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Abstract

In this paper, we extend the concept of mutual exclusivity proposed by Dhaene and Denuit

(1999) to its tail counterpart and baptise this new dependency structure as tail mutual

exclusivity. Probability levels are first specified for each component of the random vector.

Under this dependency structure, at most one exceedance over the corresponding VaRs is

possible, the other components being zero in such a case. No condition is imposed when

all components stay below the VaRs. Several properties of this new negative dependence

concept are derived. We show that this dependence structure gives rise to the smallest value

of Tail-VaR of a sum of risks within a given Fréchet space, provided that the probability

level of the Tail-VaR is close enough to one.

Keywords: Mutual exclusivity, stop-loss transform, tail convex order, risk measures.



1 Introduction and motivation

Numerous concepts of positive dependency have appeared in the literature to express the

notion that “large” (or “small”) values of the random variables tend to occur together.

Contrarily to positive dependence, negative dependence has attracted relatively less interest

so far, especially in the multivariate case. The bivariate countermonotonicity has been

thoroughly studied; see, e.g., Cheung et al. (2014). Negative dependence properties express

the notion that “large” values of one variable tend to occur together with “small” values of

the others. In general, a negative dependence results in more predictable aggregate losses for

the insurance company than mutual independence. The independence assumption is thus

conservative in such a case. Moreover, assuming independence is mathematically convenient,

and also obviates the need for elaborate models to be devised and statistics to be kept on

mutual dependence of claims. If the individual risks are known to be positively associated

(see, e.g., Denuit et al. (2005, Section 7.2.3) for a precise definition) then they dominate

their independent version in the supermodular order and their sum is larger than the sum

of independent random variables with the same univariate marginals in the convex sense.

Therefore, independence provides a lower bound on the Tail-VaR in this case. The same

occurs if the risks are positively cumulative dependent, as defined in Denuit et al. (2001).

By generalizing the results in Hu and Wu (1999) in the case of two-point distributions,

Dhaene and Denuit (1999) introduced and studied systematically an extreme case of negative

dependence, called mutual exclusivity. Considering non-negative random variables with

probability masses at the origin, mutual exclusivity corresponds to the case where at most

one of them can be different from zero. This can be considered as a sort of dual notion of

comonotonicity. Indeed, the knowledge that one risk assumes a positive value directly implies

that all the other ones vanish. Dhaene and Denuit (1999) proved that mutual exclusivity

is the safest dependence structure between risks with given marginals, in the sense that the

corresponding sum is minimal in the stop-loss order. They showed that the dependence

structure of the safest portfolio is described by the so-called Fréchet-Höffding lower bound,

although some mathematical conditions are involved. The search of the smallest convex order

within a given Fréchet space has led to the study of other possible forms of extreme negative

dependence structures. Since a constant has no variability, the notion of complete/joint

mixability is relevant in this regard. The idea of complete/joint mixability is to study how

the variabilities of several random variables can offset each other so that the sum of these

random variables equals a constant. We refer to Puccetti et al. (2012), Wang and Wang

(2015), Lee and Ahn (2014), Embrechts et al. (2015) for some recent development in this

direction.
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The present paper builds on the structure of mutual exclusivity. Our motivation comes

from the fact that the total probability mass at the origin must indeed be high enough to

ensure that mutual exclusivity can occur with given marginals. This condition considerably

reduces the potential applications of mutual exclusivity. This is precisely why we relax it in

the present paper, concentrating on the tail of the joint distribution. Specifically, we fix high

enough probability levels and we consider the corresponding quantiles, or VaRs. Tail mutual

exclusivity then restricts the behavior of the exceedances over these VaRs. More precisely,

only one excess is allowed so that either all components of a tail mutually exclusive random

vector are below these VaRs or only one of the component exceeds its VaR while all others

vanish. This particular dependence structure can be seen as safe in the sense that it achieves

the lower bound for Tail-VaRs derived in Cheung and Lo (2013b).

The remainder of this paper is organized as follows. Section 2 recalls some results about

VaRs, TVaRs and mutual exclusivity. In Section 3, we introduce the new negative depen-

dence structure proposed in this paper, called tail mutual exclusivity. Existence conditions

are also obtained there. Section 4 derives the expression for the stop-loss transforms in case

of tail mutual exclusivity. It is shown that this negative dependence structure corresponds

to minimal sums in the tail convex order. In Section 5, we establish that lower bounds

on TVaRs are attained under tail mutual exclusivity, provided the probability level is high

enough.

2 Preliminaries

Throughout this paper, we consider non-negative random variables, also called risks,X1, . . . , Xn

with finite means and respective distribution functions F1, . . . , Fn, i.e. Fi(t) = Pr(Xi ≤ t).

Given a distribution function F , we denote as F−1+ its right-continuous inverse, which is

defined as

F−1+(α) := sup{t ∈ R|F (t) ≤ α}, α ∈ [0, 1],

and as F−1 its left-continuous inverse, or quantile function, defined as

F−1(α) := inf{t ∈ R|F (t) ≥ α}, α ∈ [0, 1].

In these definitions, we adopt the convention that inf ∅ = +∞ and sup ∅ = −∞.

If the non-negative random variable X has distribution function F , its Value-at-Risk

(VaR) at probability level α is defined by VaRα(X) = F−1(α) and its Tail-VaR (TVaR) at
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probability level α is defined by

TVaRα(X) :=
1

1− α

∫ 1

α

F−1(t) dt, α ∈ (0, 1).

Sometimes, we may also write TVaRα(F ) to stress that TVaR depends only on the distri-

bution function F .

Very often, actuaries are interested in evaluating the TVaR of the aggregate risk S =

X1 + · · · + Xn. Obviously, calculating TVaRα(S) requires not only information about the

marginal distributions of the risks but also their joint distribution. Therefore, (tight) upper

and lower bounds for TVaRα(S) appear to be very useful so that we can have a better

idea about the possible magnitude of this quantity. Moreover, it is also instructive to know

what kind of dependence structures among the risks with given marginals would attain the

upper and lower bounds, which correspond to the most dangerous and the safest scenarios

respectively.

As for the problem of upper bound, the solution is well known in the literature:

TVaRα(S) ≤ TVaRα(X1) + · · ·+ TVaRα(Xn) for all α ∈ (0, 1).

For a proof and more discussion on this important result, see, for instance, Denuit et al.

(2005). Moreover, the upper bound on the right hand side is attained for all α ∈ (0, 1) if,

and only if, the variables X1, . . . , Xn are comonotonic, and the upper bound is attained for

α close enough to 1 if, and only if, the random variables X1, . . . , Xn are upper comonotonic

in the sense of Cheung and Lo (2013a).

As for the lower bound problem, Cheung and Lo (2013b, Theorem 4.1) proved that if

X1, . . . , Xn are all positive with F−1+
i (0) = 0, then for any ε ∈ (0, 1),

TVaRε(X1 + · · ·+Xn) ≥ max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Xi). (2.1)

Furthermore, the solution set of the maximum on the right hand side is given by

{

(ε1, . . . , εn) |
n
∑

i=1

εi = 1− ε,

n
⋂

i=1

[

F−1
i (1− εi), F

−1+
i (1− εi)

]

6= ∅

}

. (2.2)

Throughout this paper, implicit in the constraint “
∑

εi = 1 − ε” is that each εi is non-

negative. In general, (2.2) is difficult to apply; nevertheless, there exist efficient algorithms

for solving the linearly constrained separable concave maximization problem on right hand

side of (2.1). For instance, see Hochbaum and Shanthikumar (1990), Stefanov (2005) and the
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references therein. For alternative results on TVaR lower bounds and their computations,

we refer to Puccetti (2013), Bernard et al. (2014), and Jakobsons et al. (2015).

If the marginals Fi allow mutual exclusivity, that is, if the condition
n
∑

i=1

Fi(0) ≥ n− 1 (2.3)

is fulfilled, then equality holds in (2.1) if and only if the risks are mutually exclusive, i.e.

X1, . . . , Xn are such that

Pr (Xi > 0, Xj > 0) = 0 for all i 6=j. (2.4)

Roughly speaking, condition (2.3) requires that each marginal Fi has a sufficient large point

mass at the origin, which is rather stringent. If the marginals do not satisfy condition (2.3),

the lower bound in (2.1) is not tight in the sense that for some ε ∈ (0, 1), the lower bound

is never attainable by any random vector with marginals F1, . . . , Fn. On the other hand,

TVaR as a measurement of risk is mostly relevant when the probability level is close to one.

This leads us to consider the possibility of having a tight lower bound in (2.1) only for ε

close enough to one, by some suitable relaxation of the stringent condition (2.3). The main

results of this paper are to show that as long as

(i) each Fi(0) is non-zero, and

(ii) F−1
i (1) = +∞ for at least one i,

the lower bound in (2.1) remains tight for all ε close enough to one, and is attained by a

specific dependence structure that can be interpreted as “mutual exclusivity in the tail”.

Furthermore, we also prove that assuming condition (ii) alone, that is, without imposing

any point mass requirement at the origin on the marginals, the lower bound in (2.1) is

asymptotically tight.

In the remainder of this paper, F1, . . . , Fn are fixed marginals with F−1+
i (0) = 0 for all i.

For any univariate cdf’s G1, . . . , Gn, R(G1, . . . , Gn) denotes the Fréchet space of all random

vectors with marginals G1, . . . , Gn.

3 Tail mutual exclusivity

The following definition, which is the main subject of this paper, is a generalization of the

mutual exclusivity concept (2.4) proposed by Dhaene and Denuit (1999).
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Definition 3.1. A random vector X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is said to be mu-

tually exclusive in the tail, abbreviated as MET, if there exists some probability vector

p = (p1, . . . , pn) ∈ (0, 1)n such that

Pr(Xi > F−1
i (pi), Xj > 0) = 0 for any i 6= j.

Such a random vector is also called p-mutually exclusive, abbreviated as p-ME.

In words, a random vector being mutual exclusivity in the tail means if whenever one of

the components of a random vector exceeds a certain quantile, all other components must

be zero. Hence, only one component can be large, i.e., exceeds the VaR at the specified

probability level, and no simultaneous extremes can occur. See Figure 1 for an illustration.

It is clear that the random vector X ∈ R(F1, . . . , Fn) is p-ME if and only if

Pr(X ∈ B ∪ A1 ∪ · · · ∪ An) = 1,

where A1, . . . , An and B are subsets of Rn defined by

Ai := {x ∈ R
n|xi > F−1

i (pi), xj = 0 for j 6= i}, i = 1, . . . , n,

B := {x ∈ R
n|0 ≤ xi ≤ F−1

i (pi) for all i}. (3.1)

From Definition 3.1, it is clear that if X is p-ME and if p′ ∈ (0, 1)n satisfies pi
′ ≥ pi

for all i, then X is p′-ME too. Therefore, one can always increase the probability levels

pi without destroying the MET structure. Moreover, we can assume that the probability

levels defining the MET structure indeed belong to the range of the marginal distribution

functions, as precisely stated next.

Property 3.2. A random vector X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is p-ME if and only if

it is p′-ME, where pi
′ = Fi(F

−1
i (pi)).

Proof. This simply follows from the fact that F−1
i (pi) = F−1

i (Fi(F
−1
i (pi)).

In view of Property 3.2, we can assume without loss of generality that the transformation

from pi to pi
′ = Fi(F

−1
i (pi)) has always been performed, so we adopt the following convention

in the sequel:

Convention Whenever we talk about p-mutual exclusivity, each pi satisfies the

equation pi = Fi(F
−1
i (pi)).
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Figure 1: Support of a p-ME random vector.

F−1
i (pi)

F−1
j (pj)

Xi

Xj

In particular, under this convention, we have pi ≥ Fi(0) for all i. Furthermore, if pi = Fi(0)

for all i, a random vector is p-ME if and only if it is mutually exclusive in the classical sense

as defined in Dhaene and Denuit (1999). In fact, the structures mutual exclusivity in the tail

and mutual exclusivity are also related in another way, as indicated in the following lemma.

Lemma 3.3. If the random vector X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is p-ME, then the

random vector

((X1 − F−1
1 (p1))+, . . . , (Xn − F−1

n (pn))+)

is mutually exclusive.

Proof. Let Yi := (Xi − F−1
i (pi))+ for i = 1, . . . , n. Then

{Yi > 0, Yj > 0} = {Xi > F−1
i (pi), Xj > F−1

j (pj)} ⊂ {Xi > F−1
i (pi), Xj > 0}. (3.2)

If X ∈ R(F1, . . . , Fn) is p-ME, then event on the right most has zero probability. Therefore,

Pr(Yi > 0, Yj > 0) = 0.
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Notice that the converse implication of Lemma 3.3 may not hold true because the set

inclusion “⊂” in (3.2) is strict in general.

Another closely related result is that tail mutual exclusivity is closed under increasing

transformation.

Lemma 3.4. Let (X1, . . . , Xn) ∈ R(F1, . . . , Fn) be p-ME. For i = 1, . . . , n, let fi : [0,∞) →

[0,∞) be increasing, left-continuous, and satisfying fi(0) = 0. Then (f1(X1), . . . , fn(Xn)) is

also p-ME.

Proof. For i = 1, . . . , n, let F̃i

−1
be the left-continuous inverse of the distribution function of

fi(Xi). Since fi is increasing and left-continuous, F̃i

−1
(pi) = fi(F

−1
i (pi)). The result follows

from the observation that

{fi(Xi) > F̃i

−1
(pi), fj(Xj) > 0} ⊂ {Xi > F−1

i (pi), Xj > 0}.

The following result gives a necessary and sufficient condition to guarantee the existence

of a p-ME random vector in a given Fréchet space R(F1, . . . , Fn).

Proposition 3.5. (i) Suppose that 1 > pi ≥ Fi(0) for all i. There exists a p-ME random

vector in R(F1, . . . , Fn) if and only if

n
∑

i=1

(1− pi) + max
1≤i≤n

(

pi − Fi(0)
)

≤ 1. (3.3)

In this case, Fi(0) > 0 for all i.

(ii) There exists a MET random vector in R(F1, . . . , Fn) if and only if Fi(0) > 0 for all i.

Proof. Define

∆ := max
i

(

pi − Fi(0)
)

≥ 0 and R := 1−
n
∑

i=1

(1− pi)−∆. (3.4)

To prove statement (i), suppose that condition (3.3) holds true for some p ∈ (0, 1)n with

pi ≥ Fi(0), then R ≥ 0 and

0 <

n
∑

i 6=j

(1− pi) +R = pj −∆ ≤ pj −
(

pj − Fj(0)
)

= Fj(0).
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To construct a p-ME random vector with marginals F1, . . . , Fn, let L,K,K1, . . . , Kn be

disjoint open intervals contained in (0, 1) with length |L| = ∆, |K| = R, and |Ki| = 1 − pi

for i = 1, . . . , n. The exact positions of these intervals are irrelevant. Let U be a random

variable uniformly distributed over (0, 1). For i = 1, . . . , n, let Ui be uniformly distributed

over (0, 1) obtained from a shuffling of U that satisfies the following conditions:


















Ui ∈ (pi, 1) ⇔ U ∈ Ki

Ui ∈ (pi −∆, pi) ⇔ U ∈ L

Ui ∈ (0, pi −∆) ⇔ U ∈
(

(∪j 6=iKj) ∪K
)

.

(3.5)

The relationship between U and Ui at the end points of the intervals is not important as

there are only finitely many of them. Now we define Xi := F−1
i (Ui) for all i. By construction,

Xi > F−1
i (pi) implies that Ui ∈ (pi, 1), which is equivalent to U ∈ Ki and hence for any

j 6= i, Uj ∈ (0, pj−∆). Since pj−∆ ≤ Fj(0), we have Xj = 0. This proves that (X1, . . . , Xn)

is p-ME.

Next, suppose that there exists a p-ME random vector X with marginals F1, . . . , Fn, for

some p ∈ (0, 1)n with pi ≥ Fi(0) for all i. For any j = 1, . . . , n, the events

{X1 > F−1
1 (p1)}, · · · , {Xn > F−1

n (pn)}, {0 < Xj ≤ F−1
j (pj)}

are mutually disjoint, and hence
n
∑

i=1

(1− Fi(F
−1
i (pi))) +

(

Fj(F
−1
j (pj))− Fj(0)

)

≤ 1.

Under our convention that pi = Fi(F
−1
i (pi)), this condition becomes

n
∑

i=1

(1− pi) +
(

pj − Fj(0)
)

≤ 1 for all j = 1, . . . , n,

which is equivalent to condition (3.3).

To prove statement (ii), it is enough to show that a MET random vector with marginals

F1, . . . , Fn can be constructed when Fi(0) > 0 for all i. In fact, if each Fi(0) is strictly

positive, it is always possible to find some p ∈ (0, 1)n with pi ≥ Fi(0) for all i such that

condition (3.3) holds true. One such example is given by

p1 = · · · = pn = 1− ε

with

0 < ε ≤ min

{

1− F1(0), . . . , 1− Fn(0),
mini Fi(0)

n− 1

}

.

By statement (i) of the proposition, one can then construct a p-ME random vector with

marginals F1, . . . , Fn.
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Recall that classical mutual exclusivity is equivalent to p-mutual exclusivity with pi =

Fi(0) for all i. In such case, condition (3.3) in Proposition 3.5 becomes
∑

i(1 − Fi(0)) ≤ 1,

which is equivalent to condition (2.3).

The following result presents one particular shuffling rule that is consistent with (3.5)

and indicates how one can simulate a MET random vector with given marginals.

Corollary 3.6. Suppose that F1, . . . , Fn are given marginals which satisfy condition (3.3).

Let R and ∆ be defined as in (3.4). Let

s0 := R and si = R +
i
∑

j=1

(1− pj), i = 1, . . . , n.

Let U be a uniform(0, 1) random variable, and define

Ui = U + (1− si)1{si−1<U<si} − (1− pi)1{U>si}, i = 1, . . . , n. (3.6)

Then (F−1
1 (U1), . . . , F

−1
n (Un)) is a p-ME random vector in R(F1, . . . , Fn).

Proof. It is straightforward to check that each Ui defined in (3.6) is uniformly distributed

on (0, 1) and satisfies (3.5).

The following result characterizes MET random vectors through their distribution func-

tions.

Proposition 3.7. Let X = (X1, . . . , Xn) be a random vector in R(F1, . . . , Fn). Suppose

that 0 < Fi(0) ≤ pi < 1 for all i. The random vector X is p-ME if and only if its joint

distribution function satisfies

FX(x) =
n
∑

i=1

(Fi(xi)− pi)+ + FX(x ∧ a), for any x ≥ 0, (3.7)

where a := (F−1
1 (p1), . . . , F

−1
n (pn)), and x ∧ a := (min(x1, a1), . . . ,min(xn, an)).

Proof. Suppose that X is p-ME. Let B,A1, . . . , An be subsets of Rn defined as in (3.1). For

any x ≥ 0,

FX(x) =
n
∑

i=1

Pr({X ≤ x} ∩ {X ∈ Ai}) + Pr({X ≤ x} ∩ {X ∈ B})

=
n
∑

i=1

Pr(ai < Xi ≤ xi) + Pr({X ≤ x} ∩ {X ≤ a})

=
n
∑

i=1

(Fi(xi)− pi)+ + FX(x ∧ a),
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where the last equality follows from our convention that pi = Fi(ai) = Fi(F
−1
i (pi)).

Conversely, suppose that X is a random vector whose joint distribution function satisfies

(3.7) for some (p1, . . . , pn) ∈ (0, 1)n. By symmetry, to show that X is p-ME, it suffices to

show that for any x1 > a1

Pr(X1 > x1) = Pr(X1 > x1, X2 = 0).

Since X1 and X1 are positive random variables, it follows from (3.7) that

Pr(X1 ≤ x1, X2 = 0) = FX(x1, 0,∞, . . . ,∞)

= (F1(x1)− p1) + FX(a1, 0, a3 . . . , an)

because x1 > a1 implies that F1(x1) ≥ F1(a1) = F1(F
−1
1 (p1)) ≥ p1. Therefore,

Pr(X1 > x1, X2 = 0)

= Pr(X2 = 0)− FX(x1, 0,∞, . . . ,∞)

= FX(∞, 0,∞, . . . ,∞)− FX(x1, 0,∞, . . . ,∞)

= [(1− p1) + FX(a1, 0, a3 . . . , an)]− [(F1(x1)− p1) + FX(a1, 0, a3 . . . , an)]

= 1− F1(x1),

as desired.

We can apply Proposition 3.7 to derive the joint distribution function of a mutually

exclusive random vector. A direct derivation can be found in Dhaene and Denuit (1999).

Corollary 3.8. A random vector X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is mutually exclusive

if and only if its joint distribution function satisfies

FX(x) =
n
∑

i=1

Fi(xi)− n+ 1, for any x ≥ 0. (3.8)

Proof. Suppose that X is mutually exclusive. By the remark after the proof of Proposition

3.5, we have
∑

i Fi(0) ≥ n − 1, and we can take pi(0) := Fi(0) in equation (3.7). Then

ai = F−1
i (pi) = 0 and equation (3.7) becomes

FX(x) =
n
∑

i=1

(Fi(xi)− Fi(0)) + FX(0), for any x ≥ 0.
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Since X is mutually exclusive, we have

FX(0) = Pr(X1 = · · · = Xn = 0)

= 1− Pr(Xi 6= 0 for some i)

= 1−
n
∑

i=1

Pr(Xi 6= 0) = 1−
n
∑

i=1

(

1− Fi(0)
)

=
n
∑

i=1

Fi(0)− n+ 1.

The result follows.

Before closing this section, we remark that tail mutual exclusivity bears some similarity

to the structure studied in Jakobsons et al. (2015). Their structure requires that not only

certain counter-monotonic behavior in the tail part (when any one of the components is

large), but also some degree of complete mixability in the body part. If these much stronger

conditions are satisfied, such dependence will give rise to the smallest convex sum, and hence

a TVaR lower bound at any probability level.

4 Tail behavior of MET random vectors

We begin with the following decomposition result which characterizes the upper tail of the

distribution function of a sum of MET random variables. The second assertion of the fol-

lowing proposition can be found in Dhaene and Denuit (1999).

Proposition 4.1. Let X∗ = (X∗
1 , . . . , X

∗
n) ∈ R(F1, . . . , Fn) be a p-ME random vector, and

S∗ := X1 + · · ·+Xn. Then

Pr(S∗ > t) =
n
∑

i=1

Pr(X∗
i > t) for any t ≥

n
∑

i=1

F−1
i (pi).

In particular, if X∗ is mutually exclusive, then

Pr(S∗ > t) =
n
∑

i=1

Pr(X∗
i > t) for any t ≥ 0.

Proof. Suppose that X∗ is p-ME in R(F1, . . . , Fn), and define

φ := F−1
1 (p1) + · · ·+ F−1

n (pn),

where Fi is the distribution function of X∗
i . For any t > φ, using the notation introduced in

(3.1), we get

Pr(S∗ > t) = Pr(S∗ > t,X∗ ∈ B) +
n
∑

i=1

Pr(S∗ > t,X∗ ∈ Ai) = 0 +
n
∑

i=1

Pr(X∗
i > t),
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as desired. When X∗ is mutually exclusive, it suffices to notice that φ = 0 when pi = Fi(0)

for all i.

Using Proposition 4.1, we can easily obtain the following decomposition result for the

stop-loss premium of a sum of MET random variables, which is a generalization of equation

(2) in Dhaene and Denuit (1999).

Corollary 4.2. Let X∗ = (X∗
1 , . . . , X

∗
n) ∈ R(F1, . . . , Fn) be a p-ME random vector, and

S∗ := X1 + · · ·+Xn. Then

E[(S∗ − d)+] =
n
∑

i=1

E[(X∗
i − d)+] for any d ≥

n
∑

i=1

F−1
i (pi).

Recall from Cheung and Vanduffel (2013) that given two random variables X and Y , X

is said to precede Y in the tail convex order, denoted as X �tcx Y , if there exists a real

number k such that Pr(Y > k) > 0 and E[(X − d)+] ≤ E[(Y − d)+] for all d ≥ k.

The next result shows that among all the risks with given marginals Fi and such that

(3.3) is fulfilled, the p-ME risks lead to the safest portfolio, in the sense that this kind

of dependence leads to the smallest stop-loss premiums for deductibles high enough. This

generalizes Theorem 10 of Dhaene and Denuit (1999).

Corollary 4.3. Let X∗ be a p-ME random vector in R(F1, . . . , Fn). Then for any random

vector X ∈ R(F1, . . . , Fn),
n
∑

i=1

X∗
i �tcx

n
∑

i=1

Xi.

Proof. It suffices to note that for any d ≥ φ := F−1
1 (p1) + · · ·+ F−1

n (pn),

E

[(

n
∑

i=1

X∗
i − d

)

+

]

=
n
∑

i=1

E[(X∗
i − d)+] =

n
∑

i=1

E[(Xi − d)+] ≤ E

[(

n
∑

i=1

Xi − d

)

+

]

,

where the first equality follows from Corollary 4.2.

5 MET and TVaR lower bounds

We are now ready to prove the main result of this paper, which states that the lower bound

(2.1) derived in Cheung and Lo (2013b) is attained under MET, provided the probability

12



level ε is large enough. In other words, mutual exclusivity in the tail gives rise to the smallest

value of Tail-VaR of a sum of risks within a given Fréchet space, provided that the probability

level of the Tail-VaR is close to one. The conditions required are that all risks have a point

mass at 0, and that at least one of the risks is unbounded above. Both conditions are mild

and natural from a modelling perspective when one is considering insurance risks.

Theorem 5.1. Consider R(F1, . . . , Fn) with

(i) Fi(0) > 0 for all i, and

(ii) F−1
i (1) = +∞ for at least one i.

Let p := (p1, . . . , pn) be any vector in (0, 1)n that satisfies
∑

i pi ≥ n − 1 and (3.3), and let

(X∗
1 , . . . , X

∗
n) ∈ R(F1, . . . , Fn) be a p-ME random vector. Define

S∗ :=
n
∑

i=1

X∗
i , φ :=

n
∑

i=1

F−1
i (pi), and ε∗ := max(FS∗(φ), p1, . . . , pn).

Then

TVaRε

(

n
∑

i=1

X∗
i

)

= min
X∈R(F1,...,Fn)

TVaRε

(

n
∑

i=1

Xi

)

= max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(X

∗
i )

for any ε > ε∗. If we further assume that each Fi is continuous on (F−1
i (pi), F

−1
i (1)), then

the maximum on the right most expression is attained at

(ε∗1, . . . , ε
∗
n) =

(

F 1(F
−1
S∗ (ε)), . . . , F n(F

−1
S∗ (ε))

)

. (5.1)

Proof. We first choose a vector (p1, . . . , pn) ∈ (0, 1)n that satisfies
∑

i pi ≥ n − 1 and (3.3).

As explained in Property 3.2, we may further assume that pi = Fi(F
−1
i (pi) for all i. By

Proposition 3.5, there exists a p-ME random vector X∗ = (X∗
1 , . . . , X

∗
n) with marginals

F1, . . . , Fn. Define S
∗ := X∗

1 + · · ·+X∗
n and φ := F−1

1 (p1) + · · ·+ F−1
n (pn). For any t > φ, it

follows from Proposition 4.1 that

Pr(S∗ > t) =
n
∑

i=1

Pr(X∗
i > t) > 0. (5.2)

where the last inequality follows from assumption (ii).

Next, we define new distribution functions G1, . . . , Gn by

Gi(t) :=



















Fi(t), t ≥ F−1
i (pi),

pi, 0 ≤ t < F−1
i (pi),

0, t < 0.

13



By our choice of pi,
∑n

i=1 Gi(0) ≥ n − 1, so condition (2.3) is fulfilled. Therefore there

exists a mutually exclusive random vector Y = (Y1, . . . , Yn) in R(G1, . . . , Gn). From our

construction, it is clear that for any i,

TVaRα(Yi) = TVaRα(X
∗
i ) for any α ≥ pi. (5.3)

The mutual exclusivity of Y implies that

Pr(Y1 + · · ·+ Yn > t) =
n
∑

i=1

Pr(Yi > t) for all t ≥ 0, (5.4)

and the TVaR of the sum Y1 + · · ·+ Yn attains the lower bound described in (2.1):

TVaRε(Y1 + · · ·+ Yn) = max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Yi), ε ∈ (0, 1). (5.5)

From (5.4) and the fact that Gi and Fi have the same tail from F−1
i (pi) onward, the sums

Y1 + · · ·+ Yn and S∗ are related by

0 < Pr(S∗ > t) =
n
∑

i=1

Pr(X∗
i > t) =

n
∑

i=1

Pr(Yi > t) = Pr(Y1 + · · ·+ Yn > t), t > φ,

which in turn implies that

TVaRα(Y1 + · · ·+ Yn) = TVaRα(S
∗) for any α ≥ FS∗(φ).

Together with (5.3) and (5.5), we obtain

TVaRε(S
∗) = max∑

εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Yi) = max∑

εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(X

∗
i )

whenever ε > ε∗ := max(FS∗(φ), p1, . . . , pn) < 1.

Now we prove the last assertion. Suppose that each Fi is continuous on (F−1
i (pi), F

−1
i (1)).

Since the solution set of the maximum is characterized by (2.2), we need to verify that the

point (ε∗1, . . . , ε
∗
n) defined in (5.1) satisfies

n
∑

i=1

ε∗i = 1− ε and
n
⋂

i=1

[

F−1
i (1− ε∗i ), F

−1+
i (1− ε∗i )

]

6= ∅.

To verify the first equation, we observe that ε > ε∗ ≥ FS∗(φ) implies that φ < F−1
S∗ (ε). As

X∗ is p-ME, Proposition 4.1 yields that

n
∑

i=1

ε∗i =
n
∑

i=1

F 1(F
−1
S∗ (ε)) = F S∗(F−1

S∗ (ε)).
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By Proposition 4.1 again and our hypothesis that each Fi is continuous on (F−1
i (pi), F

−1
i (1)),

FS∗ is continuous on at F−1
S∗ (ε). Hence we obtain

n
∑

i=1

ε∗i = F S∗(F−1
S∗ (ε)) = 1− ε.

Finally, it follows from the continuity of Fi that

F−1
S∗ (ε) ∈

n
⋂

i=1

[

F−1
i (1− ε∗i ), F

−1+
i (1− ε∗i )

]

,

which completes the proof.

Theorem 5.1 means that under the two stated hypotheses on the marginal distributions,

the TVaR lower bound in (2.1) is reachable in R(F1, . . . , Fn). With slightly more effort, one

can dispense with the assumption that Fi(0) > 0 for all i and show that the lower bound in

(2.1) is asymptotically tight. The only required condition is that at least one of the risks is

unbounded above.

Theorem 5.2. Suppose that F−1
i (1) = ∞ for at least one i. Then

lim
εր1

∣

∣

∣

∣

∣

inf
Yi∼Fi

TVaRε

(

n
∑

i=1

Yi

)

− max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Fi)

∣

∣

∣

∣

∣

= 0.

Proof. We need to show that for any δ > 0, there exists some ε∗ ∈ (0, 1) such that for any

ε∗ < ε < 1 there exists a random vector (Y ∗
1 , . . . , Y

∗
n ) ∈ R(F1, . . . , Fn) such that

TVaRε

(

n
∑

i=1

Y ∗
i

)

− max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Fi) ≤ δ. (5.6)

To this end, define g(x; a) = x1{x>a} on R+ for a ≥ 0. Let Gi;a be the distribution

function of the random variable g(Xi; a), where Xi is any random variable with distribution

function Fi. Obviously, g(x; 0) ≡ x for any x ≥ 0, and

Gi;a(t) = Fi(t ∨ a), t ≥ 0. (5.7)

Now consider the case where both a and εi are close enough, but not equal, to zero. From

(5.7),

TVaR1−εi(Fi) = TVaR1−εi(Gi;a); (5.8)
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moreover, Gi;a(0) = Fi(a) > 0 for all i and Gi;a(t) 6= 1 for all t for at least one i. Therefore,

the marginalsG1;a, . . . , Gn;a satisfy the two conditions stated in Theorem 5.1, and hence there

exists a MET random vector X∗ = (X∗
1 , . . . , X

∗
n) ∈ R(G1;a, . . . , Gn;a) such that the TVaR

of the sum X∗
i + · · · +X∗

n achieves its corresponding lower bound whenever the probability

level is higher than some ε∗ ∈ (0, 1):

TVaRε

(

n
∑

i=1

X∗
i

)

= max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Gi;a) for all ε > ε∗. (5.9)

Next, we denote by C an n-copula associated with the random vector X∗, which al-

ways exists by Sklar’s theorem (see, for instance, Theorem 2.10.9 of Nelsen (2006)). Let

(Y ∗
1 , . . . , Y

∗
n ) be a random vector whose joint distribution function is given by (x1, . . . , xn) 7→

C(F1(x1), . . . , Fn(xn)). We claim that

(X∗
1 , . . . , X

∗
n)

d
= (g(Y ∗

1 ; a), . . . , g(Y
∗
n ; a)). (5.10)

In fact, for any ti ≥ 0,

Pr(g(Y ∗
i ; a) ≤ ti, i = 1, . . . , n) = Pr(Y ∗

i ≤ ti ∨ a, i = 1, . . . , n)

= C(F1(t1 ∨ a), . . . , Fn(tn ∨ a))

= C(G1;a(t1), . . . , Gn;a(tn))

= Pr(X∗
i ≤ ti, i = 1, . . . , n),

in which the second equality follows from the definition of (Y ∗
1 , . . . , Y

∗
n ), and the third equality

follows from (5.7); if ti < 0 for some i, then both probabilities are zero.

With all these constructions, we are ready to complete the proof. Whenever a and 1− ε

(and hence every εi) are close enough to zero, (5.8),(5.9), and (5.10) imply that the random

vector (Y ∗
1 , . . . , Y

∗
n ) constructed in the previous paragraph satisfies

TVaRε

(

n
∑

i=1

g(Y ∗
i ; a)

)

= max∑
εi=1−ε

n
∑

i=1

εi

1− ε
TVaR1−εi(Fi). (5.11)

Since TVaR is continuous from from below (see, for instance, Lemma 4.21 and Theorem 4.52

of Föllmer and Schied (2011)):

lim
a↓0

TVaRε

(

n
∑

i=1

g(Y ∗
i ; a)

)

= TVaRε

(

n
∑

i=1

Y ∗
i

)

,

letting a ↓ 0 in (5.11) yields our desired (5.6).
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Theorems 5.1 and 5.2 show that under the appropriate conditions, the TVaR lower bound

(2.1) is (approximately) reachable. The results demonstrate the relevance of and the funda-

mental role played by tail mutual exclusivity, which describes the strongest negative depen-

dence in the upper tail.
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