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a b s t r a c t

Let X1, . . . , Xn be a set of n continuous and non-negative random variables, with log-concave joint
density function f , faced by a person who seeks for an optimal deductible coverage for these n risks. Let
d = (d1, . . . dn) and d∗

= (d∗

1, . . . d
∗
n) be two vectors of deductibles such that d∗ is majorized by d. It is

shown that
n

i=1(Xi∧d∗

i ) is larger than
n

i=1(Xi∧di) in stochastic dominance, provided f is exchangeable.
As a result, the vector (

n
i=1 di, 0, . . . , 0) is an optimal allocation that maximizes the expected utility of

the policyholder’s wealth. It is proven that the same result remains to hold in some situations if we drop
the assumption that f is log-concave.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Consider an insurance agreement under which a policyholder
is self-insured up to a pre-specified value, known as the deductible
amount. The total lossX faced by the policyholder is a non-negative
random variable, hereafter called a risk. If X exceeds the deductible
amount d, the remaining risk, X −d, will be covered by the insurer,
otherwise, X is covered by the policyholder himself. This type of
insurance coverage is known as policy deductible (cf. Klugman
et al., 2004). Under the deductible coverage, the risk X can be
expressed as X = (X ∧ d) + (X − d)+, where the first part is
self-insured by the policyholder and the second part is indemnified
by the insurer. Now consider a situation where the policyholder
facesn risksX1, . . . , Xn which are insured under a policy deductible
coverage. Suppose the amount d is the total deductible amount
corresponding to all risks and the policyholder has the right to
divide d into n non-negative values d1, . . . , dn such that

n
i=1 di =

d, and for i = 1, . . . , n, each di is the deductible corresponding
to the risk Xi (cf. Cheung, 2007). The indemnified amount by the
insurer is given by

n
i=1(Xi − di)+ and the retained risk which is

not covered by thepolicy deductible coverage is givenby
n

i=1(Xi∧

di). With this set up, if w denotes the initial wealth after paying
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the required premium which is assumed not to depend on the
choice of (d1, . . . , dn), the policyholder’s wealth is changed into
w −

n
i=1(Xi ∧ di). It is of importance to the policyholder to obtain

the optimal vector d′ in the set

sn(d) =


d = (d1, . . . , dn) ∈ R+n

|

n
i=1

di = d


for which the amount w −

n
i=1(Xi ∧ di) is maximized or

equivalently,
n

i=1(Xi ∧ di) is minimized according to a given
stochastic order criterion. Several optimization criteria (such as
maximizing the expected utility, minimizing the variance, mini-
mizing the probability of ruin, etc.) have been proposed, see for
example Van Heerwaarden et al. (1989) or Denuit and Verman-
dele (1998). In this paper, following Cheung (2007), Hua and Che-
ung (2008a,b), Lu and Meng (2011), Xu and Hu (2012), You and Li
(2014) and Hu and Wang (2014), we use the maximization of the
expected utility criterion to find an optimal deductibles allocation.
That is, we are looking for an allocation that maximizes

E


u


w −

n
i=1

(Xi ∧ di)


or, equivalently, minimizes

E


ũ


n

i=1

(Xi ∧ di)


,
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where ũ(x) = −u(w − x) and u is a utility function which is as-
sumed to be increasing (concave).

Let us recall the notion of majorization and various stochastic
orderings which will be used to prove the main results in this
paper.

Throughout this paper, we use increasing for non-decreasing
and decreasing for non-increasing and assume that all the
expectations of the random variables considered exist.

Let X and Y be univariate random variables with distribution
functions F and G, survival functions F̄ and Ḡ, density functions f
and g; hazard rates rF (= f /F̄ ) and rG (= g/Ḡ), respectively. Let
lX , lY and uX , uY be the (finite or infinite) left and right endpoints
of the support of X and Y , respectively. The random variable X is
said to be smaller than random variable Y in the

• stochastic dominance order (denoted by X ≤st Y ), if E [φ(X)] ≤

E [φ(Y )] for all increasing function φ,
• increasing concave (convex) order (denoted by X ≤icv (icx) Y ),

if E [φ(X)] ≤ E [φ(Y )] for all increasing concave (convex)
function φ,

• hazard rate order (denoted by X ≤hr Y ), if Ḡ(x)/F̄(x) is
increasing in x ∈ (−∞,max(uX , uY )),

• likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f (x) is
increasing in x ∈ (−∞,max(uX , uY )).

It is well known that X ≤st Y is equivalent to F̄(x) ≤ Ḡ(x) for all x. It
is easy to see that X ≤hr Y , if and only if, for every x, rG(x) ≤ rF (x).
Note that we have the following chain of implications among the
above stochastic orderings:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤icv,icx Y .

For more details on stochastic orders see e.g. Muller and Stoyan
(2002), Denuit et al. (2005) or Shaked and Shanthikumar (2007).

Let x = (x1, . . . , xn) ∈ Rn, (τ1, . . . , τn) be an arbitrary
permutation of (1, . . . , n) and x(i) and x[i] denote the ith smallest
and the ith largest of xi’s, respectively. The notion of majorization,
which is one of the basic tools in establishing various inequalities
in statistics and probability, is introduced next. Formore details on
majorization and its properties the reader is referred to Marshall
et al. (2011).

Definition 1.1. A vector x ∈ Rn is said to be majorized by another
vector y ∈ Rn, notation x≤m y, if

j
i=1 x(i) ≥

j
i=1 y(i) for j =

1, . . . , n − 1 and
n

i=1 x(i) =
n

i=1 y(i).

Definition 1.2. A real valued function φ defined on set A ⊆ Rn is
said to be Schur-convex (Schur-concave) on A, if φ(x) ≤ (≥)φ(y)
for any x, y ∈ A such that x≤m y.

The following lemma which has an important role in the proof of
the main result of this paper is another version of result A.2.b on
page 82 of Marshall et al. (2011) and they both have the similar
proof.

Lemma 1.3. Let A be a set with the property

y ∈ A and x≤m y implies x ∈ A.

A continuous function φ defined on A is Schur-concave on A if and
only if φ is symmetric and φ(x1, s − x1, x3, . . . , xn) is increasing in
x1 ≤

s
2 for each fixed s, x3, . . . , xn.

Next, we define log-concave functions.

Definition 1.4. A real valued function φ defined on set A = {x ∈

Rn
: φ(x) ≥ 0} is said to be log-concave, if for any x, y ∈ A and

α ∈ [0, 1],

φ(αx + (1 − α)y) ≥ [φ(x)]α[φ(y)]1−α.
The class of log-concave probability density functions includes
many common parametric families. For univariate, examples
include normal densities, gamma densities with shape parameter
greater than or equal to one, Weibull densities with exponents
greater than or equal to one, beta densities with both parameters
greater than or equal to one and logistic densities. For a more
comprehensive list of univariate examples, see e.g. Bagnoli and
Bergstrom (2005). Multivariate examples include the multivariate
normal densities,Wishart densities and Dirichlet densities. Finally,
we define exchangeable random variables.

Definition 1.5. The random variables X1, . . . , Xn are said to be
exchangeable, if the joint distribution function of (Xτ1 , . . . , Xτn) is
not dependent on (τ1, . . . , τn).

For example, in the background risk models (BRM) it is com-
mon for random risks X1, . . . , Xn to assume Xi = h(Yi, Z) for
i = 1, . . . , nwhere Y1, . . . , Yn are stand-alone risks and Z is a back-
ground risk. In special cases, Xi can be defined as Xi = ZYi or Xi =

Yi+Z for i = 1, . . . , n. In BRM, if for every z, Y1|Z = z, . . . , Yn|Z =

z are independent and identically distributed, then X1, . . . , Xn will
be exchangeable random risks. For more information about BRM
see Pratt (1988), Finkelshtain et al. (1999), Tsanakas (2008), Franke
et al. (2011) and Asimit et al. (2013). Furthermore, when analyzing
real data it is of interest to have an arbitrary but given risks distri-
bution, therefore the issue is to construct an exchangeable risks
with given marginal distribution. Clearly the easiest but not the
best case is that of independent and identically distributed random
risks. However, the point here is, to allow amodel having a possible
dependence structure among the risks.
In the following, we assume that all considered random variables
are absolutely continuous and non-negative.

Let X1, . . . , Xn be a set of n risks faced by a policyholder and
d = (d1, . . . , dn) and d∗

= (d∗

1, . . . , d
∗
n) ∈ Sn(d). Cheung (2007)

proved that if either all Xi’s are independent and X1 ≤hr . . . ≤hr Xn,
or all Xi’s are comonotonic and X1 ≤st . . . ≤st Xn, then
n

i=1

(Xi ∧ d[i]) ≤icx

n
i=1

(Xi ∧ dτi).

For more details on comonotonic random vectors, see e.g. Dhaene
et al. (2002). Hua and Cheung (2008b) proved that for any random
vector (X1, . . . , Xn), we have that
n

i=1

(Xi ∧ di) ≤st


n

i=1

Xi


∧ d,

which means that for any policyholder who has a deductible
coverage for each risk with a fixed total deductible, the global
insurance is the worst case. If the Xi’s are independent with Xi, i =

1, . . . , n, having log-concave density function, then Lu and Meng
(2011) proved that if X1 ≤lr . . . ≤lr Xn, then

d≥m d∗
H⇒

n
i=1

(Xi ∧ d[i]) ≤st

n
i=1

(Xi ∧ d∗

[i]). (1.1)

Hu and Wang (2014) proved that (1.1) holds under the weaker
condition that X1 ≤hr . . . ≤hr Xn.

In this paper, we drop the independence assumption of
X1, . . . , Xn. In Theorem 2.4, we prove that under appropriate
conditions, we have that

d≥m d∗
H⇒

n
i=1

(Xi ∧ di) ≤st

n
i=1

(Xi ∧ d∗

i ).

We show that the result holds in particular if the Xi’s are
exchangeable and the joint density function f is log-concave; see
Theorem 2.6. The main consequence of this result (Corollary 2.7)
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is that the vector (d, 0, . . . , 0) is the best allocation of the total
deductible d in the sense that it maximizes the expected utility of
the policyholder’s wealth.

2. Optimal allocation of deductibles

For two random variables X1 and X2, let Xa,c = (X1 ∧ a) +

(X2 ∧ (c − a)), where c > 0 and 0 ≤ a ≤
c
2 . In order to

be able to prove the main results of this paper, we first need to
prove the following three lemmas. The first two lemmas might be
of independent interest.

Lemma 2.1. Let X1 and X2 be two continuous and non-negative risks
with joint distribution function FX1,X2 and density function fX1,X2 . Then,
for 0 ≤ a ≤

c
2 , we have that

F̄Xa,c (t) =



1 − P (X1 + X2 ≤ t) , t < a;
1 − FX2(t − a) − P (X1 ≤ a, t − a ≤ X2 ≤ t − X1) ,

a ≤ t < c − a;
1 − FX1(t − c + a) − FX2(t − a)

+FX1,X2(t − c + a, t − a)
−P (t − c + a ≤ X1 ≤ a, t − a ≤ X2 ≤ t − X1) ,

c − a ≤ t < c;
0, t ≥ c.

Proof. It is easy to see that for x1, x2 ∈ R+,

xa,c =


x1 + x2, x1 ≤ a, x2 ≤ c − a;
x1 + (c − a), x1 ≤ a, x2 > c − a;
x2 + a, x1 > a, x2 ≤ c − a;
c, x1 > a, x2 > c − a.

Therefore, the survival function of Xa,c at t ∈ R can be expressed
as

F̄xa,c (t) =


∞

0


∞

0
1((x1∧a)+(x2∧(c−a))>t)f (x1, x2)dx2dx1

=

 a

0

 c−a

0
1(x1+x2>t)f (x1, x2)dx2dx1

+

 a

0


∞

c−a
1(x1+c−a>t)f (x1, x2)dx2dx1

+


∞

a

 c−a

0
1(x2+a>t)f (x1, x2)dx2dx1

+


∞

a


∞

c−a
1(c>t)f (x1, x2)dx2dx1.

Now, if 0 ≤ t < a, then

F̄Xa,c (t) =

 a

0

 c−a

0
1(x1+x2>t)f (x1, x2)dx2dx1

+

 a

0


∞

c−a
f (x1, x2)dx2dx1

+


∞

a

 c−a

0
f (x1, x2)dx2dx1

+


∞

a


∞

c−a
f (x1, x2)dx2dx1.

= 1 − P (X1 + X2 ≤ t) .

Next, if a ≤ t < c − a, then

F̄Xa,c (t) =

 a

0

 c−a

0
1(x1+x2>t)f (x1, x2)dx2dx1

+

 a

0


∞

c−a
f (x1, x2)dx2dx1
Fig. 2.1. Subsets of E1, . . . , E5, corresponding to Lemma 2.1.

+


∞

a

 c−a

t−a
f (x1, x2)dx2dx1

+


∞

a


∞

c−a
f (x1, x2)dx2dx1

= 1 − P (X1 ≤ a, t − a ≤ X2 ≤ t − X1)

− FX2(t − a).

Finally, if c − a ≤ t < c , then

F̄Xa,c (t) = P(E1) + P(E2) + P(E3) + P(E4)
= 1 − P(E5)
= 1 − FX1(t − c + a) − FX2(t − a)

+ FX1,X2(t − c + a, t − a)
− P (t − c + a ≤ X1 ≤ a, t − a ≤ X2 ≤ t − X1)

where the subsets of E1, . . . , E5 are shown in Fig. 2.1. This
completes the proof of the stated result. �

Lemma 2.2. Let X1 and X2 be two continuous and non-negative risks
with joint distribution function FX1,X2 and density function fX1,X2 . Then,
for 0 ≤ a ≤ a∗

≤
c
2 and t < c, we have that

F̄Xa∗,c (t) − F̄Xa,c (t)

=

P

t − a∗

≤ X2 ≤ t − a, X2 + X1 > t


−P

t − c + a ≤ X1 ≤ t − c + a∗, X2 + X1 > t


, t < c,

0, t ≥ c.

Proof. Let k(t, a, a∗, c) be defined by

k(t, a, a∗, c) = P

t − a∗

≤ X2 ≤ t − a, X2 + X1 > t


−P

t − c + a ≤ X1 ≤ t − c + a∗, X2 + X1 > t


.

Hereafter, we will prove the stated result by considering the cases
t < a, a ≤ t < a∗, a∗

≤ t < c − a∗, c − a∗
≤ t < c − a, c − a ≤

t < c and t ≥ c , sequentially.

(a) For t < a, it is easy to see that F̄Xa∗,c (t) − F̄Xa,c (t) =

k(t, a, a∗, c) = 0.
(b) For a ≤ t < a∗, we have that

F̄Xa∗,c (t) − F̄Xa,c (t)

= FX2(t − a) + P (X1 ≤ a, t − a ≤ X2 ≤ t − X1)

− P (X2 + X1 ≤ t)
= P(A2 ∪ A3) + P(A1) − P(A1 ∪ A2)

= P(A3)

= P (X2 ≤ t − a, X1 + X2 > t)

= k(t, a, a∗, c), (2.1)

where the subsets A1, A2 and A3 are shown in Fig. 2.2. The
equality (2.1) follows since for t < a∗, P (t − c + a ≤ X1



90 S.F. Manesh et al. / Insurance: Mathematics and Economics 71 (2016) 87–92
Fig. 2.2. Subsets of A1, A2 and A3, corresponding to case (b) in Lemma 2.2.

≤ t − c + a∗) = 0 and

P (X2 ≤ t − a, X2 + X1 > t)
= P


t − a∗

≤ X2 ≤ t − a, X2 + X1 > t

.

(c) For a∗
≤ t < c − a∗,

F̄Xa∗,c (t) − F̄Xa,c (t)

= FX2(t − a) + P (X1 ≤ a, t − a ≤ X2 ≤ t − X1)

− FX2(t − a∗) − P

X1 ≤ a∗, t − a∗

≤ X2 ≤ t − X1


= P

t − a∗

≤ X2 ≤ t − a


+ P (X1 ≤ a, t − a ≤ X2 ≤ t − X1)

− P

X1 ≤ a∗, t − a∗

≤ X2 ≤ t − X1


= P(B1 ∪ B3) + P(B2) − P(B1 ∪ B2)

= P(B3)

= P

t − a∗

≤ X2 ≤ t − a, X1 + X2 > t


= k(t, a, a∗, c), (2.2)

where the subsets B1, B2 and B3 are shown in Fig. 2.3.
The equality (2.2) follows since for t ≤ c − a∗,

P (t − c + a ≤ X1 ≤ t − c + a∗) = 0.
(d) For c − a∗

≤ t < c − a, we have that

F̄Xa∗,c (t) − F̄Xa,c (t)

= FX2(t − a) + P (X1 ≤ a, t − a ≤ X2 ≤ t − X1)

− FX1(t − c + a∗) − FX2(t − a∗)

+ FX1,X2(t − c + a∗, t − a∗)

− P

t − c + a∗

≤ X1 ≤ a∗, t − a∗
≤ X2 ≤ t − X1


= P(∪6

i=1 Ci) + P(C7 ∪ C8)

− P(∪{i=1,4,7,9} Ci) − P(∪3
i=1 Ci)

+ P(C1) − P(C5 ∪ C8)

= P(C6) − P(C9)

= P

t − a∗

≤ X2 ≤ t − a, X2 + X1 > t


− P

X1 ≤ t − c + a∗, X2 + X1 > t


,

= k(t, a, a∗, c), (2.3)

where the subsets C1, . . . , C9 are shown in Fig. 2.4. Equality
(2.3) follows since for t < c − a, it follows that

P

X1 ≤ t − c + a∗, X2 + X1 > t


= P


t − c + a ≤ X1 ≤ t − c + a∗, X2 + X1 > t


.

(e) Similarly, for c − a ≤ t < c , we can show that F̄Xa∗,c (t) −

F̄Xa,c (t) = k(t, a, a∗, c).
(f) Finally, for t > c, F̄Xa∗,c (t) − F̄Xa,c (t) = 0.

This completes the proof of the stated results. �
Fig. 2.3. Subsets of B1, B2 and B3, corresponding to case (c) in Lemma 2.2.

Fig. 2.4. Subsets of C1, . . . , C9, corresponding to case (d) in Lemma 2.2.

Lemma 2.3. Let X1 and X2 be two continuous and non-negative risks
with joint distribution function FX1,X2 and density function fX1,X2 . Then,
for 0 ≤ a ≤ a∗

≤
c
2 and t < c, we have that

Xa,c ≤st Xa∗,c (2.4)

if and only if
∞

0
fX1,X2(t − c + a, y + c − a)dy

≤


∞

0
fX1,X2(y + a, t − a)dy. (2.5)

Proof. From Lemma 2.2, it follows that (2.4) is equivalent to

k(t, a, a∗, c) ≥ 0,

which in turn is equivalent to stating that

P (X1 ≤ t − c + a, X2 + X1 > t) + P (X2 ≤ t − a, X2 + X1 > t)

is decreasing in a. Let us denote the sum of two probabilities above
by h(t, a, c). Hence, the condition (2.4) is equivalent to

∂ (h(t, a, c))
∂a

=


∞

c−a
fX1,X2(t − c + a, x2)dx2

−


∞

a
fX1,X2(x1, t − a)dx1 ≤ 0.

This inequality can be transferred into (2.5), which completes the
proof of the stated result. �

Having proved the three previous lemmas, we are now ready to
prove our main result.

Theorem 2.4. Let X1, . . . , Xn be a set of continuous, non-negative
and exchangeable risks with joint density function fX1,...,Xn . Then, for
t < c and 0 ≤ a ≤

c
2 , under the condition

∞

0
fX1,X2|X3,...,Xn(t − c + a, y + c − a | x3, . . . , xn)dy

≤


∞

0
fX1,X2|X3,...,Xn(y + a, t − a | x3, . . . , xn)dy, (2.6)



S.F. Manesh et al. / Insurance: Mathematics and Economics 71 (2016) 87–92 91
we have that the following implication holds:

d≥m d∗
H⇒

n
i=1

(Xi ∧ di) ≤st

n
i=1

(Xi ∧ d∗

i ).

Proof. We should show that P
n

i=1(Xi ∧ di) > t

is a Schur-

concave function in (d1, . . . , dn). Due to continuity and exchange-
ability of X1, . . . , Xn, P

n
i=1(Xi ∧ di) > t


is a continuous and

symmetric function in (d1, . . . , dn), so using Lemma 1.3, it suf-
fices to show that the implication holds for the case when d =

(d1, c − d1, d3, . . . , dn), d∗
= (d∗

1, c − d∗

1, d3, . . . , dn) where 0 ≤

d1 ≤ d∗

1 ≤
c
2 . Using assumption (2.6), it follows from Lemma 2.3

that
Xd1,c | X3 = x3, . . . , Xn = xn


≤st


Xd∗

1,c | X3 = x3, . . . , Xn = xn

,

which in turn implies that

P


n

i=1

(Xi ∧ di) > t



=


∞

0
. . .


∞

0
P


(X1 ∧ d1) + (X2 ∧ (c − d1))

+

n
i=3

(xi ∧ di) > t | X3 = x3, . . . , Xn = xn


× f (x3, . . . , xn)dxn . . . dx3

≤


∞

0
. . .


∞

0
P


(X1 ∧ d∗

1) + (X2 ∧ (c − d∗

1))

+

n
i=3

(xi ∧ di) > t | X3 = x3, . . . , Xn = xn


× f (x3, . . . , xn)dxn . . . dx3

= P


(X1 ∧ d∗

1) + (X2 ∧ (c − d∗

1)) +

n
i=3

(Xi ∧ di) > t


.

This completes the proof of the stated result. �

The following lemma will be used to prove the next theorem.

Lemma 2.5. (Marshall et al., 2011, p. 98). If φ is symmetric and log
concave, then φ is Schur-concave.

Theorem 2.6. Let X1, . . . , Xn be a set of exchangeable, continuous
and non-negative risks with log-concave density function fX1,...,Xn .
Then, for d, d∗

∈ Sn(d),

d≥m d∗
H⇒

n
i=1

(Xi ∧ di) ≤st

n
i=1

(Xi ∧ d∗

i ). (2.7)

Proof. Since fX(x1, . . . , xn) is log-concave and exchangeable in
(x1, . . . , xn), it follows from Lemma 2.5 that fX(x1, . . . , xn) is
Schur-concave, from which it follows that for each (x3, . . . , xn),
fX1,X2|X3,...,Xn(x1, x2 | x3, . . . , xn) is also Schur-concave. That is, for
t < c and a ≤

c
2 , fX1,X2|X3,...,Xn(t − c + a, y + c − a | x3, . . . , xn) ≤

fX1,X2|X3,...,Xn(y+a, t−a | x3, . . . , xn)which implies that (2.6) holds.
Now, the required result follows from Theorem 2.6. �

As discussed in the introduction, if a policyholder, after having
paid the premium, has initial wealth w, then his resulting wealth,
considering the retained risk, is w −

n
i=1(Xi ∧ di). Thus, the
policyholder might be interested in finding a vector (d′

1, . . . , d
′
n)

which satisfies

P


w −

n
i=1

(Xi ∧ d′

i) > t



= max
d∈sn(d)

P


w −

n
i=1

(Xi ∧ di) > t


t ∈ R, (2.8)

or, equivalently,

P


n

i=1

(Xi ∧ d′

i) > t


= min

d∈sn(d)
P


n

i=1

(Xi ∧ di) > t


t ∈ R,

where X1, . . . , Xn are exchangeable risks. This optimization
problem is discussed in the next corollary.

Corollary 2.7. Consider the exchangeable, continuous and non-
negative risks X1, . . . , Xn.

If f (x1, . . . , xn) is log-concave, then

(Xi ∧ d) ≤st

n
i=1

(Xi ∧ di) ≤st

n
i=1

(Xi ∧ d̄) for i = 1, . . . , n

where d̄ =
1
n

n
i=1 di.

Proof. Using Theorem 2.6, the survival function of P
n

i=1(Xi ∧

di) > t

is Schur concave. The stated result follows from this

observation and from the fact that

(d̄, . . . , d̄) ≤m(d1, . . . , dn) ≤m(d, 0, . . . , 0). �

From Corollary 2.7, we conclude that in a policy deductible
agreement with the total deductible amount d, the retained risks
(part of the risks that is self insured by the policyholder) for
different allocation of deductibles can be ordered by the sense of
stochastic dominance.

Since X ≤st Y , implies that w − X ≥st w − Y , from Corollary 2.7
we have that

w −

n
i=1

(Xi ∧ d̄) ≤st w −

n
i=1

(Xi ∧ di) ≤st w − (Xi ∧ d)

for i = 1, . . . , n (2.9)

which means that for different allocations of deductibles, the final
wealth also can be ordered by the sense of stochastic dominance.
Considering the concept of stochastic dominance, the ordering
relation (2.9) implies

E


u


w −

n
i=1

(Xi ∧ d̄)


≤ E


u


w −

n
i=1

(Xi ∧ di)


≤ E [u (w − (Xi ∧ d))] (2.10)

for i = 1, . . . , n. It follows from (2.10) that for every policyholder
(whether he is risk neutral, risk averse or risk preferent) the best
allocation which maximizes the expectation of the utility function
is d′

= (d, 0, . . . , 0) and the worst allocation whichminimizes the
expectation of the utility function is d = (d̄, . . . , d̄). Therefore, a
sample solution of the above mentioned optimization problem in
(2.8) isd′

= (d, 0, . . . , 0). Indeed, due to the exchangeability of the
risks, (d, 0, . . . , 0), (0, d, . . . , 0), . . . , (0, 0, . . . , d) are equivalent.

Remark 2.8. The class of density functions that satisfy (2.7) is not
limited to the class of log-concave density functions. For example,
let (X1, X2) be a random vector with joint density function given by

fX1,X2(x1,x2) = a(a + 1)(θ1θ2)(a+1)(θ1x1 + θ2x2 − θ1θ2)
−(a+2)

xi ≥ θi > 0, i = 1, 2; a > 0,
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Fig. 2.5. Survival functions of retained risk in several deductible agreement, in case
of bivariate Pareto distribution.

which is knownas the bivariate Pareto distribution (cf. Johnson and
Kotz, 1972, p.285). It is easy to check that when θ1 = θ2, although
f is not log-concave, it satisfies the relation (2.5). Therefore, if
(d1, d2) ≥m(d∗

1, d
∗

2), then (X1∧d1)+(X2∧d2) ≤st(X1∧d∗

1)+(X2∧d∗

2).
Now, let θ1 = θ2 = 1 and a = 2. In order to justify the results
of Lemma 2.3, in Fig. 2.5 we plot p((X1 ∧ d1) + (X2 ∧ d2) > t),
for three cases (d1 = 2.5, d2 = 2.5), (d1 = 1.5, d2 = 3.5) and
(d1 = 0, d2 = 5). As expected, in the allocation (d1 = 0, d2 = 5),
the survival function of the retained risk is smaller than the other
allocations.

Remark 2.9. It is well-known that the product of log-concave
functions is also log-concave. This implies that Theorem 2.6
holds in particular for the case when X1, . . . , Xn are indepen-
dent and identically distributed and have log-concave density
functions.
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