



Fair valuation of insurance liabilities: Merging actuarial judgement and market-consistency

Jan Dhaene ^a, Ben Stassen ^{a,c}, Karim Barigou ^{a,*}, Daniël Linders ^a, Ze Chen ^{a,b}

^a Actuarial Research Group, AFL, Faculty of Business and Economics, KU Leuven, Leuven, Belgium

^b School of Economics and Management, Tsinghua University, Beijing, China

^c Reacfins, Louvain-La-Neuve, Belgium

ARTICLE INFO

Article history:

Received February 2017

Received in revised form June 2017

Accepted 8 June 2017

Available online 20 June 2017

Keywords:

Fair valuation of insurance liabilities

Market-consistent valuation

Actuarial valuation

Solvency II

Mean-variance hedging

ABSTRACT

In this paper, we investigate the fair valuation of liabilities related to an insurance policy or portfolio in a single period framework. We define a fair valuation as a valuation which is both market-consistent (mark-to-market for any hedgeable part of a claim) and actuarial (mark-to-model for any claim that is independent of financial market evolutions). We introduce the class of hedge-based valuations, where in a first step of the valuation process, a 'best hedge' for the liability is set up, based on the traded assets in the market, while in a second step, the remaining part of the claim is valued via an actuarial valuation. We also introduce the class of two-step valuations, the elements of which are very closely related to the two-step valuations which were introduced in Pelsser and Stadje (2014). We show that the classes of fair, hedge-based and two-step valuations are identical.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modern solvency regulations for the insurance industry, such as the Swiss Solvency Test and Solvency II, require insurance undertakings to apply a *fair valuation* of their assets and liabilities. The fair value of an asset or a liability is generally understood as 'the amount for which it could be transferred (exchanged) between knowledgeable willing parties in an arm's length transaction'. A fair valuation method combines techniques from financial mathematics and actuarial science, in order to take into account and be consistent with information provided by the financial markets on the one hand and actuarial judgement based on generally available data concerning the underlying risks on the other hand.¹

This paper is about the generic meaning of fair valuation of random payments related to liabilities in an insurance context and not about a particular technical meaning that is given to it by a particular regulation or legislation. Furthermore, we consider fair valuation in a general context without specifying the purpose it is used for. The results we present and discuss may be used not only

in a reserving context (determining technical provisions) but also in a pricing context (setting premiums).

Consider a set of future random payoffs, further called (*contingent*) *claims*. Some of these claims are traded, i.e. they can be bought and sold in a financial market. We assume that the market of traded claims is incomplete. This means that apart from hedgeable claims, of which the fair value is equal to the price of its underlying hedge, there are also claims that cannot be hedged. Insurance claims typically belong to this class of unreplicable claims.

Several ways of valuating unhedgeable (unreplicable) claims have been considered in the literature. Under a 'utility indifference' approach, the value of a claim is set equal to the amount which makes the agent indifferent, in terms of expected utility, between holding the claim or not. The idea for the utility indifference approach in an incomplete market setting is often attributed to [Hodges and Neuberger \(1989\)](#). A market-consistent insurance premium based on expected utility indifference arguments is developed in [Malamud et al. \(2008\)](#). A similar algorithm was proposed by [Musiela and Zariphopoulou \(2004\)](#) for determining indifference prices in a multiperiod binomial model. For an overview of the theory, we refer to [Henderson and Hobson \(2009\)](#) and [Carmona \(2009\)](#).

Another approach for valuating unreplicable claims starts from the observation that in an incomplete market setting no-arbitrage arguments only partially specify the pricing measure (which allows to express prices of contingent claims as discounted expectations under that measure). Therefore, one extends this partially specified measure to a 'complete' pricing measure that is used to

* Corresponding author.

E-mail addresses: Jan.Dhaene@kuleuven.be (J. Dhaene),

Ben.Stassen@kuleuven.be (B. Stassen), Karim.Barigou@kuleuven.be (K. Barigou),

Daniel.Linders@kuleuven.be (D. Linders), Ze.Chen@kuleuven.be (Z. Chen).

¹ Solvency II (Directive 2009/138/EC, Article 77, calculation of technical provisions): If the cash flows of the liability (or part of the cash flows) can be replicated reliably, then the value of the (part of the) cash flows is determined on the basis of the market value of these financial instruments. Otherwise, the value is equal to the sum of the best estimate and a risk margin.

determine the value of all contingent claims, also the ones that are not traded. The ‘complete’ pricing measure is chosen such that it is, in one way or another, the ‘most appropriate’ one. A popular choice is the minimal entropy martingale measure, see e.g. Frittelli (1995) and Frittelli (2000) in a pure financial context and Dhaene et al. (2015) in a combined financial–actuarial framework. Another possible choice is the risk-neutral Esscher measure, see Gerber and Shiu (1994). Under such a ‘completing approach’, the value of an unhedgeable claim can be interpreted as a reasoned estimate of what its market value would have been had it been readily traded.

A market-consistent valuation is usually defined in terms of an extension of the notion of cash invariance to all hedgeable claims, see e.g. Malamud et al. (2008), Artzner and Eisele (2010) or Pelsser and Stadje (2014). In this paper, we define a *fair valuation* as a valuation which is both market-consistent and actuarial. This valuation is market-consistent in the sense that any hedgeable part of a claim is valued at the price of its hedge. Moreover, the valuation is actuarial in the sense that claims with payoffs that are independent of the evolution of asset prices are valued taking into account actuarial judgement.

We introduce and investigate ‘hedge-based valuations’. Under this approach, one unbundles the unhedgeable insurance claim in a hedgeable part and a remaining part. The fair value of the claim is then set equal to the sum of the respective values of the hedgeable and the unhedgeable parts, where the hedgeable part is valued by the financial price of its underlying hedge, while the value of the remaining part is determined via an actuarial approach. In particular, we consider the class of ‘convex hedge-based valuations’. An important subclass consists of the ‘mean–variance hedge-based valuations’. Further, we also investigate an adapted version of the two-step valuation approach, as introduced in Pelsser and Stadje (2014). We show that the classes of fair valuations, hedge-based valuations and two-step valuations are identical.

Over the last two decades, several researchers have worked on the unification of the two fields of financial and actuarial valuation. This research area is still in full development and the literature on market-consistent valuation is growing rapidly. An early overview of the different aspects of the interplay between the two fields is given in Embrechts (2000). Delong (2011) deals with practical and theoretical aspects of market-consistent valuation. Other interesting references include Møller (2001), Barrieu and El Karoui (2005, 2009), Knispel et al. (2011), Kupper et al. (2008), Malamud et al. (2008), Møller (2001), Pelsser and Ghalehjooghi (2016a, b, c), Pelsser and Stadje (2014), Tsanakas et al. (2013), Wüthrich et al. (2010) and the references therein.

The remainder of the paper is organized as follows. In Section 2, we describe the financial–actuarial world and its market of traded assets. In Section 3, fair valuations and the related notion of fair hedgers are introduced. Hedge-based valuations are considered in Section 4. An adapted version of the two-step valuations introduced by Pelsser and Stadje (2014) is considered in Section 5. Section 6 concludes the paper.

2. The financial–actuarial world and its market of traded assets

In this paper, we investigate the fair valuation of traded and non-traded payoffs in a single period financial–actuarial world. Let time 0 be ‘now’ and consider a set of random payoffs, which are due at time 1. These payoffs are random variables (r.v.’s) defined on a given probability space $(\Omega, \mathcal{G}, \mathbb{P})$, which is a mathematical abstraction of the combined financial–actuarial world. We call these random payoffs (*contingent*) *claims*. Throughout the paper, we assume that the second moments of all claims and the first moments of all products of claims that we will encounter exist and are finite under \mathbb{P} .

Any element of $\omega \in \Omega$ represents a possible state of the financial–actuarial world at time 1. For instance, ω could represent

a set of possible outcomes for the time-1 prices of the stocks composing the Dow Jones Index and for the number of survivors at time 1 from a given closed population observed at time 0. The σ -algebra \mathcal{G} stands for the set of all events that may or may not occur in this single period world. Probabilities for these events follow from the real-world probability measure \mathbb{P} . We denote the set of all (contingent) claims defined on (Ω, \mathcal{G}) by \mathcal{C} .

The financial–actuarial world $(\Omega, \mathcal{G}, \mathbb{P})$ is home to a market of $n + 1$ traded assets. These assets can be bought or sold in any quantities in a deep, liquid, transparent and frictionless market (no transaction costs and other market frictions). Asset 0 is the risk-free zero coupon bond. Its current price is $y^{(0)} = 1$, while its payoff at time 1 is given by $Y^{(0)} = e^r$, where $r \geq 0$ is the (continuously compounded) deterministic interest rate r . Furthermore, there are n risky assets, denoted by $1, \dots, n$, traded in the market. The price (or the payoff) at time 1 of each asset is a claim defined on (Ω, \mathcal{G}) . The current price of asset $m \in \{1, 2, \dots, n\}$ is denoted by $y^{(m)} > 0$, whereas its non-deterministic payoff at time 1 is $Y^{(m)} \geq 0$. We introduce the notations \mathbf{y} and \mathbf{Y} for the vectors of the time-0 and time-1 asset prices, respectively:

$$\mathbf{y} = (y^{(0)}, y^{(1)}, \dots, y^{(n)})$$

and

$$\mathbf{Y} = (Y^{(0)}, Y^{(1)}, \dots, Y^{(n)}).$$

A *trading strategy* $\theta = (\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(n)})$ is an $(n + 1)$ -dimensional real-valued vector, where the quantity $\theta^{(m)}$ stands for the number of units invested in asset m at time 0. The time-0 and time-1 values of the trading strategy θ are given by the scalar products

$$\theta \cdot \mathbf{y} = \sum_{m=0}^n \theta^{(m)} y^{(m)}$$

and

$$\theta \cdot \mathbf{Y} = \sum_{m=0}^n \theta^{(m)} Y^{(m)},$$

respectively. The set of all trading strategies is denoted by Θ . The discrete, single period set-up of this paper implies that any trading strategy is static in the sense that the hedging portfolio chosen at time 0 remains unchanged over the period $[0, 1]$.

Throughout the paper, we assume that the $n + 1$ assets are non-redundant, which means that there exists no investment strategy θ which is different from $\mathbf{0} = (0, 0, \dots, 0)$ such that $\theta \cdot \mathbf{Y} = 0$. Hence,

$$\theta \cdot \mathbf{Y} = 0 \Rightarrow \theta = \mathbf{0}. \quad (1)$$

By convention, (in-)equalities between r.v.’s, such as $\theta \cdot \mathbf{Y} = 0$, have to be understood in the \mathbb{P} -almost sure sense, unless explicitly stated otherwise.

A probability measure \mathbb{Q} defined on the measurable space (Ω, \mathcal{G}) is said to be an *equivalent martingale measure* (or a risk-neutral measure), further abbreviated as EMM, for the market defined above, if it fulfils the following conditions:

(1) \mathbb{Q} and \mathbb{P} are equivalent probability measures:

$$\mathbb{P}[A] = 0 \quad \text{if and only if} \quad \mathbb{Q}[A] = 0, \quad \text{for all } A \in \mathcal{G}.$$

(2) The current price of any traded asset in the market is given by the expected value of the discounted payoff of this asset at time 1, where discounting is performed at the risk-free interest rate r and expectations are taken with respect to \mathbb{Q} :

$$y^{(m)} = e^{-r} \mathbb{E}^{\mathbb{Q}} [Y^{(m)}], \quad \text{for } m = 0, 1, \dots, n.$$

Hereafter, we always assume that the market is arbitrage-free in the sense that there is no investment strategy $\theta \in \Theta$ such that $\theta \cdot \mathbf{y} = 0$, $\mathbb{P}[\theta \cdot \mathbf{Y} \geq 0] = 1$ and $\mathbb{P}[\theta \cdot \mathbf{Y} > 0] > 0$.

It is well-known that in our setting, the no-arbitrage condition is equivalent to the existence of a (not necessarily unique) equivalent martingale measure, whereas completeness of the arbitrage-free market is equivalent to the existence of a unique equivalent martingale measure, see e.g. [Dalang et al. \(1990\)](#).

Definition 1 (Hedgeable Claim). A hedgeable claim S^h is an element of \mathcal{C} that can be replicated by a trading strategy $\mathbf{v} = (v^{(0)}, v^{(1)}, \dots, v^{(n)}) \in \Theta$:

$$S^h = \mathbf{v} \cdot \mathbf{Y} = \sum_{m=0}^n v^{(m)} Y^{(m)}. \quad (2)$$

We introduce the notation \mathcal{C}^h for the set of all hedgeable claims. The time-0 price of $S^h = \mathbf{v} \cdot \mathbf{Y}$ is given by

$$\mathbf{v} \cdot \mathbf{y} = \sum_{m=0}^n v^{(m)} y^{(m)} = e^{-r} \mathbb{E}^{\mathbb{Q}}[S^h], \quad (3)$$

where \mathbb{Q} is a generic member of the class of EMM's. The non-redundancy assumption (1) implies that the hedge of any hedgeable claim is uniquely determined. Hereafter, we will say that two random vectors \mathbf{X} and \mathbf{Y} defined on $(\mathcal{Q}, \mathcal{G})$ are \mathbb{P} -independent in case they are independent under the measure \mathbb{P} , and we will denote this relation by $\mathbf{X} \perp \mathbf{Y}$.

Definition 2 (Orthogonal Claim). An orthogonal claim S^{\perp} is an element of \mathcal{C} which is \mathbb{P} -independent of the vector of traded claims:

$$S^{\perp} \perp (Y^{(1)}, Y^{(2)}, \dots, Y^{(n)}). \quad (4)$$

Hereafter, we will denote the set of all orthogonal claims by \mathcal{C}^{\perp} . The risk-free claims $a \in \mathbb{R}$ are the only claims which are both hedgeable and orthogonal. Obviously, the hedge related to the claim a due at time 1 is an investment of amount $e^{-r}a$ in zero coupon bonds.

Example 1 (Cost-of-Capital Principle for Orthogonal Liabilities). Consider the liability S^{\perp} related to a portfolio of one-year insurances:

$$S^{\perp} = \sum_{i=1}^N X_i,$$

where $N \in \mathbb{N}$ and X_1, X_2, \dots, X_N are the losses of the different policies, which are assumed to be \mathbb{P} -independent of $(Y^{(1)}, Y^{(2)}, \dots, Y^{(n)})$. The position of the insurer in the orthogonal liability S^{\perp} cannot be hedged in the financial market. Suppose that the regulator requires the holder of this position to set up a provision $\rho[S^{\perp}]$ determined by

$$\rho[S^{\perp}] = e^{-r} \mathbb{E}^{\mathbb{P}}[S^{\perp}] + \text{RM}[S^{\perp}], \quad (5)$$

and a capital buffer $e^{-r} (\text{VaR}_p[S^{\perp}] - \mathbb{E}^{\mathbb{P}}[S^{\perp}])$ at time 0, for some probability level $p \in (0, 1]$. Here, $e^{-r} \mathbb{E}^{\mathbb{P}}[S^{\perp}]$ is the best estimate of S^{\perp} , where the Value at Risk of S^{\perp} at a confidence level p is given by

$$\text{VaR}_p[S^{\perp}] = \inf \{x \mid \mathbb{P}[S^{\perp} \leq x] \geq p\},$$

while $\text{RM}[S^{\perp}]$ is the risk margin under the cost-of-capital approach:

$$\text{RM}[S^{\perp}] = e^{-r} i (\text{VaR}_p[S^{\perp}] - \mathbb{E}^{\mathbb{P}}[S^{\perp}]) \quad (6)$$

for some cost-of-capital rate i . The risk margin $\text{RM}[S^{\perp}]$ reflects the cost related to holding the capital $e^{-r} (\text{VaR}_p[S^{\perp}] - \mathbb{E}^{\mathbb{P}}[S^{\perp}])$ to buffer the risk of S^{\perp} being larger than $\mathbb{E}^{\mathbb{P}}[S^{\perp}]$ at time 1. Let us now additionally assume that under \mathbb{P} , the claims X_i are i.i.d. with expectation and variance given by μ and $\sigma^2 > 0$, respectively. Furthermore, let the portfolio be sufficiently large such that we can assume that

$$\mathbb{P} \left[\frac{S^{\perp} - \mathbb{E}^{\mathbb{P}}[S^{\perp}]}{\sigma^{\mathbb{P}}[S^{\perp}]} \leq s \right] = \Phi[s], \quad \text{for all } s,$$

where Φ is the standard normal distribution. In this case, we find that $\rho[S^{\perp}]$ is given by

$$\rho[S^{\perp}] = e^{-r} (N\mu + i\sqrt{N}\sigma\Phi^{-1}[p]). \quad (7)$$

Due to the diversification effect, the risk margin per policy, i.e. $e^{-r} i \frac{\sigma}{\sqrt{N}} \Phi^{-1}[p]$, is a decreasing function of the portfolio size N . \blacktriangleleft

Many claims that insurance companies face are not perfectly hedgeable, but nevertheless not \mathbb{P} -independent of the payoffs of the traded assets. Such claims are neither hedgeable nor orthogonal. Instead, they belong to the class of unhedgeable and non-orthogonal claims. Hereafter, we will call the members of this class hybrid claims.

Definition 3 (Hybrid Claim). A claim S is a hybrid claim in case it is neither perfectly hedgeable nor orthogonal:

$$S \in \mathcal{C} \setminus (\mathcal{C}^h \cup \mathcal{C}^{\perp}).$$

Unit-linked insurance products often have by construction a financial (hedgeable) and an actuarial (unhedgeable) part in their payoff. This means that the valuation of unit-linked insurance claims gives rise to the valuation of hybrid claims. Furthermore, the development of markets in insurance-linked securities (such as catastrophic bonds, weather derivatives, longevity bonds) creates the possibility that liabilities of insurance portfolios that are exposed to specific actuarial risks (such as those arising from natural catastrophes) become at least partially hedgeable. Hence, insurance securitization may also lead to hybrid claims in insurance portfolios.

Insurance valuation regulations are in general clear about the fair valuation of hedgeable and orthogonal claims. The former type of claims are valued at the cost of the replicating portfolio, while the latter are valued as the sum of their expected present value and a risk margin. However, it is usually unclear how to perform the fair valuation of hybrid claims. This paper contributes to the development of solutions for that important issue.

3. Fair valuations and fair hedgers

In this section, we define different classes of valuations, which attach a value to any claim $S \in \mathcal{C}$. We also introduce different classes of hedgers, which attach a trading strategy to any claim. We show that there is a one-to-one relation between each class of valuations and its corresponding class of hedgers.

3.1. Fair valuations

In this subsection, we define the notion of valuation. Furthermore, we introduce the notions of market-consistent, actuarial and fair valuations, respectively.

Definition 4 (Valuation). A valuation is a mapping $\rho : \mathcal{C} \rightarrow \mathbb{R}$, attaching a real number to any claim $S \in \mathcal{C}$:

$$S \rightarrow \rho[S],$$

such that ρ is normalized:

$$\rho[0] = 0, \quad (8)$$

and ρ is *translation invariant*:

$$\rho[S + a] = \rho[S] + e^{-r}a, \quad \text{for any } S \in \mathcal{C} \text{ and } a \in \mathbb{R}. \quad (9)$$

A valuation ρ attaches a real number to any claim, which we interpret as a ‘value’ of that claim. For any valuation ρ , we immediately find that

$$\rho[a] = e^{-r}a, \quad \text{for any } a \in \mathbb{R}. \quad (10)$$

Other properties that a valuation may satisfy or not are \mathbb{P} -law invariance, positive homogeneity and subadditivity. A valuation ρ is said to be *\mathbb{P} -law invariant* if

$$\rho[S_1] = \rho[S_2] \quad \text{for any } S_1, S_2 \in \mathcal{C} \text{ with } S_1 \stackrel{\mathbb{P}}{=} S_2.$$

It is said to be *positive homogeneous* if

$$\rho[aS] = a\rho[S], \quad \text{for any scalar } a > 0 \text{ and any } S \in \mathcal{C},$$

while it is said to be *subadditive* if

$$\rho[S_1 + S_2] \leq \rho[S_1] + \rho[S_2], \quad \text{for any } S_1, S_2 \in \mathcal{C}.$$

An important subclass of the class of valuations is the class of market-consistent valuations, which are defined hereafter.

Definition 5 (Market-Consistent Valuation). A market-consistent valuation (MC valuation) is a valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$ such that any hedgeable part of any claim is marked-to-market:

$$\rho[S + \mathbf{v} \cdot \mathbf{Y}] = \rho[S] + \mathbf{v} \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C} \text{ and any } \mathbf{v} \cdot \mathbf{Y} \in \mathcal{C}^h. \quad (11)$$

In the literature on MC valuation, market-consistency is usually defined via condition (11), see e.g. Kupper et al. (2008), Malamud et al. (2008) or Artzner and Eisele (2010) and Pelsser and Stadje (2014). The mark-to-market condition (11) can be interpreted as an extension of the notion of translation (or cash) invariance (9) from scalars to hedgeable claims. The mark-to-market condition can also be stated in the following way:

$$\rho[S] = \rho[S - \mathbf{v} \cdot \mathbf{Y}] + \mathbf{v} \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C} \text{ and } \mathbf{v} \cdot \mathbf{Y} \in \mathcal{C}^h. \quad (12)$$

In order to interpret (12), consider a person facing a loss S . This person could decide to transfer the whole loss S to the insurer. Alternatively, he could split his claim S into a hedgeable claim $\mathbf{v} \cdot \mathbf{Y}$, which he hedges in the financial market, while he brings the remaining part $S - \mathbf{v} \cdot \mathbf{Y}$ to the insurer. The condition (12) states that the claim S is equally valued in both cases. In other words, the insurer evaluates in agreement with the financial market, in the sense that he does not charge a risk margin for any hedgeable part of a claim. From (12), we also find that for any hedgeable claim $S^h = \mathbf{v} \cdot \mathbf{Y}$, we have that

$$\rho[\mathbf{v} \cdot \mathbf{Y}] = \mathbf{v} \cdot \mathbf{y}, \quad (13)$$

which means that the MC value of a hedgeable claim is equal to the price of its underlying hedge.

Next we define actuarial valuations.

Definition 6 (Actuarial Valuation). An actuarial valuation is a valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$ such that any orthogonal claim is marked-to-model:

$$\rho[S^\perp] = e^{-r} \mathbb{E}^\mathbb{P}[S^\perp] + \text{RM}[S^\perp], \quad \text{for any } S^\perp \in \mathcal{C}^\perp, \quad (14)$$

where $\text{RM} : \mathcal{C}^\perp \rightarrow \mathbb{R}$ is a mapping attaching to any orthogonal claim a real number, not depending on the current asset prices $(y^{(1)}, y^{(2)}, \dots, y^{(n)})$.

The mark-to-model condition (14) states that any orthogonal claim is valued by the sum of its best estimate $e^{-r} \mathbb{E}^\mathbb{P}[S^\perp]$ and a risk margin $\text{RM}[S^\perp]$. In order to guarantee that an actuarial valuation is indeed a valuation, one must have that $\text{RM}[0] = 0$ and $\text{RM}[S^\perp + a] = \text{RM}[S^\perp]$ for any orthogonal claim. The actuarial valuation ρ and in particular the risk margin function RM that is used in a specific situation is chosen by the actuary, the regulator or any other valuator of the claims and introduces actuarial judgement in the valuation of claims. In the traditional view on valuation in an insurance context, the existence of the financial market is ignored, except for the risk-free bank account. In such an approach, any claim S is orthogonal, and any claim is valued via an actuarial valuation.

Our definition of an actuarial valuation is broad in the sense that the only requirement that is made concerning the risk margin is that it is not dependent on information concerning the prices of the traded assets that is available at the moment of the valuation. Alternative definitions for an actuarial valuation are possible. In a narrow setting, one could define an actuarial valuation as a valuation of the form (14) where RM is the risk margin function of the Cost-of-Capital principle (6) for a given probability level p and cost-of-capital i . In general, an actuarial valuation could be defined as a valuation satisfying a well-defined property in the set of orthogonal claims. One could consider e.g. a set of probability measures $(\mathbb{P}_1, \mathbb{P}_2, \dots, \mathbb{P}_n)$ on the measurable space $(\mathcal{Q}, \mathcal{G})$, and require that for any orthogonal claim $S^\perp \in \mathcal{C}^\perp$, $\rho[S^\perp]$ only depends on the n cdfs $F_{S^\perp}^{\mathbb{P}_1}, F_{S^\perp}^{\mathbb{P}_2}, \dots, F_{S^\perp}^{\mathbb{P}_n}$ of S^\perp under these different measures. An example is the ‘worst-case’ valuation

$$\rho[S^\perp] = \max(\rho_1[S^\perp], \rho_2[S^\perp], \dots, \rho_n[S^\perp]), \quad \text{for any } S^\perp \in \mathcal{C}^\perp,$$

where for each i , ρ_i is an actuarial valuation in the sense of the original definition (14), where the measure \mathbb{P} is replaced by \mathbb{P}_i . It is important to notice that all the results that we will derive hereafter concerning the characterization of fair valuations remain valid under any such adapted definition of an actuarial valuation.

Current insurance solvency regulations impose mark-to-market as well as mark-to-model requirements for the valuation of assets and liabilities.² However, in the existing scientific literature on valuating claims in a combined financial–actuarial setting, the focus is on the mark-to-market condition as defined according to (11), while the mark-to-model condition, which states that non-financial components of a claim should be valued taking into account actuarial judgement, is ignored. Therefore, hereafter we introduce the class of fair valuations, which is a subset of the class of market-consistent valuations. These fair valuations are closer to the meaning of fair valuation in current insurance solvency regulations, as they satisfy a mark-to-market as well as a mark-to-model condition.

Definition 7 (Fair Valuation). A fair valuation is a valuation that is both market-consistent and actuarial.

At first sight, one could wonder whether it would be more appropriate to define a fair valuation as a valuation that obeys the mark-to-market condition (11) for any hedgeable part of a claim, as

² In the ‘Solvency II Glossary’ of the ‘Comité Européen des Assurances’ and the ‘Groupe Consultatif Actuel Européen’ of 2007, Fair Value is defined as ‘the amount for which ... a liability could be settled between knowledgeable, willing parties in an arm’s length transaction. This is similar to the concept of Market Value, but the Fair Value may be a mark-to-model price if no actual market price for the ... liability exists’.

well as the following mark-to-model condition for any orthogonal part of a claim:

$$\rho[S + S^\perp] = \rho[S] + \pi[S^\perp], \quad \text{for any } S \in \mathcal{C} \text{ and any } S^\perp \in \mathcal{C}^\perp,$$

where π is an actuarial valuation as defined above. One can easily prove that this condition would imply that $\rho[S^\perp] = \pi[S^\perp]$ and hence,

$$\pi[S_1^\perp + S_2^\perp] = \pi[S_1^\perp] + \pi[S_2^\perp], \quad \text{for any } S_1^\perp, S_2^\perp \in \mathcal{C}^\perp,$$

which would ignore the diversification benefit which is essential for valuating non-replicable insurance liabilities, see e.g. (7) in Example 1.

The valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$ defined by

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}}[S] \quad (15)$$

for a given EMM \mathbb{Q} is an example of a valuation which is market-consistent but in general not actuarial and hence, not fair. Using the risk neutral valuation (15) for hybrid and orthogonal claims in insurance portfolios is in general not appropriate. Consider e.g. the orthogonal claim $S^\perp = \sum_{i=1}^N X_i$, where the claims X_i are i.i.d. and suppose that this claim is valued by (15). The value per policy is then given by

$$\frac{\rho[S^\perp]}{N} = e^{-r} \mathbb{E}^{\mathbb{Q}}[X_1],$$

which is independent of the size N of the portfolio and hence, ignores the diversification effect in an insurance context. This observation illustrates the fact that market-consistency is a necessary but not sufficient condition for a valuation to be appropriate in an insurance context. The insufficiency is a consequence of the ignorance of diversification concerns in a market-consistent valuation.

From the requirements (11) and (14), we find that the fair valuation for $S^\perp + \mathbf{v} \cdot \mathbf{Y}$ with $S^\perp \in \mathcal{C}^\perp$ and $\mathbf{v} \cdot \mathbf{Y} \in \mathcal{C}^h$ is given by

$$\rho[S^\perp + \mathbf{v} \cdot \mathbf{Y}] = \pi[S^\perp] + \mathbf{v} \cdot \mathbf{y}, \quad (16)$$

where π is an actuarial valuation. Hence, the MC value of the claim $S^\perp + S^h$ is given by the sum of the actuarial value of S^\perp and the financial market price of $\mathbf{v} \cdot \mathbf{Y}$. In other words, the orthogonal part of the claim is marked-to-model, whereas the hedgeable part is marked-to-market.

Most hybrid claims observed in an insurance context are of a more complex structure than the additive structure considered in (16). One often encounters a multiplicative structure, where the claim S to be valued can be expressed in the form

$$S = S^h \times S^\perp, \quad \text{with } S^h \in \mathcal{C}^h \text{ and } S^\perp \in \mathcal{C}^\perp. \quad (17)$$

Solvency regulations are in general rather vague on how to evaluate such hybrid claims. It is obvious that this claim is only partially hedgeable, and that S^h is hedgeable whereas S^\perp is not. But it is not clear how to combine market prices of hedgeable claims with actuarial considerations to determine a fair value for the claim, since regulatory frameworks usually do not prescribe how to determine the hedgeable part of a non-hedgeable claim.

Example 2 (Unit-linked Insurance). Consider an insurance portfolio consisting of N insureds, with $X_i \in \mathcal{C}^\perp$ equal to 1 if insured $i = 1, 2, \dots, N$, is alive at time 1 and equal to 0 in the other case. The orthogonal claims X_i are assumed to be i.i.d. with mean p under \mathbb{P} . The number of survivors at time 1 is given by

$$S^\perp = \sum_{i=1}^N X_i.$$

Each insured i has underwritten a one-year *unit-linked contract with guarantee* against the risk that asset 1 falls short of $K > 0$.

The payoff of individual contract i at time 1 is given by

$$\max(Y^{(1)}, K) \times X_i.$$

Suppose that the put option with payoff $(K - Y^{(1)})_+$ is traded at price $P[K]$. The unit-linked contracts have an unbounded upside potential and offer downward protection. The portfolio liability at time 1 is given by

$$S^h \times S^\perp = \max(Y^{(1)}, K) \times \sum_{i=1}^N X_i. \quad (18)$$

Let us now consider a valuation ρ satisfying

$$\rho[S^h \times S^\perp] = e^{-r} \mathbb{E}^{\mathbb{Q}}[S^h] \times (\mathbb{E}^{\mathbb{P}}[S^\perp] + \alpha \sigma^{\mathbb{P}}[S^\perp]),$$

with $\alpha \geq 0$. In our particular case, this expression reduces to

$$\rho[S^h \times S^\perp] = (y^{(1)} + P[K]) (Np + \sqrt{N} \alpha \sqrt{p(1-p)}).$$

It is easy to prove that in case each unit-linked contract is charged a premium equal to $\frac{\rho[S^h \times S^\perp]}{N}$ and if these premiums are fully invested in S^h , the probability that the insurer will be able to fulfil his liabilities at time 1 is given by

$$\mathbb{P}\left[\frac{S^\perp - \mathbb{E}^{\mathbb{P}}[S^\perp]}{\sigma^{\mathbb{P}}[S^\perp]} \leq \alpha\right].$$

Assuming the portfolio is sufficiently large, this probability is approximately equal to $\Phi[\alpha]$, where Φ is the standard normal distribution. ◀

More complicated hybrid claims arise when the claim S is given by

$$S = S^h \times S', \quad \text{with } S^h \in \mathcal{C}^h \text{ and } S' \in \mathcal{C}, \quad (19)$$

where S^h and S' are not assumed to be \mathbb{P} -independent. Obviously, in this case the decomposition is not unique. As an example, consider the claim S defined in the previous example, where we do not assume \mathbb{P} -independence between (X_1, X_2, \dots, X_n) and $Y^{(1)}$.

A major simplification for valuating the claim S defined in (17), originating from Brennan and Schwartz (1976), see also Brennan and Schwartz (1979a, b), arises if we assume that the claim S^\perp is completely diversified, in the sense that

$$S^\perp = \mathbb{E}^{\mathbb{P}}[S^\perp].$$

This assumption can be justified for very large portfolios of independent claims by the law of large numbers. Under this assumption of complete diversification, we find that $S^h \times \mathbb{E}^{\mathbb{P}}[S^\perp]$ is a hedgeable claim, only containing financial uncertainty and hence, taking into account (13), we find that

$$\rho[S^h \times S^\perp] = \mathbf{v} \cdot \mathbf{y} \times \mathbb{E}^{\mathbb{P}}[S^\perp]. \quad (20)$$

Taking into account that

$$\mathbf{v} \cdot \mathbf{y} = e^{-r} \mathbb{E}^{\mathbb{Q}}[S^h]$$

for any EMM \mathbb{Q} , we can transform the previous expression in the well-known Brennan & Schwartz-formula:

$$\rho[S^h \times S] = e^{-r} \mathbb{E}^{\mathbb{Q}}[S^h] \times \mathbb{E}^{\mathbb{P}}[S^\perp]. \quad (21)$$

This approach based on 'complete actuarial diversification' does not answer the question of how to quantify hybrid claims of the form $S^h \times S^\perp$ in case the law of large numbers is not applicable for the insurance claim S^\perp . In this case, one is not able to 'average out' the insurance risk. Instead, one has to consider $S^h \times S^\perp$ as a claim in an incomplete market and come up with a valuation approach that reflects both financial and actuarial risk. Such valuation approaches will be considered in the following sections.

3.2. Fair hedgers

After having defined market-consistent, actuarial and fair valuations, we will now introduce the corresponding classes of hedgers. In particular, we will define market-consistent, actuarial and fair hedgers. We will investigate the relation between each type of valuation and its corresponding class of hedgers.

Definition 8 (Hedger). A hedger is a function $\theta : \mathcal{C} \rightarrow \Theta$ which maps any claim S into a trading strategy $\theta_S = (\theta_S^{(0)}, \theta_S^{(1)}, \dots, \theta_S^{(n)})$, such that

- θ is normalized:

$$\theta_0 = (0, 0, \dots, 0).$$

- θ is translation invariant:

$$\theta_{S+a} = \theta_S + (e^{-r}a, 0, \dots, 0), \quad \text{for any scalar } a > 0$$

and any $S \in \mathcal{C}$.

The mapping $\theta : \mathcal{C} \rightarrow \Theta$ is called a hedger, whereas for any claim S , the trading strategy θ_S is called a hedge for S . This hedge may be a partial or a perfect hedge. The value of the hedge θ_S of S at time 1 is given by

$$\theta_S \cdot \mathbf{Y} = \sum_{m=0}^n \theta_S^{(m)} Y^{(m)}, \quad (22)$$

whereas its time-0 value equals

$$\theta_S \cdot \mathbf{y} = \sum_{m=0}^n \theta_S^{(m)} y^{(m)} = e^{-r} \mathbb{E}^{\mathbb{Q}} [\theta_S \cdot \mathbf{Y}], \quad (23)$$

where \mathbb{Q} can be any element of the class of EMM's.

Definition 9. A hedger $\theta : \mathcal{C} \rightarrow \Theta$ is said to be

- positive homogeneous if

$$\theta_{aS} = a\theta_S, \quad \text{for any scalar } a > 0 \text{ and any } S \in \mathcal{C},$$

- additive if

$$\theta_{S_1+S_2} = \theta_{S_1} + \theta_{S_2}, \quad \text{for any } S_1, S_2 \in \mathcal{C}.$$

Hereafter, we introduce the subclasses of market-consistent, actuarial and fair hedgers.

Definition 10 (Market-Consistent, Actuarial and Fair Hedger). (1) A hedger is market-consistent (MC) in case any hedgeable part $\mathbf{v} \cdot \mathbf{Y}$ of any claim is hedged by \mathbf{v} :

$$\theta_{S+\mathbf{v} \cdot \mathbf{Y}} = \theta_S + \mathbf{v}, \quad \text{for any } S \in \mathcal{C} \text{ and any } \mathbf{v} \cdot \mathbf{Y} \in \mathcal{C}^h. \quad (24)$$

(2) A hedger is actuarial in case any orthogonal claim is hedged risk-free via an actuarial valuation ρ :

$$\theta_{S^\perp} = (\rho [S^\perp], 0, \dots, 0), \quad \text{for any } S^\perp \in \mathcal{C}^\perp. \quad (25)$$

(3) A hedger is fair in case it is market-consistent and actuarial.

For any actuarial or fair hedger θ with actuarial valuation ρ used to hedge claims in \mathcal{C}^\perp , we call ρ the underlying actuarial valuation of θ . The condition (24) in the definition of a market-consistent hedger can also be expressed as follows: for any hedgeable claim $\mathbf{v} \cdot \mathbf{Y}$ and any claim S , one has that

$$\theta_S = \mathbf{v} + \theta_{S-\mathbf{v} \cdot \mathbf{Y}}. \quad (26)$$

Written in this way, it is easily seen that hedging in two steps and hedging in a single step lead to the same global hedge. Indeed, first choosing a hedge \mathbf{v} and then applying the hedger θ to the remaining

loss $S - \mathbf{v} \cdot \mathbf{Y}$ leads to the same overall hedge as immediately applying the hedger θ on S .

The condition (25) in the definition of an actuarial hedger means that any orthogonal claim S^\perp is hedged by an investment of amount $\rho [S^\perp]$ in zero-coupon bonds.

In the following lemma, we summarize some properties of hedgers that will be used hereafter. The proofs are straightforward and therefore omitted.

Lemma 1. Consider a claim S , an orthogonal claim S^\perp , a hedgeable claim $\mathbf{v} \cdot \mathbf{Y}$ and a scalar a .

- (1) For any hedger θ , one has that

$$\theta_a = (e^{-r}a, 0, \dots, 0). \quad (27)$$

- (2) For any market-consistent hedger θ , one has that

$$\theta_{\mathbf{v} \cdot \mathbf{Y}} = \mathbf{v}. \quad (28)$$

- (3) For any fair hedger θ with underlying actuarial valuation ρ , one has that

$$\theta_{S^\perp + \mathbf{v} \cdot \mathbf{Y}} = (\rho [S^\perp], 0, \dots, 0) + \mathbf{v}. \quad (29)$$

In the proofs of a number of forthcoming theorems, we will consider a hedge μ_S for any claim S which is defined as the sum of another hedge θ_S of S and an actuarial hedge of the remaining risk $S - \theta_S \cdot \mathbf{Y}$. Some properties of such hedgers are considered in the following lemma.

Lemma 2. Consider a hedger θ and a valuation ρ . Define the hedger μ by

$$\mu_S = \theta_S + (\rho [S - \theta_S \cdot \mathbf{Y}], 0, \dots, 0), \quad \text{for any } S \in \mathcal{C}. \quad (30)$$

- (a) If θ is a MC hedger, then μ is a MC hedger.
- (b) If θ is an actuarial hedger and ρ is an actuarial valuation, then μ is an actuarial hedger with underlying actuarial valuation ρ .
- (c) If θ is a fair hedger and ρ is an actuarial valuation, then μ is a fair hedger with underlying actuarial valuation ρ .

Proof. (a) Suppose that θ is a MC hedger. For any claim S and any hedgeable claim $S^h = \mathbf{v} \cdot \mathbf{Y}$, we find that

$$\begin{aligned} \mu_{S+S^h} &= \theta_{S+S^h} + (\rho [S + S^h - \theta_{S+S^h} \cdot \mathbf{Y}], 0, \dots, 0) \\ &= \theta_S + \mathbf{v} + (\rho [S - \theta_S \cdot \mathbf{Y}], 0, \dots, 0) \\ &= \mu_S + \mathbf{v}. \end{aligned}$$

We can conclude that μ is a MC hedger.

(b) Next, suppose that θ is an actuarial hedger with underlying actuarial valuation π . Further, suppose that ρ is an actuarial valuation. For any orthogonal claim S^\perp , we have

$$\begin{aligned} \mu_{S^\perp} &= \theta_{S^\perp} + (\rho [S^\perp - \theta_{S^\perp} \cdot \mathbf{Y}], 0, \dots, 0) \\ &= (\pi [S^\perp] + \rho [S^\perp - e^r \pi [S^\perp]]], 0, \dots, 0) \\ &= (\rho [S^\perp], 0, \dots, 0), \end{aligned}$$

where in the last step, we used the translation invariance of ρ . We can conclude that μ is an actuarial hedger with underlying actuarial valuation ρ .

(c) Finally, suppose that θ is a fair hedger with underlying actuarial valuation π , while ρ is an actuarial valuation. From (a) and (b) it follows immediately that μ is a fair hedger with underlying actuarial valuation ρ . ■

In Section 4.3, we will consider mean-variance hedging and the related mean-variance hedger which will be shown to be a fair hedger, see Corollary 2 hereafter. The mean-variance hedger

is defined as follows:

$$\theta_S^M = \arg \min_{\theta \in \Theta} \mathbb{E}^{\mathbb{P}} [(S - \theta \cdot \mathbf{Y})^2], \quad \text{for any } S \in \mathcal{C}. \quad (31)$$

In the following theorem it is shown that any MC valuation can be represented as the time - 0 price of MC hedger. Similar properties hold for actuarial and fair valuations.

Theorem 1. Consider the valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$.

(a) ρ is a MC valuation if and only if there exists a MC hedger θ^M such that

$$\rho[S] = \theta_S^M \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C}. \quad (32)$$

(b) ρ is an actuarial valuation if and only if there exists an actuarial hedger θ^a such that

$$\rho[S] = \theta_S^a \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C}. \quad (33)$$

(c) ρ is a fair valuation if and only if there exists a fair hedger θ^f such that

$$\rho[S] = \theta_S^f \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C}. \quad (34)$$

Proof. (a) Let ρ be a MC valuation. Consider a MC hedger θ , e.g. the mean-variance hedger defined in (31). For any claim S , we find from (12) that

$$\begin{aligned} \rho[S] &= \rho[S - \theta_S \cdot \mathbf{Y}] + \theta_S \cdot \mathbf{y} \\ &= \theta_S^M \cdot \mathbf{y} \end{aligned}$$

with

$$\theta_S^M = \theta_S + (\rho[S - \theta_S \cdot \mathbf{Y}], 0, \dots, 0). \quad (35)$$

From Lemma 2 we know that θ^M is a MC hedger.

(a') Suppose that the valuation ρ is defined by (32) for some MC hedger θ^M . For any hedgeable claim $\mathbf{v} \cdot \mathbf{Y}$, we find that

$$\begin{aligned} \rho[S + \mathbf{v} \cdot \mathbf{Y}] &= \theta_{S+\mathbf{v} \cdot \mathbf{Y}}^M \cdot \mathbf{y} \\ &= (\theta_S^M + \mathbf{v}) \cdot \mathbf{y} \\ &= \rho[S] + \mathbf{v} \cdot \mathbf{y}. \end{aligned}$$

We can conclude that ρ is a MC valuation.

(b) Let ρ be an actuarial valuation. Consider the hedger θ^a with

$$\theta_S^a = (\rho[S], 0, \dots, 0),$$

for any claim S . Obviously, θ^a is an actuarial hedger. Then we find that

$$\rho[S] = \theta_S^a \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C}.$$

(b') Suppose that the valuation ρ is defined by (33) for some actuarial hedger θ^a with underlying actuarial valuation π . For any orthogonal claim S^\perp , we have

$$\rho[S^\perp] = \theta_{S^\perp}^a \cdot \mathbf{y} = \pi[S^\perp].$$

We can conclude that the valuation ρ is actuarial.

(c) Let ρ be a fair valuation. Consider a fair hedger θ , e.g. the mean-variance hedger, with underlying actuarial valuation π . From (a) we know that for any claim S , $\rho[S]$ can be expressed as

$$\rho[S] = \theta_S^M \cdot \mathbf{y},$$

with the MC hedger θ^M given by (35). Furthermore, for any orthogonal claim S^\perp , we find that

$$\begin{aligned} \theta_{S^\perp}^M &= \theta_{S^\perp} + (\rho[S^\perp - \theta_{S^\perp} \cdot \mathbf{Y}], 0, \dots, 0) \\ &= (\pi[S^\perp], 0, \dots, 0) + (\rho[S^\perp - e^r \pi[S^\perp]], 0, \dots, 0) \\ &= (\rho[S^\perp], 0, \dots, 0). \end{aligned}$$

As ρ is an actuarial valuation, we can conclude that the hedger θ^M is not only market-consistent but also actuarial and hence, a fair hedger.

(c') Suppose that the valuation ρ is defined by (34) for some fair hedger θ^f . From (a) and (b) we can conclude that the valuation ρ is market-consistent and actuarial, which means that it is fair. ■

From Theorem 1, we know that any fair value $\rho[S]$ can be considered as the time-0 price of a fair hedge:

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}} [\theta_S^f \cdot \mathbf{Y}],$$

where \mathbb{Q} is an EMM and θ_S^f is a fair hedger. We remark that this result is mainly of a theoretical nature, and often not really useful in practice, as the fair hedge θ_S^f is only implicitly specified, see (35). Moreover, notice that the fair hedger attached to a fair valuation is not uniquely determined.

Consider the fair valuation characterized by

$$\rho[S] = \theta_S^f \cdot \mathbf{y}, \quad \text{for any } S \in \mathcal{C}, \quad (36)$$

where θ^f is a fair hedger with underlying actuarial valuation π . Furthermore, consider the claim $S^h \times S^\perp$, where $S^h = \mathbf{v} \cdot \mathbf{Y} \in \mathcal{C}^h$ and $S^\perp \in \mathcal{C}^\perp$. In case

$$\theta_{S^h \times S^\perp}^f = \mathbf{v} \times e^r \pi[S^\perp] \quad (37)$$

holds, the fair value $\rho[S^h \times S^\perp]$ can be expressed as

$$\rho[S^h \times S^\perp] = \mathbb{E}^{\mathbb{Q}} [S^h] \times \pi[S^\perp], \quad (38)$$

for any EMM \mathbb{Q} . The condition (37) is always satisfied when $S^\perp = \mathbb{E}^{\mathbb{P}} [S^\perp]$. In this case, we have that $\pi[S^\perp] = e^{-r} \mathbb{E}^{\mathbb{P}} [S^\perp]$ and (38) reduces to the well-known Brennan & Schwartz-formula (21). In this sense, the expression (38) is a generalization of the Brennan & Schwartz result. As we will see in Section 4.3, the assumption (37) is satisfied and hence, the expression (38) holds in case θ^f is the mean-variance hedger.

4. Hedge-based valuations

In this section, we present and investigate a class of fair valuations, the members of which we will call *hedge-based valuations*. We show that the classes of fair and hedge-based valuations are identical.

4.1. The general class of hedge-based valuations

In order to determine a hedge-based value of S , one first splits this claim into a hedgeable claim, which (partially) replicates S , and a remaining claim. The value of the claim S is then defined as the sum of the financial price of the hedgeable claim and the value of the remaining claim, determined according to a pre-specified actuarial valuation.

Definition 11 (Hedge-Based Valuation). The valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$ is a hedge-based valuation (HB valuation) if for any claim S , the value $\rho[S]$ is determined by

$$\rho[S] = \theta_S \cdot \mathbf{y} + \pi[S - \theta_S \cdot \mathbf{Y}] \quad (39)$$

where θ is a fair hedger and π is an actuarial valuation.

For any claim S , we call $\rho[S]$ a hedge-based value of S . It is easy to verify that the mapping ρ defined in (39) is normalized and translation invariant, and hence, a valuation as defined above.

From the definition above, we find that any HB valuation ρ reduces to an actuarial valuation for orthogonal claims:

$$\rho[S^\perp] = \pi[S^\perp], \quad \text{for any } S^\perp \in \mathcal{C}^\perp.$$

Moreover, the HB value of any hedgeable claim is equal to the price of the underlying hedge:

$$\rho[S^h] = e^{-r} \mathbb{E}^{\mathbb{Q}}[S^h], \quad \text{for any } S^h \in \mathcal{C}^h.$$

Sufficient conditions for positive homogeneity and subadditivity of hedge-based valuations are considered in the next theorem.

Theorem 2. For any HB valuation ρ with fair hedger θ and actuarial valuation π , the following properties hold:

(1) If θ and π are positive homogeneous, then ρ is positive homogeneous:

$$\rho[aS] = a\rho[S], \quad \text{for any } a > 0 \text{ and } S \in \mathcal{C}. \quad (40)$$

(2) If θ is additive and π is subadditive, then ρ is subadditive:

$$\rho[S_1 + S_2] \leq \rho[S_1] + \rho[S_2], \quad \text{for any } S_1, S_2 \in \mathcal{C}. \quad (41)$$

The proof of the theorem is straightforward.

In the following theorem, it is proven that the class of hedge-based valuations is equal to the class of fair valuations.

Theorem 3. A mapping $\rho : \mathcal{C} \rightarrow \mathbb{R}$ is a HB valuation if and only if it is a fair valuation.

Proof. (a) Consider the HB valuation ρ defined in (39). For any claim S , we can rewrite $\rho[S]$ as

$$\rho[S] = \theta_S \cdot \mathbf{y}$$

with

$$\mu_S = \theta_S + (\pi[S - \theta_S \cdot \mathbf{Y}], 0, \dots, 0). \quad (42)$$

From Lemma 2, it follows that μ is a fair hedger with underlying actuarial valuation π . Theorem 1 leads then to the conclusion that ρ is a fair valuation.

(b) Consider the fair valuation ρ . From Theorem 1, we know that there exists a fair hedger θ^f such that $\rho[S] = \theta_S^f \cdot \mathbf{y}$ for any claim S . Define the valuation ρ' by

$$\rho'[S] = \theta_S^f \cdot \mathbf{y} + \rho[S - \theta_S^f \cdot \mathbf{Y}]. \quad (43)$$

Obviously, ρ' is a HB valuation. Moreover, it is easy to verify that

$$\rho[S - \theta_S^f \cdot \mathbf{Y}] = 0.$$

We can conclude that $\rho \equiv \rho'$, and hence, ρ is indeed a HB valuation. ■

One could define a broader class of HB valuations by requiring that the hedger θ in (39) is a market-consistent hedger and π is an actuarial valuation. In this case the hedger μ defined in (42) is market-consistent, but not necessarily fair, implying that such a generalized HB valuation is market-consistent but not necessarily fair.

4.2. Convex hedge-based valuations

We start this subsection by introducing a class of hedgers, which we baptize convex hedgers.

Definition 12 (Convex Hedger). Consider a strictly convex non-negative function u with $u(0) = 0$. The convex hedger θ^u is determined by

$$\theta_S^u = \arg \min_{\mu \in \Theta} \mathbb{E}^{\mathbb{P}}[u(S - \mu \cdot \mathbf{Y})], \quad \text{for any } S \in \mathcal{C}. \quad (44)$$

The convex hedger $\theta^u : \mathcal{C} \rightarrow \Theta$ attaches the hedge θ_S^u to any claim S , such that the claim and the time-1 value of the hedge are

'close to each other' in the sense that the \mathbb{P} -expectation of the u -value of their difference is minimized. The choice of the convex function u determines how severe deviations are punished.

Theorem 4. The convex hedger θ^u is a fair hedger with underlying actuarial valuation π^u satisfying

$$\pi^u[S^{\perp}] = \arg \min_{s \in \mathbb{R}} \mathbb{E}^{\mathbb{P}}[u(S^{\perp} - e^r s)], \quad \text{for any } S^{\perp} \in \mathcal{C}^{\perp}. \quad (45)$$

Proof. Consider the convex hedger θ^u defined in (44). We have to prove that θ^u satisfies the conditions (24) and (25) of the definition of a fair hedger.

(a) For any hedgeable claim $S^h = \mathbf{v} \cdot \mathbf{Y}$, we have that

$$\begin{aligned} \theta_{S+\mathbf{v} \cdot \mathbf{Y}}^u &= \arg \min_{\mu \in \Theta} [u(S - (\mu - \mathbf{v}) \cdot \mathbf{Y})] \\ &= \mathbf{v} + \arg \min_{\mu' \in \Theta} [u(S - \mu' \cdot \mathbf{Y})] \\ &= \mathbf{v} + \theta_S^u, \end{aligned}$$

which means that the condition (24) is satisfied.

(b) Consider the orthogonal claim $S^{\perp} \in \mathcal{C}^{\perp}$. Taking into account the independence of S^{\perp} and \mathbf{Y} as well as Jensen's inequality, we find for any trading strategy $\mu \in \Theta$ that

$$\mathbb{E}^{\mathbb{P}}[u(S^{\perp} - \mu \cdot \mathbf{Y}) | S^{\perp}] \geq u(S^{\perp} - \mu \cdot \mathbb{E}^{\mathbb{P}}[\mathbf{Y}]).$$

Taking expectations on both sides leads to

$$\begin{aligned} \mathbb{E}^{\mathbb{P}}[u(S^{\perp} - \mu \cdot \mathbf{Y})] &\geq \mathbb{E}^{\mathbb{P}}[u(S^{\perp} - \mu \cdot \mathbb{E}^{\mathbb{P}}[\mathbf{Y}])] \\ &\geq \mathbb{E}^{\mathbb{P}}[u(S^{\perp} - e^r \pi^u[S^{\perp}])], \end{aligned}$$

which holds for any $\mu \in \Theta$. Taking into account that $e^r \pi^u[S^{\perp}]$ can be rewritten as

$$e^r \pi^u[S^{\perp}] = (\pi^u[S^{\perp}], 0, \dots, 0) \cdot \mathbf{Y},$$

with $(\pi^u[S^{\perp}], 0, \dots, 0)$ being an element of Θ , we find that

$$\theta_{S^{\perp}}^u = (\pi^u[S^{\perp}], 0, \dots, 0).$$

Let us now extend the definition (45) of π^u to all $S \in \mathcal{C}$. It is easy to verify that π^u is an actuarial valuation. We can conclude that also the condition (25) is satisfied. ■

Definition 13 (Convex Hedge-Based Valuation). Consider a strictly convex non-negative function u with $u(0) = 0$. The valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$ defined by

$$\rho[S] = \theta_S^u \cdot \mathbf{y} + \pi^u[S - \theta_S^u \cdot \mathbf{Y}],$$

with convex hedger θ^u and actuarial valuation π is called a convex hedge-based valuation (CHB valuation).

Corollary 1. Any CHB valuation is a fair valuation.

The proof of the corollary follows from observing that any CHB valuation is a HB valuation, implying that it is a fair valuation.

4.3. Mean-variance hedge-based valuations

A particular example of a convex hedge-based valuation arises when using the convex hedger with quadratic function $u(s) = s^2$. This hedger is called the mean-variance hedger.

Definition 14 (Mean-Variance Hedger). For any $S \in \mathcal{C}$, the mean-variance hedge θ_S^{MV} (MV hedge) is the hedge for which the \mathbb{P} -expected quadratic hedging error is minimized:

$$\theta_S^{MV} = \arg \min_{\mu \in \Theta} \mathbb{E}^{\mathbb{P}}[(S - \mu \cdot \mathbf{Y})^2]. \quad (46)$$

For an overview on the general theory of mean–variance hedging, we refer to [Schweizer \(2001\)](#).

Corollary 2. *The mean–variance hedger $\theta^{\text{MV}} : \mathcal{C} \rightarrow \Theta$ is a fair hedger with underlying actuarial valuation satisfying*

$$\pi^{\text{MV}}[S^\perp] = e^{-r} \mathbb{E}^{\mathbb{P}}[S^\perp], \quad \text{for any } S^\perp \in \mathcal{C}^\perp. \quad (47)$$

Proof. The MV hedger is a convex hedger, implying that it is a fair hedger. From (45) it follows that it has an actuarial valuation which satisfies (47). ■

In the following theorem, we present the unique solution $\theta_S^{\text{MV}} = (\theta_S^{(0)}, \dots, \theta_S^{(n)})$ of the minimization problem (46), which is a standard result from least squares optimization. We use the notation \mathbf{A}^\top for the transpose of a matrix \mathbf{A} .

Theorem 5. *The mean–variance hedge θ_S^{MV} of $S \in \mathcal{C}$ is uniquely determined from*

$$\mathbb{E}^{\mathbb{P}}[\mathbf{Y}^\top \mathbf{Y}] (\theta_S^{\text{MV}})^\top = \mathbb{E}^{\mathbb{P}}[S \mathbf{Y}^\top]. \quad (48)$$

Proof. Taking partial derivatives of the objective function in (46) leads to (48). As the market of traded assets is assumed to be non-redundant, for any $\theta \neq \mathbf{0}$, one has that

$$\theta \mathbb{E}^{\mathbb{P}}[\mathbf{Y}^\top \mathbf{Y}] \theta^\top = \mathbb{E}^{\mathbb{P}}[(\theta_S \cdot \mathbf{Y})^2] > 0.$$

We can conclude that the matrix $\mathbb{E}^{\mathbb{P}}[\mathbf{Y}^\top \mathbf{Y}]$ is positive definite and hence, non-singular. This implies that the mean–variance hedge θ_S^{MV} is uniquely determined and follows from (48). ■

It is a straightforward exercise to show that the system of equations (48) to determine $\theta_S^{\text{MV}} = (\theta_S^{(0)}, \dots, \theta_S^{(n)})$ can be transformed into

$$\begin{cases} \sum_{m=1}^n \text{cov}^{\mathbb{P}}[Y^{(k)}, Y^{(m)}] \theta_S^{(m)} = \text{cov}^{\mathbb{P}}[Y^{(k)}, S], & \text{for } k = 1, \dots, n \\ \theta_S^{(0)} = e^{-r} \left(\mathbb{E}^{\mathbb{P}}[S] - \sum_{m=1}^n \mathbb{E}^{\mathbb{P}}[Y^{(m)}] \theta_S^{(m)} \right). \end{cases} \quad (49)$$

In the following theorem, we provide some well-known properties of the MV hedger.

Theorem 6. *The mean–variance hedger θ^{MV} has the following properties:*

(a) *Any claim S and the time-1 value of its MV hedge are equal in \mathbb{P} -expectation:*

$$\mathbb{E}^{\mathbb{P}}[S] = \mathbb{E}^{\mathbb{P}}[\theta_S^{\text{MV}} \cdot \mathbf{Y}], \quad \text{for any } S \in \mathcal{C}. \quad (50)$$

(b) *The MV hedger is additive:*

$$\theta_{S_1 + S_2}^{\text{MV}} = \theta_{S_1}^{\text{MV}} + \theta_{S_2}^{\text{MV}}, \quad \text{for any } S_1, S_2 \in \mathcal{C}. \quad (51)$$

(c) *The MV hedger is positive homogeneous:*

$$\theta_{a \times S}^{\text{MV}} = a \times \theta_S^{\text{MV}}, \quad \text{for any scalar } a > 0 \text{ and any } S \in \mathcal{C}. \quad (52)$$

(d) *The MV hedge of the product of a hedgeable and an orthogonal claim:*

$$\theta_{S^h \times S^\perp}^{\text{MV}} = \mathbf{v} \times \mathbb{E}^{\mathbb{P}}[S^\perp], \quad \text{for any } S^h = \mathbf{v} \cdot \mathbf{Y} \in \mathcal{C}^h \text{ and } S^\perp \in \mathcal{C}^\perp. \quad (53)$$

Proof. The expression (50) follows immediately from the expression for $\theta_S^{(0)}$ in (49). The other expressions are easy to prove with the help of Theorem 5. ■

Based on the mean–variance hedger introduced above, we can define mean–variance hedge-based valuations.

Definition 15 (Mean–Variance Hedge-Based Valuation). The valuation $\rho : \mathcal{C} \rightarrow \mathbb{R}$ where for any claim S , $\rho[S]$ is determined by

$$\rho[S] = \theta_S^{\text{MV}} \cdot \mathbf{y} + \pi[S - \theta_S^{\text{MV}} \cdot \mathbf{Y}], \quad (54)$$

with θ^{MV} is the mean–variance hedger and π is an actuarial valuation, is called a mean–variance hedge-based valuation (MVHB valuation).

As any MVHB valuation is a HB valuation, we immediately find the following result.

Corollary 3. *Any MVHB valuation is a fair valuation.*

Combining [Theorems 2](#) and [6](#) leads to the following result.

Theorem 7. *For any MVHB valuation ρ with underlying actuarial valuation π , the following properties hold:*

- (1) *If π is positive homogeneous, then ρ is positive homogeneous.*
- (2) *If π is subadditive, then ρ is subadditive.*

In the following subsection, we illustrate the calculation of MVHB valuations with two examples.

4.4. Examples

Example 3. (a) Consider the financial–actuarial world in which a zero-coupon bond and a stock are traded. The current price of the zero-coupon bond equals $y^{(0)} = 1$, while its time-1 price is given by $Y^{(0)} = 1$. The stock trades at current price $y^{(1)} = 1/2$, whereas its value at time 1, notation $Y^{(1)}$, is either 0 or 1. In this world, we also observe a non-traded survival index. Its time-1 value \mathcal{I} is either 0 (if few people of a given population survive) or 1 (in case many of them survive).

We model this financial–actuarial world in the probability space $(\Omega, 2^\Omega, \mathbb{P})$, with the universe Ω given by

$$\Omega = \{(0, 0), (0, 1), (1, 0), (1, 1)\},$$

where each element denotes a possible scenario. The first component of any couple corresponds to a possible value of the stock price $Y^{(1)}$ at time 1, while the second component is a possible value of the survival index \mathcal{I} at time 1. Suppose that the real-world probability measure \mathbb{P} is characterized by

$$p_{00} = \frac{1}{6}, \quad p_{10} = \frac{2}{6}, \quad p_{01} = \frac{1}{6} \quad \text{and} \quad p_{11} = \frac{2}{6},$$

where each p_{ij} stands for $\mathbb{P}[(i, j)]$. One can verify that the time-1 values $Y^{(1)}$ and \mathcal{I} of the stock and the survival index are mutually independent under the physical measure \mathbb{P} , implying that the survival index is an orthogonal claim.

Let us now consider the valuation of the following non-traded hybrid claim:

$$S = (1 - Y^{(1)}) \times (1 - \mathcal{I}). \quad (55)$$

The MV hedge of S is given by

$$\theta_S^{\text{MV}} = \arg \min_{\mu \in \Theta} \mathbb{E}^{\mathbb{P}} \left[(S - \mu^{(0)} - \mu^{(1)} Y^{(1)})^2 \right] = \left(\frac{1}{2}, -\frac{1}{2} \right).$$

The MVHB value (54) of S is then equal to

$$\rho[S] = \frac{1}{4} + \pi \left[S - \frac{1}{2} + \frac{1}{2} Y^{(1)} \right].$$

Suppose that the actuarial valuation π is a cost-of-capital principle:

$$\pi[X] = \mathbb{E}^{\mathbb{P}}[X] + 0.06 (\text{VaR}_{0.995}[X] - \mathbb{E}^{\mathbb{P}}[X]),$$

for any $X \in \mathcal{C}$. (56)

As $\mathbb{E}^{\mathbb{P}}[S] = \mathbb{E}^{\mathbb{P}}\left[\frac{1}{2} - \frac{1}{2}Y^{(1)}\right]$ and $\text{VaR}_{0.995}\left[S - \frac{1}{2} + \frac{1}{2}Y^{(1)}\right] = 1/2$, we find that

$$\rho[S] = \frac{7}{25}.$$

(b) Next, we consider a market where in addition to the zero-coupon bond and the stock, also the survival index \mathcal{I} is traded, with current price $y^{(2)} = \frac{2}{3}$ and value at time 1 given by $Y^{(2)} = \mathcal{I}$. The MV hedge of S is now given by

$$\begin{aligned} \theta_S^{MV} &= \arg \min_{\mu \in \Theta} \mathbb{E}^{\mathbb{P}} \left[(S - \mu^{(0)} - \mu^{(1)}Y^{(1)} - \mu^{(2)}Y^{(2)})^2 \right] \\ &= \left(\frac{2}{3}, -\frac{1}{2}, -\frac{1}{3} \right), \end{aligned}$$

while the MVHB valuation (54) of S takes the form

$$\rho[S] = \frac{7}{36} + \pi \left[S - \frac{2}{3} + \frac{1}{2}Y^{(1)} + \frac{1}{3}Y^{(2)} \right].$$

In case the actuarial valuation π is given by the cost-of-capital principle (56), taking into account that $\text{VaR}_{0.995}\left[S - \frac{2}{3} + \frac{1}{2}Y^{(1)} + \frac{1}{3}Y^{(2)}\right] = 1/3$, we find that

$$\rho[S] = \frac{193}{900}.$$

(c) Let us now assume that, apart from the zero-coupon bond, the stock and the survival index \mathcal{I} , also the call option with current price $y^{(3)} = \frac{1}{6}$ and payoff at time 1 given by

$$Y^{(3)} = Y^{(2)} \times (Y^{(1)} - 0.5)_+ \quad (57)$$

is traded. The MV hedge of S now equals

$$\begin{aligned} \theta_S^{MV} &= \arg \min_{\mu \in \Theta} \mathbb{E}^{\mathbb{P}} \left[(S - \mu^{(0)} - \mu^{(1)}Y^{(1)} - \mu^{(2)}Y^{(2)} - \mu^{(3)}Y^{(3)})^2 \right] \\ &= (1, -1, -1, 2). \end{aligned}$$

The claim S is now perfectly hedged by its MV hedge:

$$S = Y^{(0)} - Y^{(1)} - Y^{(2)} + 2Y^{(3)}.$$

This is due to the fact that the introduction of the call option leads to a complete market, see forthcoming Example 5. In this case, the MVHB value (54) of S is given by the price of the replicating portfolio:

$$\rho[S] = \frac{1}{6}.$$

In this example, the fair value of S decreases by introducing additional traded assets. Notice however that this is not always necessarily the case. ◀

Example 4. (a) Consider a national population of N^{nat} members. For member i , we introduce the Bernoulli r.v. I_i , which equals 0 if i dies in the coming year, while it equals 1 in the other case. The 'national survival index' I is given by

$$I = I_1 + I_2 + \dots + I_{N^{\text{nat}}}.$$

Next, we consider an insured population, consisting of N^{ins} members, with J_i , $i = 1, 2, \dots, N$, the Bernoulli r.v. which equals 1 in case insured i survives and 0 otherwise. Notice that the insured population is not necessarily a subset of the national population. The insurance claim at the end of the year is given by

$$S = J_1 + J_2 + \dots + J_{N^{\text{ins}}}. \quad (58)$$

Suppose the financial market consists of 3 traded assets. The zero-coupon bond has current value $y^{(0)} = 1$, while its value at time 1 is given by $Y^{(0)} = e^r$. The second traded asset is a stock with current price $y^{(1)}$ and payoff at time 1 given by $Y^{(1)}$, which takes a value in the set \mathcal{A} . Finally, also the national survival index is traded. Its current value is $y^{(2)}$, while its payoff at time 1 is given by $Y^{(2)} = I$. We model this financial–actuarial world by the probability space $(\Omega, 2^{\Omega}, \mathbb{P})$, with

$$\Omega = \{(x_1, x_2, x_3) \mid x_1 \in \mathcal{A}; x_2 = 0, 1, \dots, N^{\text{nat}}; x_3 = 0, 1, \dots, N^{\text{ins}}\},$$

where any triplet (x_1, x_2, x_3) describes a possible outcome of the stock $Y^{(1)}$, the national survival index I and the insurance claim S , respectively. Throughout this example, we assume that mortality is independent of the stock price evolution. To be more precise, $Y^{(1)}$ and (I, S) are assumed to be mutually independent under the physical probability measure \mathbb{P} .

From (49) with $n = 2$, it follows that the mean–variance hedge $\theta_S^{MV} = (\theta_S^{(0)}, \theta_S^{(1)}, \theta_S^{(2)})$ of the insurance claim S is given by

$$\begin{cases} \theta_S^{(0)} = e^{-r} \left(\mathbb{E}^{\mathbb{P}}[S] - \mathbb{E}^{\mathbb{P}}[I] \frac{\text{cov}^{\mathbb{P}}[I, S]}{\text{var}^{\mathbb{P}}[I]} \right) \\ \theta_S^{(1)} = 0 \\ \theta_S^{(2)} = \frac{\text{cov}^{\mathbb{P}}[I, S]}{\text{var}^{\mathbb{P}}[I]}. \end{cases} \quad (59)$$

This MV hedging strategy for S does not contain an investment in the stock, due to its assumed \mathbb{P} -independence with mortality. A higher correlation between the insurance claim and the national survival index leads, ceteris paribus, to a higher investment in the national survival index and a lower investment in zero coupon bonds.

(b) From here on, we assume that the insured population is a subset of the national population. More specifically, we assume that $N^{\text{ins}} \leq N^{\text{nat}}$ and $J_i = I_i$ for $i = 1, 2, \dots, N^{\text{ins}}$. Furthermore, all I_i are assumed to be i.i.d. under \mathbb{P} , with $\mathbb{P}[I_i = 1] = p$. In this case we find that

$$\text{cov}^{\mathbb{P}}[I, S] = \text{var}^{\mathbb{P}}[S].$$

Taking into account the \mathbb{P} -i.i.d. assumption of the Bernoulli variables, one has that $\text{var}^{\mathbb{P}}[S] = Np(1 - p)$, $\text{var}^{\mathbb{P}}[I] = Mp(1 - p)$. These observations lead to the following MV hedge for S :

$$\begin{cases} \theta_S^{(0)} = 0 \\ \theta_S^{(1)} = 0 \\ \theta_S^{(2)} = \frac{N^{\text{ins}}}{N^{\text{nat}}}, \end{cases} \quad (60)$$

which corresponds with an investment in the national survival index only. The MVHB value (54) of S is then given by

$$\rho[S] = \frac{N^{\text{ins}}}{N^{\text{nat}}} y^{(2)} + \pi \left[S - \frac{N^{\text{ins}}}{N^{\text{nat}}} Y^{(2)} \right].$$

Suppose now that the actuarial valuation π is the standard-deviation principle:

$$\pi[X] = \mathbb{E}^{\mathbb{P}}[X] + \beta \sqrt{\text{var}[X]}, \quad \text{for any } X \in \mathcal{C},$$

for some $\beta \geq 0$. In this case, we find that the MVHB value of S is given by

$$\rho[S] = \frac{N^{\text{ins}}}{N^{\text{nat}}} y^{(2)} + \beta \sqrt{\frac{N^{\text{ins}}}{N^{\text{nat}}} (N^{\text{nat}} - N^{\text{ins}}) p(1 - p)}. \quad (61)$$

Obviously, when $N^{\text{ins}} = N^{\text{nat}}$, the insurance claim S is fully hedgeable, and we find that $\rho[S]$ is equal to the time-0 price of the national survival index. ◀

5. Two-step valuations

5.1. Conditional valuations and two-step valuations

In this section, we will introduce a class of valuations which is very closely related to, but slightly different from the two-step valuations proposed by [Pelsser and Stadje \(2014\)](#). Hereafter, a derivative of the vector of asset prices \mathbf{Y} has to be understood as a claim that can be expressed in the form $f(\mathbf{Y})$, for some measurable function f . Hence, a derivative of \mathbf{Y} is a r.v. defined on the measurable space (Ω, \mathcal{F}^Y) , where $\mathcal{F}^Y \subseteq \mathcal{G}$ is the sigma-algebra generated by the asset price vector \mathbf{Y} . Examples of derivatives of \mathbf{Y} are $\mathbb{E}^P[S | \mathbf{Y}]$, $\text{Var}^P[S | \mathbf{Y}]$ and $\theta_S \cdot \mathbf{Y}$, where S is a claim and θ is a hedger. We denote the set of all derivatives of \mathbf{Y} by \mathcal{C}^Y .

Definition 16 (Conditional Valuation). A conditional valuation is a mapping $\pi_Y : \mathcal{C} \rightarrow \mathcal{C}^Y$ attaching a derivative of \mathbf{Y} to any claim S :

$$S \rightarrow \pi_Y[S]$$

such that

(1) π_Y is normalized:

$$\pi_Y[0] = 0$$

(2) π_Y is conditionally translation invariant:

$$\pi_Y[S + S^h] = \pi_Y[S] + e^{-r} S^h, \quad \text{for any } S \in \mathcal{C} \text{ and } S^h \in \mathcal{C}^h.$$

A conditional valuation is a mapping from the set of claims defined on (Ω, \mathcal{G}) to the set of claims defined on (Ω, \mathcal{F}^Y) . For any conditional valuation, one has that

$$\pi_Y[a] = e^{-r} a, \quad \text{for any scalar } a.$$

Notice that the derivative $\pi_Y[S]$ may be hedgeable or not. Our definition of a conditional valuation is closely related but slightly different from the one proposed in [Pelsser and Stadje \(2014\)](#).

Definition 17 (Actuarial Conditional Valuation). An actuarial conditional valuation π_Y is a conditional valuation which reduces to an actuarial valuation on \mathcal{C}^\perp :

$$\pi_Y[S^\perp] = \pi[S^\perp], \quad \text{for any } S^\perp \in \mathcal{C}^\perp,$$

for some actuarial valuation π .

Hereafter, we will always denote the underlying actuarial valuation of an actuarial conditional valuation π_Y by π .

A first example of an actuarial conditional valuation is the *conditional standard deviation principle*:

$$\pi_Y[S] = e^{-r} \left(\mathbb{E}^P[S | \mathbf{Y}] + \beta \sqrt{\text{Var}^P[S | \mathbf{Y}]} \right), \quad \text{for any } S \in \mathcal{C}, \quad (62)$$

where β is a non-negative real number.

As a second example of an actuarial conditional valuation, consider the *conditional cost-of-capital principle*:

$$\pi_Y[S] = e^{-r} \left(\mathbb{E}^P[S | \mathbf{Y}] + i (\text{VaR}_p[S | \mathbf{Y}] - \mathbb{E}^P[S | \mathbf{Y}]) \right), \quad \text{for any } S \in \mathcal{C}, \quad (63)$$

for a given probability level p and cost-of-capital rate i , and where $\text{VaR}_p[S | \mathbf{Y}]$ is the Value-at-Risk of S at confidence level p , conditional on the available information concerning the asset prices at time 1.

A third example of an actuarial conditional valuation is given by

$$\pi_Y[S] = e^{-r} \theta_S^f \cdot \mathbf{Y}, \quad (64)$$

where θ^f is a fair hedger.

Definition 18 (Two-Step Valuation). A mapping $\rho : \mathcal{C} \rightarrow \mathbb{R}$ is a two-step valuation (TS valuation) if there exists an actuarial conditional valuation π_Y and an EMM \mathbb{Q} such that for any claim S , $\rho[S]$ is determined by

$$\rho[S] = \mathbb{E}^{\mathbb{Q}}[\pi_Y[S]]. \quad (65)$$

One can easily verify that the mapping defined in (65) is normalized and translation invariant, implying that a TS valuation is indeed a valuation as defined above. For any claim S , $\rho[S]$ is called the two-step value (TS value) of S . The two-step valuation is characterized by an actuarial conditional valuation π_Y and an EMM \mathbb{Q} . It is determined by first applying the actuarial conditional valuation π_Y to S , and then determining the market price of the derivative $\pi_Y[S]$, based on a given pricing measure \mathbb{Q} .

As a first example of a TS valuation, consider the *two-step standard deviation valuation*, where the value of any claim S is determined by

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{E}^P[S | \mathbf{Y}] + \beta \sqrt{\text{Var}^P[S | \mathbf{Y}]} \right]. \quad (66)$$

This means that $\rho[S]$ is determined as the financial market price of the derivative that arises from applying the conditional standard deviation principle on the claim S , given the time-1 prices of traded assets.

A second example of a TS valuation is the *two-step cost-of-capital valuation*:

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{E}^P[S | \mathbf{Y}] + i (\text{VaR}_p[S | \mathbf{Y}] - \mathbb{E}^P[S | \mathbf{Y}]) \right]. \quad (67)$$

Finally, a third example of a TS valuation is given by

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}} \left[\theta_S^f \cdot \mathbf{Y} \right], \quad (68)$$

where θ^f is a fair hedger.

[Pelsser and Stadje \(2014\)](#) assume that the financial market of the $(n+1)$ traded assets is complete in $(\Omega, \mathcal{F}^Y, \mathbb{P})$. Equivalently stated, they assume that any derivative $f(\mathbf{Y})$ is hedgeable. In particular, any claim $\pi_Y[S]$ is hedgeable, and hence, its market value is uniquely determined. The completeness condition means that there exists a mapping $\theta^{TS} : \mathcal{C} \rightarrow \mathcal{C}$ such that

$$\theta_S^{TS} \cdot \mathbf{Y} = e^r \pi_Y[S], \quad \text{for any } S \in \mathcal{C}. \quad (69)$$

We call θ^{TS} the *two-step hedger of the two-step valuation* ρ . Due to the non-redundancy assumption (1), the time-1 value $\theta_S^{TS} \cdot \mathbf{Y}$ uniquely determines θ_S^{TS} . It is straightforward to prove that θ^{TS} is a fair hedger with

$$\theta_{S^\perp}^{TS} = (\pi[S^\perp], 0, \dots, 0), \quad \text{for any } S^\perp \in \mathcal{C}^\perp. \quad (70)$$

Under the completeness assumption, the TS value $\rho[S]$ of S can be expressed as

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}}[\theta_S^{TS} \cdot \mathbf{Y}] = \theta_S^{TS} \cdot \mathbf{y}, \quad (71)$$

which does not depend on the particular choice of the pricing measure \mathbb{Q} .

Hereafter, we will not make the completeness assumption, which implies that we have to choose a particular measure \mathbb{Q} in the set of all feasible pricing measures and hence $\rho[S]$ might depend on this choice.

In the special case there is no financial market, except the risk-free bank account, any claim S is an orthogonal claim, and the two-step valuation reduces to an actuarial valuation:

$$\rho[S] = \pi[S].$$

In the following theorem, we prove that the class of two-step valuations is identical to the class of fair valuations.

Theorem 8. A mapping $\rho : \mathcal{C} \rightarrow \mathbb{R}$ is a TS valuation if and only if it is a fair valuation.

Proof. (a) Consider the TS valuation ρ with $\rho[S] = \mathbb{E}^{\mathbb{Q}}[\pi_Y[S]]$ for any claim S . It is straightforward to prove that ρ is both market-consistent and actuarial valuation, which means that ρ is a fair valuation.

(b) Consider the fair valuation ρ . From [Theorem 1](#), we know that there exists a fair hedger θ^f such that

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}} \left[\theta_S^f \cdot \mathbf{Y} \right], \quad \text{for any } S \in \mathcal{C}.$$

As $e^{-r} \theta_S^f \cdot \mathbf{Y}$ is an actuarial conditional valuation, we can conclude that ρ is a TS valuation. ■

Consider the TS valuation ρ with underlying conditional valuation π_Y and EMM \mathbb{Q} . Let $S^h \in \mathcal{C}^h$ and $S^{\perp} \in \mathcal{C}^{\perp}$. In case

$$\pi_Y[S^h \times S^{\perp}] = S^h \times \pi[S^{\perp}], \quad (72)$$

we find that the TS value of $S^h \times S^{\perp}$ is given by

$$\rho[S^h \times S^{\perp}] = \mathbb{E}^{\mathbb{Q}}[S^h] \times \pi[S^{\perp}]. \quad (73)$$

In the special case of complete diversification of the orthogonal claim, i.e. when $S^{\perp} = \mathbb{E}^{\mathbb{P}}[S^{\perp}]$, we have that the condition (72) is satisfied and (73) reduces to the Brennan–Schwartz formula (21). From this result, it follows that the formula (73) is an intuitive generalization of the formula (21), proposed by [Brennan and Schwartz \(1976\)](#). It is a straightforward exercise to prove that the generalized Brennan–Schwartz formula (73) holds for the TS standard deviation valuation as well as for the TS Cost-of-Capital valuation, defined in (66) and (67), respectively, provided $S^h \geq 0$.

5.2. Examples

We end this section with two illustrative examples, which are the counterparts of [Examples 3](#) and [4](#) considered in Section 4.4.

Example 5. (a) Consider the financial–actuarial world $(\Omega, 2^{\Omega}, \mathbb{P})$ as described in [Example 3](#), with a non-traded survival index and a market of traded assets consisting of a zero-coupon bond and a stock. Suppose that we want to determine the fair value $\rho[S]$ of the hybrid claim S defined in (55) according to the two-step cost-of-capital valuation (67) with $r = 0$, $p = 0.995$ and $i = 0.06$. Taking into account that $\mathcal{I} \in \mathcal{C}^{\perp}$ and applying the generalized Brennan–Schwartz formula (73), we find that

$$\rho[S] = \mathbb{E}^{\mathbb{Q}}[1 - Y^{(1)}] \times \pi[1 - \mathcal{I}] = \frac{53}{200}.$$

Notice that in this setting, the vector of time-1 asset prices is given by $\mathbf{Y} = (Y^{(0)}, Y^{(1)})$ and any derivative $f(\mathbf{Y})$ is hedgeable. One can easily verify that the TS hedger θ^{TS} is given by

$$\theta^{\text{TS}} = (0.53, -0.53),$$

from which we find that

$$\rho[S] = \theta_S^{\text{TS}} \cdot \mathbf{y} = \frac{53}{200}.$$

(b) Suppose now that, apart from the zero-coupon bond and the stock, also the survival index \mathcal{I} is traded, with current price $y^{(2)} = 2/3$ and time-1 value $Y^{(2)} = \mathcal{I}$. In this case, the vector of time-1 asset prices is $\mathbf{Y} = (Y^{(0)}, Y^{(1)}, Y^{(2)})$ and S is a non-hedgeable derivative of \mathbf{Y} . The two-step cost-of-capital valuation (67) transforms into

$$\rho[S] = \mathbb{E}^{\mathbb{Q}}[(1 - Y^{(1)}) \times (1 - Y^{(2)})].$$

In order to fully characterize ρ , one has to choose a particular risk-neutral measure \mathbb{Q} for the financial market. One can easily verify

that $\mathbb{Q} \equiv (q_{00}, q_{10}, q_{01}, q_{11})$ is an EMM if and only if there exists a $q \in (0, \frac{1}{3})$ such that

$$\begin{aligned} q_{00} &= q, & q_{10} &= \frac{1}{3} - q, & q_{01} &= \frac{1}{2} - q \quad \text{and} \\ q_{11} &= \frac{1}{6} + q. \end{aligned} \quad (74)$$

Given that the payoff of S only differs from zero in the scenario $(Y^{(1)}, Y^{(2)}) = (0, 0)$, we find that

$$\rho[S] = q.$$

The two-step value $\rho[S]$ can take any value in $(0, \frac{1}{3})$, depending on the choice of the EMM. In case we require e.g. that $Y^{(1)}$ and \mathcal{I} are independent under \mathbb{Q} , we find that the two-step value of S is equal to $1/6$.

(c) Let us now assume that apart from the zero coupon bond, the stock and the survival index, also the call option with current price $y^{(3)} = \frac{1}{6}$ and payoff at time 1 given by (57) is traded in the market. In this case, the set of EMM's is defined by (74) for some $q \in (0, \frac{1}{3})$, complemented with the additional requirement

$$y^{(3)} = \mathbb{E}^{\mathbb{Q}}[Y^{(3)}].$$

This situation leads to a unique EMM \mathbb{Q} characterized by (74) with $q = \frac{1}{6}$. We can conclude that in this complete market setting, the fair value of S is given by

$$\rho[S] = \frac{1}{6}.$$

Notice that under this unique EMM \mathbb{Q} , the payoffs $Y^{(1)}$ and \mathcal{I} are independent. ◀

Example 6. Consider the financial–actuarial world described in [Example 4\(b\)](#). We model this world by $(\Omega, 2^{\Omega}, \mathbb{P})$ with

$$\Omega = \{(x_1, x_2) \mid x_1 \in \mathcal{A}; x_2 = 0, 1, \dots, N^{\text{nat}}\},$$

where any (x_1, x_2) is a possible outcome of $(Y^{(1)}, Y^{(2)})$. Suppose that the insurance claim S defined in (58) is valued according to the TS standard deviation valuation (66), with $\mathbf{Y} = (Y^{(0)}, Y^{(1)}, Y^{(2)})$. From the assumed \mathbb{P} -independence between mortality and the stock price, we find that

$$\rho[S] = e^{-r} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{E}^{\mathbb{P}}[S \mid I] + \beta \sqrt{\text{var}^{\mathbb{P}}[S \mid I]} \right].$$

Taking into account that

$$\mathbb{E}^{\mathbb{P}}[S \mid I] = \frac{N^{\text{ins}}}{N^{\text{nat}}} I$$

and

$$\text{var}^{\mathbb{P}}[S \mid I] = \frac{N^{\text{ins}}(N^{\text{nat}} - N^{\text{ins}})}{N^{\text{nat}}(N^{\text{nat}} - 1)} I \frac{N^{\text{nat}} - I}{N^{\text{nat}}},$$

one finds that

$$\begin{aligned} \rho[S] &= \frac{N^{\text{ins}}}{N^{\text{nat}}} y^{(2)} + \beta e^{-r} \times \\ &\quad \mathbb{E}^{\mathbb{Q}} \left[\sqrt{\frac{N^{\text{ins}}(N^{\text{nat}} - N^{\text{ins}})}{N^{\text{nat}}(N^{\text{nat}} - 1)} Y^{(2)} \frac{N^{\text{nat}} - I}{N^{\text{nat}}}} \right]. \end{aligned} \quad (75)$$

The incompleteness of the market requires the choice of an EMM \mathbb{Q} for the valuation of S . Let us assume that \mathcal{A} is a countable set and also that $\mathbb{P}[Y^{(1)} = x_1, Y^{(2)} = x_2] > 0$ for any $(x_1, x_2) \in \Omega$. We introduce the notation q_{x_1, x_2} for $\mathbb{Q}[Y^{(1)} = x_1, Y^{(2)} = x_2]$. Furthermore, $q_{x_1 \cdot} = \sum_{x_2=0}^{N^{\text{nat}}} q_{x_1, x_2}$ and $q_{\cdot x_2} = \sum_{x_1 \in \mathcal{A}} q_{x_1, x_2}$. The set \mathcal{M} of all EMM's can be characterized as the set of all probability

measures \mathbb{Q} with $q_{x_1, x_2} > 0$ for any $(x_1, x_2) \in \Omega$, satisfying

$$\sum_{x_1 \in \mathcal{A}} x_1 \times q_{x_1, \cdot} = e^r y^{(1)} \quad \text{and} \quad \sum_{x_2=1}^{N^{\text{nat}}} x_2 \times q_{\cdot, x_2} = e^r y^{(2)}.$$

In case the insurance and national populations coincide, it follows from (75) that the TS value $\rho[S]$ of S is equal to the price $y^{(2)}$ of the 'national survival index'. ◀

6. Final remarks

The fair value of a hybrid claim, which is by definition neither hedgeable nor orthogonal, is in general not uniquely determined. This is not only due to the involvement of actuarial judgement, but at an earlier stage in the valuation process also due to the ambiguity that exists in how to determine the hedgeable part of such a hybrid claim.

In this paper we proposed a framework to combine market-consistency and actuarial considerations in a so-called *fair valuation*. In such a setting, a market-consistent valuation of claims is based on an extension of cash invariance to all hedgeable claims, such that all claims are valued in agreement with current market prices. Under a market-consistent valuation, the valuation of hedgeable claims is consistent with risk-neutral pricing based on an EMM \mathbb{Q} . An actuarial valuation on the other hand, is typically performed with an actuarial premium principle, based on a physical probability measure \mathbb{P} , chosen by the actuary. In such a setting, the problem the actuary is solving is to value the claim such that the insurer will be able to pay the observed claim amount at the end of the period, ignoring the existence of a financial market. A fair valuation combines the financial approach of a market-consistent valuation and the actuarial approach of an actuarial valuation. Such a fair valuation makes use of \mathbb{P} - and \mathbb{Q} -measures and in this sense, it can be considered as the right setting to value claims which have financial and actuarial components.

We presented a fair valuation technique, baptized hedge-based valuation, where one first unbundles the hybrid claim in a hedgeable claim (determined from the original claim according to some well-defined hedging procedure) and the remaining claim (i.e. the original claim minus the payoff of the hedgeable claim). The fair value of the claim is then defined as the sum of the financial market price of the hedge and the actuarial value of the remaining claim.

We also investigated the class of two-step valuations. The definition of a two-step valuation proposed in this paper is inspired by the two-step valuations definition of [Pelsser and Stadje \(2014\)](#). Our definition is slightly different, as opposed to the original approach of [Pelsser and Stadje \(2014\)](#), we do not require that the market of traded assets is complete.

We showed that the set of fair valuations coincides with the set of hedge-based valuations and also with the set of two-step valuations. The two-step and the hedge-based approaches are only two different ways of identifying the different members of the set of fair valuations. The hedge-based approach starts from the choice of a hedger and does not require the choice of an EMM. In general, the two-step approach starts from the choice of an EMM. In case the market of traded assets is complete, the two-step approach does not require the choice of an EMM and the underlying two-step hedger is determined via (69). The hedge-based approach has the advantage of providing an explicit additive decomposition of the fair value into a financial price and an actuarial value while in the two-step approach the decomposition is performed through a less intuitive conditional procedure.

In a forthcoming paper, we will extend the notion of fair valuation which was defined here in a static one-period setting to the case of a multiperiod setting where dynamic hedging strategies are

allowed. Moreover, we will investigate the requirement of time-consistency of dynamic fair valuations.

Acknowledgements

Jan Dhaene, Ben Stassen, Karim Barigou and Daniël Linders acknowledge the financial support of the Onderzoeksfonds KU Leuven (GOA/13/002). Jan Dhaene acknowledges the support of CIAS (China Institute of Actuarial Science) at CUFE (Central University of Finance and Economics), Beijing, China, during his chair-professorship at this university in 2016. Ze Chen acknowledges the support of the Bilateral Cooperation Project Tsinghua University - KU Leuven (ISP/14/01TS) and the Life Insurance Project from the Insurance Institute of China (JIAOBAO2016-06). The authors would like to thank Alexander Kukush from the University of Kiev and Bo Li from Nankai University for useful discussions and helpful comments. Finally, the authors sincerely thank the anonymous referees for their remarks and suggestions.

References

Artzner, P., Eisele, K., 2010. Supervisory accounting: comparison between Solvency 2 and coherent risk measures. In: *Actuarial and Financial Mathematics Conference: Interplay Between Finance and Insurance*, pp. 3–15.

Barrieu, P., El Karoui, N., 2005. Inf-convolution of risk measures and optimal risk transfer. *Finance Stoch.* 9 (2), 269–298.

Barrieu, P., El Karoui, N., 2009. *Pricing, Hedging, and Designing Derivatives with Risk Measures. Indifference Pricing: Theory and Applications*. Princeton University Press, Princeton, NJ, pp. 77–146.

Brennan, M.J., Schwartz, E.S., 1976. The pricing of equity-linked life insurance policies with an asset value guarantee. *J. Financ. Econ.* 3 (3), 195–213.

Brennan, M.J., Schwartz, E.S., 1979a. Alternative investment strategies for the issuers of equity-linked life insurance with an asset value guarantee. *J. Bus.* 52, 63–93.

Brennan, M.J., Schwartz, E.S., 1979b. *Pricing and Investment Strategies for Guaranteed Equity-Linked Life Insurance*. In: *Monograph no. 7, The S. S. Huebner Foundation for Insurance Education*, Wharton School, University of Pennsylvania, Philadelphia.

Carmona, R., 2009. *Indifference Pricing: Theory and Applications*. Princeton University Press.

Dalang, R.C., Morton, A., Willinger, W., 1990. Equivalent martingale measures and no-arbitrage in stochastic securities market models. *Stochastics* 29 (2), 185–201.

Delong, L., 2011. Practical and theoretical aspects of market-consistent valuation and hedging of insurance liabilities. *Bank I Kredyt* 42 (1), 49–78.

Dhaene, J., Stassen, B., Devolder, P., Vellekoop, M., 2015. The minimal entropy martingale measure in a market of traded financial and actuarial risks. *J. Comput. Appl. Math.* 52 (282), 111–133.

Embrechts, P., 2000. Actuarial versus financial pricing of insurance. *J. Risk Finance* 1 (4), 17–26.

Frittelli, M., 1995. Minimal Entropy Criterion for Pricing in One Period Incomplete Markets, Technical Report #99, Dept. "Metodi Quantitativi", University of Brescia.

Frittelli, M., 2000. The minimal entropy martingale measure and the valuation problem in incomplete markets. *Math. Finance* 10 (1), 39–52.

Gerber, H.U., Shiu, E.S.W., 1994. Option pricing by Esscher transforms. *Trans. Soc. Actuaries* 46, 99–191.

Henderson, V., Hobson, D., 2009. Utility indifference pricing – An overview. In: Carmona, R. (Ed.), Chapter 2 of *Indifference Pricing: Theory and Applications*.

Hodges, S.D., Neuberger, A., 1989. Optimal replication of contingent claims under transaction costs. *Rev. Futures Mark.* 8 (2), 222–239.

Knispel, T., Stahl, G., Weber, S., 2011. From the equivalence principle to market consistent valuation. *Jahresber. Deutsch. Math. Verein.* 113 (3), 139–172.

Kupper, M., Cheridito, P., Filipovic, D., 2008. Dynamic risk measures, valuations and optimal dividends for insurance. In: *Mini-Workshop: Mathematics of Solvency*, Mathematisches Forschungsinstitut Oberwolfach.

Malamud, S., Trubowitz, E., Wüthrich, M., 2008. Market consistent pricing of insurance products. *ASTIN Bull.* 38 (2), 483–526.

Møller, T., 2001. Risk-minimizing hedging strategies for insurance payment processes. *Finance Stoch.* 5 (4), 419–446.

Musiela, M., Zariphopoulou, T., 2004. A valuation algorithm for indifference prices in incomplete markets. *Finance Stoch.* 8 (3), 399–414.

Pelsser, A., Ghalehjooghi, A.S., 2016a. Market-consistent actuarial valuations with application to EIOPA risk-margin and time-consistent pricing.

Pelsser, A., Ghalehjooghi, A.S., 2016b. Time-consistent actuarial valuations. *Insurance Math. Econom.* 66, 97–112.

Pelsser, A., Ghalehjooghi, A.S., 2016c. Time-consistent and market-consistent actuarial valuation of the participating pension contract.

Pelsser, A., Stadje, M., 2014. Time-consistent and market-consistent evaluations. *Math. Finance* 24 (1), 25–65.

Schweizer, M., 2001. A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanić, J., Musiela, M. (Eds.), *Option Pricing, Interest Rates and Risk Management*. pp. 538–574.

Tsanakas, A., Wüthrich, M., Černý, A., 2013. Market value margin via mean-variance hedging. *ASTIN Bull.* 43 (3), 301–322.

Wüthrich, M., Bühlmann, H., Furrer, H., 2010. Market-Consistent Actuarial Valuation. In: EEA Series. Springer.