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Abstract

In arbitrage-free but incomplete markets, the equivalent martingale measure Q
for pricing traded assets is not uniquely determined. A possible approach when
it comes to choosing a particular pricing measure is to consider the one that is
‘closest’ to the physical probability measure PP, where closeness is measured in terms
of relative entropy.

In this paper, we determine the minimal entropy martingale measure in a market
where securities are traded with payoffs depending on two types of risks, which we
will call financial and actuarial risks, respectively. In case only purely financial and
purely actuarial securities are traded, we prove that financial and actuarial risks are
independent under the physical measure if and only if these risks are independent
under the entropy measure. Moreover, in such a market the entropy measure of the
combined financial-actuarial world is the product measure of the entropy measures
of the financial and the actuarial subworlds, respectively.

Keywords: Minimal entropy martingale measure, relative entropy, financial
risks, actuarial risks, independence, incomplete markets.

1 Introduction

Despite the never-ending stream of innovations concerning traded assets with payoffs
contingent on financial and/or actuarial quantities, most corresponding markets remain
incomplete. An obvious question that arises in an arbitrage-free but incomplete market
is which pricing measure can be considered as the ‘most natural’ choice. A possible ap-
proach to answer this question consists of searching for the element in the set of all feasible
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martingale measures that is ‘closest’ to the physical or real-world probability measure P,
where closeness is expressed in terms of relative entropy, see Frittelli| (1995)) and Frittelli
(2000). The corresponding pricing measure is usually called the Minimal Entropy Martin-
gale Measure (hereafter often referred to as the entropy measure). It is well-known that
in a one-period setting, an entropy measure can be interpreted in terms of an Esscher
transform of P. These transforms, which were introduced in Esscher (1932), have a long
history in actuarial pricing. They have also been used by several authors to define pricing
measures in incomplete markets, see e.g. |Biihlmann et al.| (1996)) and Gerber and Shiu
(1994).

The Minimal Entropy Martingale Measure is also related to the Esscher-Girsanov
transform introduced by (Goovaerts and Laeven! (2008)). In a one-period setting, the (two-
parameter) Esscher-Girsanov transform may agree with the (one-parameter) so-called
Wang transform (distortion), which has gained some popularity among actuarial practi-
tioners (Labuschagne and Offwood| (2010))). However, the two transforms are not equiva-
lent, a fact that becomes most apparent in a dynamic setting, in which the two parameters
of the Esscher-Girsanov transform start to play a distinct role: while the two-parameter
Esscher-Girsanov transform can generate arbitrage-free prices for financial derivatives
driven by general diffusion processes, as shown by |Goovaerts and Laeven (2008)) and em-
phasized by Badescu et al.| (2009), this is not true for the one-parameter Wang transform;
see also Pelsser] (2008)). (Goovaerts and Laeven, (2008)) also show that independence under
the real-world probability measure P naturally translates into comonotonicity of the Ess-
cher transform with random parameter, thanks to the independent additivity property of
the Esscher transform.

Determining the Minimal Entropy Martingale Measure boils down to a relative entropy
minimisation under linear constraints. Such a minimisation problem arises in various
disciplines, see e.g. |(Cherny and Maslov| (2003)). In Kullback and Leibler (1951)), relative
entropy is interpreted in terms of the expected amount of information given by a set of
observations for distinguishing between two potential probability distributions, known as
the Kullback-Leibler divergence measure. In the insurance literature, this interpretation is
considered e.g. in Brockett| (1991)). In a financial context, there exists a duality relationship
between maximization of expected exponential utility and minimization of entropy, see

Frittelli (2000)).

The assumption of independence between financial and actuarial risks under the real-
world measure P may be quite reasonable in many situations. The conditions under which
it is possible (or not) to transfer the independence assumption from P to @, have been
investigated in Dhaene et al.| (2013)). In the current paper, we go one step further by explor-
ing whether a P-world (in-)dependence between financial and actuarial risks is maintained
or not under the entropy measure. As far as we are aware, in the literature no attention
has been given to this problem.

Hereafter, we will confine ourselves to a one-period, finite state market model. From
a technical point of view, such an approach is simple and hence, allows us to concentrate
on the key message, without being distracted by analytical details. In order to make this
paper sufficiently self-contained, we will repeat some known results on relative entropy.



2 The combined financial-actuarial world and its sub-
worlds

In this section, we introduce a single period world, which is home to a market of traded
assets. The payoffs of these assets can be described in terms of random variables (r.v.’s),
defined on a probability space (2,3, P). Here, the universe () is given by

Q={@G,j)|i=1,..,land j=1,..,J},

where any (i, j) corresponds to a possible state of the combined financial-actuarial world
at the end of the observation period [0, 1]. The financial substate is given by i € {1,..., I}
and indicates a possible scenario concerning the evolution of the financial subworld over
the time interval under consideration. As an example, each ¢ could represent a set of
possible outcomes of the prices at time 1 of a given number of stocks. The actuarial
substate is characterized by j € {1,..., J}, where j describes a possible scenario of the
actuarial subworld. Each j could identify e.g. a possible number of survivors at time 1
from a given closed population observed at time 0. The o-algebra 3 is the set of all subsets
of {2 and represents all events that may or may not occur in the coming year. Probabilities
for these events follow from the real-world probability measure P, which is characterized
by
P[(z,7)] = pi; >0, fori=1,...,land j=1,...,J.

Remark that we allow some probabilities p;; to be equal to 0, in order to be able to
include e.g. the combined scenario (i, j) with strictly positive probability p;; > 0, whereas
the combined scenario (7, j') with j’ # j has related probability p;; = 0.

We assume that the combined financial-actuarial world (€2, 3, P) is home to a market
of M + 1 traded assets, denoted by 0, 1,..., M. The price (or the payoff) at time 1 of
each traded asset is given by a r.v. defined on (€2, ¥). We will consider assets of which the
payoff at time 1 depends on both the financial and the actuarial scenario that will unfold.
The current price of asset m € {0,1,2,..., M}, is denoted by s (0) > 0, whereas its
payoff at time 1 is denoted by S (1). The possible outcomes of S (1) are denoted by
sg”) >0,fori=1,....1; j = 1,...,J, where sgn) is the outcome in case (i,j) is the
financial-actuarial scenario that unfolds. Notice that we allow different scenarios to lead
to the same value of S(™(1) at time 1, which implies that P [S(m) (1) = sgn)] > pi;. Each

asset m is characterized by the stochastic process (s(™(0), S™ (1)) defined on (£, X).

Throughout the paper, we will assume that the market of traded assets is perfectly
liquid and frictionless (no transaction costs, no trading constraints). We will also as-
sume that the M + 1 assets are non-redundant, which means that there exists no vector
(a®,a®, ... a™) of real numbers such that

P [Z a™ S (1) = 0] = 1.

m=0



Equivalently, the non-redundancy assumption can be stated as follows: there exists no
vector (a®,aM, ..., a™)) such that

M
Z at™ $ =0, forall (i,j) with p;; > 0.

]
m=0

The combined world is assumed to be home to a single bank account with (continuously
compounded) deterministic and constant interest rate r > 0. By convention, asset 0 is
the corresponding risk-free zero coupon bond with s (0) =1 and S© (1) = ¢".

A particular asset m € {0,1,2,..., M}, is called a financial asset in case the following

condition holds:

SZ(;") = sz(,;?,l) for all j and 5/ in {1,...,J}.

This means that the payoff at time 1 of a financial asset does not depend on the actuarial
scenario that unfolds. Hereafter, the possible outcomes of the payoff of financial asset m
will be denoted by s\™, for i =1,...,1.

Similarly, an asset m € {0,1,2,..., M}, is said to be an actuarial asset in case
s = s for all ¢ and ¢ in {1 I}
1] 'y AR )
which means that its payoff does not depend on the financial scenario that will unfold. The

possible outcomes of the payoff of actuarial asset m are denoted by s(]m ), foryj=1,...,J.

Remark that the risk-free bond (asset 0) is the only asset that can be considered as a
financial asset as well as an actuarial asset.

Starting from the combined financial-actuarial world (€2, ¥, P), we define the financial
subworld (F (2),F (X),F (P)). The financial universe F (£2) is given by

FOQ) ={ili=1,...1},

where each 7 indicates a possible scenario concerning the evolution of the financial world
over the coming year. The o-algebra F (X), which is defined as the set of all subsets
of F(Q), represents all financial events that may or may not occur in the coming year.
Probabilities for these financial events follow from the real-world probability measure
F (P), which is the projection of the combined real-world probability measure P to the
financial subworld:

J
FM®)[] =) pj=p.>0,  fori=1.,1 (1)
Jj=1

Similar to the financial subworld, we describe the actuarial subworld by the probability
space (A (2),A(X),A(P)). The actuarial universe A (€2) is given by

A@Q) ={jlj=1....J},



and the probability measure A (IP), which is the projection of P to the actuarial subworld,
attaches a real-world probability to each event in the actuarial subworld:

I
AP [l => py=p; >0, forj=1,.1 (2)
=1

Until here, we described the price processes of the M + 1 traded assets via stochas-
tic processes in the combined world (£2,%X,P). The price process of a financial asset
m € {0,..., M} can as well be described by the stochastic process (s(m)(()), S(m) (1))
defined on the financial subworld (F (), F (X)). Here, S (1) is a random variable on
(F (), F(2),F (P)) with an outcome given by sg,m) > 0Oincasei € {1,..., I} is the finan-
cial scenario that unfolds. Observe that different financial scenarios may eventually lead
to the same outcome S™ (1) of the financial asset, implying that F (PP) [S (m)(1) = sz(-,m)] >
Di.

Similarly, the price process of an actuarial asset m € {0,..., M} can be described
by the stochastic process (s (0), S (1)) which is defined on the actuarial subworld
(A(Q), A (X))

Hereafter, we will often (but not always) assume that financial and actuarial risks are
independent under the real-world probability measure P, in the sense that

P=F(P)x A(P). (3)
This assumption can also be expressed as
Dij = Pi- X D.j, foralli=1,...1 and j =1,..., J,

where the marginal probabilities p;. and p.; are the financial and actuarial real-world
probabilities introduced in and ([2), respectively.

3 Pricing traded assets

Consider the combined world (€2, ¥, P) which is home to a market of M + 1 traded assets
as defined above. A probability measure Q defined on (2, ¥) is said to be an equivalent
martingale measure (or a risk-neutral measure) for this market if it fulfills the following
conditions:

(1) Q and PP are equivalent probability measures.

(2) The future payoff of any traded asset in the combined world, discounted at the
risk-free interest rate, is a martingale with respect to Q.

The equivalence condition means that P and QQ agree on zero-probability events or,
equivalently, they agree on the elements (i, j) of {2 with a strictly positive probability. The
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@-martingale condition states that the current price of any traded asset in the combined
market is equal to the expected value of the discounted payoff of this asset at time 1,
where discounting is performed at the risk-free interest rate r and expectations are taken
with respect to the measure Q.

A probability measure Q defined on (£2, X)) is said to be P-absolutely continuous in case
pij = 0 implies ¢;; = 0, for all (7, ) of Q. A P-absolutely continuous martingale measure
is defined as a measure satisfying the conditions (1’) and (2), with

(1’) Q is P-absolutely continuous.

It is well-known that in our discrete setting, the no-arbitrage condition is equivalent to
the existence of a (not necessarily unique) equivalent martingale measure, whereas com-
pleteness of the arbitrage-free market is equivalent to the existence of a unique equivalent
martingale measure, see e.g. Shiryaev et al.|(1994). Hereafter, we will always assume that
the market of traded assets in the combined world (€2, ) is arbitrage-free, implying that
there exists at least one equivalent martingale measure.

For a given equivalent martingale measure QQ in the combined world, we introduce the
following notation:

Q(#,4)] = ¢ > 0, fori=1,...,land j=1,.., J.

Notice that g;; = 0 if and only if p;; = 0. The equivalent martingale measure QQ gives
rise to the following probability measures for the financial and the actuarial subworld,
respectively:

J
FQl=Yaj=a >0 fori=1,.1,
7j=1

and

I
AQ)[j] = Z%‘j =q; >0, for j=1,...,J.
=1

The measures F (Q) and A (Q) are called the projections of Q to the financial and the
actuarial subworld, respectively. Based on these projections, we introduce the probability
measure F (Q) x.A (Q) on the combined measurable space (£2, X). In terms of the notations
introduced above, it is defined by

(F(Q) x AQ))[(4,J)] = a % g, fori=1,...,land j=1,...,J.

Financial and actuarial risks are said to be independent under the measure Q if the
following condition holds:

Q=7(Q) x A(Q), (4)

or equivalently,

Gij = Gi- X q.j, foralli=1,...,land j=1,...,J.



Until here, we considered equivalent martingale measures in the combined world
(Q, %, P), which is home to a market of assets with financial and/or actuarial payoffs.
We can as well restrict to the financial subworld (F (2),F (X),F (P)) and the corre-
sponding submarket of financial assets, and define equivalent martingale measures in this
subworld. Similarly, the notion of equivalent martingale measure can be defined in the
actuarial subworld (A (Q),A(X),A(P)) and the corresponding actuarial submarket of
actuarial assets.

Consider a combined world (2,3, P) with a corresponding market of traded assets
and let Q be an equivalent martingale measure in this world. The projection F (Q) of
Q is an equivalent martingale measure in the financial subworld with the corresponding
submarket of traded financial assets. A similar remark holds for the projection A (Q) of
Q in the actuarial subworld. This means that our assumption about an arbitrage-free
pricing framework in the combined market implies that also the financial and actuarial
submarkets are arbitrage-free. In general, P and F (Q) x A (Q) do not necessarily agree
on sure events and moreover, F (Q) x A (Q) is not necessarily a martingale measure in
the combined world. In the special case that P fulfills the independence assumption ((3)),
we have that P and F (Q) x A (Q) are equivalent measures, but the latter measure is still
not necessarily a martingale measure in the combined world. For details and examples,
we refer to Dhaene, Kukush, Luciano, Schoutens & Stassen (2013).

4 The minimal entropy martingale measures of the
combined market and its submarkets

Due to the presence of unhedgeable actuarial and financial risk, the market of traded
contingent claims in the combined financial-actuarial world is in general incomplete, im-
plying the existence of more than one equivalent martingale measure for pricing purposes.
The non-uniqueness of the pricing measure means that there is no unique arbitrage-free
price for non-replicable contingent claims. Hereafter, we investigate the problem of finding
the martingale measure that is ‘closest’ to the real-world probability measure PP, where
the distance between probability measures is defined in terms of their relative entropy,
also called the Kullback-Leibler information. In the remainder of this section, we first
determine the Minimal Entropy Martingale Measure Q of the combined market. Next, we
determine the Minimal Entropy Martingale Measures Q/ and Q% corresponding to the fi-
nancial and the actuarial submarket, respectively. Finally, we investigate the relationship
that exists between these measures.

4.1 The entropy measure of the combined market

Consider the combined world (2, 3, P) with the market of M +1 traded assets as described

above. In this section, we determine the Minimal Entropy Martingale Measure @ in the
most general case, which means that we consider a market where financial, actuarial



as well as combined assets may be traded. First, we define the relative entropy of an
absolutely continuous probability measure Q with respect to P.

Definition 1 Let P and Q be two probability measures defined on the combined financial-
actuarial world (,%). Furthermore, Q is P-absolutely continuous. The relative entropy

E(Q,P) of Q with respect to P is then defined by
. Dij
where the sum is taken over all (i, j) € Q with p;; > 0, and where 01ln0 = 0, by convention.

Loosely speaking, the value of E (Q,P) increases if Q and P ‘diverge’. Therefore,
E (Q,P) measures the ‘similarity’ or ‘closeness’ of the respective probability measures
and hence, it can be thought of as a kind of ‘distance’. Notice however that the relative
entropy is not symmetric, i.e. £ (Q,P) # E (P,Q), implying that it is not a distance in
the usual mathematical sense. Relative entropy has many relevant features. It is always
non-negative and it equals zero if and only if the two measures are identical, see e.g.
Frittelli (2000)).

Based on the notion of relative entropy, we now introduce the notion of Minimal
Entropy Martingale Measure in the combined financial-actuarial world, as the particular
element in the class of equivalent martingale measures for which the relative entropy is
minimised.

Definition 2 Consider the combined financial-actuarial world (2, X, P) which is home to
the market of traded assets {0,1,...,M}. Let M be the class of all equivalent martingale
measures in the combined market. Then @ € M is a Minimal Entropy Martingale Measure
of the combined market if it satisfies

A o) s i I (%4
E (Q’P) n &%E(@,P) B &%szq“ = (pij) ' )

Any Q € M can be characterized by an I x .J - matrix with non-negative components
¢ij, with ¢;; = 0 if and only if p;; = 0, and which satisfy the following conditions:
e E? [St(1)] = s (0), form=0,1,..., M,
or, equivalently,

i

e " Zq” ) _ 8(m)<0)’ form=0,1,..., M, (6)
,J

where as before, the sum is taken over all (7, j) € Q with p;; > 0. Obviously, the condition
for m = 0 corresponds to the condition that the probabilities g;; sum up to 1.



Notice that restricting the set of available assets to an appropriate subset of non-
redundant assets does not change the class M of all equivalent martingale measures,
implying that also the set of solutions of remains unchanged by this operation.

In the next theorem, we prove that the minimal entropy martingale measure always
exists and is unique. Hereafter, we will often call this measure the combined market
entropy measure. The proof is based on Theorem 2.2 of [Frittelli (2000)).

Theorem 3 The arbitrage-free combined market is home to a unique minimal entropy
martingale measure.

Proof: Let M O M be the class of all P-absolutely continuous martingale measures and
consider the following minimisation problem:

min Z ¢; In <Z”> . (7)

QGM 1]

The no- arbltrage assumption implies that the set M, and thus also M is not empty.
Furthermore, M is a closed and bounded set in R'*7 , while qu In (q”_) is continuous
Pij

7-]
on M. Hence, the objective function in @) reaches a minimum in the set M. The

uniqueness of this minimum follows from the fact that + — x1n (pi) is strictly convex
i

on [0, 1] for any p;; > 0. Let us denote this minimum by @

It remains to prove that @ € M. Hence, we have to prove that p;; > 0 implies g;; > 0,
for any ¢ and j. The no-arbitrage condition implies that M contains at least one element
Q¢. Consider the convex combination

Q"=2Q+(1—-2)Q
with z € [0, 1]. Obviously, any Q* € M. The probabilities of Q* are given by
Gi=2q;+(1—2) Gy =q; +x (qu—c}}j).

For x > 0, the derivative of the relative entropy F (Q*,P) with respect to x is given by

L@ P -X -0 ().

I Pij

This leads to

d ., . e~ @
wE @B = Z (g5 = ;) In (f,—)
. Z]\Z ~
= Z qz] ln (}7;) E (QaP)



AsQ° = @, which is the unique minimum of optimisation problem , we must have that

d X
aE(@ ,IP)

or equivalently,
F(0.F) < Xy (Z). ®
ng

Suppose now that @ is not equivalent to P. In that case, there exists a scenario (i, j) such
that p;; > 0, while g;; = 0. This implies that the right hand side of () reaches —oo, which
is impossible as relative entropy is always non-negative. Hence, Q € M. We conclude
that the minimal entropy martingale measure QQ exists and is unique. [ ]

Hereafter, we will always denote the unique minimal entropy martingale measure by @
Since for any element of the set M, the ¢;; sum up to 1, we can replace the minimisation

problem (j5)) by
qij .
i 3o (1 (32) 1),

which leads to the same entropy measure Q for the combined market.

We solve the adapted optimisation problem under linear constraints by the method of
Lagrange multipliers. Remark that we can apply this method on the class of equivalent
martingale measures M, which is an open set, provided the minimum exists. The existence
of the minimal entropy martingale measure was proven in Theorem [3] The Lagrangian L
for this problem is now given by

M
b= S (m(22) -1) - 200 (S - 0 0).
m=0 i,j

Determining the partial derivatives with respect to the variables ¢;; and A “and setting
them equal to zero, leads to the following system of equations:

(q”) Z/\ m) S ) for all (i,j) € Q with p;; > 0,
pi) = 9)

Zqij sij):e’"s(m)(O), forallm=20,1,..., M.

Let us denote the probabilities related to the unique entropy measure @ by (Gij; (i,7) € Q).

Taking into account the first series of equations in (@), as well as the fact that Q and P
are equivalent, we find that the probabilities g;; can be expressed as

/q\ij = Dij €ij, for any (Z,j) € Q, (]_O)

10



with the coefficients e;; given by

M
e;j = exp <Z ™) 85;@) , for any (i,7) € ©Q, (11)
m=0

where ()\(0), 2D )\(M)) satisfies @ As the condition for m = 0 corresponds to the
condition that the probabilities g;; sum up to 1, we can conclude from and that
0 < @, < 1 holds for any (i,j) € Q. The projections of the entropy measure Q to the
financial and the actuarial subworld are characterized as follows

J
@.:Zpijeij, fori:1,2,...,l, (12)
j=1
and
I
E_[\.J‘:Zpij €ij, fOI'j:]_,Q,...,J, (13)
i=1
respectively.

In order to determine the Lagrange multipliers A(™), we combine the martingale con-
ditions in @ with the expressions . We find that the A" follow from

sz‘j €ij sgn) = ¢" s (0), for allm =0,1,..., M. (14)
iJ

Our assumption about the non-redundancy of the set of assets implies that these martin-
gale equations lead to a unique vector of Lagrange multipliers. Indeed, suppose that

admits two different solutions {)\,(cm) |lm=0,1...,M }, for £k = 1,2. Taking into account
and , and the fact that the g;; are uniquely determined, we find that

M M
exp (Z Alm) 35;”)> = exp <Z Al sgn)> ., for any (4,7) with p;; >0,
m=0 m=0

and thus

M

Z (/\gm) - )\;m)> sg;n) =0, forany (7,j) with p;; > 0.

m=0
Obviously, this contradicts the non-redundancy assumption, so that we can conclude that
the martingale equations lead to a unique vector of Lagrange multipliers, which we will
hereafter denote by {)\(m) |m=0,1... ,M}.

From the equation for m = 0, it follows that

exp (i Alm) gm) (1))] =1

m=1

exp ()\(O)e”) x EF

11



The expressions for the e;; can then be rewritten as

S \(m) )
exp <mz::1)\m Si )
M
EP {exp (z A(m) §(m) (1))}
m=1

eij = , for any (i,7) € Q. (15)

As stated previously, we observe from and 1} that the entropy measure @ is an
equivalent martingale measure in the combined financial-actuarial market, which can be
interpreted as an Esscher-like transform of PP.

Solving for p;;, replacing e;; by and summing over all ¢ and j leads to the
following expression:

exp( Z/\m) S(m )

So we find that
exp <—
-1 __

v EQ {exp (—m A(m) §(m) (1))}

These expressions will be used hereafter.

exp (Z A gm) (1 ))] =1. (16)

m=1

1

A )

e , for any (7,7) € Q. (17)

Mzlf M=

1

4.2 The entropy measure of the financial submarket

In Definition |2 we considered the Minimal Entropy Martingale Measure @ for the market
of M +1 traded assets in the combined financial-actuarial world. Similarly, we can define
the Minimal Entropy Martingale Measure Q/ for the submarket of financial assets.

Consider the F (IP)-absolutely continuous probability measure Q = (¢1, o, ..., q7) on
(F(R2),F (X)). The relative entropy E (Q,F (P)) of Q with respect to F (IP) is defined

as follows:
. Z ( qi )
- qi ln R
p Di.

with summation over all ¢ with p;, > 0, and where 01n0 = 0, by convention.

We denote the subset of {0, 1, ..., M} composed of all financial assets, by N'/. The set
of all financial assets with exception of the risk-free bond is called the set of purely financial
assets and will be denoted by ./\/Of . Let M7 be the class of all equivalent martingale
measures Q in the financial submarket. Any Q € M/ can be characterized by a vector

(g1, q2, - - -, qr) with non-negative components and ¢; = 0 if and only if p; = 0, satisfying
the following conditions:
e” Zqi s = 5m)(0), for all m € NV. (18)

12



The no-arbitrage assumption for the combined world implies that also the financial sub-
world is arbitrage-free and hence, M/ is non-empty.

The measure @f € M/ is the Minimal Entropy Martingale Measure of this financial
submarket if it satisfies

E (@f,]:(IP’)> = min £ (Q,F (P)) = min 4 In (&) . (19)

QeMmf QeMf

Based on similar arguments as used for the combined market, we have that in the financial
submarket, the minimisation problem always leads to a unique solution. Hereafter,
we will often call this unique measure the financial market entropy measure.

Since ), ¢; = 1 for all measures of the set M/, we can replace the minimisation
problem by the equivalent minimisation problem

Proceeding in a similar way as in the combined market case, we solve the adapted
optimisation problem under linear constraints by the method of Lagrange multipliers.
The Lagrangian L for this problem is given by

L= ZZ:% (ln (5—) - 1) IR <;qi s e g(m) (0)) .

meNf

Determining the partial derivatives with respect to the variables ¢; and )\;m) and setting
them equal to zero, leads to the following system of equations:

In <&> = Z )\;m) sg,m), for all ¢ with p;. > 0,
Di.
meNf (20)
Zqi s = e gm (0) for all m € N7.

)

Let us denote the probabilities related to the financial market entr measure @f by
20)

<Ej{ , f[g e ,Zf}c> Taking into account the first series of equations in (20f), as well as the

fact that @f and P are equivalent, we find that the probabilities quf can be expressed as
@ =p.el, fori=1,2...1, (21)

with

e{:exp<z /\;m) s,E?”)>, fori=1,2,....1, (22)

meN'f

where the Lagrange coefficients )\Scm) follow from |D Notice that 0 < @-f < 1 holds for
every 1.

13



Combining the martingale conditions in (20) with the expression , we find that
the )\Scm) follow from the following system of martingale equations:

Zpi- el ™ =e 5™ (0), for all m € N7, (23)

Because the financial submarket is non-redundant as well, a similar argument as in the
combined market can be used to prove that these equations admit a unique solution.

From the martingale equation for m = 0, we find that

exp ()\Eco)er> x BEF® lexp Z )\ S(m =1. (24)
meNy

Taking into account this relation, we can rewrite the expressions 1} for the factors e

as follows:
exp ( POEPVE ss””)
mENg

exp< > A s<m>(1)>]
meNOf

Again, we observe that the unique entropy measure @f , which is an equivalent martingale
measure in the financial subworld, can be interpreted as an Esscher-like transform of

F(P).

Sl

fori=1,2,...,1. (25)
EF®)

4.3 The entropy measure of the actuarial submarket

Similar as in the financial submarket, we can define the Minimal Entropy Martingale
Measure of the actuarial submarket.

Consider the A (P)-absolutely continuous probability measure Q = (¢1, ¢z, - .., qy) on
(A(2),A(X)). Therelative entropy F (Q, A (P)) of Q with respect to A (P) = (p.1,p.ay ..., D7)

is defined by
B@AE) =g (L),
j P-j

where the sum is taken over all j with p.; > 0, and where 0ln0 = 0, by convention.

We introduce the notation N for the set of all actuarial assets, while N = N~ {0}
is the set of all purely actuarial assets. Furthermore, M*® is the non-empty class of all
equivalent martingale measures Q in the actuarial submarket. Any Q € M?® can be
characterized by a vector (g1, g, - . .,qs) with non-negative components and ¢; = 0 if and
only if p.; = 0, satisfying the following conditions:

e " qu s,(;n) = 5(™(0), for all m € N (26)
J

14



The Minimal Entropy Martingale Measure @“ is the unique element of M® which

satisfies
E (@“,A(P)) = mln E(@Q,A = min qu In (q]) ) (27)

QeM QEM“

Hereafter, we will often call this measure the actuarial mark:et entropy measure.

Denoting the probabilities related to the actuarial market entropy measure @a by

(4,05, -..,q%), we find that the probabilities (/]‘J“ can be expressed as
a\;:pd 6(;7 for j=1,2,...,J (28)
with

p ( Z Alm) 5,(;'1)> , forj=1,2,...,J. (29)

meNa

(m)

The Lagrange multipliers )\, ’ are derived from the system of martingale equations:

Spyel st =e ™), forallme N, (30)

where the uniqueness of this set of multipliers follows from the non-redundancy assump-
tion of the actuarial submarket.

The expressions can be rewritten as follows:

exp< > AEZ”) s,(]m)>

meN§

exp( A SW)(I))]
meN§

We observe that the unique entropy measure @“, which is an equivalent martingale mea-
sure in the actuarial subworld, can be interpreted as an Esscher-like transform of A (IP).

for j=1,2,...,J. (31)

¢ =
EAP)

4.4 Some examples

In this subsection, we illustrate the technique of determining the minimal entropy mar-
tingale measure by considering two examples of a combined world with a risk-free zero
coupon bond, a financial asset, an actuarial asset and a combined financial-actuarial asset
traded in the market. For each example, we derive the combined market entropy mea-
sure @, as well as the entropy measures Qf and @“ of the financial and the actuarial
submarket, respectively.

Example 1 Consider a combined financial-actuarial world with three possible scenarios
in each subworld, i.e.

Q={(@J)]1,j=123}.

15



Suppose that the real-world probabilities p;; are given by

P = (pij)i,j -

D= D= D=
O o= o=
O O ol

The projections F (P) and A (P) of the real-world probability measure P on the financial
and actuarial subworlds are then given by

3 3
D1 6 Pa 6

FP)=1| po | = % and A(P)=1|[ po | = % ,
Ds. % p3 %

respectively. Notice that p;; # pi. X p.q, from which we conclude that financial and
actuarial risks are not independent under the physical measure P.
We assume that the risk-free interest rate r is 0 and that the current price of the risk-
free zero coupon bond is 1. In the combined market, a pure financial asset and a pure
actuarial asset are traded. Their initial price is s™ (0) = %, for m = 1,2, while the
possible outcomes of their payoffs S(™ (1) at time 1 are given by

89) 0 8(12 : 0
88) =11 and 3_(22) =11,
3:()3) 2 SF??) 2

respectively. In this market, also a combined asset is traded, with initial price s* (0) and
possible outcomes for its payoff S (1) at time 1 given by
(3)_{ 1 ifi=j=1

S )
t 0 otherwise.

The martingale equations for the combined market of this example read as follows:

€11 + €12 + e13+ €1 + €22+ €31 =6
€21 + €22 + 2e31 = 3

€12 + 2e13 + €29 = 3

e = 6 583 (0)

with the e;;, according to (L1]), given by

(€11 = exp ()\(0) + )\(3))

€12 = exp ()\(0) + )\(2))

e1s = exp (A + 2)?)

ez = exp (A + AW)

€29 = €Xp ()\(0) + 20 4 )\(2))
[ €31 = exp ()\(0) +22M)Y




The Lagrange multipliers A(™), for m = 0, 1, 2, 3, then follow from

;

3 6 530
A0 =1 ( 7500 >
2 53 0)
) AL =1n <3 5 8(3()
A2 =1n <

3—6 s(3)(0
A®) — [ 22600)°
\ (3-6:00)"

The probabilities g;;, which determine the combined market entropy measure @, are
calculated by equation ((10)):

258)(0) ;
)
(0)

s®0) 1-s3 () 2O

Q= @)= 1-s®@0 2O o |- (32)

s®) (0)
00 0 0

From this matrix, we see that s® (0) € (0, 1) is required in order to guarantee that Q is
a proper equivalent martingale measure in the combined market. This condition on the
initial price of the combined asset is a necessary and sufficient condition for the combined
market to be arbitrage-free. Therefore, in the remainder of this example we assume that
s® (0) € (0,3).

The projections F (Q) and A (@) of Q on the financial and the actuarial subworld can
easily be determined from ([32)):

1, s®(0) 1, s®0)
aL 3T 3 01 2t 73
=~ ~ 5(3) N ~ s(3)
]—“(Q): b |=| 1ot andA(@>: 2| =| 1-200 | @)
gs. 53)(0) q3 s®(0)
3 3

The set of all financial assets is given by N/ = {0,1}. In order to obtain the financial
market entropy measure Q/, we first determine the financial market martingale equa-

tions ([23)):
36{+26£+e§:6
2¢) + 2¢] =3

where, according to , the ezf are given by

f (0)>

ep = exp (Ay
eg = exp )\;0) + )\S})
eg = exp )\;0) + 2)\;1)> .

17



This leads us to the following values for the Lagrange multipliers:

o _ 8 — /10
)\f n<—4

and

)\5}) —In <_1+\/1_0> ‘

From , we find that the financial market entropy measure @f is given by

" 810
R qi 8
Q=1q |=[=22]. (34)
@ 4-v10
8

The set of all actuarial assets is given by N = {0,2}. As A(P) = F (P) and moreover,
the initial prices as well as the P-world distributions of the payoffs of the purely actuarial
asset and the purely financial asset are identical, we immediately find that the entropy
measures in both submarkets are equal. Hence,

8—/10

_ qi 3
Q=3 |=| =20 |. (35)

74 4-y/10

8

Comparing with and leads to the conclusion that s®) (0) = %ﬁ is a
necessary and sufficient condition for the projections F (@) and A (Q) of the combined

market entropy measure @ to be equal to the entropy measures of the financial and the
actuarial submarkets, respectively:

~ ~ ~ ~ 12 — 310
F(Q) =0 and A(Q) = Q" & s (0) = = V10,
We can conclude that when s®) (0) # %ﬁ, prices of financial assets under the combined

market entropy measure QQ differ from the corresponding prices under the financial market
entropy measure /. The same conclusion holds for actuarial assets. v

In the following example, we consider a combined market where financial and actuarial
risks are independent under the real-world probability measure P. It will be shown that
in this example the P - independence will only translate in Q - independence, when the
combined financial-actuarial asset has a specific price.

Example 2 Consider a combined financial-actuarial world with three possible scenarios
in the financial subworld and two possible scenarios in the actuarial subworld. The com-
bined financial-actuarial universe € is given by

Q={(i,j)|i=1,2,3and j=1,2}.

18



Assume that the real-world probability measure P is characterized by

1 3

10 10

— (.. — 1 3
P = (pw)z‘,j = 10 10
1l 3

20 20

Then the projections F (P) and A (P) are given by

P1. % 1
F@ = |=| 2| and A(P)—(ﬁ';)—(g>,
Ds. % ' 4

respectively. Furthermore, one can easily verify that P = F (P) x A (P).

The risk-free interest rate r is assumed to be equal to 0. Apart from the risk-free bond
with initial price s(%(0) = 1, there are 3 assets traded in the combined market: a financial
asset, labeled 1, with current price s (0) = 50 and possible payoffs at time 1 given by

st 100
s =1 0o |,
ke 0

an actuarial asset, labeled 2, with current price s (0) = 70 and possible payoffs at time 1

given by
3(12 ) _ 0
s@ )\ 100 )

and also a combined asset, labeled 3, with current price s (0) and possible payoffs at
time 1 given by

@ _ 100 ifi=j5=1

o1 0 otherwise.
The combined market martingale equations (14)), for m = 0,1, 2,3, are equal to

2e11 + 6e1g + 2e91 + 6e9 + €31 + 3e39 = 20
€11 + 3612 =5

6612 + 6622 + 3632 =14

].0611 = 8(3) (0)

with the e;;, according to , given by

(en = exp (AQ + 10040 + 100A®)
e12 = exp (AQ + 100A1) 4 100AP)
€21 = exp ()\(0))
€99 = €Xp (/\(0) + 100/\(2))
€31 = exp (/\(0))

| €32 = exp ()\(0) + 100/\(2)) .
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From these systems of equations, we obtain the following values for the parameters e;;:

3)(0)
S
€11 10
_ 50—s3)(0)
€12 = 3
~ 30—s®3)(0)
€21 = €31 = — 5
20453 (0)
€22 = €32 = — 45 -

The probabilities g;; of the combined market entropy measure are now determined by

equation (|10)):
N ‘.’ s3)(0) 50—s(3)(0)

100 100
D— (7. _ 30—s(3(0)  20+s3)(0)
(g_‘<q”)id o 150 150 ’ (36)
30—s(3(0)  20+s3)(0)
300 300

This entropy measure @ gives rise to the following projections:

. 1
0-(3)-[1) w w0-(3)-(2).
: 6

which are independent of the current price s (0). The product measure F (@) x A (@)

can now easily be determined:

% %
FQ)xa@)=|+% % |- (37)
% W@

Comparing and , it is easy to prove that
Q=7F (@) x A (@) & 53 (0) = 15.

Next, we determine the entropy measures of the financial and actuarial submarkets. The
set of all financial assets is given by N/ = {0, 1}. From (23), it follows that the martingale
equations of the financial market are given by

26{4—2654—63{:5
4ef =5,

where, according to , the ezf are determined by

ef =exp (A + 1002)

eg = exp )\500)

eg,: = exp )\;0)
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This leads us to the following values for the parameters elf :

f_5
61—1
ef =el =2

6

The financial market entropy measure @f then follows from equation :

~ 1
- al 2
= 1
Qf = CI%: =1 3
~ 1
a3 s

The set of all actuarial assets is given by N = {0,2}. In this case, the actuarial market
martingale equations in read as

{ ef +3e5 =4 (38)

15¢2 = 14,

where the ef, according to ([29)), are given by

el = exp )\,(10))

es = exp (A + 100AEE)) .

Solving the system of equations ([38)), we obtain

From equation , it follows that the actuarial market entropy measure @“ is given by

o~ 3
@a _ ( q1 > [ © )
@ i
Contrary to Example 1, the projections F (@) and A (@) of the combined market en-

tropy measure QQ in this example equal the entropy measures of the financial and the
actuarial submarkets, respectively, regardless of the current price s©) (0) of the combined
asset. Nevertheless, s® (0) influences the dependence structure between financial and
actuarial risks under @ The independence assumption under P will only translate in @ -
independence, provided s (0) = 15. v

The traded assets in previous example have simple payoffs such that the obtained
martingale equations can be solved easily. Notice however that the conclusions from this
example remain to hold in a more general setting containing a pure financial, a pure
actuarial and a combined asset: P - independence will only translate in QQ - independence
in case the combined financial-actuarial asset has a specific initial price.

21



5 The minimal entropy martingale measure in a com-
bined world where only financial assets are traded

Consider the combined world (€2, ¥, P) with a market of M + 1 traded assets as described
above. In this section, we assume that only financial assets are traded. In this special
case, we have that

NP ={0,1,...,M} and N* = {0}.
For any asset m, the vector of payoffs is given by (3(1@, sg,n), ce syn)), where S(™)(1) =
(m)

s;. > 0 if the financial scenario that unfolds is given by .

In the following subsections, we first determine the entropy measures @f and @“ corre-
sponding to the financial and the actuarial submarkets, respectively. Then, we determine
the entropy measure QQ of the combined market. Finally, we investigate the relationship
between these three entropy measures.

5.1 The entropy measures of the submarkets

Consider the financial subworld (F (Q),F (¥),F (P)) and the market of M + 1 traded
financial assets. The entropy measure Qf of this submarket follows from the results in
Subsection 4.2, with N/ = {0,1,..., M}. In particular, we find that

& =piel,  fori=12...1 (39)

with

M
el = exp (Z /\gcm) sg_m)> , fori=1,2,...,1. (40)
The Lagrange multipliers /\;m) can be derived from the following martingale equations:

> piel st =" sM(0),  forallme{0,1,....M}. (41)

Next, we consider the actuarial subworld (A (Q2),A(X),.A(P)) and the actuarial sub-
market where only the risk-free bond is traded. The actuarial market entropy measure Q®
follows from the results in Subsection 4.3, with N/* = {0}. We have that

-~a a

4 =p;j €, for j=1,2,...,J,

with

e;‘:exp()\go) e’”), forj=1,2,...,J.
The unique Lagrange multiplier A follows from the martingale equation 1) for m = 0,
ie.

Zp,j 6? = 1.
J
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Taking into account that e} does not depend on j, we find that

e; =1, forj=1,2,...,J.
Hence,

qj = p.j, for j=1,2,...,J, (42)
or, equivalently, R

Q*=A(P). (43)

This means that in a market where only financial risks are traded, the actuarial market
entropy measure Q is identical to the projection A (IP) of the physical probability measure
on the actuarial subworld. This result was to be expected as there are no actuarial risks
traded, which implies that the pricing measure Q® that is closest to A (P) is A (P) itself.

5.2 The entropy measure of the combined market

The combined market entropy measure @ follows from the results in Subsection 4.1. In
particular, we find that
Gij = pij €ij, for any (i,7) € Q, (44)

where the coefficients e;; are defined by

M
€ij = €Xp (Z )\(m) Sz(m)> ) for any <Z7j) € . (45)
m=0

Obviously, the e;; do not depend on j. Therefore, we will denote them by e;. in this section.
The martingale equations can be written as

> pien st = st™(0),  forallm € {0,..., M} (46)

Comparing the martingale equations and (46)), while taking into account that the
e;. and the e{ are uniquely determined and of the form and , respectively, we find

that
e = el fori=1,2,...,1. (47)
and also
$ij = Dij e{, for any (i,7) € Q. (48)
Taking into account , these expressions for the g;; result in
G =pi el =7, fori=1,2,...,1, (49)

which means that the financial market entropy measure @f is identical to the projection
F (Q) of the combined market entropy measure Q, i.e.

' -7(Q). (50)

In the following theorem, the relation between the entropy measures of the combined
market and the corresponding submarkets is further explored.
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Theorem 4 Consider the combined financial-actuarial world (2,3, P) where only finan-
cial assets are traded. Let Q be the combined market entropy measure. The financial and
actuarial market entropy measures Qf and Q® are then characterized by

Q =F (@) and Q% = A(P). (51)

Moreover, financial and actuarial risks are independent under the P-measure if and only
if they are independent under the Q-measure:

sz(P)XA(]P’)@@zf(@)xA(@). (52)
In case of P - independence between financial and actuarial risks, one has that
Q' =4(Q). (53)

Proof: The relations have been proven above.

In order to prove the equivalence relation , let us first assume that financial and
actuarial risks are P - independent. Taking into account and , we find that

Tij = G- X p.j, for all (i,7) € Q.
Summing over all ¢ leads to
q; =D, for j =1,2,...,J. (54)
Hence,
Tij = G X qj, for all (i,7) € Q,
which means that financial and actuarial risks are @ - independent.
Next, we assume that financial and actuarial risks are @ - independent. In this case,
the relations and lead to
Pij = Pi X @, for all (i,7) € Q.
Summing over all ¢, we find that
D= qj, for j =1,2,...,J,
and hence,
Dij = Pi- X D.j, for all (i,7) € Q,
which means that financial and actuarial risks are P - independent.
Finally, in case of independence, the relations and lead to
75 =3j, for j =1,2,...,J,
which means that holds. n

Theorem [4] states that in a market where only financial assets are traded, a P-world
independence between financial and actuarial risks implies that also under the combined
market entropy measure QQ, financial and actuarial risks are independent. Important to
notice is that this implication does not state that P - independence translates into indepen-
dence under any pricing measure Q. Some simple examples of (in-)complete markets with
P-world independence but where no equivalent martingale measure exists under which
financial and actuarial risks are independent, can be found in |Dhaene et al. (2013)).
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5.3 Illustration

From Theorem , we know that in a market where only financial assets are traded, @f =

F <@> holds for any possible dependence structure between financial and actuarial risks

under the physical measure P. Moreover, we found that @a =A (@) holds, provided

financial and actuarial risks are independent under PP. In the following example, we explore
whether this P - independence is an essential requirement or not for this last statement

to hold.

Example 3 Consider the combined financial-actuarial world with three possible scenarios
in each subworld and with physical measure P, as described in Example 1. In the cor-
responding market, we assume now that only 2 financial assets are traded, namely the
risk-free zero coupon bond with = 0, and the financial asset with initial price s (0) = %

and possible payoffs at time 1 given by

st 0
sg) =11
s 2

In order to determine the combined market entropy measure @, we consider the martingale
equations , which can be expressed as

361. -+ 262. + e3. = 6
262. + 263. = 3,
with the e;., according to ([45]), given by

€. = exp ()\(0))
€9. = €xp (A(O) + /\(1))
€3. = exp (A(O) + 2)\(1)) )

These systems of equations lead to the following numerical values for the Lagrange mul-

tipliers:
— V1
A0 —1p <¥> (55)

and

A =1n (ﬂ) : (56)

According to equations and (45), the probabilities g;; are then given by

8—v10 8—v10 8—v10

24 24 24
@: —24v10 —2+/10 0
8 8
4—/10
5 0 0
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The projections F <@> and A (@) of the combined market entropy measure @ on the
financial and the actuarial subworld, respectively, can easily be determined:

~ 8-1/10 . 14—+/10

. q1. 8 . qa 24
F (Q) — | % | =| =20 | and A (Q) | G | =] o
g 4-+/10 3 8—/10

8 24

Let us now determine the entropy measure of the financial submarket. Taking into account
that the martingale equations for the combined market and the financial submarket are
identical, we find that )\gco) and )\;1) are given by and , respectively. From
and , it follows then that the financial market entropy measure is given by

~f 8-110

. q; 8
Qf =| ¢ — —zzx/ﬁ
7 4-V/10

8

We observe that the measure @f is identical to the financial projection F (@) of the com-

bined market entropy measure @, which confirms our earlier derived general result .
According to , the actuarial market entropy measure is given by

(e
S

Il
=~
—~
~
~—

I

We can conclude that the actuarial market entropy measure @“ is different from the

actuarial projection A <@> of the combined market entropy measure @ v

From the preceding example, we conclude that in a combined world where only fi-
nancial assets are traded, and where financial and actuarial risks are not independent
under P, it may happen that the actuarial market entropy measure Q¢ is different from
the actuarial projection of the combined market entropy measure.

6 The minimal entropy martingale measure in a com-
bined world without traded combined assets

In this section, we investigate a second special case of the general combined financial-
actuarial world described in Section 4. We suppose now that no combined assets are
available in the market. Hence, apart from the risk-free zero coupon bond, only purely
financial and purely actuarial assets are traded. In terms of the earlier introduced nota-
tions N/ and N for the sets of financial and actuarial assets, respectively, this means
that

NTUN®={0,1,..., M}. (57)
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Hereafter, we determine the entropy measures of the financial and the actuarial submar-
kets, as well as the entropy measure of the combined market. Furthermore, we investigate
the relationship between these measures.

6.1 The entropy measures of the submarkets and the combined
market

The entropy measure @f corresponding to the market A/ of traded financial assets in
the financial subworld (F (Q2),F (X),F (P)) follows from the results in Subsection 4.2.
In particular, we have that /q\lf , elf and the martingale equations are given by ,
and , respectively.

Similarly, the entropy measure @“ of the market N of traded actuarial assets in
the actuarial subworld (A (Q2),A(X),.A(P)) follows from Subsection 4.3. In particular,
we have that @;”, e and the corresponding martingale equations are given by ,

and , respectively.

Let us now determine the entropy measure @ of the combined market. From
and in Subsection 4.1, we find that

@ij = pij €ij, for any (i,7) € €, (58)

where the coefficients e;; are defined by

eij = exp AOer 4 Z A ng) + Z ™) 3_(;"”) , for any (i,7) € Q. (59)

me/\/of meNg

From , it follows that the martingale equations of the combined market are given by

S oy ey st = s (0),  forall m e NV (60)
Y]
and
S oy ey sV = 5™ (0),  forallm e N (61)
1,J

In the following theorem, we explore the relationship between P - and @ - independence
of financial and actuarial risks.

Theorem 5 Consider the combined financial-actuarial world (€2, 3, P) where, apart from
the risk-free asset, only purely financial and purely actuarial assets are traded. In this
case, financial and actuarial risks are independent under the P-measure if and only they
are independent under the Q-measure:

sz(P)XA(]P’)@@zf(@)XA(@). (62)
Moreover, in case of P - independence between financial and actuarial risks, one has that
Q' =7 (Q) and Q"= A(Q). (63)
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Proof: Let us first prove the = implication in . Therefore, suppose that financial
and actuarial risks are [P - independent. Taking into account and , we can express
the coefficients e;; as follows:

exp( ST S'E-m)) exp( S A0 8§7)>
meN NG
€ij = =% X me (64)

EF exp( S Am) §m) (1)) EF exp< ST Am) §m) (1))]
meN§

meNy
which holds for any (i, 7) € 2. From and (64), we find that

exp ( S M) sE@)
me./\/g

exp < ST ) §im) (1))]
me./\/’({

A similar expression holds for the actuarial subworld. Hence, we can conclude that

fori=1,2,...,1. (65)

J
qi- = pi. X ij €ij = Pi- X
j=1

EP

Z]\ij - (pl X p]) €ij = Zl\z X aj’ for any (17]) S Qa

which means that financial and actuarial risks are @ - independent.

Next, we prove the < implication in (62). Suppose that financial and actuarial risks
are Q - independent. Taking into account 1E) and . we can express the coefficients
€ ! as follows:

exp (— S A Sl(-,m)) exp|— > A S.(;n)
1 mENg mG./\/'(?

eij — X ) (66)
EQ |exp (— > A §m) (1)) EQ |exp (— > A Sm) (1))]
meNy meNg
which holds for any (i, 7) € 2. From and (66), we find that
p exp <— S A sz(,m)>
~ me/\/’({ .
Z L=7. fort=1,2,...,1.

E@

exp (— S A §im) (1))]
mEN'Of

A similar expression holds for the actuarial subworld. Hence, we can conclude that
pij = (G- X @) e;jl = Di. X D.j, for any (i,7) € Q,

which means that financial and actuarial risks are P - independent.
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It remains to prove that holds in case of P - independence (or equivalently, @ -
independence) between financial and actuarial risks. Hereafter, we only give the proof for
the financial submarket. The actuarial submarket case is proven in a similar way.

By using the expressions for the coefficients e;;, we can simplify the martingale
equations for the combined market as follows:

exp( S Am sz(,m)>
meNy (m)

si™ = e 5™ (0), for all m € N7,

exp ( S A §im) (1))]
meNJ

Comparing these martingale equations for the combined market with the martingale equa-
tions for the financial submarket, while taking into account the expression ([25]), we
find that \(™) = /\;m) for m € N . Similarly, we can prove that A" = A for m e N§.

From , and , it follows then that

f

i

szt

eij =€ Xe?

holds for any (i, j) € 2. Hence, from the P - independence assumption we find that

a

@'j = Dij €ij = (pz 6{) X (p] ej) = alf X a;«l, for all (Z,]) € Q.
The latter expression immediately leads us to
G.=q, fori=12,...,1

and
/q\.j:Z]?, fOI‘j:1,2,...,J,

which means that holds, when financial and actuarial risks are independent. [

6.2 Illustration

In the following example, we show that in a market where only purely financial and purely
actuarial assets are traded, the equality between the projections of the combined
market entropy measure and the corresponding entropy measures of the submarkets may
no longer hold in case financial and actuarial risks are not independent under P.

Example 4 Consider again the combined financial-actuarial world with three possible
scenarios in each subworld and with physical measure P, as described in Example 1.
Suppose now that, apart from the risk-free zero coupon bond, one purely financial asset
(labeled 1) and one purely actuarial asset (labeled 2) are traded. Both assets have an
initial price s™ (0) = %, while their possible payoffs at time 1 are given by

B\ (Y (o
Sgl) _ S,(22) — 1
b))\



In order to determine the combined market entropy measure @, we first write down the
martingale equations from and form =0,1,2:

€11 + €12 + €13 + €921 + €929 + €31 — 6
€21 + €22 + 2e31 = 3
e12 + 2e13 + e = 3

where according to , the e;; are given by

(e11 = exp (AD)

€13 = exp ()\(0) + 2@

€13 = exp ()\(0) + 2)\(2))

€21 = €xp ()\(0) + /\(1))

€99 = €Xp ()\(0) @ 4 )\(2))
[ e31 = exp ()\(0) + 2)\(1))

These systems of equations result in the following values for the Lagrange parameters:
A0 1 (133)

AL — @ — 1y <\/§) .

Taking into account previous calculations, we find that the combined market entropy
measure Q is given by

3—v3  —1+v3 3-v3
4

4 12
) —1+v3 3-3
@ - I 12 0
3—/3
T 0 0

The projections of @ on the financial and the actuarial subworld can easily be determined:

R 9-3 . 9—V3

. q1. 12 . 4.1 12

F (@) = ) = \/?g and A (Q) = q-2 = \/?g
3. 3—v3 3 3—3

12 12

The submarkets in this example are identical to the submarkets considered in Example 1.
As a consequence, the submarket entropy measures in the current example are identical
to the corresponding entropy measures derived in Example 1. In particular, we find that

~f 810 ~ 8110
N qi 8 = sl 8
Qf — 475 — —24Z/E and Q"= | @ | = —242/E
7 4=V 7 4-V/10
8 8

We can conclude that F ( ) # Qf and A( ) # Q“ which means that the financial

and actuarial projection of the combined market entropy measure differ from the entropy
measures of the financial and the actuarial subworld, respectively. v

30



The previous example shows that we have to clearly specify the modeling environment
when we want to price financial or actuarial assets under the minimal entropy martingale
measure. For a purely financial asset, the price under the combined market entropy

measure @ (or, equivalently, under the projection F (@)) will in general differ from

the price under the financial market entropy measure @f . Notice however that from
Theorem [5] it follows that these prices are equal in case financial and actuarial risks
are independent under the physical measure P. Similar conclusions can be formulated
concerning prices of actuarial assets.

7 Conclusion

In arbitrage-free but incomplete markets, the equivalent martingale measure for pricing
traded assets is not uniquely determined. A possible approach when choosing a particular
pricing measure is to look for the one that is ‘closest’ to the physical probability measure
P, where closeness is measured in terms of relative entropy.

In this paper, we considered the problem of determining the minimal entropy martin-
gale measure in a market where securities are traded with payoffs depending on financial
as well as actuarial risks. Therefore, we modeled a combined financial-actuarial world
with a universe consisting of combined financial-actuarial scenarios. We determined the
entropy measure of the combined market consisting of financial, actuarial and combined
financial-actuarial assets, as well as the entropy measures corresponding to the financial
and the actuarial submarkets.

We proved that in a market where only financial assets are traded, independence of
financial and actuarial risks under the real-world probability measure is equivalent to
independence under the combined market entropy measure. Moreover, pricing financial
assets under the financial market entropy measure is identical to pricing these financial
assets under the combined market entropy measure. In such a market, the actuarial market
entropy measure coincides with the projection of the real-world probability measure on
the actuarial subworld.

In a market where purely financial as well as purely actuarial securities are traded,
we proved that financial and actuarial risks are independent under the real-world proba-
bility measure if and only if these risks are independent under the combined market en-
tropy measure. Moreover, in case of independence, the entropy measure of the combined
financial-actuarial market is the product measure of the entropy measures of the financial
and the actuarial submarkets. The latter property does not always hold when financial
and actuarial risks are not independent under the real-world probability measure. In this
case, the price of a financial asset under the combined market entropy measure will in
general differ from the price under the financial market entropy measure. This difference
is due to the fact that the available information in the combined world is larger than in
the financial subworld which leads to a different set of martingale measures from which
we choose the ‘closest’ one. A similar reasoning holds for actuarial assets.
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In the general case, i.e. in a market where apart from financial and actuarial assets,
also combined financial-actuarial assets are traded, no general conclusions can be made.
In particular, independence of financial and actuarial risks under the physical measure
does not always translate into independence under the combined market entropy measure,
and vice versa. Moreover, there is no link between the projections of the combined market
entropy measure at the one hand and the entropy measures of the submarkets at the other
hand, even in case of P - independence.

In this paper, we considered a one-period, finite state market model. The results in
this paper can be extended to a multiple period setting. Similar results can also be derived
in a continuous-time market model.
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