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Abstract

In arbitrage-free but incomplete markets, the equivalent martingale measure Q
for pricing traded assets is not uniquely determined. A possible approach when
it comes to choosing a particular pricing measure is to consider the one that is
�closest�to the physical probability measure P, where closeness is measured in terms
of relative entropy.
In this paper, we determine the minimal entropy martingale measure in a market

where securities are traded with payo¤s depending on two types of risks, which we
will call �nancial and actuarial risks, respectively. In case only purely �nancial and
purely actuarial securities are traded, we prove that �nancial and actuarial risks are
independent under the physical measure if and only if these risks are independent
under the entropy measure. Moreover, in such a market the entropy measure of the
combined �nancial-actuarial world is the product measure of the entropy measures
of the �nancial and the actuarial subworlds, respectively.

Keywords: Minimal entropy martingale measure, relative entropy, �nancial
risks, actuarial risks, independence, incomplete markets.

1 Introduction

Despite the never-ending stream of innovations concerning traded assets with payo¤s
contingent on �nancial and/or actuarial quantities, most corresponding markets remain
incomplete. An obvious question that arises in an arbitrage-free but incomplete market
is which pricing measure can be considered as the �most natural�choice. A possible ap-
proach to answer this question consists of searching for the element in the set of all feasible
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martingale measures that is �closest�to the physical or real-world probability measure P,
where closeness is expressed in terms of relative entropy, see Frittelli (1995) and Frittelli
(2000). The corresponding pricing measure is usually called the Minimal Entropy Martin-
gale Measure (hereafter often referred to as the entropy measure). It is well-known that
in a one-period setting, an entropy measure can be interpreted in terms of an Esscher
transform of P. These transforms, which were introduced in Esscher (1932), have a long
history in actuarial pricing. They have also been used by several authors to de�ne pricing
measures in incomplete markets, see e.g. Bühlmann et al. (1996) and Gerber and Shiu
(1994).

The Minimal Entropy Martingale Measure is also related to the Esscher-Girsanov
transform introduced by Goovaerts and Laeven (2008). In a one-period setting, the (two-
parameter) Esscher-Girsanov transform may agree with the (one-parameter) so-called
Wang transform (distortion), which has gained some popularity among actuarial practi-
tioners (Labuschagne and O¤wood (2010)). However, the two transforms are not equiva-
lent, a fact that becomes most apparent in a dynamic setting, in which the two parameters
of the Esscher-Girsanov transform start to play a distinct role: while the two-parameter
Esscher-Girsanov transform can generate arbitrage-free prices for �nancial derivatives
driven by general di¤usion processes, as shown by Goovaerts and Laeven (2008) and em-
phasized by Badescu et al. (2009), this is not true for the one-parameter Wang transform;
see also Pelsser (2008). Goovaerts and Laeven (2008) also show that independence under
the real-world probability measure P naturally translates into comonotonicity of the Ess-
cher transform with random parameter, thanks to the independent additivity property of
the Esscher transform.

Determining the Minimal Entropy Martingale Measure boils down to a relative entropy
minimisation under linear constraints. Such a minimisation problem arises in various
disciplines, see e.g. Cherny and Maslov (2003). In Kullback and Leibler (1951), relative
entropy is interpreted in terms of the expected amount of information given by a set of
observations for distinguishing between two potential probability distributions, known as
the Kullback-Leibler divergence measure. In the insurance literature, this interpretation is
considered e.g. in Brockett (1991). In a �nancial context, there exists a duality relationship
between maximization of expected exponential utility and minimization of entropy, see
Frittelli (2000).

The assumption of independence between �nancial and actuarial risks under the real-
world measure P may be quite reasonable in many situations. The conditions under which
it is possible (or not) to transfer the independence assumption from P to Q, have been
investigated in Dhaene et al. (2013). In the current paper, we go one step further by explor-
ing whether a P-world (in-)dependence between �nancial and actuarial risks is maintained
or not under the entropy measure. As far as we are aware, in the literature no attention
has been given to this problem.

Hereafter, we will con�ne ourselves to a one-period, �nite state market model. From
a technical point of view, such an approach is simple and hence, allows us to concentrate
on the key message, without being distracted by analytical details. In order to make this
paper su¢ ciently self-contained, we will repeat some known results on relative entropy.
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2 The combined �nancial-actuarial world and its sub-
worlds

In this section, we introduce a single period world, which is home to a market of traded
assets. The payo¤s of these assets can be described in terms of random variables (r.v.�s),
de�ned on a probability space (
;�;P). Here, the universe 
 is given by


 = f(i; j) j i = 1; :::; I and j = 1; :::; Jg ;

where any (i; j) corresponds to a possible state of the combined �nancial-actuarial world
at the end of the observation period [0; 1]. The �nancial substate is given by i 2 f1; :::; Ig
and indicates a possible scenario concerning the evolution of the �nancial subworld over
the time interval under consideration. As an example, each i could represent a set of
possible outcomes of the prices at time 1 of a given number of stocks. The actuarial
substate is characterized by j 2 f1; :::; Jg, where j describes a possible scenario of the
actuarial subworld. Each j could identify e.g. a possible number of survivors at time 1
from a given closed population observed at time 0. The �-algebra � is the set of all subsets
of 
 and represents all events that may or may not occur in the coming year. Probabilities
for these events follow from the real-world probability measure P, which is characterized
by

P [(i; j)] = pij � 0; for i = 1; :::; I and j = 1; :::; J:

Remark that we allow some probabilities pij to be equal to 0, in order to be able to
include e.g. the combined scenario (i; j) with strictly positive probability pij > 0, whereas
the combined scenario (i; j0) with j0 6= j has related probability pij0 = 0.
We assume that the combined �nancial-actuarial world (
;�;P) is home to a market

of M + 1 traded assets, denoted by 0; 1; : : :, M . The price (or the payo¤) at time 1 of
each traded asset is given by a r.v. de�ned on (
;�). We will consider assets of which the
payo¤ at time 1 depends on both the �nancial and the actuarial scenario that will unfold.
The current price of asset m 2 f0; 1; 2; : : : ;Mg, is denoted by s(m)(0) > 0, whereas its
payo¤ at time 1 is denoted by S(m)(1). The possible outcomes of S(m)(1) are denoted by
s
(m)
ij � 0; for i = 1; : : : ; I; j = 1; : : : ; J; where s(m)ij is the outcome in case (i; j) is the
�nancial-actuarial scenario that unfolds. Notice that we allow di¤erent scenarios to lead
to the same value of S(m)(1) at time 1, which implies that P

h
S(m) (1) = s

(m)
ij

i
� pij. Each

asset m is characterized by the stochastic process
�
s(m)(0); S(m) (1)

�
de�ned on (
;�).

Throughout the paper, we will assume that the market of traded assets is perfectly
liquid and frictionless (no transaction costs, no trading constraints). We will also as-
sume that the M + 1 assets are non-redundant, which means that there exists no vector�
a(0); a(1); : : : ; a(M)

�
of real numbers such that

P

"
MX
m=0

a(m) S(m) (1) = 0

#
= 1:
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Equivalently, the non-redundancy assumption can be stated as follows: there exists no
vector

�
a(0); a(1); : : : ; a(M)

�
such that

MX
m=0

a(m) s
(m)
ij = 0, for all (i; j) with pij > 0.

The combined world is assumed to be home to a single bank account with (continuously
compounded) deterministic and constant interest rate r � 0. By convention, asset 0 is
the corresponding risk-free zero coupon bond with s(0) (0) = 1 and S(0) (1) = er.

A particular asset m 2 f0; 1; 2; : : : ;Mg, is called a �nancial asset in case the following
condition holds:

s
(m)
ij = s

(m)
ij0 for all j and j

0 in f1; : : : ; Jg .
This means that the payo¤ at time 1 of a �nancial asset does not depend on the actuarial
scenario that unfolds. Hereafter, the possible outcomes of the payo¤ of �nancial asset m
will be denoted by s(m)i� ; for i = 1; : : : ; I.

Similarly, an asset m 2 f0; 1; 2; : : : ;Mg, is said to be an actuarial asset in case

s
(m)
ij = s

(m)
i0j for all i and i0 in f1; : : : ; Ig ;

which means that its payo¤does not depend on the �nancial scenario that will unfold. The
possible outcomes of the payo¤ of actuarial asset m are denoted by s(m)�j ; for j = 1; : : : ; J .

Remark that the risk-free bond (asset 0) is the only asset that can be considered as a
�nancial asset as well as an actuarial asset.

Starting from the combined �nancial-actuarial world (
;�;P), we de�ne the �nancial
subworld (F (
) ;F (�) ;F (P)). The �nancial universe F (
) is given by

F (
) = fi j i = 1; : : : ; Ig ;

where each i indicates a possible scenario concerning the evolution of the �nancial world
over the coming year. The �-algebra F (�), which is de�ned as the set of all subsets
of F (
), represents all �nancial events that may or may not occur in the coming year.
Probabilities for these �nancial events follow from the real-world probability measure
F (P), which is the projection of the combined real-world probability measure P to the
�nancial subworld:

F (P) [i] =
JX
j=1

pij = pi� � 0; for i = 1; :::; I: (1)

Similar to the �nancial subworld, we describe the actuarial subworld by the probability
space (A (
) ;A (�) ;A (P)). The actuarial universe A (
) is given by

A (
) = fj j j = 1; : : : ; Jg ;
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and the probability measure A (P), which is the projection of P to the actuarial subworld,
attaches a real-world probability to each event in the actuarial subworld:

A (P) [j] =
IX
i=1

pij = p�j � 0; for j = 1; :::; J: (2)

Until here, we described the price processes of the M + 1 traded assets via stochas-
tic processes in the combined world (
;�;P). The price process of a �nancial asset
m 2 f0; : : : ;Mg can as well be described by the stochastic process

�
s(m)(0); S(m) (1)

�
de�ned on the �nancial subworld (F (
) ;F (�)). Here, S(m) (1) is a random variable on
(F (
) ;F (�) ;F (P)) with an outcome given by s(m)i� � 0 in case i 2 f1; : : : ; Ig is the �nan-
cial scenario that unfolds. Observe that di¤erent �nancial scenarios may eventually lead
to the same outcome S(m)(1) of the �nancial asset, implying that F (P)

h
S(m)(1) = s

(m)
i�

i
�

pi�.

Similarly, the price process of an actuarial asset m 2 f0; : : : ;Mg can be described
by the stochastic process

�
s(m)(0); S(m) (1)

�
which is de�ned on the actuarial subworld

(A (
) ;A (�)).
Hereafter, we will often (but not always) assume that �nancial and actuarial risks are

independent under the real-world probability measure P, in the sense that

P � F (P)�A (P) : (3)

This assumption can also be expressed as

pij = pi� � p�j; for all i = 1; :::; I and j = 1; :::; J;

where the marginal probabilities pi� and p�j are the �nancial and actuarial real-world
probabilities introduced in (1) and (2), respectively.

3 Pricing traded assets

Consider the combined world (
;�;P) which is home to a market of M +1 traded assets
as de�ned above. A probability measure Q de�ned on (
;�) is said to be an equivalent
martingale measure (or a risk-neutral measure) for this market if it ful�lls the following
conditions:

(1) Q and P are equivalent probability measures.

(2) The future payo¤ of any traded asset in the combined world, discounted at the
risk-free interest rate, is a martingale with respect to Q:

The equivalence condition means that P and Q agree on zero-probability events or,
equivalently, they agree on the elements (i; j) of 
 with a strictly positive probability. The
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Q-martingale condition states that the current price of any traded asset in the combined
market is equal to the expected value of the discounted payo¤ of this asset at time 1,
where discounting is performed at the risk-free interest rate r and expectations are taken
with respect to the measure Q.

A probability measure Q de�ned on (
;�) is said to be P-absolutely continuous in case
pij = 0 implies qij = 0, for all (i; j) of 
. A P-absolutely continuous martingale measure
is de�ned as a measure satisfying the conditions (1�) and (2), with

(1�) Q is P-absolutely continuous.

It is well-known that in our discrete setting, the no-arbitrage condition is equivalent to
the existence of a (not necessarily unique) equivalent martingale measure, whereas com-
pleteness of the arbitrage-free market is equivalent to the existence of a unique equivalent
martingale measure, see e.g. Shiryaev et al. (1994). Hereafter, we will always assume that
the market of traded assets in the combined world (
;�) is arbitrage-free, implying that
there exists at least one equivalent martingale measure.

For a given equivalent martingale measure Q in the combined world, we introduce the
following notation:

Q [(i; j)] = qij � 0; for i = 1; :::; I and j = 1; :::; J:

Notice that qij = 0 if and only if pij = 0. The equivalent martingale measure Q gives
rise to the following probability measures for the �nancial and the actuarial subworld,
respectively:

F (Q) [i] =
JX
j=1

qij = qi� � 0; for i = 1; :::; I;

and

A (Q) [j] =
IX
i=1

qij = q�j � 0; for j = 1; :::; J:

The measures F (Q) and A (Q) are called the projections of Q to the �nancial and the
actuarial subworld, respectively. Based on these projections, we introduce the probability
measureF (Q)�A (Q) on the combined measurable space (
;�). In terms of the notations
introduced above, it is de�ned by

(F (Q)�A (Q)) [(i; j)] = qi� � q�j, for i = 1; :::; I and j = 1; :::; J .

Financial and actuarial risks are said to be independent under the measure Q if the
following condition holds:

Q � F (Q)�A (Q) ; (4)

or equivalently,

qij = qi� � q�j, for all i = 1; :::; I and j = 1; :::; J .
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Until here, we considered equivalent martingale measures in the combined world
(
;�;P), which is home to a market of assets with �nancial and/or actuarial payo¤s.
We can as well restrict to the �nancial subworld (F (
) ;F (�) ;F (P)) and the corre-
sponding submarket of �nancial assets, and de�ne equivalent martingale measures in this
subworld. Similarly, the notion of equivalent martingale measure can be de�ned in the
actuarial subworld (A (
) ;A (�) ;A (P)) and the corresponding actuarial submarket of
actuarial assets.

Consider a combined world (
;�;P) with a corresponding market of traded assets
and let Q be an equivalent martingale measure in this world. The projection F (Q) of
Q is an equivalent martingale measure in the �nancial subworld with the corresponding
submarket of traded �nancial assets. A similar remark holds for the projection A (Q) of
Q in the actuarial subworld. This means that our assumption about an arbitrage-free
pricing framework in the combined market implies that also the �nancial and actuarial
submarkets are arbitrage-free. In general, P and F (Q) � A (Q) do not necessarily agree
on sure events and moreover, F (Q) � A (Q) is not necessarily a martingale measure in
the combined world. In the special case that P ful�lls the independence assumption (3),
we have that P and F (Q)�A (Q) are equivalent measures, but the latter measure is still
not necessarily a martingale measure in the combined world. For details and examples,
we refer to Dhaene, Kukush, Luciano, Schoutens & Stassen (2013).

4 The minimal entropy martingale measures of the
combined market and its submarkets

Due to the presence of unhedgeable actuarial and �nancial risk, the market of traded
contingent claims in the combined �nancial-actuarial world is in general incomplete, im-
plying the existence of more than one equivalent martingale measure for pricing purposes.
The non-uniqueness of the pricing measure means that there is no unique arbitrage-free
price for non-replicable contingent claims. Hereafter, we investigate the problem of �nding
the martingale measure that is �closest�to the real-world probability measure P, where
the distance between probability measures is de�ned in terms of their relative entropy,
also called the Kullback-Leibler information. In the remainder of this section, we �rst
determine the Minimal Entropy Martingale Measure bQ of the combined market. Next, we
determine the Minimal Entropy Martingale Measures bQf and bQa corresponding to the �-
nancial and the actuarial submarket, respectively. Finally, we investigate the relationship
that exists between these measures.

4.1 The entropy measure of the combined market

Consider the combined world (
;�;P) with the market ofM+1 traded assets as described
above. In this section, we determine the Minimal Entropy Martingale Measure bQ in the
most general case, which means that we consider a market where �nancial, actuarial

7



as well as combined assets may be traded. First, we de�ne the relative entropy of an
absolutely continuous probability measure Q with respect to P.

De�nition 1 Let P and Q be two probability measures de�ned on the combined �nancial-
actuarial world (
;�). Furthermore, Q is P-absolutely continuous. The relative entropy
E (Q;P) of Q with respect to P is then de�ned by

E (Q;P) =
X
i;j

qij ln

�
qij
pij

�
;

where the sum is taken over all (i; j) 2 
 with pij > 0, and where 0 ln 0 = 0, by convention.

Loosely speaking, the value of E (Q;P) increases if Q and P �diverge�. Therefore,
E (Q;P) measures the �similarity� or �closeness� of the respective probability measures
and hence, it can be thought of as a kind of �distance�. Notice however that the relative
entropy is not symmetric, i.e. E (Q;P) 6= E (P;Q), implying that it is not a distance in
the usual mathematical sense. Relative entropy has many relevant features. It is always
non-negative and it equals zero if and only if the two measures are identical, see e.g.
Frittelli (2000).

Based on the notion of relative entropy, we now introduce the notion of Minimal
Entropy Martingale Measure in the combined �nancial-actuarial world, as the particular
element in the class of equivalent martingale measures for which the relative entropy is
minimised.

De�nition 2 Consider the combined �nancial-actuarial world (
;�;P) which is home to
the market of traded assets f0; 1; : : : ;Mg. LetM be the class of all equivalent martingale
measures in the combined market. Then bQ 2M is a Minimal Entropy Martingale Measure
of the combined market if it satis�es

E
�bQ;P� = min

Q2M
E (Q;P) = min

Q2M

X
i;j

qij ln

�
qij
pij

�
: (5)

Any Q 2 M can be characterized by an I�J - matrix with non-negative components
qij, with qij = 0 if and only if pij = 0, and which satisfy the following conditions:

e�r EQ
�
S(m)(1)

�
= s(m) (0) ; for m = 0; 1; : : : ;M;

or, equivalently,

e�r
X
i;j

qij s
(m)
ij = s(m)(0); for m = 0; 1; : : : ;M , (6)

where as before, the sum is taken over all (i; j) 2 
 with pij > 0. Obviously, the condition
for m = 0 corresponds to the condition that the probabilities qij sum up to 1.
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Notice that restricting the set of available assets to an appropriate subset of non-
redundant assets does not change the class M of all equivalent martingale measures,
implying that also the set of solutions of (5) remains unchanged by this operation.

In the next theorem, we prove that the minimal entropy martingale measure always
exists and is unique. Hereafter, we will often call this measure the combined market
entropy measure. The proof is based on Theorem 2.2 of Frittelli (2000).

Theorem 3 The arbitrage-free combined market is home to a unique minimal entropy
martingale measure.

Proof: Let cM�M be the class of all P-absolutely continuous martingale measures and
consider the following minimisation problem:

min
Q2cM

X
i;j

qij ln

�
qij
pij

�
: (7)

The no-arbitrage assumption implies that the set M, and thus also cM, is not empty.
Furthermore, cM is a closed and bounded set in RI�J , while

X
i;j

qij ln
�
qij
pij

�
is continuous

on cM. Hence, the objective function in (7) reaches a minimum in the set cM. The

uniqueness of this minimum follows from the fact that x ! x ln
�
x
pij

�
is strictly convex

on [0; 1] for any pij > 0. Let us denote this minimum by bQ.
It remains to prove that bQ 2 M. Hence, we have to prove that pij > 0 implies bqij > 0,
for any i and j. The no-arbitrage condition implies thatM contains at least one element
Qe. Consider the convex combination

Qx = x Qe + (1� x) bQ
with x 2 [0; 1]. Obviously, any Qx 2 cM. The probabilities of Qx are given by

qxij = x q
e
ij + (1� x) bqij = bqij + x �qeij � bqij� :

For x > 0, the derivative of the relative entropy E (Qx;P) with respect to x is given by

d
dx
E (Qx;P) =

X
i;j

�
qeij � bqij� ln�qxijpij

�
:

This leads to

d
dx
E (Qx;P)

����
x=0

=
X
i;j

�
qeij � bqij� ln�bqijpij

�
=
X
i;j

qeij ln

�bqij
pij

�
� E

�bQ;P� :
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As Q0 � bQ, which is the unique minimum of optimisation problem (7), we must have that
d
dx
E (Qx;P)

����
x=0

� 0;

or equivalently,

E
�bQ;P� �X

i;j

qeij ln

�bqij
pij

�
. (8)

Suppose now that bQ is not equivalent to P. In that case, there exists a scenario (i; j) such
that pij > 0, while bqij = 0. This implies that the right hand side of (8) reaches �1, which
is impossible as relative entropy is always non-negative. Hence, bQ 2 M. We conclude
that the minimal entropy martingale measure bQ exists and is unique.
Hereafter, we will always denote the unique minimal entropy martingale measure by bQ.

Since for any element of the setM, the qij sum up to 1, we can replace the minimisation
problem (5) by

min
Q2M

X
i;j

qij

�
ln

�
qij
pij

�
� 1
�
;

which leads to the same entropy measure bQ for the combined market.
We solve the adapted optimisation problem under linear constraints by the method of

Lagrange multipliers. Remark that we can apply this method on the class of equivalent
martingale measuresM, which is an open set, provided the minimum exists. The existence
of the minimal entropy martingale measure was proven in Theorem 3. The Lagrangian L
for this problem is now given by

L =
X
i;j

qij

�
ln

�
qij
pij

�
� 1
�
�

MX
m=0

�(m)

 X
i;j

qij s
(m)
ij � er s(m) (0)

!
:

Determining the partial derivatives with respect to the variables qij and �(m), and setting
them equal to zero, leads to the following system of equations:8>>><>>>:

ln

�
qij
pij

�
=

MX
m=0

�(m) s
(m)
ij ; for all (i; j) 2 
 with pij > 0;X

i;j

qij s
(m)
ij = er s(m) (0) ; for all m = 0; 1; : : : ;M .

(9)

Let us denote the probabilities related to the unique entropy measure bQ by (bqij; (i; j) 2 
).
Taking into account the �rst series of equations in (9), as well as the fact that bQ and P
are equivalent, we �nd that the probabilities bqij can be expressed as

bqij = pij eij; for any (i; j) 2 
, (10)
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with the coe¢ cients eij given by

eij = exp

 
MX
m=0

�(m) s
(m)
ij

!
; for any (i; j) 2 
; (11)

where
�
�(0); �(1); :::; �(M)

�
satis�es (9). As the condition for m = 0 corresponds to the

condition that the probabilities bqij sum up to 1, we can conclude from (10) and (11) that
0 � bqij � 1 holds for any (i; j) 2 
. The projections of the entropy measure bQ to the
�nancial and the actuarial subworld are characterized as follows

bqi� = JX
j=1

pij eij; for i = 1; 2; : : : ; I, (12)

and

bq�j = IX
i=1

pij eij; for j = 1; 2; : : : ; J; (13)

respectively.

In order to determine the Lagrange multipliers �(m), we combine the martingale con-
ditions in (9) with the expressions (10). We �nd that the �(m) follow fromX

i;j

pij eij s
(m)
ij = er s(m) (0) ; for all m = 0; 1; : : : ;M: (14)

Our assumption about the non-redundancy of the set of assets implies that these martin-
gale equations lead to a unique vector of Lagrange multipliers. Indeed, suppose that (14)

admits two di¤erent solutions
n
�
(m)
k j m = 0; 1 : : : ;M

o
, for k = 1; 2. Taking into account

(10) and (11), and the fact that the bqij are uniquely determined, we �nd that
exp

 
MX
m=0

�
(m)
1 s

(m)
ij

!
= exp

 
MX
m=0

�
(m)
2 s

(m)
ij

!
; for any (i; j) with pij > 0;

and thus
MX
m=0

�
�
(m)
1 � �(m)2

�
s
(m)
ij = 0; for any (i; j) with pij > 0.

Obviously, this contradicts the non-redundancy assumption, so that we can conclude that
the martingale equations lead to a unique vector of Lagrange multipliers, which we will
hereafter denote by

�
�(m) j m = 0; 1 : : : ;M

	
.

From the equation (14) for m = 0, it follows that

exp
�
�(0)er

�
� EP

"
exp

 
MX
m=1

�(m) S(m) (1)

!#
= 1:

11



The expressions (11) for the eij can then be rewritten as

eij =

exp

�
MP
m=1

�(m) s
(m)
ij

�
EP
�
exp

�
MP
m=1

�(m) S(m) (1)

�� ; for any (i; j) 2 
. (15)

As stated previously, we observe from (10) and (15) that the entropy measure bQ is an
equivalent martingale measure in the combined �nancial-actuarial market, which can be
interpreted as an Esscher-like transform of P.
Solving (10) for pij, replacing eij by (15) and summing over all i and j leads to the

following expression:

EbQ
"
exp

 
�

MX
m=1

�(m) S(m) (1)

!#
� EP

"
exp

 
MX
m=1

�(m) S(m) (1)

!#
= 1: (16)

So we �nd that

e�1ij =

exp

�
�

MP
m=1

�(m) s
(m)
ij

�
EbQ
�
exp

�
�

MP
m=1

�(m) S(m) (1)

�� ; for any (i; j) 2 
. (17)

These expressions will be used hereafter.

4.2 The entropy measure of the �nancial submarket

In De�nition 2, we considered the Minimal Entropy Martingale Measure bQ for the market
of M +1 traded assets in the combined �nancial-actuarial world. Similarly, we can de�ne
the Minimal Entropy Martingale Measure bQf for the submarket of �nancial assets.
Consider the F (P)-absolutely continuous probability measure Q � (q1; q2; : : : ; qI) on

(F (
) ;F (�)). The relative entropy E (Q;F (P)) of Q with respect to F (P) is de�ned
as follows:

E (Q;F (P)) =
X
i

qi ln

�
qi
pi�

�
;

with summation over all i with pi� > 0, and where 0 ln 0 = 0, by convention.

We denote the subset of f0; 1; : : : ;Mg composed of all �nancial assets, by N f . The set
of all �nancial assets with exception of the risk-free bond is called the set of purely �nancial
assets and will be denoted by N f

0 . Let Mf be the class of all equivalent martingale
measures Q in the �nancial submarket. Any Q 2 Mf can be characterized by a vector
(q1; q2; : : : ; qI) with non-negative components and qi = 0 if and only if pi� = 0, satisfying
the following conditions:

e�r
X
i

q
i
s
(m)
i� = s(m)(0); for all m 2 N f : (18)
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The no-arbitrage assumption for the combined world implies that also the �nancial sub-
world is arbitrage-free and hence,Mf is non-empty.

The measure bQf 2 Mf is the Minimal Entropy Martingale Measure of this �nancial
submarket if it satis�es

E
�bQf ;F (P)� = min

Q2Mf
E (Q;F (P)) = min

Q2Mf

X
i

qi ln

�
qi
pi�

�
: (19)

Based on similar arguments as used for the combined market, we have that in the �nancial
submarket, the minimisation problem (19) always leads to a unique solution. Hereafter,
we will often call this unique measure the �nancial market entropy measure.

Since
P

i qi = 1 for all measures of the set Mf , we can replace the minimisation
problem (19) by the equivalent minimisation problem

min
Q2Mf

X
i

qi

�
ln

�
qi
pi�

�
� 1
�
:

Proceeding in a similar way as in the combined market case, we solve the adapted
optimisation problem under linear constraints by the method of Lagrange multipliers.
The Lagrangian L for this problem is given by

L =
X
i

qi

�
ln

�
qi
pi�

�
� 1
�
�
X
m2N f

�
(m)
f

 X
i

qi s
(m)
i� � er s(m) (0)

!
:

Determining the partial derivatives with respect to the variables qi and �
(m)
f and setting

them equal to zero, leads to the following system of equations:8>><>>:
ln

�
qi
pi�

�
=
X
m2N f

�
(m)
f s

(m)
i� ; for all i with pi� > 0;X

i

qi s
(m)
i� = er s(m) (0) ; for all m 2 N f :

(20)

Let us denote the probabilities related to the �nancial market entropy measure bQf by�bqf1 ; bqf2 ; : : : ; bqfI �. Taking into account the �rst series of equations in (20), as well as the
fact that bQf and P are equivalent, we �nd that the probabilities bqfi can be expressed asbqfi = pi� efi ; for i = 1; 2; : : : ; I; (21)

with

efi = exp

 X
m2N f

�
(m)
f s

(m)
i�

!
; for i = 1; 2; : : : ; I; (22)

where the Lagrange coe¢ cients �(m)f follow from (20). Notice that 0 � bqfi � 1 holds for
every i.

13



Combining the martingale conditions in (20) with the expression (21), we �nd that
the �(m)f follow from the following system of martingale equations:X

i

pi� e
f
i s

(m)
i� = er s(m) (0) ; for all m 2 N f . (23)

Because the �nancial submarket is non-redundant as well, a similar argument as in the
combined market can be used to prove that these equations admit a unique solution.

From the martingale equation (23) for m = 0, we �nd that

exp
�
�
(0)
f e

r
�
� EF(P)

24exp
0@ X
m2N f

0

�
(m)
f S(m)(1)

1A35 = 1: (24)

Taking into account this relation, we can rewrite the expressions (22) for the factors efi
as follows:

efi =

exp

 P
m2N f

0

�
(m)
f s

(m)
i�

!

EF(P)
"
exp

 P
m2N f

0

�
(m)
f S(m)(1)

!# ; for i = 1; 2; : : : ; I: (25)

Again, we observe that the unique entropy measure bQf , which is an equivalent martingale
measure in the �nancial subworld, can be interpreted as an Esscher-like transform of
F (P).

4.3 The entropy measure of the actuarial submarket

Similar as in the �nancial submarket, we can de�ne the Minimal Entropy Martingale
Measure of the actuarial submarket.

Consider the A (P)-absolutely continuous probability measure Q � (q1; q2; : : : ; qJ) on
(A (
) ;A (�)). The relative entropyE (Q;A (P)) ofQ with respect toA (P) � (p�1; p�2; : : : ; p�J)
is de�ned by

E (Q;A (P)) =
X
j

qj ln

�
qj
p�j

�
;

where the sum is taken over all j with p�j > 0, and where 0 ln 0 = 0, by convention.

We introduce the notation N a for the set of all actuarial assets, while N a
0 = N ar f0g

is the set of all purely actuarial assets. Furthermore, Ma is the non-empty class of all
equivalent martingale measures Q in the actuarial submarket. Any Q 2 Ma can be
characterized by a vector (q1; q2; : : : ; qJ) with non-negative components and qj = 0 if and
only if p�j = 0, satisfying the following conditions:

e�r
X
j

qj s
(m)
�j = s(m)(0); for all m 2 N a: (26)
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The Minimal Entropy Martingale Measure bQa is the unique element of Ma which
satis�es

E
�bQa;A (P)� = min

Q2Ma
E (Q;A (P)) = min

Q2Ma

X
j

qj ln

�
qj
p�j

�
: (27)

Hereafter, we will often call this measure the actuarial market entropy measure.

Denoting the probabilities related to the actuarial market entropy measure bQa by
(bqa1 ; bqa2 ; : : : ; bqaJ), we �nd that the probabilities bqaj can be expressed as

bqaj = p�j eaj ; for j = 1; 2; : : : ; J; (28)

with

eaj = exp

 X
m2Na

�(m)a s
(m)
�j

!
; for j = 1; 2; : : : ; J: (29)

The Lagrange multipliers �(m)a are derived from the system of martingale equations:X
j

p�j e
a
j s

(m)
�j = er s(m) (0) ; for all m 2 N a, (30)

where the uniqueness of this set of multipliers follows from the non-redundancy assump-
tion of the actuarial submarket.

The expressions (29) can be rewritten as follows:

eaj =

exp

 P
m2Na

0

�
(m)
a s

(m)
�j

!

EA(P)
"
exp

 P
m2Na

0

�
(m)
a S(m)(1)

!# ; for j = 1; 2; : : : ; J: (31)

We observe that the unique entropy measure bQa, which is an equivalent martingale mea-
sure in the actuarial subworld, can be interpreted as an Esscher-like transform of A (P).

4.4 Some examples

In this subsection, we illustrate the technique of determining the minimal entropy mar-
tingale measure by considering two examples of a combined world with a risk-free zero
coupon bond, a �nancial asset, an actuarial asset and a combined �nancial-actuarial asset
traded in the market. For each example, we derive the combined market entropy mea-
sure bQ, as well as the entropy measures bQf and bQa of the �nancial and the actuarial
submarket, respectively.

Example 1 Consider a combined �nancial-actuarial world with three possible scenarios
in each subworld, i.e.


 = f(i; j) j i; j = 1; 2; 3g :
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Suppose that the real-world probabilities pij are given by

P =(pij)i;j =

0B@
1
6

1
6

1
6

1
6

1
6
0

1
6
0 0

1CA :
The projections F (P) and A (P) of the real-world probability measure P on the �nancial
and actuarial subworlds are then given by

F (P) =

0@ p1�
p2�
p3�

1A =

0B@
3
6
2
6
1
6

1CA and A (P) =

0@ p�1
p�2
p�3

1A =

0B@
3
6
2
6
1
6

1CA ;
respectively. Notice that p11 6= p1� � p�1, from which we conclude that �nancial and
actuarial risks are not independent under the physical measure P.
We assume that the risk-free interest rate r is 0 and that the current price of the risk-
free zero coupon bond is 1. In the combined market, a pure �nancial asset and a pure
actuarial asset are traded. Their initial price is s(m) (0) = 1

2
, for m = 1; 2, while the

possible outcomes of their payo¤s S(m) (1) at time 1 are given by0B@ s
(1)
1�
s
(1)
2�
s
(1)
3�

1CA =

0@ 0
1
2

1A and

0B@ s
(2)
�1
s
(2)
�2
s
(2)
�3

1CA =

0@ 0
1
2

1A ;
respectively. In this market, also a combined asset is traded, with initial price s(3) (0) and
possible outcomes for its payo¤ S(3) (1) at time 1 given by

s
(3)
ij =

�
1 if i = j = 1
0 otherwise.

The martingale equations (14) for the combined market of this example read as follows:8>><>>:
e11 + e12 + e13 + e21 + e22 + e31 = 6
e21 + e22 + 2e31 = 3
e12 + 2e13 + e22 = 3
e11 = 6 s

(3) (0)

with the eij, according to (11), given by8>>>>>><>>>>>>:

e11 = exp
�
�(0) + �(3)

�
e12 = exp

�
�(0) + �(2)

�
e13 = exp

�
�(0) + 2�(2)

�
e21 = exp

�
�(0) + �(1)

�
e22 = exp

�
�(0) + �(1) + �(2)

�
e31 = exp

�
�(0) + 2�(1)

�
:
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The Lagrange multipliers �(m), for m = 0; 1; 2; 3, then follow from8>>>>>>>>><>>>>>>>>>:

�(0) = ln

�
(3�6 s(3)(0))

2

2 s(3)(0)

�
�(1) = ln

�
2 s(3)(0)

3�6 s(3)(0)

�
�(2) = ln

�
2 s(3)(0)

3�6 s(3)(0)

�
�(3) = ln

�
12(s(3)(0))

2

(3�6 s(3)(0))
2

�
:

The probabilities bqij, which determine the combined market entropy measure bQ, are
calculated by equation (10):

bQ = (bqij)i;j =
0BBBB@

s(3) (0) 1
2
� s(3) (0) s(3)(0)

3

1
2
� s(3) (0) s(3)(0)

3
0

s(3)(0)
3

0 0

1CCCCA : (32)

From this matrix, we see that s(3) (0) 2
�
0; 1

2

�
is required in order to guarantee that bQ is

a proper equivalent martingale measure in the combined market. This condition on the
initial price of the combined asset is a necessary and su¢ cient condition for the combined
market to be arbitrage-free. Therefore, in the remainder of this example we assume that
s(3) (0) 2

�
0; 1

2

�
.

The projections F
�bQ� and A�bQ� of bQ on the �nancial and the actuarial subworld can

easily be determined from (32):

F
�bQ� =

0@ bq1�bq2�bq3�
1A =

0BB@
1
2
+ s(3)(0)

3

1
2
� 2s(3)(0)

3

s(3)(0)
3

1CCA and A
�bQ� =

0@ bq�1bq�2bq�3
1A =

0BB@
1
2
+ s(3)(0)

3

1
2
� 2s(3)(0)

3

s(3)(0)
3

1CCA : (33)
The set of all �nancial assets is given by N f = f0; 1g. In order to obtain the �nancial
market entropy measure bQf , we �rst determine the �nancial market martingale equa-
tions (23): �

3ef1 + 2e
f
2 + e

f
3 = 6

2ef2 + 2e
f
3 = 3

where, according to (22), the efi are given by8>>><>>>:
ef1 = exp

�
�
(0)
f

�
ef2 = exp

�
�
(0)
f + �

(1)
f

�
ef3 = exp

�
�
(0)
f + 2�

(1)
f

�
:
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This leads us to the following values for the Lagrange multipliers:

�
(0)
f = ln

 
8�

p
10

4

!
and

�
(1)
f = ln

 
�1 +

p
10

3

!
:

From (21), we �nd that the �nancial market entropy measure bQf is given by
bQf =

0@ bqf1bqf2bqf3
1A =

0B@
8�
p
10

8

�2+
p
10

4

4�
p
10

8

1CA : (34)

The set of all actuarial assets is given by N a = f0; 2g. As A (P) = F (P) and moreover,
the initial prices as well as the P-world distributions of the payo¤s of the purely actuarial
asset and the purely �nancial asset are identical, we immediately �nd that the entropy
measures in both submarkets are equal. Hence,

bQa =
0@ bqa1bqa2bqa3

1A =

0B@
8�
p
10

8

�2+
p
10

4

4�
p
10

8

1CA : (35)

Comparing (33) with (34) and (35) leads to the conclusion that s(3) (0) = 12�3
p
10

8
is a

necessary and su¢ cient condition for the projections F
�bQ� and A�bQ� of the combined

market entropy measure bQ to be equal to the entropy measures of the �nancial and the
actuarial submarkets, respectively:

F
�bQ� = bQf and A�bQ� = bQa , s(3) (0) =

12� 3
p
10

8
:

We can conclude that when s(3) (0) 6= 12�3
p
10

8
, prices of �nancial assets under the combined

market entropy measure bQ di¤er from the corresponding prices under the �nancial market
entropy measure bQf . The same conclusion holds for actuarial assets. O

In the following example, we consider a combined market where �nancial and actuarial
risks are independent under the real-world probability measure P. It will be shown that
in this example the P - independence will only translate in bQ - independence, when the
combined �nancial-actuarial asset has a speci�c price.

Example 2 Consider a combined �nancial-actuarial world with three possible scenarios
in the �nancial subworld and two possible scenarios in the actuarial subworld. The com-
bined �nancial-actuarial universe 
 is given by


 = f(i; j) j i = 1; 2; 3 and j = 1; 2g :
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Assume that the real-world probability measure P is characterized by

P =(pij)i;j =

0BB@
1
10

3
10

1
10

3
10

1
20

3
20

1CCA :
Then the projections F (P) and A (P) are given by

F (P) =

0@ p1�
p2�
p3�

1A =

0B@
2
5
2
5
1
5

1CA and A (P) =
�
p�1
p�2

�
=

 
1
4
3
4

!
;

respectively. Furthermore, one can easily verify that P = F (P)�A (P).
The risk-free interest rate r is assumed to be equal to 0. Apart from the risk-free bond

with initial price s(0)(0) = 1, there are 3 assets traded in the combined market: a �nancial
asset, labeled 1, with current price s(1) (0) = 50 and possible payo¤s at time 1 given by0B@ s

(1)
1�
s
(1)
2�
s
(1)
3�

1CA =

0@ 100
0
0

1A ;
an actuarial asset, labeled 2, with current price s(2) (0) = 70 and possible payo¤s at time 1
given by  

s
(2)
�1
s
(2)
�2

!
=

�
0
100

�
;

and also a combined asset, labeled 3, with current price s(3) (0) and possible payo¤s at
time 1 given by

s
(3)
ij =

�
100 if i = j = 1
0 otherwise.

The combined market martingale equations (14), for m = 0; 1; 2; 3, are equal to8>><>>:
2e11 + 6e12 + 2e21 + 6e22 + e31 + 3e32 = 20
e11 + 3e12 = 5
6e12 + 6e22 + 3e32 = 14
10e11 = s

(3) (0)

with the eij, according to (11), given by8>>>>>><>>>>>>:

e11 = exp
�
�(0) + 100�(1) + 100�(3)

�
e12 = exp

�
�(0) + 100�(1) + 100�(2)

�
e21 = exp

�
�(0)
�

e22 = exp
�
�(0) + 100�(2)

�
e31 = exp

�
�(0)
�

e32 = exp
�
�(0) + 100�(2)

�
:
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From these systems of equations, we obtain the following values for the parameters eij:8>>><>>>:
e11 =

s(3)(0)
10

e12 =
50�s(3)(0)

30

e21 = e31 =
30�s(3)(0)

15

e22 = e32 =
20+s(3)(0)

45
:

The probabilities bqij of the combined market entropy measure are now determined by
equation (10):

bQ=(bqij)i;j =
0BBB@

s(3)(0)
100

50�s(3)(0)
100

30�s(3)(0)
150

20+s(3)(0)
150

30�s(3)(0)
300

20+s(3)(0)
300

1CCCA : (36)

This entropy measure bQ gives rise to the following projections:
F
�bQ� =

0@ bq1�bq2�bq3�
1A =

0B@
1
2
1
3
1
6

1CA and A
�bQ� = � bq�1bq�2

�
=

 
3
10
7
10

!
;

which are independent of the current price s(3) (0). The product measure F
�bQ��A�bQ�

can now easily be determined:

F
�bQ��A�bQ� =

0BB@
3
20

7
20

1
10

7
30

1
20

7
60

1CCA : (37)

Comparing (36) and (37), it is easy to prove that

bQ = F �bQ��A�bQ�, s(3) (0) = 15:

Next, we determine the entropy measures of the �nancial and actuarial submarkets. The
set of all �nancial assets is given byN f = f0; 1g. From (23), it follows that the martingale
equations of the �nancial market are given by�

2ef1 + 2e
f
2 + e

f
3 = 5

4ef1 = 5;

where, according to (22), the efi are determined by8>>><>>>:
ef1 = exp

�
�
(0)
f + 100�

(1)
f

�
ef2 = exp

�
�
(0)
f

�
ef3 = exp

�
�
(0)
f

�
:
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This leads us to the following values for the parameters efi :(
ef1 =

5
4

ef2 = e
f
3 =

5
6
:

The �nancial market entropy measure bQf then follows from equation (21):

bQf =
0@ bqf1bqf2bqf3

1A =

0B@
1
2
1
3
1
6

1CA :
The set of all actuarial assets is given by N a = f0; 2g. In this case, the actuarial market
martingale equations in (30) read as�

ea1 + 3e
a
2 = 4

15ea2 = 14;
(38)

where the eaj , according to (29), are given by8<: ea1 = exp
�
�
(0)
a

�
ea2 = exp

�
�
(0)
a + 100�

(2)
a

�
:

Solving the system of equations (38), we obtain(
ea1 =

6
5

ea2 =
14
15
:

From equation (28), it follows that the actuarial market entropy measure bQa is given by
bQa = � bqa1bqa2

�
=

 
3
10
7
10

!
:

Contrary to Example 1, the projections F
�bQ� and A�bQ� of the combined market en-

tropy measure bQ in this example equal the entropy measures of the �nancial and the
actuarial submarkets, respectively, regardless of the current price s(3) (0) of the combined
asset. Nevertheless, s(3) (0) in�uences the dependence structure between �nancial and
actuarial risks under bQ. The independence assumption under P will only translate in bQ -
independence, provided s(3) (0) = 15. O

The traded assets in previous example have simple payo¤s such that the obtained
martingale equations can be solved easily. Notice however that the conclusions from this
example remain to hold in a more general setting containing a pure �nancial, a pure
actuarial and a combined asset: P - independence will only translate in bQ - independence
in case the combined �nancial-actuarial asset has a speci�c initial price.
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5 The minimal entropy martingale measure in a com-
bined world where only �nancial assets are traded

Consider the combined world (
;�;P) with a market of M +1 traded assets as described
above. In this section, we assume that only �nancial assets are traded. In this special
case, we have that

N f = f0; 1; : : : ;Mg and N a = f0g :

For any asset m, the vector of payo¤s is given by
�
s
(m)
1� ; s

(m)
2� ; : : : ; s

(m)
I�

�
, where S(m)(1) =

s
(m)
i� � 0 if the �nancial scenario that unfolds is given by i.

In the following subsections, we �rst determine the entropy measures bQf and bQa corre-
sponding to the �nancial and the actuarial submarkets, respectively. Then, we determine
the entropy measure bQ of the combined market. Finally, we investigate the relationship
between these three entropy measures.

5.1 The entropy measures of the submarkets

Consider the �nancial subworld (F (
) ;F (�) ;F (P)) and the market of M + 1 traded
�nancial assets. The entropy measure bQf of this submarket follows from the results in
Subsection 4.2, with N f = f0; 1; : : : ;Mg. In particular, we �nd that

bqfi = pi� efi ; for i = 1; 2; : : : ; I; (39)

with

efi = exp

 
MX
m=0

�
(m)
f s

(m)
i�

!
; for i = 1; 2; : : : ; I: (40)

The Lagrange multipliers �(m)f can be derived from the following martingale equations:X
i

pi� e
f
i s

(m)
i� = er s(m) (0) ; for all m 2 f0; 1; : : : ;Mg . (41)

Next, we consider the actuarial subworld (A (
) ;A (�) ;A (P)) and the actuarial sub-
market where only the risk-free bond is traded. The actuarial market entropy measure bQa
follows from the results in Subsection 4.3, with N a = f0g. We have that

bqaj = p�j eaj ; for j = 1; 2; : : : ; J;

with
eaj = exp

�
�(0)a er

�
; for j = 1; 2; : : : ; J:

The unique Lagrange multiplier �(0)a follows from the martingale equation (30) for m = 0,
i.e. X

j

p�j e
a
j = 1:
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Taking into account that eaj does not depend on j, we �nd that

eaj = 1; for j = 1; 2; : : : ; J:

Hence, bqaj = p�j; for j = 1; 2; : : : ; J; (42)

or, equivalently, bQa = A (P) : (43)

This means that in a market where only �nancial risks are traded, the actuarial market
entropy measure bQa is identical to the projectionA (P) of the physical probability measure
on the actuarial subworld. This result was to be expected as there are no actuarial risks
traded, which implies that the pricing measure bQa that is closest to A (P) is A (P) itself.
5.2 The entropy measure of the combined market

The combined market entropy measure bQ follows from the results in Subsection 4.1. In
particular, we �nd that bqij = pij eij; for any (i; j) 2 
, (44)

where the coe¢ cients eij are de�ned by

eij = exp

 
MX
m=0

�(m) s
(m)
i�

!
; for any (i; j) 2 
: (45)

Obviously, the eij do not depend on j. Therefore, we will denote them by ei� in this section.
The martingale equations (14) can be written asX

i

pi� ei� s
(m)
i� = er s(m) (0) ; for all m 2 f0; : : : ;Mg : (46)

Comparing the martingale equations (41) and (46), while taking into account that the
ei� and the e

f
i are uniquely determined and of the form (40) and (45), respectively, we �nd

that
ei� = e

f
i for i = 1; 2; : : : ; I: (47)

and also bqij = pij efi ; for any (i; j) 2 
: (48)

Taking into account (39), these expressions for the bqij result inbqi� = pi� efi = bqfi ; for i = 1; 2; : : : ; I; (49)

which means that the �nancial market entropy measure bQf is identical to the projection
F
�bQ� of the combined market entropy measure bQ, i.e.

bQf = F �bQ� : (50)

In the following theorem, the relation between the entropy measures of the combined
market and the corresponding submarkets is further explored.
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Theorem 4 Consider the combined �nancial-actuarial world (
;�;P) where only �nan-
cial assets are traded. Let bQ be the combined market entropy measure. The �nancial and
actuarial market entropy measures bQf and bQa are then characterized bybQf = F �bQ� and bQa = A (P) : (51)

Moreover, �nancial and actuarial risks are independent under the P-measure if and only
if they are independent under the bQ-measure:

P = F (P)�A (P), bQ = F �bQ��A�bQ� : (52)

In case of P - independence between �nancial and actuarial risks, one has thatbQa = A�bQ� : (53)

Proof: The relations (51) have been proven above.

In order to prove the equivalence relation (52), let us �rst assume that �nancial and
actuarial risks are P - independent. Taking into account (48) and (49), we �nd thatbqij = bqi� � p�j; for all (i; j) 2 
.
Summing over all i leads to bq�j = p�j; for j = 1; 2; :::; J . (54)

Hence, bqij = bqi� � bq�j; for all (i; j) 2 
;
which means that �nancial and actuarial risks are bQ - independent.
Next, we assume that �nancial and actuarial risks are bQ - independent. In this case,

the relations (48) and (49) lead to

pij = pi� � bq�j, for all (i; j) 2 
.
Summing over all i, we �nd that

p�j = bq�j, for j = 1; 2; :::; J;

and hence,
pij = pi� � p�j, for all (i; j) 2 
;

which means that �nancial and actuarial risks are P - independent.
Finally, in case of independence, the relations (42) and (54) lead tobq�j = bqaj ; for j = 1; 2; :::; J;

which means that (53) holds.

Theorem 4 states that in a market where only �nancial assets are traded, a P-world
independence between �nancial and actuarial risks implies that also under the combined
market entropy measure bQ, �nancial and actuarial risks are independent. Important to
notice is that this implication does not state that P - independence translates into indepen-
dence under any pricing measure Q. Some simple examples of (in-)complete markets with
P-world independence but where no equivalent martingale measure exists under which
�nancial and actuarial risks are independent, can be found in Dhaene et al. (2013).
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5.3 Illustration

From Theorem 4, we know that in a market where only �nancial assets are traded, bQf =
F
�bQ� holds for any possible dependence structure between �nancial and actuarial risks

under the physical measure P. Moreover, we found that bQa = A
�bQ� holds, provided

�nancial and actuarial risks are independent under P. In the following example, we explore
whether this P - independence is an essential requirement or not for this last statement
to hold.

Example 3 Consider the combined �nancial-actuarial world with three possible scenarios
in each subworld and with physical measure P, as described in Example 1. In the cor-
responding market, we assume now that only 2 �nancial assets are traded, namely the
risk-free zero coupon bond with r = 0, and the �nancial asset with initial price s(1) (0) = 1

2

and possible payo¤s at time 1 given by0B@ s
(1)
1�
s
(1)
2�
s
(1)
3�

1CA =

0@ 0
1
2

1A :
In order to determine the combined market entropy measure bQ, we consider the martingale
equations (46), which can be expressed as�

3e1� + 2e2� + e3� = 6
2e2� + 2e3� = 3;

with the ei�, according to (45), given by8<:
e1� = exp

�
�(0)
�

e2� = exp
�
�(0) + �(1)

�
e3� = exp

�
�(0) + 2�(1)

�
:

These systems of equations lead to the following numerical values for the Lagrange mul-
tipliers:

�(0) = ln

 
8�

p
10

4

!
(55)

and

�(1) = ln

 
�1 +

p
10

3

!
: (56)

According to equations (44) and (45), the probabilities bqij are then given by
bQ=

0B@
8�
p
10

24
8�
p
10

24
8�
p
10

24

�2+
p
10

8
�2+

p
10

8
0

4�
p
10

8
0 0

1CA :
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The projections F
�bQ� and A�bQ� of the combined market entropy measure bQ on the

�nancial and the actuarial subworld, respectively, can easily be determined:

F
�bQ� =

0@ bq1�bq2�bq3�
1A =

0B@
8�
p
10

8

�2+
p
10

4

4�
p
10

8

1CA and A
�bQ� =

0@ bq�1bq�2bq�3
1A =

0B@
14�

p
10

24

1+
p
10

12

8�
p
10

24

1CA :
Let us now determine the entropy measure of the �nancial submarket. Taking into account
that the martingale equations for the combined market and the �nancial submarket are
identical, we �nd that �(0)f and �(1)f are given by (55) and (56), respectively. From (39)
and (40), it follows then that the �nancial market entropy measure is given by

bQf =
0@ bqf1bqf2bqf3

1A =

0B@
8�
p
10

8

�2+
p
10

4

4�
p
10

8

1CA :
We observe that the measure bQf is identical to the �nancial projection F �bQ� of the com-
bined market entropy measure bQ, which con�rms our earlier derived general result (51).
According to (43), the actuarial market entropy measure is given by

bQa = A (P) =
0B@

3
6
2
6
1
6

1CA :
We can conclude that the actuarial market entropy measure bQa is di¤erent from the
actuarial projection A

�bQ� of the combined market entropy measure bQ. O

From the preceding example, we conclude that in a combined world where only �-
nancial assets are traded, and where �nancial and actuarial risks are not independent
under P, it may happen that the actuarial market entropy measure bQa is di¤erent from
the actuarial projection of the combined market entropy measure.

6 The minimal entropy martingale measure in a com-
bined world without traded combined assets

In this section, we investigate a second special case of the general combined �nancial-
actuarial world described in Section 4. We suppose now that no combined assets are
available in the market. Hence, apart from the risk-free zero coupon bond, only purely
�nancial and purely actuarial assets are traded. In terms of the earlier introduced nota-
tions N f and N a for the sets of �nancial and actuarial assets, respectively, this means
that

N f [N a = f0; 1; : : : ;Mg . (57)
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Hereafter, we determine the entropy measures of the �nancial and the actuarial submar-
kets, as well as the entropy measure of the combined market. Furthermore, we investigate
the relationship between these measures.

6.1 The entropy measures of the submarkets and the combined
market

The entropy measure bQf corresponding to the market N f of traded �nancial assets in
the �nancial subworld (F (
) ;F (�) ;F (P)) follows from the results in Subsection 4.2.
In particular, we have that bqfi , efi and the martingale equations are given by (21), (22)
and (23), respectively.

Similarly, the entropy measure bQa of the market N a of traded actuarial assets in
the actuarial subworld (A (
) ;A (�) ;A (P)) follows from Subsection 4.3. In particular,
we have that bqaj , eaj and the corresponding martingale equations are given by (28), (29)
and (30), respectively.

Let us now determine the entropy measure bQ of the combined market. From (10)
and (11) in Subsection 4.1, we �nd thatbqij = pij eij; for any (i; j) 2 
, (58)

where the coe¢ cients eij are de�ned by

eij = exp

0@�(0)er + X
m2N f

0

�(m) s
(m)
i� +

X
m2Na

0

�(m) s
(m)
�j

1A ; for any (i; j) 2 
: (59)

From (14), it follows that the martingale equations of the combined market are given byX
i;j

pij eij s
(m)
i� = er s(m) (0) ; for all m 2 N f (60)

and X
i;j

pij eij s
(m)
�j = er s(m) (0) ; for all m 2 N a: (61)

In the following theorem, we explore the relationship between P - and bQ - independence
of �nancial and actuarial risks.

Theorem 5 Consider the combined �nancial-actuarial world (
;�;P) where, apart from
the risk-free asset, only purely �nancial and purely actuarial assets are traded. In this
case, �nancial and actuarial risks are independent under the P-measure if and only they
are independent under the bQ-measure:

P = F (P)�A (P), bQ = F �bQ��A�bQ� : (62)

Moreover, in case of P - independence between �nancial and actuarial risks, one has thatbQf = F �bQ� and bQa = A�bQ� : (63)
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Proof: Let us �rst prove the ) implication in (62). Therefore, suppose that �nancial
and actuarial risks are P - independent. Taking into account (15) and (57), we can express
the coe¢ cients eij as follows:

eij =

exp

 P
m2N f

0

�(m) s
(m)
i�

!

EP
"
exp

 P
m2N f

0

�(m) S(m) (1)

!# � exp

 P
m2Na

0

�(m) s
(m)
�j

!

EP
"
exp

 P
m2Na

0

�(m) S(m) (1)

!# ; (64)

which holds for any (i; j) 2 
. From (58) and (64), we �nd that

bqi� = pi� � JX
j=1

p�j eij = pi� �

exp

 P
m2N f

0

�(m) s
(m)
i�

!

EP
"
exp

 P
m2N f

0

�(m) S(m) (1)

!# , for i = 1; 2; :::; I: (65)

A similar expression holds for the actuarial subworld. Hence, we can conclude that

bqij = (pi� � p�j) eij = bqi� � bq�j, for any (i; j) 2 
,

which means that �nancial and actuarial risks are bQ - independent.
Next, we prove the ( implication in (62). Suppose that �nancial and actuarial risks

are bQ - independent. Taking into account (17) and (57), we can express the coe¢ cients
e�1ij as follows:

e�1ij =

exp

 
�
P

m2N f
0

�(m) s
(m)
i�

!

EbQ
"
exp

 
�
P

m2N f
0

�(m) S(m) (1)

!# � exp

 
�
P

m2Na
0

�(m) s
(m)
�j

!

EbQ
"
exp

 
�
P

m2Na
0

�(m) S(m) (1)

!# ; (66)

which holds for any (i; j) 2 
. From (58) and (66), we �nd that

pi� = bqi� � JX
j=1

bq�j e�1ij = bqi� �
exp

 
�
P

m2N f
0

�(m) s
(m)
i�

!

EbQ
"
exp

 
�
P

m2N f
0

�(m) S(m) (1)

!# , for i = 1; 2; :::; I:

A similar expression holds for the actuarial subworld. Hence, we can conclude that

pij = (bqi� � bq�j) e�1ij = pi� � p�j, for any (i; j) 2 
,

which means that �nancial and actuarial risks are P - independent.
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It remains to prove that (63) holds in case of P - independence (or equivalently, bQ -
independence) between �nancial and actuarial risks. Hereafter, we only give the proof for
the �nancial submarket. The actuarial submarket case is proven in a similar way.
By using the expressions (64) for the coe¢ cients eij, we can simplify the martingale
equations (60) for the combined market as follows:

X
i

pi�

exp

 P
m2N f

0

�(m) s
(m)
i�

!

EP
"
exp

 P
m2N f

0

�(m) S(m) (1)

!# s(m)i� = er s(m) (0) ; for all m 2 N f :

Comparing these martingale equations for the combined market with the martingale equa-
tions (23) for the �nancial submarket, while taking into account the expression (25), we
�nd that �(m) = �(m)f for m 2 N f

0 . Similarly, we can prove that �
(m) = �

(m)
a for m 2 N a

0 .

From (25), (31) and (64), it follows then that

eij = e
f
i � eaj

holds for any (i; j) 2 
. Hence, from the P - independence assumption we �nd that

bqij = pij eij = �pi� efi �� �p�j eaj� = bqfi � bqaj ; for all (i; j) 2 
:

The latter expression immediately leads us tobqi� = bqfi ; for i = 1; 2; : : : ; I;

and bq�j = bqaj ; for j = 1; 2; : : : ; J;

which means that (63) holds, when �nancial and actuarial risks are independent.

6.2 Illustration

In the following example, we show that in a market where only purely �nancial and purely
actuarial assets are traded, the equality (63) between the projections of the combined
market entropy measure and the corresponding entropy measures of the submarkets may
no longer hold in case �nancial and actuarial risks are not independent under P.

Example 4 Consider again the combined �nancial-actuarial world with three possible
scenarios in each subworld and with physical measure P, as described in Example 1.
Suppose now that, apart from the risk-free zero coupon bond, one purely �nancial asset
(labeled 1) and one purely actuarial asset (labeled 2) are traded. Both assets have an
initial price s(m) (0) = 1

2
, while their possible payo¤s at time 1 are given by0B@ s

(1)
1�
s
(1)
2�
s
(1)
3�

1CA =

0B@ s
(2)
�1
s
(2)
�2
s
(2)
�3

1CA =

0@ 0
1
2

1A :
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In order to determine the combined market entropy measure bQ, we �rst write down the
martingale equations from (60) and (61) for m = 0; 1; 2:8<:

e11 + e12 + e13 + e21 + e22 + e31 = 6
e21 + e22 + 2e31 = 3
e12 + 2e13 + e22 = 3

where according to (59), the eij are given by8>>>>>><>>>>>>:

e11 = exp
�
�(0)
�

e12 = exp
�
�(0) + �(2)

�
e13 = exp

�
�(0) + 2�(2)

�
e21 = exp

�
�(0) + �(1)

�
e22 = exp

�
�(0) + �(1) + �(2)

�
e31 = exp

�
�(0) + 2�(1)

�
These systems of equations result in the following values for the Lagrange parameters:8<: �(0) = ln

�
9�3

p
3

2

�
�(1) = �(2) = ln

�q
1
3

�
:

Taking into account previous calculations, we �nd that the combined market entropy
measure bQ is given by

bQ =
0B@
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3

4
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1CA :
The projections of bQ on the �nancial and the actuarial subworld can easily be determined:

F
�bQ� =

0@ bq1�bq2�bq3�
1A =

0B@
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12p
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1CA and A
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1CA :
The submarkets in this example are identical to the submarkets considered in Example 1.
As a consequence, the submarket entropy measures in the current example are identical
to the corresponding entropy measures derived in Example 1. In particular, we �nd that

bQf =
0@ bqf1bqf2bqf3
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1CA and bQa =
0@ bqa1bqa2bqa3

1A =

0B@
8�
p
10

8

�2+
p
10

4

4�
p
10

8

1CA :
We can conclude that F

�bQ� 6= bQf and A�bQ� 6= bQa, which means that the �nancial
and actuarial projection of the combined market entropy measure di¤er from the entropy
measures of the �nancial and the actuarial subworld, respectively. O
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The previous example shows that we have to clearly specify the modeling environment
when we want to price �nancial or actuarial assets under the minimal entropy martingale
measure. For a purely �nancial asset, the price under the combined market entropy
measure bQ (or, equivalently, under the projection F

�bQ�) will in general di¤er from
the price under the �nancial market entropy measure bQf . Notice however that from
Theorem 5, it follows that these prices are equal in case �nancial and actuarial risks
are independent under the physical measure P. Similar conclusions can be formulated
concerning prices of actuarial assets.

7 Conclusion

In arbitrage-free but incomplete markets, the equivalent martingale measure for pricing
traded assets is not uniquely determined. A possible approach when choosing a particular
pricing measure is to look for the one that is �closest�to the physical probability measure
P, where closeness is measured in terms of relative entropy.

In this paper, we considered the problem of determining the minimal entropy martin-
gale measure in a market where securities are traded with payo¤s depending on �nancial
as well as actuarial risks. Therefore, we modeled a combined �nancial-actuarial world
with a universe consisting of combined �nancial-actuarial scenarios. We determined the
entropy measure of the combined market consisting of �nancial, actuarial and combined
�nancial-actuarial assets, as well as the entropy measures corresponding to the �nancial
and the actuarial submarkets.

We proved that in a market where only �nancial assets are traded, independence of
�nancial and actuarial risks under the real-world probability measure is equivalent to
independence under the combined market entropy measure. Moreover, pricing �nancial
assets under the �nancial market entropy measure is identical to pricing these �nancial
assets under the combined market entropy measure. In such a market, the actuarial market
entropy measure coincides with the projection of the real-world probability measure on
the actuarial subworld.

In a market where purely �nancial as well as purely actuarial securities are traded,
we proved that �nancial and actuarial risks are independent under the real-world proba-
bility measure if and only if these risks are independent under the combined market en-
tropy measure. Moreover, in case of independence, the entropy measure of the combined
�nancial-actuarial market is the product measure of the entropy measures of the �nancial
and the actuarial submarkets. The latter property does not always hold when �nancial
and actuarial risks are not independent under the real-world probability measure. In this
case, the price of a �nancial asset under the combined market entropy measure will in
general di¤er from the price under the �nancial market entropy measure. This di¤erence
is due to the fact that the available information in the combined world is larger than in
the �nancial subworld which leads to a di¤erent set of martingale measures from which
we choose the �closest�one. A similar reasoning holds for actuarial assets.
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In the general case, i.e. in a market where apart from �nancial and actuarial assets,
also combined �nancial-actuarial assets are traded, no general conclusions can be made.
In particular, independence of �nancial and actuarial risks under the physical measure
does not always translate into independence under the combined market entropy measure,
and vice versa. Moreover, there is no link between the projections of the combined market
entropy measure at the one hand and the entropy measures of the submarkets at the other
hand, even in case of P - independence.

In this paper, we considered a one-period, �nite state market model. The results in
this paper can be extended to a multiple period setting. Similar results can also be derived
in a continuous-time market model.
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