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1. Introduction

Consider an insurance agreement under which a policyholder
is self-insured up to a pre-specified value, known as the deductible
amount. The total loss X faced by the policyholder is a non-negative
random variable, hereafter called a risk. If X exceeds the deductible
amount d, the remaining risk, X — d, will be covered by the insurer,
otherwise, X is covered by the policyholder himself. This type of
insurance coverage is known as policy deductible (cf. Klugman
et al., 2004). Under the deductible coverage, the risk X can be
expressed as X = (X A d) + (X — d)4, where the first part is
self-insured by the policyholder and the second part is indemnified
by the insurer. Now consider a situation where the policyholder
facesnrisks X1, ..., X, which are insured under a policy deductible
coverage. Suppose the amount d is the total deductible amount
corresponding to all risks and the policyholder has the right to
divide d into n non-negative values d, . .., d, such that Z?:l di =
d, and fori = 1,...,n, each d; is the deductible corresponding
to the risk X; (cf. Cheung, 2007). The indemnified amount by the
insurer is given by Z?=1(Xi — d;)+ and the retained risk which is
not covered by the policy deductible coverage is given by Z?:l Xin
d;). With this set up, if w denotes the initial wealth after paying
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the required premium which is assumed not to depend on the
choice of (dy, ..., dy), the policyholder’s wealth is changed into
w— ZL] (X; Ad;). It is of importance to the policyholder to obtain
the optimal vector d’ in the set

n
si(d) = {d=(ds,....d)) eR™" | Y di=d
i=1

for which the amount w — ZL(X[ A d;) is maximized or
equivalently, Z?:1(Xi A d;) is minimized according to a given
stochastic order criterion. Several optimization criteria (such as
maximizing the expected utility, minimizing the variance, mini-
mizing the probability of ruin, etc.) have been proposed, see for
example Van Heerwaarden et al. (1989) or Denuit and Verman-
dele (1998). In this paper, following Cheung (2007), Hua and Che-
ung (2008a,b), Lu and Meng (2011), Xu and Hu (2012), You and Li
(2014) and Hu and Wang (2014), we use the maximization of the
expected utility criterion to find an optimal deductibles allocation.
That is, we are looking for an allocation that maximizes

Elu (w — i(x, VAN d;)):|
L i=1

or, equivalently, minimizes

E|u <i(x,— A d,)>:| R
L \i=1
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where 1i(x) = —u(w — x) and u is a utility function which is as-
sumed to be increasing (concave).

Let us recall the notion of majorization and various stochastic
orderings which will be used to prove the main results in this
paper.

Throughout this paper, we use increasing for non-decreasing
and decreasing for non-increasing and assume that all the
expectations of the random variables considered exist.

Let X and Y be univariate random variables with distribution
functions F and G, survival functions F and G, density functions f
and g; hazard rates rr (= f/F) and r¢ (= g/G), respectively. Let
Ix, Iy and uy, uy be the (finite or infinite) left and right endpoints
of the support of X and Y, respectively. The random variable X is
said to be smaller than random variable Y in the

e stochastic dominance order (denoted by X <,; Y), if E [¢(X)] <
E [¢(Y)] for all increasing function ¢,

e increasing concave (convex) order (denoted by X <ic icx) ¥),
if E[¢(X)] < E|[¢(Y)] for all increasing concave (convex)
function ¢, -

e hazard rate order (denoted by X <. Y), if G(x)/F(x) is
increasing in x € (—oo, max(uy, uy)),

e likelihood ratio order (denoted by X <, Y) if g(x)/f(x) is
increasing in x € (—oo, max(uy, uy)).

Itis well known that X <, Y is equivalent to F(x) < G(x) for all x. It
is easy to see that X <, Y, if and only if, for every x, rg(x) < rg(x).
Note that we have the following chain of implications among the
above stochastic orderings:

X <r Y :>X§hr Y =X Sst Y :>Xficv,icxy-

For more details on stochastic orders see e.g. Muller and Stoyan
(2002), Denuit et al. (2005) or Shaked and Shanthikumar (2007).

Let x = (X1,...,%) € R" (11,...,1,) be an arbitrary
permutation of (1, ..., n) and x(; and x; denote the ith smallest
and the ith largest of x;’s, respectively. The notion of majorization,
which is one of the basic tools in establishing various inequalities
in statistics and probability, is introduced next. For more details on
majorization and its properties the reader is referred to Marshall
etal. (2011).

Definition 1.1. A vector x € R" is said to be majorized by another
vectory € R", notation X <p,y, if Y \_, Xq) > >0, Y@ forj =
1,...,n—1 and 2?21 Xi) = 2?21 Y-

Definition 1.2. A real valued function ¢ defined on set A C R" is
said to be Schur-convex (Schur-concave) on A, if (X) < (>)¢(y)
forany X,y € A such thatx <, y.

The following lemma which has an important role in the proof of
the main result of this paper is another version of result A.2.b on
page 82 of Marshall et al. (2011) and they both have the similar
proof.

Lemma 1.3. Let A be a set with the property
yeA and x<,yimpliesx € A.

A continuous function ¢ defined on A is Schur-concave on A if and
only if ¢ is symmetric and ¢ (X1, — X1, X3, ..., Xy) iS increasing in
x1 < 5 foreach fixed s, xs, . .., Xy.

Next, we define log-concave functions.

Definition 1.4. A real valued function ¢ defined onset A = {x €
R" : ¢(x) > 0} is said to be log-concave, if for any X,y € A and
« €[0,1],

plax+ (1—a)y) = [P [pW]' .

The class of log-concave probability density functions includes
many common parametric families. For univariate, examples
include normal densities, gamma densities with shape parameter
greater than or equal to one, Weibull densities with exponents
greater than or equal to one, beta densities with both parameters
greater than or equal to one and logistic densities. For a more
comprehensive list of univariate examples, see e.g. Bagnoli and
Bergstrom (2005). Multivariate examples include the multivariate
normal densities, Wishart densities and Dirichlet densities. Finally,
we define exchangeable random variables.

Definition 1.5. The random variables Xj, ..
exchangeable, if the joint distribution function of (X;,, ..
not dependent on (7, ..., T,).

For example, in the background risk models (BRM) it is com-
mon for random risks Xy, ..., X, to assume X; = h(Y;,Z) for
i=1,...,nwhereYy,...,Y,arestand-alonerisks and Z is a back-
ground risk. In special cases, X; can be defined as X; = ZY; or X; =
Yi+Zfori=1,...,n.InBRM,ifforeveryz,Y{|Z =2z,...,Y,|Z =
z are independent and identically distributed, then X1, . . ., X, will
be exchangeable random risks. For more information about BRM
see Pratt (1988), Finkelshtain et al. (1999), Tsanakas (2008), Franke
etal.(2011) and Asimit et al. (2013). Furthermore, when analyzing
real data it is of interest to have an arbitrary but given risks distri-
bution, therefore the issue is to construct an exchangeable risks
with given marginal distribution. Clearly the easiest but not the
best case is that of independent and identically distributed random
risks. However, the point here is, to allow a model having a possible
dependence structure among the risks.

In the following, we assume that all considered random variables
are absolutely continuous and non-negative.

Let X1, ..., X, be a set of n risks faced by a policyholder and
d=(dy,...,dy)and d* = (dj, ..., d}) € S,(d). Cheung (2007)
proved that if either all X;’s are independent and X; <j, ... <p X,
or all X;’s are comonotonic and X; <;; ... < X;, then

n n
D A di) i Y (X A dy).
i=1 i=1

For more details on comonotonic random vectors, see e.g. Dhaene
et al. (2002). Hua and Cheung (2008b) proved that for any random
vector (Xi, ..., X,), we have that

y Xi Ndj) <t y Xi| Ad,
i=1 i=1

which means that for any policyholder who has a deductible
coverage for each risk with a fixed total deductible, the global
insurance is the worst case. If the X;'s are independent with X;, i =
1, ..., n, having log-concave density function, then Lu and Meng
(2011) proved that if X; <, ... <j X;, then

., X, are said to be
< Xp,) IS

n n
d>nd = ) X Ady) =g Y (X Adh). (1.1)
i=1

i=1
Hu and Wang (2014) proved that (1.1) holds under the weaker
condition that Xy <p, ... <y X,.

In this paper, we drop the independence assumption of
Xi,...,X,. In Theorem 2.4, we prove that under appropriate
conditions, we have that

n n
dzpd" = ) (XiAd) < ) Xind)).

i=1 i=1
We show that the result holds in particular if the X;'s are
exchangeable and the joint density function f is log-concave; see
Theorem 2.6. The main consequence of this result (Corollary 2.7)
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is that the vector (d, 0, ..., 0) is the best allocation of the total
deductible d in the sense that it maximizes the expected utility of
the policyholder’s wealth.

2. Optimal allocation of deductibles

For two random variables X; and X, let X, = X; A a) +
(X A(c —a),wherec > 0and 0 < a < % In order to
be able to prove the main results of this paper, we first need to
prove the following three lemmas. The first two lemmas might be
of independent interest.

Lemma 2.1. Let X; and X5 be two continuous and non-negative risks
with joint distribution function Fx, x, and density function fx, x,. Then,
for 0 < a < &, we have that

1—P(X]+X2§t), t <a
1-F,(t—a—-PX <at—-—a<X;<t—-Xp),
a<t<c-—a
1—Fx,(t —c+a)—Fx,(t—a)
+F, x,(t —c+a,t—a)
—P({t—c+a<Xi<at—a<X,<t—Xp,
c—a<t<c
0, t>c.

an,c (t) =

Proof. It is easy to see that for x;, x, € RT,

X1+ X2, X1 <0a,Xx <Cc—aq
_Ixi4+(c—a), x1<ax>c—q
Xac = X +a, X1>0a,%X <Cc—a
c, X1 >0a,X > C—a.

Therefore, the survival function of X, . at t € R can be expressed
as

_ 0 oo
an_c(t) = / / 1((xlAa)+(x2A(c_a))>t)f(x1, X)) dx2dx
0 0
a c—a
= / / ](X1+X2>t)f(xla Xp)dx,dx4
0 0
a poo
+ / / 1(X14rcfa>t)f(X1, Xp)dx,dxq
0 Jc—a
© pc—a
+ / / l(xz+a>t)f(X1, Xo)dx,dx4
a 0

o0 o0
+ / / Te>o)f (X1, X2)dxodxy.
a c—a

Now, if 0 < t < g, then

a c—a
Fx, . (t) = / / 141 >0f (X1, X2)dxodx4
o Jo

a o0
+ / / 1, x2)dxydx4
0 c—a

oo c—a
+ / / (X1, x2)dxpdx
a 0

+ / f(X],Xz)ddeX].

=1-PXi+X <1).

Next, ifa <t < ¢ — a, then

a c—a
Fx, (t) = / / 1y x>0 (X1, X2)dX2dx4
o Jo

+// f(x1, x2)dxodxy
0 c—a

X2
t E, E,
c—a <
\E Es
t—a E5
t—c+a a c—a t c xq

Fig. 2.1. Subsets of E1, ..., E5, corresponding to Lemma 2.1.

oo c—a
+ / (X1, x2)dxpdxq
a t—a

o0 o0
+ / F(xq, x2)dxodx4
a

c—a
=1-PXi<at—-a<Xp<t-—Xp)
—sz(t—a).

Finally, ifc —a <t < c, then

Fx,(t) = P(E1) + P(E) 4 P(E3) 4 P(Es)

1—P(Es5)

1—Fx,(t—c+a) —Fx,(—a)

+F, x,({ —c+at—a)
—P(t—cH+a<s<Xi<at—a<X,<t—Xy)

where the subsets of E{,...,Es are shown in Fig. 2.1. This
completes the proof of the stated result. O

Lemma 2.2. Let X; and X, be two continuous and non-negative risks
with joint distribution function Fx, x, and density function fx, x,. Then,
for0<a<a* < %andt < ¢, we have that
an*yc(f) - qu,f(f)
P(t—a* <X <t—aX +X; > t)
={1-P(t—c+a<Xj<t—c+a" X+X >1t), t<c,
0, t>c

Proof. Let k(t, a, a*, c) be defined by
k(t,a,a*,¢c) =P(t—a" <X, <t—a,X, +X; > t)
—P(t—c+a=<Xi<t—c+a" X +X;>1).
Hereafter, we will prove the stated result by considering the cases
t<a,a<t<a",a"<t<c—-a",c—a"<t<c—ac—a<
t <candt > c, sequentially.
(@) For t < a, it is easy to see that an*,c(t) — an,c(f) =
k(t,a,a*,c) =0.
(b) Fora <t < a*, we have that
Fy,. (£) — Fx, . (£)
:sz(f—a)+P(X1 <at—a<X, < t—X1)
—PX+Xi1 <t
= P(A; UA3) +P(A1) — P(A; UAp)
= P(A3)
=PX <t—a,Xi+Xp>1)
= k(t, a, a*, c), (2.1)

where the subsets A{, A, and As are shown in Fig. 2.2. The
equality (2.1) follows since for t < a*,P(t —c+a <X;



90 S.F. Manesh et al. / Insurance: Mathematics and Economics 71 (2016) 87-92

X2
t
N\
\\
EN
Ay N
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Fig. 2.2. Subsets of A1, A, and A3, corresponding to case (b) in Lemma 2.2.

<t—c+a*)=0and
PX;<t—aX,+X;>1t)
=P(t—a" <X <t—a,X+X >1).
(c) Fora* <t <c— a*,
Fxﬂ*’c(t)—l_”xa,c(f)
=F,t—a)+PX <at—a<Xo<t—Xp)
—F,(t—a)—P(X; <da"t—a" <X, <t—Xy)
=P(t—d"<X;<t—a)
+PXi <a,t—a<X;<t—Xjy)
—P(Xi<a' t—a" <X, <t—Xp)
= P(B1 UB3) + P(By) — P(B1 UBy)

= P(B3)

=P(t—a*" <X <t—a,X +X; >1)

= k(t,a, a*,c), (2.2)
where the subsets By, B, and B3 are shown in Fig. 2.3.

The equality (2.2) follows since for t < ¢ — a*,

Pt—cH+a<X;<t—c+a")=0.
(d) Forc — a* <t < ¢ — a, we have that
ﬁxa*vc(f) — Fx, (D)
=F,t—a+PX<at—a<Xp<t—Xy)
—Fx,(t —c+a") — Fq, (t — a*)
+F x,(t —c+a', t—a)
—P(t—c+a" <Xy <a' t—a" <X, <t—X)
=P(UY, G) +P(CUG)
— P(Ujiz1,47,9) G) — P(UL, C)
+P(Cy) — P(GUG)
= P(Gs) — P(Gy)
=P(t—a*" <X <t—a,X;+X >1)
—P(Xi<t—c+d X+ X >t),
= k(t, a, a*, c), (2.3)

where the subsets Cy, ..., Cg are shown in Fig. 2.4. Equality
(2.3) follows since for t < ¢ — q, it follows that

P(X; <t—c+d X+ X >t)
=P(t—cH+a<Xi<t—c+d. Xo+X >t).
(e) Similarly, forc — a < t < ¢, we can show that qu*c(t) —

Fy, . (t) = k(t, a, a*, c).
(f) Finally, for t > c, Fx,, (t) — Fx, (t) = 0.

This completes the proof of the stated results. O

X2
t N
By
t—a
N
By \\ B,
N N
t—a \
AN .
a a* t c—a* X1

Fig. 2.3. Subsets of By, B, and Bs, corresponding to case (c¢) in Lemma 2.2.

X2
c
Co
t
~
c—a’ \\
T
Gy Cy \\\
t—a \K
Cs Cs T~ Cs
t—ar T
¢ ¢ \\\ &
t—c+a a a” t X1

Fig. 2.4. Subsets of Cy, ..., Cg, corresponding to case (d) in Lemma 2.2.

Lemma 2.3. Let X; and X, be two continuous and non-negative risks
with joint distribution function F, x, and density function fx, x,. Then,
for0<a<a* < %andt < ¢, we have that

Xa,c st Xa*,c (2-4)

if and only if

o0
/ fax,(t—c+ay+c—ady
0

- / Feoss 0+ 0, £ — )y, (2.5)
0

Proof. From Lemma 2.2, it follows that (2.4) is equivalent to
k(t,a,a*,c) >0,

which in turn is equivalent to stating that
PXi<t—cH+a,Xo+Xi>0)+P <t—a,Xo+X >10)

is decreasing in a. Let us denote the sum of two probabilities above

by h(t, a, c). Hence, the condition (2.4) is equivalent to

d (h(t, a, c)) *

— = / Sxix, (E— ¢+ a, x3)dx;
da c—a

o0
- / i (X, t — a)dx; < 0.
a

This inequality can be transferred into (2.5), which completes the
proof of the stated result. O

Having proved the three previous lemmas, we are now ready to
prove our main result.

Theorem 2.4. Let Xy, ..., X, be a set of continuous, non-negative
and exchangeable risks with joint density function fx, . x,. Then, for

t<cand0 <a < % under the condition

o0
- / Fesobtos O @ E— | X3 s X)dYs (2.6)
0
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we have that the following implication holds:

d>pd = Y XGAd) < Y XAd)).
i=1 i=1

Proof. We should show that P (Y1, (X; Ad;) > t) is a Schur-
concave function in (d, ..., d,). Due to continuity and exchange-
ability of X1,..., Xy, P (X _,(Xi Ad;) > t) is a continuous and
symmetric function in (dy, ..., d,), so using Lemma 1.3, it suf-
fices to show that the implication holds for the case when d =
(di,c—dy,dsz, ..., dy),d* = (d},c —dj,d3, ..., d;) where 0 <
dq < dj < 3. Using assumption (2.6), it follows from Lemma 2.3
that

[Xdl,c |X3 = X3,...

Sst I:Xd’l‘,c | X3 =x3,..., X% =Xn:| s

s Xn = Xn]

which in turn implies that

P (Xn:(x, Adp) > f)

i=

1
=/ f P((Xl/\dl)—i-(Xz/\(c—dl))
0 0

—|—Z(x,-/\di)>t|X3=x3,...,Xn:xn)

i=3

Xf(X3,..

5/ / P((X]Ad’{)+(X2A(c—dT))
0 0

L Xp)dXx, ... dxs

+ (fod,')>t|X3=X3,-.-,Xn=xn>
i=3

Xf(Xg,..

L Xn)dX, ... dxs

i=3

=P ((X1 A dT) + XA (c— d);)) + Z(X,‘ Adp) > t) .

This completes the proof of the stated result. O

The following lemma will be used to prove the next theorem.

Lemma 2.5. (Marshall et al., 2011, p. 98). If ¢ is symmetric and log
concave, then ¢ is Schur-concave.

Theorem 2.6. Let X1, ..., X, be a set of exchangeable, continuous
and non-negative risks with log-concave density function fx, . x,.
Then, for d, d* € S, (d),

dzpd* = ) X Ad) < ) XA ). (27)
i=1 i=1

Proof. Since fx(x1,...,x,) is log-concave and exchangeable in
(X1, ..., Xy), it follows from Lemma 2.5 that fx(x1,...,X;) is
Schur-concave, from which it follows that for each (xs, ..., x,),
X1 %1%, % (X1, X2 | X3, ..., Xp) is also Schur-concave. That is, for
t<canda < 5, f, x5t —CHa,y+c—alxs,....x;) <
fx X0, % V0, t—a | X3, ..., x,) which implies that (2.6) holds.
Now, the required result follows from Theorem 2.6. O

As discussed in the introduction, if a policyholder, after having
paid the premium, has initial wealth w, then his resulting wealth,
considering the retained risk, is w — Z?:1(Xi A d;). Thus, the

policyholder might be interested in finding a vector (d}, ..., d;)
which satisfies

p (w - Z(X,- Ad) > t)
i=1

n
= max P|w— E Xind) >t teR, (2.8)
desp(d) P

or, equivalently,

P (;(x,» Ad) > t) = min P (;(x,- Ady) > t) t €R,

where Xi,...,X, are exchangeable risks. This optimization
problem is discussed in the next corollary.

Corollary 2.7. Consider the exchangeable, continuous and non-
negative risks Xy, ..., X,.
If f(X1, ..., Xy) is log-concave, then

n n
Xind)<e ) KiAd)<e) Xind) fori=1,....n
i=1 i=1

whered = 130 d.

Proof. Using Theorem 2.6, the survival function of P(Z?zl(x,» A

d) > t) is Schur concave. The stated result follows from this
observation and from the fact that

(aa"'7a)§m(d15"'9dn)§m(d707"'30)' O

From Corollary 2.7, we conclude that in a policy deductible
agreement with the total deductible amount d, the retained risks
(part of the risks that is self insured by the policyholder) for
different allocation of deductibles can be ordered by the sense of
stochastic dominance.
Since X < Y, implies that w — X >4 w — Y, from Corollary 2.7

we have that

n n
w= Y KAD<qw— Y X Ad)<gw— X Ad)

i=1 i=1

fori=1,...,n (2.9)

which means that for different allocations of deductibles, the final
wealth also can be ordered by the sense of stochastic dominance.
Considering the concept of stochastic dominance, the ordering

relation (2.9) implies
E |:u <w =) XA a))} E |:u (w =) XA dg)}
i=1 i=1
<Eflu(w— X Ad)] (2.10)

fori = 1,...,n. It follows from (2.10) that for every policyholder
(whether he is risk neutral, risk averse or risk preferent) the best
allocation which maximizes the expectation of the utility function
isd'=(d,0,...,0)and the worst allocation which minimizes the
expectation of the utility function isd = (d, ..., d). Therefore, a
sample solution of the above mentioned optimization problem in
(2.8)isd’ = (d, 0, ..., 0).Indeed, due to the exchangeability of the
risks, (d, 0, ...,0), (0,d,...,0),...,(0,0,...,d) areequivalent.

IA

Remark 2.8. The class of density functions that satisfy (2.7) is not
limited to the class of log-concave density functions. For example,
let (X1, X») be arandom vector with joint density function given by
fix ) = ala+ 1)(6162) D (01%1 + 62%; — 0,60,) 2
Xxi>60;>0,i=1,2;a>0,
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h —  dy=25,d,=25
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Fig. 2.5. Survival functions of retained risk in several deductible agreement, in case
of bivariate Pareto distribution.

which is known as the bivariate Pareto distribution (cf. Johnson and
Kotz, 1972, p.285). It is easy to check that when 6; = 6,, although
f is not log-concave, it satisfies the relation (2.5). Therefore, if
(d1. dy) Zn(d5. d3), then (X; Ady)+(XpAdz) <ge (i Ad))+(XpAd).
Now, let 6 = 6, = 1 and a = 2. In order to justify the results
of Lemma 2.3, in Fig. 2.5 we plot p((X; A d1) + (X A dy) > ),
for three cases (d; = 2.5,d, = 2.5),(d; = 1.5,d, = 3.5) and
(dy = 0,d; = 5). As expected, in the allocation (d; = 0, d, = 5),
the survival function of the retained risk is smaller than the other
allocations.

Remark 2.9. It is well-known that the product of log-concave
functions is also log-concave. This implies that Theorem 2.6
holds in particular for the case when Xi, ..., X, are indepen-
dent and identically distributed and have log-concave density
functions.
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