is not ful�lled here. Hence, for the couple (X1; X2) of indepen-

dent Cauchy distributed r.v.�s we have that S d
= Sc, but (X1; X2)

d
6= (Xc

1; X
c
2). This means

that the �rst order moment condition is crucial for the implication (39) to hold.

We can conclude that when considering a random vector X and its comonotonic
modi�cationXc, Theorems 12, 13 and 14 remain to hold under weaker moment conditions
than (32), although the condition that S has a �nite expectation cannot be relaxed.
These observations make us presume that the implications in Theorems 12, 13 and 14
might remain to hold under weaker moment conditions than (32). Investigating this
presumption is a topic of future research.
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A Appendix

A.1 Proof of Lemma 1

Proof. (1) The absolute continuity of u0 implies that also u is absolutely continuous and
can be expressed as

u (x) = u (a)�
Z a

x

u0 (K)dK; x 2 I:

Partial integration leads to

u (x) = u (a) + xu0 (x)� au0 (a) +
Z a

x

Ku00 (K)dK; x 2 I: (44)

Considering the cases x < a and x � a separately, one easily �nds that (44) can be
rewritten as

u (x) = u (a) + u0 (a) (x� a) +
Z a

inf I

u00 (K) (K � x)+ dK

+

Z sup I

a

u00 (K) (x�K)+ dK; x 2 I:

Replacing x by X in this expression leads to the a.s. equality (1).

(2) Decomposing u00 into its positive and negative parts, i.e.

u00 (K) = (u00 (K))+ � (u00 (K))� ; (45)

where (y)+ = max(y; 0) and (y)� = �min(y; 0), we �nd thatZ sup I

inf I

u00 (K)dK =

Z sup I

inf I

(u00 (K))+ dK �
Z sup I

inf I

(u00 (K))� dK
not.
= I1 � I2:

The assumption that the integral
R sup I
inf I

u00 (K)dK is well-de�ned implies that either

0 � I1 < +1 and 0 � I2 < +1

or
I1 = +1 and 0 � I2 < +1
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or
0 � I1 < +1 and I2 = +1

must hold. Using (45), we can rewrite (1) as

u (X) = u (a) + u0 (a) (X � a)

+

Z a

inf I

(u00 (K))+ (K �X)+ dK �
Z a

inf I

(u00 (K))� (K �X)+ dK

+

Z sup I

a

(u00 (K))+ (X �K)+ dK �
Z sup I

a

(u00 (K))� (X �K)+ dK:

Taking expectations and applying Fubini�s theorem to any of the four integrals on the
right hand side of this expression leads to

E [u (X)] = u (a) + u0 (a) (E [X]� a)

+

Z a

inf I

(u00 (K))+ E
�
(K �X)+

�
dK �

Z a

inf I

(u00 (K))� E
�
(K �X)+

�
dK

+

Z sup I

a

(u00 (K))+ E
�
(X �K)+

�
dK �

Z sup I

a

(u00 (K))� E
�
(X �K)+

�
dK:

(46)

Notice that any of the integrals in the right-hand side of this expression takes a value in
[0;+1]. Furthermore, the linear combination of these integrals, and hence, E [u (X)] is
well-de�ned. Consider e.g. the situation where I1 = +1 and 0 � I2 < +1. Then we �nd
that

0 �
Z a

inf I

(u00 (K))� E
�
(K �X)+

�
dK � E

�
(a�X)+

� Z sup I

inf I

(u00 (K))� dK < +1

and

0 �
Z sup I

a

(u00 (K))� E
�
(X �K)+

�
dK � E

�
(X � a)+

� Z sup I

inf I

(u00 (K))� dK < +1;

so that the right-hand side of (46) is well-de�ned in this case. The other cases lead to the
same conclusion.

A.2 Proof of Lemma 2

Proof. Let U be a uniformly distributed r.v. on the unit interval. Taking into account
that g0 is absolutely continuous, g0 (1� U) can be written as

g0 (1� U) = g0 (1)�
Z U

0

g00 (1� p)dp

= g0 (1)�
Z 1

0

g00 (1� p) I (U > p)dp: (47)
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As g0 is absolutely continuous, also g is absolutely continuous. From (4) and (47), it
follows that we can express �g [X] as

�g [X] = g
0(1)E [X]� E

�Z 1

0

g00 (1� p)F�1X (U)I (U > p)dp
�
: (48)

For any distortion function g with absolutely continuous derivative g0, we have thatR 1
0
g00 (p)dp is �nite. As E [X] is assumed to be �nite as well, we �nd that

E
�Z 1

0

��g00 (1� p)F�1X (U)I (U > p)
�� dp� � E [jXj]Z 1

0

jg00 (p)j dp < +1:

Hence, the second term in the right hand side of (48) is �nite, which implies that also
�g [X] is �nite. Applying Fubini�s theorem and taking into account (5) leads to (6).

A.3 Proof of Lemma 3

Proof. (a) We �rst prove by induction that for any k � 2, the relation�Pk
i=1 xi �K

�k�1
+

(k � 1)!

=

Z +1

�1
: : :

Z +1

�1
I (x1 > u1) : : : I (xk�1 > uk�1) I

 
xk > K �

k�1X
i=1

ui

!
du1 : : : duk�1

(49)

holds for any real numbers x1; x2; : : : xk and K. Here, I (A) has value 1 if A holds, while
it equals 0 in the other case.

Considering the cases x1 + x2 � K and x1 + x2 > K separately, one can easily verify
that

(x1 + x2 �K)j+
j

=

Z +1

�1
I (x1 > u1) (x2 � (K � u1))j�1+ du1: (50)

holds for any integer j � 1. In particular, for j = 1 this expression reduces to

(x1 + x2 �K)+ =
Z +1

�1
I (x1 > u1) I (x2 > K � u1)du1: (51)

We can conclude that expression (49) holds for k = 2 and any real numbers x1; x2 and K.
Suppose now that for a particular value of k � 2, expression (49) holds for any real
numbers x1; x2; : : : ; xk and K. Then for any real numbers x1; x2; : : : ; xk+1 and K, we have
thatZ +1

�1
: : :

Z +1

�1
I (x1 > u1) : : : I (xk > uk) I

 
xk+1 > K �

kX
i=1

ui

!
du1 : : : duk

=

Z +1

�1
I (x1 > u1)

(Z +1

�1
I (x2 > u2) : : : I (xk > uk) I

 
xk+1 > K � u1 �

kX
i=2

ui

!
du2 : : : duk

)
du1:
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From relation (49), we �nd that the right hand side of this expression can be rewritten as

1

(k � 1)!

Z +1

�1
I (x1 > u1)

 
k+1X
i=2

xi � (K � u1)
!k�1
+

du1:

Taking into account (50), we then �nd that

Z +1

�1
: : :

Z +1

�1
I (x1 > u1) : : : I (xk > uk) I

 
xk+1 > K �

kX
i=1

ui

!
du1 : : : duk =

�Pk+1
i=1 xi �K

�k
+

k!
;

which means that expression (49) also holds for k + 1.
We can conclude that expression (49) holds for any k � 2 and any real numbers x1; x2; : : : ; xk
and K. Replacing xi by Xi and k by n in this expression, and taking expectations leads
to (8).

(b) Applying expression (8) to the vector �X and the retention �K, we �nd that

E
�
(K � SX)n�1+

�
= (n� 1)!

Z +1

�1

Z +1

�1
F�X

 
x1; : : : ; xn�1;�K �

n�1X
i=1

xi

!
dx1 : : : dxn�1:

Taking into account that F�X has at most countably many jumps, we can replace
the integrand F�X

�
x1; : : : ; xn�1;�K �

Pn�1
i=1 xi

�
by FX

�
�x1; : : : ;�xn�1; K +

Pn�1
i=1 xi

�
in this expression. Substituting the xi by yi = �xi leads to the expression (9) for
E
�
(K � SX)n�1+

�
.

A.4 Proof of Lemma 4

Proof. Let us �rst consider the case where t > 0. For any i we have that

etXi = t
Z Xi

�1
etxidxi

= t

Z +1

�1
etxiI (Xi > xi)dxi. (52)

Taking into account these expressions for the etXi, we can express E
�
etSX

�
as

E
�
etSX

�
= tnE

��Z +1

�1
etx1I (X1 > x1)dx1

�
� � �
�Z +1

�1
etxnI (Xn > xn)dxn

��
: (53)

Using Fubini�s theorem to interchange the order of the expectation and the integrals leads
to (15).
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Next, we consider the case that t < 0. In order to prove (14) for t < 0, consider the
random vector �X � (�X1;�X2; : : : ;�Xn). Applying expression (15) to E

�
e�t(�SX)

�
leads to

E
�
etSX

�
= (�t)n

Z +1

�1
� � �
Z +1

�1
e�t(x1+���+xn)F�X (x)dx1 : : : dxn:

Taking into account that F�X has at most countably many jumps, we can replace F�X (x)
by FX (�x) in this expression. Subsituting the xi by yi = �xi leads to expression (14).

A.5 Proof of Lemma 5

Proof. Let us �rst prove implication (17). For any positive real number t, we have that

et(x)+ � etx + 1:

From this inequality we �nd that

E
�
etX
�
< +1 ) E

�
et(X)+

�
< +1:

As

E
�
et(X)+

�
=

1X
k=0

tk

k!
E
h
(X)k+

i
< +1;

we can conclude that the implication (17) holds.
The proof of (16) follows immediately from (17) by rewriting E

�
etX
�
as E

�
e(�t)(�X)

�
.

A.6 Proof of Theorem 7

Proof. We prove the case where u is strictly concave. The other case can be proven in a
similar way. In order to prove the implication (19), notice that the convex order relation
X �cx Y implies that E [X] = E [Y ]. Furthermore, the convex order relation X �cx Y
together with Pr [Y 2 I] = 1 implies that Pr [X 2 I] = 1, so that the r.v.�s u (X) and
u (Y ) are well-de�ned. Under the stated assumptions, we �nd from Lemma 1 that for
a = E [X] = E [Y ], the following expressions hold for E [u (X)] and E [u (Y )], respectively:

E [u (X)] = u (E [X]) +
Z E[X]

inf I

u00 (K)E
�
(K �X)+

�
dK +

Z sup I

E[X]
u00 (K)E

�
(X �K)+

�
dK

and

E [u (Y )] = u (E [X]) +
Z E[X]

inf I

u00 (K)E
�
(K � Y )+

�
dK +

Z sup I

E[X]
u00 (K)E

�
(Y �K)+

�
dK;
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where E [u (X)] and E [u (Y )], as well as all integrals in these expressions for E [u (X)]
and E [u (Y )] are �nite. From these expressions, taking into account the assumption that
E [u (X)] = E [u (Y )], we �nd that

0 =

Z E[X]

inf I

u00 (K)
�
E
�
(K � Y )+

�
� E

�
(K �X)+

��
dK

+

Z sup I

E[X]
u00 (K)

�
E
�
(Y �K)+

�
� E

�
(X �K)+

��
dK: (54)

The convex order relation X �cx Y implies that

E
�
(X �K)+

�
� E

�
(Y �K)+

�
; for all K 2 R:

E
�
(K �X)+

�
� E

�
(K � Y )+

�
; for all K 2 R:

Furthermore, as the function u0 is absolutely continuous, we have that the condition that
u is strictly concave on I is equivalent with u00(x) < 0 a.e. on I. Hence, both integrands in
(54) are non-positive. Furthermore, as E

�
(K � Y )+

�
�E

�
(K �X)+

�
and E

�
(Y �K)+

�
�

E
�
(X �K)+

�
are continuous functions of K, we can conclude that

E
�
(K � Y )+

�
= E

�
(K �X)+

�
; for all K < E [X] ;

E
�
(Y �K)+

�
= E

�
(X �K)+

�
; for all K � E [X] ;

which is equivalent with

E
�
(Y �K)+

�
= E

�
(X �K)+

�
; for all K 2 R; (55)

which in turn is equivalent with X d
= Y ; see Property 1.7.3 in Denuit et al. (2005).
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