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Abstract

In this paper, we extend the concept of mutual exclusivity proposed by Dhaene and Denuit
(1999) to its tail counterpart and baptise this new dependency structure as tail mutual
exclusivity. Probability levels are first specified for each component of the random vector.
Under this dependency structure, at most one exceedance over the corresponding VaRs is
possible, the other components being zero in such a case. No condition is imposed when
all components stay below the VaRs. Several properties of this new negative dependence
concept are derived. We show that this dependence structure gives rise to the smallest value
of Tail-VaR of a sum of risks within a given Fréchet space, provided that the probability

level of the Tail-VaR is close enough to one.

Keywords: Mutual exclusivity, stop-loss transform, tail convex order, risk measures.



1 Introduction and motivation

Numerous concepts of positive dependency have appeared in the literature to express the
notion that “large” (or “small”) values of the random variables tend to occur together.
Contrarily to positive dependence, negative dependence has attracted relatively less interest
so far, especially in the multivariate case. The bivariate countermonotonicity has been
thoroughly studied; see, e.g., Cheung et al. (2014). Negative dependence properties express
the notion that “large” values of one variable tend to occur together with “small” values of
the others. In general, a negative dependence results in more predictable aggregate losses for
the insurance company than mutual independence. The independence assumption is thus
conservative in such a case. Moreover, assuming independence is mathematically convenient,
and also obviates the need for elaborate models to be devised and statistics to be kept on
mutual dependence of claims. If the individual risks are known to be positively associated
(see, e.g., Denuit et al. (2005, Section 7.2.3) for a precise definition) then they dominate
their independent version in the supermodular order and their sum is larger than the sum
of independent random variables with the same univariate marginals in the convex sense.
Therefore, independence provides a lower bound on the Tail-VaR in this case. The same

occurs if the risks are positively cumulative dependent, as defined in Denuit et al. (2001).

By generalizing the results in Hu and Wu (1999) in the case of two-point distributions,
Dhaene and Denuit (1999) introduced and studied systematically an extreme case of negative
dependence, called mutual exclusivity. Considering non-negative random variables with
probability masses at the origin, mutual exclusivity corresponds to the case where at most
one of them can be different from zero. This can be considered as a sort of dual notion of
comonotonicity. Indeed, the knowledge that one risk assumes a positive value directly implies
that all the other ones vanish. Dhaene and Denuit (1999) proved that mutual exclusivity
is the safest dependence structure between risks with given marginals, in the sense that the
corresponding sum is minimal in the stop-loss order. They showed that the dependence
structure of the safest portfolio is described by the so-called Fréchet-Hoffding lower bound,
although some mathematical conditions are involved. The search of the smallest convex order
within a given Fréchet space has led to the study of other possible forms of extreme negative
dependence structures. Since a constant has no variability, the notion of complete/joint
mixability is relevant in this regard. The idea of complete/joint mixability is to study how
the variabilities of several random variables can offset each other so that the sum of these
random variables equals a constant. We refer to Puccetti et al. (2012), Wang and Wang
(2015), Lee and Ahn (2014), Embrechts et al. (2015) for some recent development in this

direction.



The present paper builds on the structure of mutual exclusivity. Our motivation comes
from the fact that the total probability mass at the origin must indeed be high enough to
ensure that mutual exclusivity can occur with given marginals. This condition considerably
reduces the potential applications of mutual exclusivity. This is precisely why we relax it in
the present paper, concentrating on the tail of the joint distribution. Specifically, we fix high
enough probability levels and we consider the corresponding quantiles, or VaRs. Tail mutual
exclusivity then restricts the behavior of the exceedances over these VaRs. More precisely,
only one excess is allowed so that either all components of a tail mutually exclusive random
vector are below these VaRs or only one of the component exceeds its VaR while all others

vanish. This particular dependence structure can be seen as safe in the sense that it achieves
the lower bound for Tail-VaRs derived in Cheung and Lo (2013b).

The remainder of this paper is organized as follows. Section 2 recalls some results about
VaRs, TVaRs and mutual exclusivity. In Section 3, we introduce the new negative depen-
dence structure proposed in this paper, called tail mutual exclusivity. Existence conditions
are also obtained there. Section 4 derives the expression for the stop-loss transforms in case
of tail mutual exclusivity. It is shown that this negative dependence structure corresponds
to minimal sums in the tail convex order. In Section 5, we establish that lower bounds
on TVaRs are attained under tail mutual exclusivity, provided the probability level is high

enough.

2 Preliminaries

Throughout this paper, we consider non-negative random variables, also called risks, Xy, ..., X,
with finite means and respective distribution functions Fi, ..., F,, i.e. Fi(t) = Pr(X; < 1).
Given a distribution function F, we denote as F~1'* its right-continuous inverse, which is
defined as

F ' (a) :=sup{t e R|F(t) < a}, a<c]0,1],

and as F'~! its left-continuous inverse, or quantile function, defined as
FYa):=inf{t e R|F(t) > a}, a€]0,1].
In these definitions, we adopt the convention that inf ) = +o00 and sup® = —o0.

If the non-negative random variable X has distribution function F', its Value-at-Risk
(VaR) at probability level « is defined by VaR,(X) = F~!(«) and its Tail-VaR (TVaR) at



probability level « is defined by

l—«

TVaRy(X) = — /lFl(t)dt, ae(01).

Sometimes, we may also write TVaR,(F") to stress that TVaR depends only on the distri-
bution function F'.

Very often, actuaries are interested in evaluating the TVaR of the aggregate risk S =
X; + -+ + X,. Obviously, calculating TVaR,(S) requires not only information about the
marginal distributions of the risks but also their joint distribution. Therefore, (tight) upper
and lower bounds for TVaR,(S) appear to be very useful so that we can have a better
idea about the possible magnitude of this quantity. Moreover, it is also instructive to know
what kind of dependence structures among the risks with given marginals would attain the
upper and lower bounds, which correspond to the most dangerous and the safest scenarios

respectively.
As for the problem of upper bound, the solution is well known in the literature:
TVaR,(S) < TVaR.(X;) + - -+ + TVaR,(X,,) for all @ € (0,1).

For a proof and more discussion on this important result, see, for instance, Denuit et al.
(2005). Moreover, the upper bound on the right hand side is attained for all € (0, 1) if,
and only if, the variables X1, ..., X,, are comonotonic, and the upper bound is attained for
a close enough to 1 if, and only if, the random variables X, ..., X,, are upper comonotonic
in the sense of Cheung and Lo (2013a).

As for the lower bound problem, Cheung and Lo (2013b, Theorem 4.1) proved that if
X1,..., X, are all positive with F;'*(0) = 0, then for any ¢ € (0, 1),

n

TVaR.(X; +---+ X,) > _max
Sei=1—¢ — 1—¢

(X, (2.1)

Furthermore, the solution set of the maximum on the right hand side is given by

{51,... Zel—l e,ﬂ Y1 —&), F, +(1—5i)}¢®}. (2.2)

Throughout this paper, implicit in the constraint “Y e; = 1 —&” is that each ¢; is non-
negative. In general, (2.2) is difficult to apply; nevertheless, there exist efficient algorithms
for solving the linearly constrained separable concave maximization problem on right hand
side of (2.1). For instance, see Hochbaum and Shanthikumar (1990), Stefanov (2005) and the



references therein. For alternative results on TVaR lower bounds and their computations,
we refer to Puccetti (2013), Bernard et al. (2014), and Jakobsons et al. (2015).

If the marginals F; allow mutual exclusivity, that is, if the condition
S RO 201 23)
i=1

is fulfilled, then equality holds in (2.1) if and only if the risks are mutually exclusive, i.e.
Xi,..., X, are such that

Pr(X; > 0,X; > 0) = 0 for all ij. (2.4)

Roughly speaking, condition (2.3) requires that each marginal F; has a sufficient large point
mass at the origin, which is rather stringent. If the marginals do not satisfy condition (2.3),
the lower bound in (2.1) is not tight in the sense that for some € € (0, 1), the lower bound
is never attainable by any random vector with marginals Fi,..., F,,. On the other hand,
TVaR as a measurement of risk is mostly relevant when the probability level is close to one.
This leads us to consider the possibility of having a tight lower bound in (2.1) only for
close enough to one, by some suitable relaxation of the stringent condition (2.3). The main

results of this paper are to show that as long as

(i) each F;(0) is non-zero, and

(ii) F, (1) = +oo for at least one 1,
the lower bound in (2.1) remains tight for all € close enough to one, and is attained by a
specific dependence structure that can be interpreted as “mutual exclusivity in the tail”.
Furthermore, we also prove that assuming condition (ii) alone, that is, without imposing
any point mass requirement at the origin on the marginals, the lower bound in (2.1) is
asymptotically tight.

In the remainder of this paper, F},..., F, are fixed marginals with F, '*(0) = 0 for all 7.
For any univariate cdf’s G, ...,G,, R(Gy,...,G,) denotes the Fréchet space of all random
vectors with marginals Gy, ..., G,.

3 Tail mutual exclusivity

The following definition, which is the main subject of this paper, is a generalization of the

mutual exclusivity concept (2.4) proposed by Dhaene and Denuit (1999).
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Definition 3.1. A random vector X = (Xi,...,X,) € R([F1,...,F,) is said to be mu-
tually exclusive in the tail, abbreviated as MET, if there exists some probability vector
p=(p1,...,pn) € (0,1)" such that

Pr(X; > F, ' (p:),X; >0) =0 for any i # j.

Such a random vector is also called p-mutually exclusive, abbreviated as p-ME.

In words, a random vector being mutual exclusivity in the tail means if whenever one of
the components of a random vector exceeds a certain quantile, all other components must
be zero. Hence, only one component can be large, i.e., exceeds the VaR at the specified
probability level, and no simultaneous extremes can occur. See Figure 1 for an illustration.
It is clear that the random vector X € R(F1, ..., F,) is p-ME if and only if

Pr(XeBUAU---UA,) =1,
where Aq,..., A, and B are subsets of R" defined by

A = {z eRa; > F ' (py),x;=0for j£i}, i=1,...,n,
B = {x €R"0<x; < F(p;) for all 4}. (3.1)

From Definition 3.1, it is clear that if X is p-ME and if p’ € (0,1)" satisfies p;/ > p;
for all 7, then X is p’-ME too. Therefore, one can always increase the probability levels
p; without destroying the MET structure. Moreover, we can assume that the probability
levels defining the MET structure indeed belong to the range of the marginal distribution

functions, as precisely stated next.
Property 3.2. A random vector X = (X,...,X,) € R(Fy,..., F,) is p-ME if and only if
it is p'-ME, where p/ = Fi(F; (py)).

Proof. This simply follows from the fact that F, '(p;) = F, ' (F;(F;  (p:)). O

In view of Property 3.2, we can assume without loss of generality that the transformation
from p; to p;/ = Fi(F, '(p;)) has always been performed, so we adopt the following convention
in the sequel:

Convention Whenever we talk about p-mutual exclusivity, each p; satisfies the
equation p; = Fi(F; ' (p;)).



Figure 1: Support of a p-ME random vector.

In particular, under this convention, we have p; > F;(0) for all i. Furthermore, if p; = F;(0)
for all 7, a random vector is p-ME if and only if it is mutually exclusive in the classical sense
as defined in Dhaene and Denuit (1999). In fact, the structures mutual exclusivity in the tail

and mutual exclusivity are also related in another way, as indicated in the following lemma.

Lemma 3.3. If the random vector X = (Xy,...,X,) € R(F,...,F,) is p-ME, then the
random vector

((Xl - Flil(pl))Jra s (Xn - F7:1<pn))+)
15 mutually exclusive.
Proof. Let Y; :== (X; — F, Y (p;)); fori=1,...,n. Then
{Yi>0,Y; >0} = {X; > F (), X; > F; ' (py)} C{X; > F ' (pi), X; > 0F. (3.2)

If X € R(Fy,...,F,)is p-ME, then event on the right most has zero probability. Therefore,
Pr(Y; > 0,Y; > 0) = 0. O



Notice that the converse implication of Lemma 3.3 may not hold true because the set

inclusion “C” in (3.2) is strict in general.

Another closely related result is that tail mutual exclusivity is closed under increasing

transformation.

Lemma 3.4. Let (X1,...,X,) € R(F1,..., F,) be p-ME. Fori=1,...,n, let f; : [0,00) —
[0,00) be increasing, left-continuous, and satisfying f;(0) = 0. Then (fi(X1),..., fu(Xn)) is
also p-ME.

Proof. Fori=1,...,n, let Fi_l be the left-continuous inverse of the distribution function of
fi(X;). Since f; is increasing and left-continuous, Fi_l(p,-) = fi(F,*(ps)). The result follows
from the observation that

(LX) > E (), /(X5) > 0} € {X: > F\(pi), X; > 0},

]

The following result gives a necessary and sufficient condition to guarantee the existence

of a p-ME random vector in a given Fréchet space R(Fy, ..., F,).
Proposition 3.5. (i) Suppose that 1 > p; > F;(0) for all i. There exists a p-ME random
vector in R(Fy, ..., F,) if and only if

> (1= p;) + max (p; — F(0)) < 1. (3.3)

1<i<n
i=1
In this case, F;(0) > 0 for all i.

(i1) There exists a MET random vector in R(Fy,..., F,) if and only if F;(0) > 0 for all i.

Proof. Define

A:=max (p; — F;(0)) >0 and R:=1- Z(l —pi) — A. (3.4)
i=1
To prove statement (i), suppose that condition (3.3) holds true for some p € (0,1)" with
p; > F;(0), then R > 0 and

0<> (1—p)+R=p;—A<p;— (p; — F;(0)) = F;(0).
i



To construct a p-ME random vector with marginals F,..., F,, let L, K, Ky,..., K, be
disjoint open intervals contained in (0,1) with length |L| = A, |K| = R, and |K;| =1 — p;
for ¢ = 1,...,n. The exact positions of these intervals are irrelevant. Let U be a random
variable uniformly distributed over (0,1). For i = 1,...,n, let U; be uniformly distributed
over (0,1) obtained from a shuffling of U that satisfies the following conditions:

Uie(pi,l) < Uek;
U €pi—Ap) ©UEL (3.5)

The relationship between U and U; at the end points of the intervals is not important as
there are only finitely many of them. Now we define X; := F, *(U;) for all i. By construction,
X; > F(p;) implies that U; € (p;, 1), which is equivalent to U € K; and hence for any
Jj#1,U; € (0,p;—A). Since p; —A < F;(0), we have X; = 0. This proves that (X,...,X,)
is p-ME.

Next, suppose that there exists a p-ME random vector X with marginals Fi, ..., F),, for
some p € (0,1)" with p; > F;(0) for all i. For any j = 1,...,n, the events

{Xi>Fi ()b, AXa > B ea) A0 < X5 < Fi(py)}

are mutually disjoint, and hence

n

> (1= E(E T (p) + (B (F (py) = F5(0) < 1.

i=1
Under our convention that p; = Fi(F; *(p;)), this condition becomes

n

S —p)+ (0~ F0) <1 forallj=1,....n,

=1

which is equivalent to condition (3.3).

To prove statement (ii), it is enough to show that a MET random vector with marginals
Fy,...,F, can be constructed when F;(0) > 0 for all 7. In fact, if each F;(0) is strictly
positive, it is always possible to find some p € (0,1)" with p; > F;(0) for all i such that

condition (3.3) holds true. One such example is given by
m=-=pp=1-c

with

in; £,(0
O<5§min{l—Fl(O),...,l—Fn(O),M}.

n—1
By statement (i) of the proposition, one can then construct a p-ME random vector with

marginals Fi, ..., F,. O



Recall that classical mutual exclusivity is equivalent to p-mutual exclusivity with p; =
F;(0) for all 4. In such case, condition (3.3) in Proposition 3.5 becomes ) _.(1 — F;(0)) < 1,
which is equivalent to condition (2.3).

The following result presents one particular shuffling rule that is consistent with (3.5)

and indicates how one can simulate a MET random vector with given marginals.

Corollary 3.6. Suppose that Fy,..., F, are given marginals which satisfy condition (3.3).
Let R and A be defined as in (3.4). Let

so:= R and SZZR+Z(1_pJ)7 1=1,...,n.
=1

Let U be a uniform(0,1) random variable, and define

U, =U+ (1 — Si)l{si_1<U<si} — (1 — pi)l{U>si}> 1=1,...,n. (36)

Then (F7HUY),. .., E7Y(U,)) is a p-ME random vector in R(FY,. .., F,).
Proof. 1t is straightforward to check that each U; defined in (3.6) is uniformly distributed
on (0,1) and satisfies (3.5). O

The following result characterizes MET random vectors through their distribution func-

tions.

Proposition 3.7. Let X = (Xi,...,X,) be a random vector in R(Fi,...,F,). Suppose
that 0 < F;(0) < p; < 1 for all i. The random vector X is p-ME if and only if its joint

distribution function satisfies

n

Fx(x) = Z (Fi(zi) = pi)y + Fx(® Aa), for any x >0, (3.7)

i=1

where a == (F7 Y (p1),..., E74py)), and & A a = (min(z1,a1), ..., min(z,,a,)).

Proof. Suppose that X is p-ME. Let B, A;,..., A, be subsets of R" defined as in (3.1). For
any « > 0,

Fx(x) = iPr({X <z}n{X eA})+Pr{X <z}n{X € B})

=1

S Pr(a < X, <2+ Pr({X < @} 0 (X < a))

= Y (F(@) - p). + Fx(@ Aa),

i=1



where the last equality follows from our convention that p; = F(a;) = Fi(F; ' (p:)).

Conversely, suppose that X is a random vector whose joint distribution function satisfies
(3.7) for some (p1,...,p,) € (0,1)". By symmetry, to show that X is p-ME, it suffices to

show that for any x; > a;
PI'(Xl > 33'1) = PI‘(Xl > .1'1,X2 = 0)
Since X; and X are positive random variables, it follows from (3.7) that

Pr(XIle,Xzz(]) = Fx(.CEl,0,00,...,OO)
= (Fl(xl) _pl) + Fx(a,l, O7CL3 Ce 7an)
because z; > a; implies that F}(z,) > Fi(a1) = Fi(F,*(p1)) > p1. Therefore,
PI"(Xl > .Z'l,XQ = O)

= Pr(Xy =0) — Fx(21,0,00,...,00)

= F'x(00,0,00,...,00) — Fx(x1,0,00,...,00)

=[(1—=p1)+ Fx(a1,0,a;3...,a,)] — [(Fi(z1) — p1) + Fx(a1,0,a3...

=1~ Fl(l'l),

as desired.

We can apply Proposition 3.7 to derive the joint distribution function of a mutually

exclusive random vector. A direct derivation can be found in Dhaene and Denuit (1999).

Corollary 3.8. A random vector X = (Xi,...,X,) € R(F1,..., F,) is mutually exclusive

if and only if its joint distribution function satisfies

Fx(x) = ZFZ(L) —n+1, foranyx>0.
i=1

(3.8)

Proof. Suppose that X is mutually exclusive. By the remark after the proof of Proposition
3.5, we have ) . F;(0) > n — 1, and we can take p;(0) := F;(0) in equation (3.7). Then

a; = F; 1 (p;) = 0 and equation (3.7) becomes

n

Fx(@) = (Fi(x;) — Fi(0) + Fx(0), for any a > 0.

i=1

10



Since X is mutually exclusive, we have

Fx(0) = Pr(X;3=---=X,=0)
= 1—Pr(X-7é0f0rsome2')

n

= I—ZPrX;«AO_l—Z :iﬂ(o)—nJrl.

=1
The result follows. O

Before closing this section, we remark that tail mutual exclusivity bears some similarity
to the structure studied in Jakobsons et al. (2015). Their structure requires that not only
certain counter-monotonic behavior in the tail part (when any one of the components is
large), but also some degree of complete mixability in the body part. If these much stronger
conditions are satisfied, such dependence will give rise to the smallest convex sum, and hence

a TVaR lower bound at any probability level.

4 Tail behavior of MET random vectors

We begin with the following decomposition result which characterizes the upper tail of the
distribution function of a sum of MET random variables. The second assertion of the fol-

lowing proposition can be found in Dhaene and Denuit (1999).

Proposition 4.1. Let X* = (X],...,X}) € R(Fy,...,F,) be a p-ME random vector, and
S* =X +---+X,. Then

r(S* > t) ZPr (X >t) for anytEZFi_l(pi).

=1

In particular, if X is mutually exclusive, then

Pr(S* >1t) = ZPr(Xi* >t) foranyt>0.

i=1

Proof. Suppose that X* is p-ME in R(F7, ..., F,), and define
¢:=F ' (p1) + -+ F, (pa),
where F; is the distribution function of X;. For any ¢ > ¢, using the notation introduced in
(3.1), we get
Pr(S*>1) =Pr(S* >, X" € B)+ ) Pr(S* >, X" € A) =0+ > Pr(X; >1),

=1

11



as desired. When X ™ is mutually exclusive, it suffices to notice that ¢ = 0 when p; = F;(0)
for all 2. [

Using Proposition 4.1, we can easily obtain the following decomposition result for the
stop-loss premium of a sum of MET random variables, which is a generalization of equation
(2) in Dhaene and Denuit (1999).

Corollary 4.2. Let X* = (X{,...,X}) € R(F1,...,F,) be a p-ME random vector, and
S* =X +---+X,. Then

E[(5" —d).] = ZE[(X? —d),] foranyd > F(p).

i=1

Recall from Cheung and Vanduffel (2013) that given two random variables X and Y, X
is said to precede Y in the tail convex order, denoted as X =i Y, if there exists a real

number £ such that Pr(Y > k) > 0 and E[(X — d);| < E[(Y —d),] for all d > k.

The next result shows that among all the risks with given marginals F; and such that
(3.3) is fulfilled, the p-ME risks lead to the safest portfolio, in the sense that this kind
of dependence leads to the smallest stop-loss premiums for deductibles high enough. This
generalizes Theorem 10 of Dhaene and Denuit (1999).

Corollary 4.3. Let X* be a p-ME random vector in R(Fy, ..., F,). Then for any random
vector X € R(Fy,...,F,),

n n
i=1 i=1

Proof. Tt suffices to note that for any d > ¢ := F; *(p1) +--- + F ' (p,),

n

E (ZX;‘ — d) ] =Y E[(X;—d),]=) E[X;-d),]<E (in — d) ] :
i=1 n i=1 i=1 i=1 I
where the first equality follows from Corollary 4.2. n

5 MET and TVaR lower bounds

We are now ready to prove the main result of this paper, which states that the lower bound
(2.1) derived in Cheung and Lo (2013b) is attained under MET, provided the probability

12



level € is large enough. In other words, mutual exclusivity in the tail gives rise to the smallest
value of Tail-VaR of a sum of risks within a given Fréchet space, provided that the probability
level of the Tail-VaR is close to one. The conditions required are that all risks have a point
mass at 0, and that at least one of the risks is unbounded above. Both conditions are mild

and natural from a modelling perspective when one is considering insurance risks.

Theorem 5.1. Consider R(Fi, ..., F,) with

(i) F;(0) >0 for alli, and

(1) F1(1) = 400 for at least one i.

Let p := (p1,...,pn) be any vector in (0,1)" that satisfies Y, p; > n —1 and (3.3), and let
(X5,..., X)) € R(Fy, ..., F,) be a p-ME random vector. Define

S* = E X o= E F ' (p), and &*:=max(Fs-(¢),p1,...,Dn)
i—1 i=1
Then

T - Xl = 1 T - X, | = LT e (X7
VaR <Z 7,> XGRI(IZ%n . VaR, (Z ) Zrerilz:u{(_e 2T VaRy ., (X))

=1 /) T Thhmmnm i=1

for any e > *. If we further assume that each F; is continuous on (F, *(p;), F; (1)), then

7 (2

the mazimum on the right most expression is attained at

(ef,....en) = (F1(F&'(9), ..., Fu(Fgl(e))) - (5.1)

Proof. We first choose a vector (p1,...,p,) € (0,1)" that satisfies > .p; > n — 1 and (3.3).
As explained in Property 3.2, we may further assume that p; = F;(F, '(p;) for all i. By
Proposition 3.5, there exists a p-ME random vector X* = (X7,..., X¥) with marginals
Fi,...,F,. Define S* .= X7 +---+X*and ¢ := F, '(p1) +---+ F;'(p,). For any t > ¢, it

follows from Proposition 4.1 that
Pr(S* >t) =Y Pr(X; >t)>0. (5.2)
i=1
where the last inequality follows from assumption (ii).

Next, we define new distribution functions G, ..., G, by
Fl(t)7 t Z F;j_l(pi)a
Gi(t) = 1 pi, 0<t<F'(p),
0, t<0.

13



By our choice of p;, > | G;(0) > n — 1, so condition (2.3) is fulfilled. Therefore there
exists a mutually exclusive random vector Y = (Y1,...,Y,) in R(Gy,...,G,). From our

construction, it is clear that for any ¢,
TVaR,(Y;) = TVaR,(X]) for any o > p;. (5.3)

The mutual exclusivity of Y implies that

Pr(Yi+---+Y,>t) =Y Pr(Y;>t) forall t >0, (5.4)

i=1
and the TVaR of the sum Y; + - - +Y,, attains the lower bound described in (2.1):

n

TVaR. (Y1 + -+ +Y,) = max
Sei=1—¢ P 1—¢

(Y), =€(0,1). (5.5)

From (5.4) and the fact that G; and F; have the same tail from F; *(p;) onward, the sums
Y1 +---+Y, and S* are related by

0 < Pr(S* > t) ZPr (X;>t)=> Pr(Y;>t)=Pr(Yi+ - +Y,>1), t>9
which in turn implies that

TVaRa(Y) 4 - +Y,) = TVaRq(S*) for any o > Fa. ().

Together with (5.3) and (5.5), we obtain

TVaR.(5") = () = (X7
ARAST) = pmax 2 )= smax 27— (X0)
whenever ¢ > £* := max(Fgs«(¢),p1,...,pn) < L.

Now we prove the last assertion. Suppose that each Fj is continuous on (! (p;), F; *(1)).
Since the solution set of the maximum is characterized by (2.2), we need to verify that the
point (e7,...,e") defined in (5.1) satisfies

Ze =1—¢ and ﬂ "M—ep), Fi (1 —ep)] #0.

To verify the first equation, we observe that ¢ > &* > Fg«(¢) implies that ¢ < Fo.'(g). As
X" is p-ME, Proposition 4.1 yields that



By Proposition 4.1 again and our hypothesis that each Fj is continuous on (F, *(p;), F; (1)),

(2

Fs- is continuous on at Fg.!'(g). Hence we obtain
Y e =Fa(Fle) =1-=.
i=1

Finally, it follows from the continuity of F; that

n

Fgle) e (Y [F (1 —en), (1 —<1)]

=1

which completes the proof. [l

Theorem 5.1 means that under the two stated hypotheses on the marginal distributions,
the TVaR lower bound in (2.1) is reachable in R(F7, ..., F,). With slightly more effort, one
can dispense with the assumption that F;(0) > 0 for all ¢ and show that the lower bound in
(2.1) is asymptotically tight. The only required condition is that at least one of the risks is

unbounded above.

Theorem 5.2. Suppose that F, *(1) = oo for at least one i. Then

lim
e/l

i.nf.TVaRE (Z}ﬂ) —  max Z i TVaR,_.,(F;)| = 0.

i~ 1 g;i=1—¢ 1 1—¢

Proof. We need to show that for any § > 0, there exists some ¢* € (0, 1) such that for any

e* < € < 1 there exists a random vector (Y}*,...,Y*) € R(F},..., F,) such that
T . Y| — LT ., (F;) < 6. .
VaR, (; ; ) Smax 2T VaRi—, (F;) < (5.6)

To this end, define g(z;a) = xlgsqy on Ry for a > 0. Let Gy, be the distribution
function of the random variable g(X;;a), where X; is any random variable with distribution

function F;. Obviously, g(z;0) = x for any z > 0, and

Gialt) = Fi(tVa), t>0. (5.7)

Now consider the case where both a and ¢; are close enough, but not equal, to zero. From
(5.7),
TV&R&,EZ. (E) = TV&R&,&. (Gi;a); (58)
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moreover, G;.,(0) = F;(a) > 0 for all ¢ and G;,,(t) # 1 for all ¢ for at least one i. Therefore,
the marginals Gy, . . . , Gy, satisfy the two conditions stated in Theorem 5.1, and hence there
exists a MET random vector X* = (X7,..., X}) € R(G14,-..,Gnya) such that the TVaR
of the sum X 4 --- 4+ X' achieves its corresponding lower bound whenever the probability
level is higher than some * € (0,1):

TVaR. (Z X;“) = _max & gTVaRl,Ei(Gi;a) for all € > &*. (5.9)

gi=1—¢ —
i=1 2.ci i=1

Next, we denote by C' an n-copula associated with the random vector X*, which al-
ways exists by Sklar’s theorem (see, for instance, Theorem 2.10.9 of Nelsen (2006)). Let
(Y, ..., Y") be arandom vector whose joint distribution function is given by (z1,...,z,) —
C(Fi(x1),..., Fu(z,)). We claim that

* * d * *
(X1, ., X)) =(g(Y]50a),...,9(Y. 5 a)). (5.10)
In fact, for any ¢; > 0,

Pr(g(Y;;5a0) <ti,i=1,...,n) = Pr(Y;"<t;Va,i=1,...,n)
= C(Fi(t1Va),...,F,(t,Va))
= C(Gra(t1), ..., Gna(tn))
= Pr(X; <t,i=1,...,n),

in which the second equality follows from the definition of (Y}*,...,Y;¥), and the third equality

follows from (5.7); if t; < 0 for some 4, then both probabilities are zero.

With all these constructions, we are ready to complete the proof. Whenever ¢ and 1 — ¢

(and hence every ¢;) are close enough to zero, (5.8),(5.9), and (5.10) imply that the random

vector (Y7*,...,Y*) constructed in the previous paragraph satisfies
n . n e
TVaR. (; gy, ;a)) = Zrariliii_a 21 gTVaRl—si<E)~ (5.11)

Since TVaR is continuous from from below (see, for instance, Lemma 4.21 and Theorem 4.52
of Follmer and Schied (2011)):

lim TVaR. Y = TVaR. Y|,
im TVa (;g(l a)) a (Z )

i=1

letting a | 0 in (5.11) yields our desired (5.6). O
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Theorems 5.1 and 5.2 show that under the appropriate conditions, the TVaR lower bound
(2.1) is (approximately) reachable. The results demonstrate the relevance of and the funda-
mental role played by tail mutual exclusivity, which describes the strongest negative depen-
dence in the upper tail.
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