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a b s t r a c t

In this paper, we investigate the fair valuation of liabilities related to an insurance policy or portfolio
in a single period framework. We define a fair valuation as a valuation which is both market-consistent
(mark-to-market for any hedgeable part of a claim) and actuarial (mark-to-model for any claim that is
independent of financial market evolutions). We introduce the class of hedge-based valuations, where in
a first step of the valuation process, a ‘best hedge’ for the liability is set up, based on the traded assets in
the market, while in a second step, the remaining part of the claim is valuated via an actuarial valuation.
We also introduce the class of two-step valuations, the elements of which are very closely related to the
two-step valuations which were introduced in Pelsser and Stadje (2014). We show that the classes of fair,
hedge-based and two-step valuations are identical.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modern solvency regulations for the insurance industry, such
as the Swiss Solvency Test and Solvency II, require insurance un-
dertakings to apply a fair valuation of their assets and liabilities.
The fair value of an asset or a liability is generally understood as
‘the amount forwhich it could be transferred (exchanged) between
knowledgeable willing parties in an arm’s length transaction’. A
fair valuation method combines techniques from financial math-
ematics and actuarial science, in order to take into account and be
consistent with information provided by the financial markets on
the one hand and actuarial judgement based on generally available
data concerning the underlying risks on the other hand.1

This paper is about the generic meaning of fair valuation of
random payments related to liabilities in an insurance context and
not about a particular technical meaning that is given to it by a
particular regulation or legislation. Furthermore, we consider fair
valuation in a general context without specifying the purpose it is
used for. The results we present and discuss may be used not only
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Ben.Stassen@kuleuven.be (B. Stassen), Karim.Barigou@kuleuven.be (K. Barigou),
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1 Solvency II (Directive 2009/138/EC, Article 77, calculation of technical provi-

sions): If the cash flows of the liability (or part of the cash flows) can be replicated
reliably, then the value of the (part of the) cash flows is determined on the basis of
themarket value of these financial instruments. Otherwise, the value is equal to the
sum of the best estimate and a risk margin.

in a reserving context (determining technical provisions) but also
in a pricing context (setting premiums).

Consider a set of future random payoffs, further called (con-
tingent) claims. Some of these claims are traded, i.e. they can
be bought and sold in a financial market. We assume that the
market of traded claims is incomplete. This means that apart from
hedgeable claims, of which the fair value is equal to the price of its
underlying hedge, there are also claims that cannot be hedged. In-
surance claims typically belong to this class of unreplicable claims.

Several ways of valuating unhedgeable (unreplicable) claims
have been considered in the literature. Under a ‘utility indiffer-
ence’ approach, the value of a claim is set equal to the amount
which makes the agent indifferent, in terms of expected utility,
between holding the claim or not. The idea for the utility indiffer-
ence approach in an incomplete market setting is often attributed
to Hodges and Neuberger (1989). A market-consistent insurance
premium based on expected utility indifference arguments is
developed in Malamud et al. (2008). A similar algorithm was pro-
posed byMusiela and Zariphopoulou (2004) for determining indif-
ference prices in a multiperiod binomial model. For an overview of
the theory,we refer toHenderson andHobson (2009) and Carmona
(2009).

Another approach for valuating unreplicable claims starts from
the observation that in an incomplete market setting no-arbitrage
arguments only partially specify the pricing measure (which al-
lows to express prices of contingent claims as discounted expec-
tations under that measure). Therefore, one extends this partially
specified measure to a ‘complete’ pricing measure that is used to
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determine the value of all contingent claims, also the ones that are
not traded. The ‘complete’ pricing measure is chosen such that it
is, in one way or another, the ‘most appropriate’ one. A popular
choice is theminimal entropymartingale measure, see e.g. Frittelli
(1995) and Frittelli (2000) in a pure financial context and Dhaene
et al. (2015) in a combined financial–actuarial framework. Another
possible choice is the risk-neutral Esschermeasure, see Gerber and
Shiu (1994). Under such a ‘completing approach’, the value of an
unhedgeable claim can be interpreted as a reasoned estimate of
what its market value would have been had it been readily traded.

A market-consistent valuation is usually defined in terms of
an extension of the notion of cash invariance to all hedgeable
claims, see e.g. Malamud et al. (2008), Artzner and Eisele (2010)
or Pelsser and Stadje (2014). In this paper, we define a fair valuation
as a valuation which is both market-consistent and actuarial. This
valuation is market-consistent in the sense that any hedgeable
part of a claim is valuated at the price of its hedge. Moreover, the
valuation is actuarial in the sense that claims with payoffs that are
independent of the evolution of asset prices are valuated taking
into account actuarial judgement.

We introduce and investigate ‘hedge-based valuations’. Under
this approach, one unbundles the unhedgeable insurance claim in
a hedgeable part and a remaining part. The fair value of the claim is
then set equal to the sum of the respective values of the hedgeable
and the unhedgeable parts, where the hedgeable part is valuated
by the financial price of its underlying hedge, while the value of
the remaining part is determined via an actuarial approach. In par-
ticular, we consider the class of ‘convex hedge-based valuations’.
An important subclass consists of the ‘mean–variance hedge-based
valuations’. Further, we also investigate an adapted version of the
two-step valuation approach, as introduced in Pelsser and Stadje
(2014). We show that the classes of fair valuations, hedge-based
valuations and two-step valuations are identical.

Over the last two decades, several researchers have worked on
the unification of the two fields of financial and actuarial valuation.
This research area is still in full development and the literature on
market-consistent valuation is growing rapidly. An early overview
of the different aspects of the interplay between the two fields
is given in Embrechts (2000). Delong (2011) deals with practical
and theoretical aspects of market-consistent valuation. Other in-
teresting references include Møller (2001), Barrieu and El Karoui
(2005, 2009), Knispel et al. (2011), Kupper et al. (2008), Malamud
et al. (2008), Møller (2001), Pelsser and Ghalehjooghi (2016a, b, c),
Pelsser and Stadje (2014), Tsanakas et al. (2013), Wüthrich et al.
(2010) and the references therein.

The remainder of the paper is organized as follows. In Section 2,
we describe the financial–actuarial world and its market of traded
assets. In Section 3, fair valuations and the related notion of fair
hedgers are introduced. Hedge-based valuations are considered
in Section 4. An adapted version of the two-step valuations in-
troduced by Pelsser and Stadje (2014) is considered in Section 5.
Section 6 concludes the paper.

2. The financial–actuarial world and itsmarket of traded assets

In this paper, we investigate the fair valuation of traded and
non-traded payoffs in a single period financial–actuarial world. Let
time 0 be ‘now’ and consider a set of random payoffs, which are
due at time 1. These payoffs are random variables (r.v.’s) defined
on a given probability space (Ω, G,P), which is a mathematical
abstraction of the combined financial–actuarial world. We call
these random payoffs (contingent) claims. Throughout the paper,
we assume that the second moments of all claims and the first
moments of all products of claims that wewill encounter exist and
are finite under P.

Any element of ω ∈ Ω represents a possible state of the
financial–actuarial world at time 1. For instance,ω could represent

a set of possible outcomes for the time-1 prices of the stocks
composing the Dow Jones Index and for the number of survivors at
time 1 from a given closed population observed at time 0. The σ -
algebra G stands for the set of all events that may or may not occur
in this single period world. Probabilities for these events follow
from the real-world probability measure P. We denote the set of
all (contingent) claims defined on (Ω, G) by C.

The financial–actuarial world (Ω, G,P) is home to a market of
n + 1 traded assets. These assets can be bought or sold in any
quantities in a deep, liquid, transparent and frictionlessmarket (no
transaction costs and other market frictions). Asset 0 is the risk-
free zero coupon bond. Its current price is y(0) = 1, while its payoff
at time 1 is given by Y (0)

= er , where r ≥ 0 is the (continuously
compounded) deterministic interest rate r . Furthermore, there are
n risky assets, denoted by 1, . . . , n, traded in the market. The price
(or the payoff) at time 1 of each asset is a claim defined on (Ω, G).
The current price of assetm ∈ {1, 2, . . . , n} is denoted by y(m) > 0,
whereas its non-deterministic payoff at time 1 is Y (m)

≥ 0. We
introduce the notations y and Y for the vectors of the time-0 and
time-1 asset prices, respectively:

y =
(
y(0), y(1), . . . , y(n)

)
and

Y =
(
Y (0), Y (1), . . . , Y (n)) .

A trading strategy θ =
(
θ (0), θ (1), . . . , θ (n)

)
is an (n + 1)-

dimensional real-valued vector, where the quantity θ (m) stands
for the number of units invested in asset m at time 0. The time-0
and time-1 values of the trading strategy θ are given by the scalar
products

θ · y =

n∑
m=0

θ (m) y(m)

and

θ · Y =

n∑
m=0

θ (m) Y (m),

respectively. The set of all trading strategies is denoted by Θ . The
discrete, single period set-up of this paper implies that any trading
strategy is static in the sense that the hedging portfolio chosen at
time 0 remains unchanged over the period [0, 1].

Throughout the paper, we assume that the n+1 assets are non-
redundant, which means that there exists no investment strategy
θ which is different from 0 = (0, 0, . . . , 0) such that θ · Y = 0.
Hence,

θ · Y = 0 ⇒ θ = 0. (1)

By convention, (in-)equalities between r.v.’s, such as θ · Y = 0,
have to be understood in the P-almost sure sense, unless explicitly
stated otherwise.

A probability measure Q defined on the measurable space
(Ω, G) is said to be an equivalent martingale measure (or a risk-
neutral measure), further abbreviated as EMM, for the market
defined above, if it fulfils the following conditions:

(1) Q and P are equivalent probability measures:

P [A] = 0 if and only if Q [A] = 0, for all A ∈ G.

(2) The current price of any traded asset in the market is given
by the expected value of the discounted payoff of this asset
at time 1, where discounting is performed at the risk-free
interest rate r and expectations are taken with respect toQ:

y(m)
= e−r EQ [Y (m)] , form = 0, 1, . . . , n.
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Hereafter, we always assume that the market is arbitrage-free
in the sense that there is no investment strategy θ ∈ Θ such that

θ · y = 0, P [θ · Y ≥ 0] = 1 and P [θ · Y > 0] > 0.

It is well-known that in our setting, the no-arbitrage condition is
equivalent to the existence of a (not necessarily unique) equiva-
lent martingale measure, whereas completeness of the arbitrage-
free market is equivalent to the existence of a unique equivalent
martingale measure, see e.g. Dalang et al. (1990).

Definition 1 (Hedgeable Claim). A hedgeable claim Sh is an el-
ement of C that can be replicated by a trading strategy ν =(
ν(0), ν(1), . . . , ν(n)

)
∈ Θ:

Sh = ν · Y =

n∑
m=0

ν(m) Y (m). (2)

We introduce the notation Ch for the set of all hedgeable claims.
The time-0 price of Sh = ν · Y is given by

ν · y =

n∑
m=0

ν(m) y(m)
= e−r EQ [Sh] , (3)

where Q is a generic member of the class of EMM’s. The non-
redundancy assumption (1) implies that the hedge of any hedge-
able claim is uniquely determined. Hereafter, we will say that two
random vectors X and Y defined on (Ω, G) are P-independent in
case they are independent under themeasureP, andwewill denote
this relation by X ⊥ Y .

Definition 2 (Orthogonal Claim). An orthogonal claim S⊥ is an
element of Cwhich isP-independent of the vector of traded claims:

S⊥
⊥
(
Y (1), Y (2), . . . , Y (n)) . (4)

Hereafter, we will denote the set of all orthogonal claims by
C⊥. The risk-free claims a ∈ R are the only claims which are
both hedgeable and orthogonal. Obviously, the hedge related to
the claim a due at time 1 is an investment of amount e−ra in zero
coupon bonds.

Example 1 (Cost-of-Capital Principle for Orthogonal Liabilities). Con-
sider the liability S⊥ related to a portfolio of one-year insurances:

S⊥
=

N∑
i=1

Xi,

where N ∈ N and X1, X2, . . . , XN are the losses of the dif-
ferent policies, which are assumed to be P-independent of(
Y (1), Y (2), . . . , Y (n)

)
. The position of the insurer in the orthogonal

liability S⊥ cannot be hedged in the financial market. Suppose
that the regulator requires the holder of this position to set up a
provision ρ

[
S⊥
]
determined by

ρ
[
S⊥
]

= e−r EP [S⊥
]
+ RM

[
S⊥
]
, (5)

and a capital buffer e−r
(
VaRp

[
S⊥
]
− EP

[
S⊥
])

at time 0, for some
probability level p ∈ (0, 1]. Here, e−r EP

[
S⊥
]
is the best estimate

of S⊥, where the Value at Risk of S⊥ at a confidence level p is given
by

VaRp
[
S⊥
]

= inf
{
x | P

[
S⊥

≤ x
]

≥ p
}
,

while RM
[
S⊥
]
is the risk margin under the cost-of-capital ap-

proach:

RM
[
S⊥
]

= e−r i
(
VaRp

[
S⊥
]
− EP [S⊥

])
(6)

for some cost-of-capital rate i. The risk margin RM
[
S⊥
]
reflects

the cost related to holding the capital e−r
(
VaRp

[
S⊥
]
− EP

[
S⊥
])

to
buffer the risk of S⊥ being larger than EP

[
S⊥
]
at time 1.

Let us now additionally assume that under P, the claims Xi are i.i.d.
with expectation and variance given byµ and σ 2 > 0, respectively.
Furthermore, let the portfolio be sufficiently large such thatwe can
assume that

P

[
S⊥

− EP
[
S⊥
]

σ P
[
S⊥
] ≤ s

]
= Φ [s] , for all s,

where Φ is the standard normal distribution. In this case, we find
that ρ

[
S⊥
]
is given by

ρ
[
S⊥
]

= e−r
(
Nµ + i

√
NσΦ−1 [p]

)
. (7)

Due to the diversification effect, the risk margin per policy,
i.e. e−r i σ

√
N
Φ−1 [p], is a decreasing function of the portfolio

size N . ◀

Many claims that insurance companies face are not perfectly
hedgeable, but nevertheless not P-independent of the payoffs of
the traded assets. Such claims are neither hedgeable nor orthog-
onal. Instead, they belong to the class of unhedgeable and non-
orthogonal claims. Hereafter, wewill call themembers of this class
hybrid claims.

Definition 3 (Hybrid Claim). A claim S is a hybrid claim in case it is
neither perfectly hedgeable nor orthogonal:

S ∈ C \
(
Ch

∪ C⊥
)
.

Unit-linked insurance products often have by construction a
financial (hedgeable) and an actuarial (unhedgeable) part in their
payoff. This means that the valuation of unit-linked insurance
claims gives rise to the valuation of hybrid claims. Furthermore,
the development ofmarkets in insurance-linked securities (such as
catastrophic bonds, weather derivatives, longevity bonds) creates
the possibility that liabilities of insurance portfolios that are ex-
posed to specific actuarial risks (such as those arising from natural
catastrophes) become at least partially hedgeable. Hence, insur-
ance securitization may also lead to hybrid claims in insurance
portfolios.

Insurance valuation regulations are in general clear about the
fair valuation of hedgeable and orthogonal claims. The former type
of claims are valuated at the cost of the replicating portfolio, while
the latter are valuated as the sum of their expected present value
and a risk margin. However, it is usually unclear how to perform
the fair valuation of hybrid claims. This paper contributes to the
development of solutions for that important issue.

3. Fair valuations and fair hedgers

In this section, we define different classes of valuations, which
attach a value to any claim S ∈ C. We also introduce different
classes of hedgers, which attach a trading strategy to any claim.
We show that there is a one-to-one relation between each class of
valuations and its corresponding class of hedgers.

3.1. Fair valuations

In this subsection, we define the notion of valuation. Further-
more, we introduce the notions ofmarket-consistent, actuarial and
fair valuations, respectively.
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Definition 4 (Valuation). A valuation is a mapping ρ : C → R,
attaching a real number to any claim S ∈ C:

S → ρ [S] ,

such that ρ is normalized:

ρ [0] = 0, (8)

and ρ is translation invariant:

ρ [S + a] = ρ [S] + e−ra, for any S ∈ C and a ∈ R. (9)

A valuation ρ attaches a real number to any claim, which we
interpret as a ‘value’ of that claim. For any valuation ρ, we imme-
diately find that

ρ [a] = e−ra, for any a ∈ R. (10)

Other properties that a valuation may satisfy or not are P-law
invariance, positive homogeneity and subadditivity. A valuation ρ
is said to be P-law invariant if

ρ [S1] = ρ [S2] for any S1, S2 ∈ C with S1
P
= S2.

It is said to be positive homogeneous if

ρ [aS] = a ρ [S] , for any scalar a > 0 and any S ∈ C,

while it is said to be subadditive if

ρ [S1 + S2] ≤ ρ [S1] + ρ [S2] , for any S1, S2 ∈ C.

An important subclass of the class of valuations is the class of
market-consistent valuations, which are defined hereafter.

Definition 5 (Market-Consistent Valuation). A market-consistent
valuation (MC valuation) is a valuation ρ : C → R such that any
hedgeable part of any claim is marked-to-market:

ρ [S + ν · Y ] = ρ [S] + ν · y, for any S ∈ C and any ν · Y ∈ Ch. (11)

In the literature onMC valuation, market-consistency is usually
defined via condition (11), see e.g. Kupper et al. (2008), Malamud
et al. (2008) or Artzner and Eisele (2010) and Pelsser and Stadje
(2014). The mark-to-market condition (11) can be interpreted as
an extension of the notion of translation (or cash) invariance (9)
from scalars to hedgeable claims. The mark-to-market condition
can also be stated in the following way:

ρ [S] = ρ [S − ν · Y] + ν · y, for any S ∈ C and ν · Y ∈ Ch. (12)

In order to interpret (12), consider a person facing a loss S. This
person could decide to transfer the whole loss S to the insurer.
Alternatively, he could split his claim S into a hedgeable claim
ν · Y, which he hedges in the financial market, while he brings the
remaining part S − ν · Y to the insurer. The condition (12) states
that the claim S is equally valuated in both cases. In other words,
the insurer valuates in agreement with the financial market, in the
sense that he does not charge a risk margin for any hedgeable part
of a claim. From (12), we also find that for any hedgeable claim
Sh = ν · Y, we have that

ρ [ν · Y] = ν · y, (13)

whichmeans that theMC value of a hedgeable claim is equal to the
price of its underlying hedge.

Next we define actuarial valuations.

Definition 6 (Actuarial Valuation). An actuarial valuation is a
valuation ρ : C → R such that any orthogonal claim is marked-
to-model:

ρ
[
S⊥
]

= e−r EP [S⊥
]
+ RM

[
S⊥
]
, for any S⊥

∈ C⊥, (14)

where RM : C⊥
→ R is a mapping attaching to any orthogonal

claim a real number, not depending on the current asset prices(
y(1), y(2), . . . , y(n)

)
.

The mark-to-model condition (14) states that any orthogonal
claim is valuated by the sum of its best estimate e−r EP

[
S⊥
]
and

a risk margin RM
[
S⊥
]
. In order to guarantee that an actuarial

valuation is indeed a valuation, one must have that RM [0] =

0 and RM
[
S⊥

+ a
]

= RM
[
S⊥
]
for any orthogonal claim. The

actuarial valuation ρ and in particular the risk margin function
RM that is used in a specific situation is chosen by the actuary,
the regulator or any other valuator of the claims and introduces
actuarial judgement in the valuation of claims. In the traditional
view on valuation in an insurance context, the existence of the
financial market is ignored, except for the risk-free bank account.
In such an approach, any claim S is orthogonal, and any claim is
valuated via an actuarial valuation.

Our definition of an actuarial valuation is broad in the sense that
the only requirement that is made concerning the risk margin is
that it is not dependent on information concerning the prices of
the traded assets that is available at the moment of the valuation.
Alternative definitions for an actuarial valuation are possible. In
a narrow setting, one could define an actuarial valuation as a
valuation of the form (14) where RM is the risk margin function
of the Cost-of-Capital principle (6) for a given probability level p
and cost-of-capital i. In general, an actuarial valuation could be
defined as a valuation satisfying a well-defined property in the set
of orthogonal claims. One could consider e.g. a set of probability
measures (P1,P2, . . . ,Pn) on the measurable space (Ω, G), and
require that for any orthogonal claim S⊥

∈ C⊥, ρ
[
S⊥
]
only de-

pends on the n cdf’s FP1
S⊥

, FP2
S⊥

, , . . . , FPn
S⊥

of S⊥ under these different
measures. An example is the ‘worst-case’ valuation

ρ
[
S⊥
]

= max
(
ρ1
[
S⊥
]
, ρ2

[
S⊥
]
, . . ., ρn

[
S⊥
])

, for any S⊥
∈ C⊥,

where for each i, ρi is an actuarial valuation in the sense of the
original definition (14), where the measure P is replaced by Pi.
It is important to notice that all the results that we will derive
hereafter concerning the characterization of fair valuations remain
valid under any such adapted definition of an actuarial valuation.

Current insurance solvency regulations impose mark-to-
market aswell asmark-to-model requirements for the valuation of
assets and liabilities.2 However, in the existing scientific literature
on valuating claims in a combined financial–actuarial setting, the
focus is on the mark-to-market condition as defined according
to (11), while the mark-to-model condition, which states that
non-financial components of a claim should be valued taking into
account actuarial judgement, is ignored. Therefore, hereafter we
introduce the class of fair valuations, which is a subset of the class
of market-consistent valuations. These fair valuations are closer
to the meaning of fair valuation in current insurance solvency
regulations, as they satisfy a mark-to-market as well as a mark-
to-model condition.

Definition 7 (Fair Valuation). A fair valuation is a valuation that is
both market-consistent and actuarial.

At first sight, one could wonder whether it would be more
appropriate to define a fair valuation as a valuation that obeys the
mark-to-market condition (11) for any hedgeable part of a claim, as

2 In the ‘Solvency II Glossary’ of the ‘Comité Européen des Assurances’ and the
‘Groupe Consultatif Actuariel Européen’ of 2007, Fair Value is defined as ‘the amount
for which . . . a liability could be settled between knowledgeable, willing parties in
an arm’s length transaction. This is similar to the concept of Market Value, but the
Fair Valuemay be amark-to-model price if no actual market price for the . . . liability
exists’.
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well as the following mark-to-model condition for any orthogonal
part of a claim:

ρ
[
S + S⊥

]
= ρ [S] + π

[
S⊥
]
, for any S ∈ C and any S⊥

∈ C⊥,

where π is an actuarial valuation as defined above. One can easily
prove that this condition would imply that ρ

[
S⊥
]

= π
[
S⊥
]
and

hence,

π
[
S⊥

1 + S⊥

2

]
= π

[
S⊥

1

]
+ π

[
S⊥

2

]
, for any S⊥

1 , S⊥

2 ∈ C⊥,

which would ignore the diversification benefit which is essential
for valuating non-replicable insurance liabilities, see e.g. (7) in
Example 1.

The valuation ρ : C → R defined by

ρ [S] = e−r EQ [S] (15)

for a given EMM Q is an example of a valuation which is market-
consistent but in general not actuarial and hence, not fair. Using
the risk neutral valuation (15) for hybrid and orthogonal claims in
insurance portfolios is in general not appropriate. Consider e.g. the
orthogonal claim S⊥

=
∑N

i=1Xi, where the claims Xi are i.i.d. and
suppose that this claim is valuated by (15). The value per policy is
then given by

ρ
[
S⊥
]

N
= e−r EQ [X1] ,

which is independent of the size N of the portfolio and hence,
ignores the diversification effect in an insurance context. This ob-
servation illustrates the fact thatmarket-consistency is a necessary
but not sufficient condition for a valuation to be appropriate in an
insurance context. The insufficiency is a consequence of the igno-
rance of diversification concerns in a market-consistent valuation.

From the requirements (11) and (14), we find that the fair
valuation for S⊥

+ ν · Ywith S⊥
∈ C⊥ and ν · Y ∈ Ch is given by

ρ
[
S⊥

+ ν · Y
]

= π
[
S⊥
]
+ ν · y, (16)

where π is an actuarial valuation. Hence, theMC value of the claim
S⊥

+ Sh is given by the sum of the actuarial value of S⊥ and the
financial market price of ν · Y. In other words, the orthogonal part
of the claim is marked-to-model, whereas the hedgeable part is
marked-to-market.

Most hybrid claims observed in an insurance context are of a
more complex structure than the additive structure considered in
(16). One often encounters a multiplicative structure, where the
claim S to be valuated can be expressed in the form

S = Sh × S⊥, with Sh ∈ Ch and S⊥
∈ C⊥. (17)

Solvency regulations are in general rather vague on how to evalu-
ate such hybrid claims. It is obvious that this claim is only partially
hedgeable, and that Sh is hedgeable whereas S⊥ is not. But it
is not clear how to combine market prices of hedgeable claims
with actuarial considerations to determine a fair value for the
claim, since regulatory frameworks usually do not prescribe how
to determine the hedgeable part of a non-hedgeable claim.

Example 2 (Unit-linked Insurance). Consider an insurance portfolio
consisting of N insureds, with Xi ∈ C⊥ equal to 1 if insured i =

1, 2, . . . ,N , is alive at time 1 and equal to 0 in the other case. The
orthogonal claims Xi are assumed to be i.i.d. with mean p under P.
The number of survivors at time 1 is given by

S⊥
=

N∑
i=1

Xi.

Each insured i has underwritten a one-year unit-linked contract
with guarantee against the risk that asset 1 falls short of K > 0.

The payoff of individual contract i at time 1 is given by

max
(
Y (1), K

)
× Xi.

Suppose that the put option with payoff
(
K − Y (1)

)
+

is traded at
price P [K ]. The unit-linked contracts have an unbounded upside
potential and offer downward protection. The portfolio liability at
time 1 is given by

Sh × S⊥
= max

(
Y (1), K

)
×

N∑
i=1

Xi. (18)

Let us now consider a valuation ρ satisfying

ρ
[
Sh × S⊥

]
= e−r EQ [Sh]×

(
EP [S⊥

]
+ α σ P [S⊥

])
,

with α ≥ 0. In our particular case, this expression reduces to

ρ
[
Sh × S⊥

]
=
(
y(1) + P [K ]

) (
Np +

√
Nα
√
p(1 − p)

)
.

It is easy to prove that in case each unit-linked contract is charged

a premium equal to
ρ

[
Sh×S⊥

]
N and if these premiums are fully

invested in Sh, the probability that the insurer will be able to fulfil
his liabilities at time 1 is given by

P

[
S⊥

− EP
[
S⊥
]

σ P
[
S⊥
] ≤ α

]
.

Assuming the portfolio is sufficiently large, this probability is
approximately equal to Φ [α], where Φ is the standard normal
distribution. ◀

More complicated hybrid claims arise when the claim S is given
by

S = Sh × S ′, with Sh ∈ Ch and S ′
∈ C, (19)

where Sh and S ′ are not assumed to be P-independent. Obviously,
in this case the decomposition is not unique. As an example,
consider the claim S defined in the previous example, where we
do not assume P-independence between (X1, X2, . . . , Xn) and Y (1).

A major simplification for valuating the claim S defined in (17),
originating from Brennan and Schwartz (1976), see also Brennan
and Schwartz (1979a, b), arises if we assume that the claim S⊥ is
completely diversified, in the sense that

S⊥
= EP [S⊥

]
.

This assumption can be justified for very large portfolios of inde-
pendent claimsby the lawof large numbers. Under this assumption
of complete diversification,we find that Sh×EP

[
S⊥
]
is a hedgeable

claim, only containing financial uncertainty and hence, taking into
account (13), we find that

ρ
[
Sh × S⊥

]
= ν · y × EP [S⊥

]
. (20)

Taking into account that

ν · y = e−r EQ [Sh]
for any EMM Q, we can transform the previous expression in the
well-known Brennan & Schwartz-formula:

ρ
[
Sh × S

]
= e−r EQ [Sh]× EP [S⊥

]
. (21)

This approach based on ‘complete actuarial diversification’ does
not answer the question of how to quantify hybrid claims of the
form Sh × S⊥ in case the law of large numbers is not applicable for
the insurance claim S⊥. In this case, one is not able to ‘average out’
the insurance risk. Instead, one has to consider Sh × S⊥ as a claim
in an incomplete market and come up with a valuation approach
that reflects both financial and actuarial risk. Such valuation ap-
proaches will be considered in the following sections.
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3.2. Fair hedgers

After having defined market-consistent, actuarial and fair valu-
ations,wewill now introduce the corresponding classes of hedgers.
In particular, we will define market-consistent, actuarial and fair
hedgers. We will investigate the relation between each type of
valuation and its corresponding class of hedgers.

Definition 8 (Hedger). A hedger is a function θ : C → Θ which
maps any claim S into a trading strategy θS =

(
θ
(0)
S , θ

(1)
S , . . . , θ

(n)
S

)
,

such that
• θ is normalized:

θ0 = (0, 0, . . . , 0) .

• θ is translation invariant:

θS+a = θS +
(
e−ra, 0, . . . , 0

)
, for any scalar a > 0

and any S ∈ C.

The mapping θ : C → Θ is called a hedger, whereas for any
claim S, the trading strategy θS is called a hedge for S. This hedge
may be a partial or a perfect hedge. The value of the hedge θS of S
at time 1 is given by

θS · Y =

n∑
m=0

θ
(m)
S Y (m), (22)

whereas its time-0 value equals

θS · y =

n∑
m=0

θ
(m)
S y(m)

= e−r EQ [θS · Y ] , (23)

where Q can be any element of the class of EMM’s.

Definition 9. A hedger θ : C → Θ is said to be
• positive homogeneous if

θa S = a θS, for any scalar a > 0 and any S ∈ C,

• additive if

θS1+S2 = θS1 + θS2 , for any S1, S2 ∈ C.

Hereafter, we introduce the subclasses of market-consistent,
actuarial and fair hedgers.

Definition 10 (Market-Consistent, Actuarial and Fair Hedger). (1) A
hedger is market-consistent (MC) in case any hedgeable part ν · Y
of any claim is hedged by ν:

θS+ν·Y = θS + ν, for any S ∈ C and any ν · Y ∈ Ch. (24)

(2) A hedger is actuarial in case any orthogonal claim is hedged
risk-free via an actuarial valuation ρ:

θS⊥ =
(
ρ
[
S⊥
]
, 0, . . . , 0

)
, for any S⊥

∈ C⊥. (25)

(3) A hedger is fair in case it is market-consistent and actuarial.

For any actuarial or fair hedger θ with actuarial valuation ρ used
to hedge claims in C⊥, we call ρ the underlying actuarial valuation
of θ. The condition (24) in the definition of a market-consistent
hedger can also be expressed as follows: for any hedgeable claim
ν · Y and any claim S, one has that

θS = ν + θS−ν·Y . (26)

Written in this way, it is easily seen that hedging in two steps and
hedging in a single step lead to the same global hedge. Indeed, first
choosing a hedge ν and then applying the hedger θ to the remaining

loss S − ν · Y leads to the same overall hedge as immediately
applying the hedger θ on S.

The condition (25) in the definition of an actuarial hedger
means that any orthogonal claim S⊥ is hedged by an investment
of amount ρ

[
S⊥
]
in zero-coupon bonds.

In the following lemma, we summarize some properties of
hedgers that will be used hereafter. The proofs are straightforward
and therefore omitted.

Lemma 1. Consider a claim S, an orthogonal claim S⊥, a hedgeable
claim ν · Y and a scalar a.
(1) For any hedger θ, one has that

θa =
(
e−r a, 0, . . . , 0

)
. (27)

(2) For any market-consistent hedger θ, one has that

θν·Y = ν. (28)

(3) For any fair hedger θ with underlying actuarial valuation ρ, one
has that

θS⊥+ν·Y =
(
ρ
[
S⊥
]
, 0, . . . , 0

)
+ ν. (29)

In the proofs of a number of forthcoming theorems, we will
consider a hedge µS for any claim S which is defined as the sum
of another hedge θS of S and an actuarial hedge of the remaining
risk S − θS · Y . Some properties of such hedgers are considered in
the following lemma.

Lemma 2. Consider a hedger θ and a valuation ρ. Define the hedger
µ by

µS = θS + (ρ [S − θS · Y ] , 0, . . . , 0) , for any S ∈ C. (30)

(a) If θ is a MC hedger, then µ is a MC hedger.
(b) If θ is an actuarial hedger and ρ is an actuarial valuation, then µ
is an actuarial hedger with underlying actuarial valuation ρ.
(c) If θ is a fair hedger and ρ is an actuarial valuation, then µ is a fair
hedger with underlying actuarial valuation ρ.

Proof. (a) Suppose that θ is a MC hedger. For any claim S and any
hedgeable claim Sh = ν · Y, we find that

µS+Sh = θS+Sh +
(
ρ
[
S + Sh − θS+Sh · Y

]
, 0, . . . , 0

)
= θS + ν + (ρ [S − θS · Y ] , 0, . . . , 0)
= µS + ν.

We can conclude that µ is a MC hedger.
(b) Next, suppose that θ is an actuarial hedger with underlying
actuarial valuation π . Further, suppose that ρ is an actuarial val-
uation. For any orthogonal claim S⊥, we have

µS⊥ = θS⊥ +
(
ρ
[
S⊥

− θS⊥ · Y
]
, 0, . . . , 0

)
=
(
π
[
S⊥
]
+ ρ

[
S⊥

− er π
[
S⊥
]]

, 0, . . . , 0
)

=
(
ρ
[
S⊥
]
, 0, . . . , 0

)
,

where in the last step, we used the translation invariance of ρ.
We can conclude that µ is an actuarial hedger with underlying
actuarial valuation ρ.
(c) Finally, suppose that θ is a fair hedger with underlying actuarial
valuation π , while ρ is an actuarial valuation. From (a) and (b)
it follows immediately that µ is a fair hedger with underlying
actuarial valuation ρ. ■

In Section 4.3 , we will consider mean–variance hedging and
the related mean–variance hedger which will be shown to be a
fair hedger, see Corollary 2 hereafter. The mean–variance hedger



20 J. Dhaene et al. / Insurance: Mathematics and Economics 76 (2017) 14–27

is defined as follows:

θMV
S = argmin

µ∈Θ
EP [(S − µ · Y)2

]
, for any S ∈ C. (31)

In the following theorem it is shown that any MC valuation
can be represented as the time - 0 price of MC hedger. Similar
properties hold for actuarial and fair valuations.

Theorem 1. Consider the valuation ρ : C → R.
(a) ρ is a MC valuation if and only if there exists a MC hedger θm such
that

ρ [S] = θm
S · y, for any S ∈ C. (32)

(b) ρ is an actuarial valuation if and only if there exists an actuarial
hedger θa such that

ρ [S] = θa
S · y, for any S ∈ C. (33)

(c) ρ is a fair valuation if and only if there exists a fair hedger θf such
that

ρ [S] = θ
f
S · y, for any S ∈ C. (34)

Proof. (a) Let ρ be aMC valuation. Consider aMC hedger θ, e.g. the
mean–variance hedger defined in (31). For any claim S, we find
from (12) that

ρ [S] = ρ [S − θS · Y ] + θS · y
= θm

S · y

with

θm
S = θS + (ρ [S − θS · Y ] , 0, . . . , 0) . (35)

From Lemma 2 we know that θm is a MC hedger.
(a′) Suppose that the valuation ρ is defined by (32) for some MC
hedger θm. For any hedgeable claim ν · Y , we find that

ρ [S + ν · Y ] = θm
S+ν·Y · y

=
(
θm
S + ν

)
· y

= ρ [S] + ν · y.

We can conclude that ρ is a MC valuation.
(b) Let ρ be an actuarial valuation. Consider the hedger θa with

θa
S = (ρ [S] , 0, . . . , 0) ,

for any claim S. Obviously, θa is an actuarial hedger. Then we find
that

ρ [S] = θa
S · y, for any S ∈ C.

(b′) Suppose that the valuation ρ is defined by (33) for some
actuarial hedger θa with underlying actuarial valuation π . For any
orthogonal claim S⊥, we have

ρ
[
S⊥
]

= θa
S⊥ · y = π

[
S⊥
]
.

We can conclude that the valuation ρ is actuarial.
(c) Let ρ be a fair valuation. Consider a fair hedger θ, e.g. themean–
variance hedger, with underlying actuarial valuation π . From (a)
we know that for any claim S, ρ [S] can be expressed as

ρ [S] = θm
S · y,

with theMC hedger θm given by (35). Furthermore, for any orthog-
onal claim S⊥, we find that

θm
S⊥ = θS⊥ +

(
ρ
[
S⊥

− θS⊥ · Y
]
, 0, . . . , 0

)
=
(
π
[
S⊥
]
, 0, . . . , 0

)
+
(
ρ
[
S⊥

− er π
[
S⊥
]]

, 0, . . . , 0
)

=
(
ρ
[
S⊥
]
, 0, . . . , 0

)
.

As ρ is an actuarial valuation, we can conclude that the hedger θm

is not only market-consistent but also actuarial and hence, a fair
hedger.
(c′) Suppose that the valuation ρ is defined by (34) for some fair
hedger θf . From (a) and (b) we can conclude that the valuation ρ is
market-consistent and actuarial, which means that it is fair. ■

From Theorem 1, we know that any fair value ρ [S] can be
considered as the time—0 price of a fair hedge:

ρ [S] = e−r EQ
[
θ
f
S · Y

]
,

where Q is an EMM and θ
f
S is a fair hedger. We remark that this

result is mainly of a theoretical nature, and often not really useful
in practice, as the fair hedge θ

f
S is only implicitly specified, see (35).

Moreover, notice that the fair hedger attached to a fair valuation is
not uniquely determined.

Consider the fair valuation characterized by

ρ [S] = θ
f
S · y, for any S ∈ C, (36)

where θf is a fair hedger with underlying actuarial valuation π .
Furthermore, consider the claim Sh × S⊥, where Sh = ν · Y ∈ Ch

and S⊥
∈ C⊥. In case

θ
f
Sh×S⊥

= ν × er π
[
S⊥
]

(37)

holds, the fair value ρ
[
Sh × S⊥

]
can be expressed as

ρ
[
Sh × S⊥

]
= EQ [Sh]× π

[
S⊥
]
, (38)

for any EMM Q. The condition (37) is always satisfied when S⊥
=

EP
[
S⊥
]
. In this case, we have that π

[
S⊥
]

= e−r EP
[
S⊥
]
and (38)

reduces to the well-known Brennan & Schwartz-formula (21). In
this sense, the expression (38) is a generalization of the Brennan &
Schwartz result. As we will see in Section 4.3, the assumption (37)
is satisfied and hence, the expression (38) holds in case θf is the
mean–variance hedger.

4. Hedge-based valuations

In this section, we present and investigate a class of fair valu-
ations, the members of which we will call hedge-based valuations.
We show that the classes of fair and hedge-based valuations are
identical.

4.1. The general class of hedge-based valuations

In order to determine a hedge-based value of S, one first splits
this claim into a hedgeable claim,which (partially) replicates S, and
a remaining claim. The value of the claim S is then defined as the
sum of the financial price of the hedgeable claim and the value
of the remaining claim, determined according to a pre-specified
actuarial valuation.

Definition 11 (Hedge-Based Valuation). The valuation ρ : C → R is
a hedge-based valuation (HB valuation) if for any claim S, the value
ρ[S] is determined by

ρ[S] = θS · y + π [S − θS · Y ] (39)

where θ is a fair hedger and π is an actuarial valuation.

For any claim S, we call ρ[S] a hedge-based value of S. It is easy
to verify that the mapping ρ defined in (39) is normalized and
translation invariant, and hence, a valuation as defined above.

From the definition above, we find that any HB valuation ρ

reduces to an actuarial valuation for orthogonal claims:

ρ[S⊥
] = π [S⊥

], for any S⊥
∈ C⊥.
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Moreover, the HB value of any hedgeable claim is equal to the price
of the underlying hedge:

ρ[Sh] = e−r EQ [Sh] , for any Sh ∈ Ch.

Sufficient conditions for positive homogeneity and subadditiv-
ity of hedge-based valuations are considered in the next theorem.

Theorem 2. For any HB valuation ρ with fair hedger θ and actuarial
valuation π , the following properties hold:
(1) If θ and π are positive homogeneous, then ρ is positive homoge-
neous:

ρ [a S] = a ρ [S] , for any a > 0 and S ∈ C. (40)

(2) If θ is additive and π is subadditive, then ρ is subadditive:

ρ [S1 + S2] ≤ ρ [S1] + ρ [S2] , for any S1, S2 ∈ C. (41)

The proof of the theorem is straightforward.
In the following theorem, it is proven that the class of hedge-

based valuations is equal to the class of fair valuations.

Theorem 3. A mapping ρ : C → R is a HB valuation if and only if it
is a fair valuation.

Proof. (a) Consider the HB valuation ρ defined in (39). For any
claim S, we can rewrite ρ [S] as

ρ [S] = µS · y

with

µS = θS + (π [S − θS · Y ] , 0, . . . , 0) . (42)

From Lemma 2, it follows that µ is a fair hedger with underlying
actuarial valuation π . Theorem 1 leads then to the conclusion that
ρ is a fair valuation.
(b) Consider the fair valuation ρ. From Theorem 1, we know that
there exists a fair hedger θf such that ρ[S] = θ

f
S · y for any claim S.

Define the valuation ρ ′ by

ρ ′ [S] = θ
f
S · y + ρ[S − θ

f
S · Y]. (43)

Obviously, ρ ′ is a HB valuation. Moreover, it is easy to verify that

ρ[S − θ
f
S · Y] = 0.

We can conclude that ρ ≡ ρ ′, and hence, ρ is indeed a HB
valuation. ■

One could define a broader class of HB valuations by requiring
that the hedger θ in (39) is a market-consistent hedger and π is
an actuarial valuation. In this case the hedger µ defined in (42) is
market-consistent, but not necessarily fair, implying that such a
generalized HB valuation is market-consistent but not necessarily
fair.

4.2. Convex hedge-based valuations

We start this subsection by introducing a class of hedgers,
which we baptize convex hedgers.

Definition 12 (Convex Hedger). Consider a strictly convex non-
negative function u with u(0) = 0. The convex hedger θu is
determined by

θu
S = argmin

µ∈Θ
EP [u (S − µ · Y )] , for any S ∈ C. (44)

The convex hedger θu
: C → Θ attaches the hedge θu

S to any
claim S, such that the claim and the time-1 value of the hedge are

‘close to each other’ in the sense that the P-expectation of the u-
value of their difference is minimized. The choice of the convex
function u determines how severe deviations are punished.

Theorem 4. The convex hedger θu is a fair hedger with underlying
actuarial valuation πu satisfying

πu [S⊥
]

= argmin
s∈R

EP [u (S⊥
− er s

)]
, for any S⊥

∈ C⊥. (45)

Proof. Consider the convex hedger θu defined in (44). We have to
prove that θu satisfies the conditions (24) and (25) of the definition
of a fair hedger.
(a) For any hedgeable claim Sh = ν · Y, we have that

θu
S+ν·Y = argmin

µ∈Θ
EP [u (S − (µ − ν) · Y)]

= ν + arg min
µ′∈Θ

EP [u (S − µ′
· Y
)]

= ν + θu
S ,

which means that the condition (24) is satisfied.
(b) Consider the orthogonal claim S⊥

∈ C⊥. Taking into account the
independence of S⊥ andY aswell as Jensen’s inequality, we find for
any trading strategy µ ∈ Θ that

EP [u (S⊥
− µ · Y

)
| S⊥

]
≥ u

(
S⊥

− µ · EP [Y]
)
.

Taking expectations on both sides leads to

EP [u (S⊥
− µ · Y

)]
≥ EP [u (S⊥

− µ · EP [Y]
)]

≥ EP [u (S⊥
− er πu [S⊥

])]
,

which holds for any µ ∈ Θ . Taking into account that er πu
[
S⊥
]

can be rewritten as

er πu [S⊥
]

=
(
πu [S⊥

]
, 0, . . . , 0

)
· Y,

with
(
πu
[
S⊥
]
, 0, . . . , 0

)
being an element of Θ , we find that

θu
S⊥ =

(
πu [S⊥

]
, 0, . . . , 0

)
.

Let us now extend the definition (45) of πu to all S ∈ C. It is easy to
verify that πu is an actuarial valuation. We can conclude that also
the condition (25) is satisfied. ■

Definition 13 (Convex Hedge-Based Valuation). Consider a strictly
convex non-negative function u with u(0) = 0. The valuation
ρ : C → R defined by

ρ [S] = θu
S · y + π [S − θu

S · Y],

with convex hedger θu and actuarial valuation π is called a convex
hedge-based valuation (CHB valuation).

Corollary 1. Any CHB valuation is a fair valuation.

The proof of the corollary follows from observing that any CHB
valuation is a HB valuation, implying that it is a fair valuation.

4.3. Mean–variance hedge-based valuations

A particular example of a convex hedge-based valuation arises
when using the convex hedger with quadratic function u(s) = s2.
This hedger is called the mean–variance hedger.

Definition 14 (Mean–Variance Hedger). For any S ∈ C, the
mean–variance hedge θMV

S (MV hedge) is the hedge for which the
P-expected quadratic hedging error is minimized:

θMV
S = argmin

µ∈Θ
EP [(S − µ · Y)2

]
. (46)
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For an overview on the general theory of mean–variance hedg-
ing, we refer to Schweizer (2001).

Corollary 2. Themean–variance hedger θMV
: C → Θ is a fair hedger

with underlying actuarial valuation satisfying

πMV [S⊥
]

= e−r EP [S⊥
]
, for any S⊥

∈ C⊥. (47)

Proof. The MV hedger is a convex hedger, implying that it is a fair
hedger. From (45) it follows that it has an actuarial valuationwhich
satisfies (47). ■

In the following theorem,wepresent the unique solution θMV
S =(

θ
(0)
S , . . . , θ

(n)
S

)
of the minimization problem (46), which is a stan-

dard result from least squares optimization. We use the notation
A⊺ for the transpose of a matrix A.

Theorem 5. The mean–variance hedge θMV
S of S ∈ C is uniquely

determined from

EP [Y⊺Y]
(
θMV
S

)⊺
= EP [SY⊺] . (48)

Proof. Taking partial derivatives of the objective function in (46)
leads to (48). As the market of traded assets is assumed to be non-
redundant, for any θ ̸= 0, one has that

θ EP [Y⊺Y] θ⊺
= EP [(θS · Y)2

]
> 0.

We can conclude that the matrix EP [Y⊺Y] is positive definite and
hence, non-singular. This implies that the mean–variance hedge
θMV
S is uniquely determined and follows from (48). ■

It is a straightforward exercise to show that the system of equa-
tions (48) to determine θMV

S =

(
θ
(0)
S , . . . , θ

(n)
S

)
can be transformed

into⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
m=1

covP
[
Y (k), Y (m)] θ

(m)
S = covP

[
Y (k), S

]
, for k = 1, . . . , n

θ
(0)
S = e−r

(
EP [S] −

n∑
m=1

EP [Y (m)] θ
(m)
S

)
.

(49)

In the following theorem, we provide some well-known prop-
erties of the MV hedger.

Theorem 6. The mean–variance hedger θMV has the following prop-
erties:
(a) Any claim S and the time-1 value of its MV hedge are equal in
P-expectation:

EP [S] = EP [θMV
S · Y

]
, for any S ∈ C. (50)

(b) The MV hedger is additive:

θMV
S1+S2 = θMV

S1 + θMV
S2 , for any S1, S2 ∈ C. (51)

(c) The MV hedger is positive homogeneous:

θMV
a×S = a × θMV

S , for any scalar a > 0 and any S ∈ C. (52)

(d) The MV hedge of the product of a hedgeable and an orthogonal
claim:

θMV
Sh×S⊥ = ν × EP [S⊥

]
, for any Sh = ν · Y ∈ Ch and

S⊥
∈ C⊥. (53)

Proof. The expression (50) follows immediately from the expres-
sion for θ

(0)
S in (49). The other expressions are easy to prove with

the help of Theorem 5. ■

Based on the mean–variance hedger introduced above, we can
define mean–variance hedge-based valuations.

Definition 15 (Mean–Variance Hedge-Based Valuation). The valua-
tion ρ : C → Rwhere for any claim S, ρ [S] is determined by

ρ [S] = θMV
S · y + π

[
S − θMV

S · Y
]
, (54)

with θMV is the mean–variance hedger and π is an actuarial val-
uation, is called a mean–variance hedge-based valuation (MVHB
valuation).

As any MVHB valuation is a HB valuation, we immediately find
the following result.

Corollary 3. Any MVHB valuation is a fair valuation.

Combining Theorems 2 and 6 leads to the following result.

Theorem 7. For any MVHB valuation ρ with underlying actuarial
valuation π , the following properties hold:

(1) If π is positive homogeneous, then ρ is positive homogeneous.
(2) If π is subadditive, then ρ is subadditive.

In the following subsection, we illustrate the calculation of
MVHB valuations with two examples.

4.4. Examples

Example 3. (a) Consider the financial–actuarial world in which a
zero-coupon bond and a stock are traded. The current price of the
zero-coupon bond equals y(0) = 1,while its time-1 price is given by
Y (0)

= 1. The stock trades at current price y(1) = 1/2, whereas its
value at time 1, notation Y (1), is either 0 or 1. In this world, we also
observe a non-traded survival index. Its time-1 value I is either 0
(if few people of a given population survive) or 1 (in case many of
them survive).
We model this financial–actuarial world in the probability space(
Ω, 2Ω ,P

)
, with the universe Ω given by

Ω = {(0, 0) , (0, 1) , (1, 0) (1, 1)} ,

where each element denotes a possible scenario. The first compo-
nent of any couple corresponds to a possible value of the stock price
Y (1) at time 1,while the second component is a possible value of the
survival index I at time 1. Suppose that the real-world probability
measure P is characterized by

p00 =
1
6
, p10 =

2
6
, p01 =

1
6

and p11 =
2
6
,

where each pij stands for P [(i, j)]. One can verify that the time-1
values Y (1) and I of the stock and the survival index are mutually
independent under the physical measure P, implying that the
survival index is an orthogonal claim.
Let us now consider the valuation of the following non-traded
hybrid claim:

S =
(
1 − Y (1))

× (1 − I) . (55)

The MV hedge of S is given by

θMV
S = argmin

µ∈Θ
EP
[(

S − µ(0)
− µ(1)Y (1))2]

=

(
1
2
, −

1
2

)
.

The MVHB value (54) of S is then equal to

ρ [S] =
1
4

+ π

[
S −

1
2

+
1
2
Y (1)

]
.
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Suppose that the actuarial valuationπ is a cost-of-capital principle:

π [X] = EP [X] + 0.06
(
VaR0.995 [X] − EP [X]

)
,

for any X ∈ C. (56)

As EP [S] = EP
[ 1
2 −

1
2Y

(1)
]
and VaR0.995

[
S −

1
2 +

1
2Y

(1)
]

= 1/2,
we find that

ρ [S] =
7
25

.

(b) Next, we consider a market where in addition to the zero-
coupon bond and the stock, also the survival index I is traded, with
current price y(2) =

2
3 and value at time 1 given by Y (2)

= I. The
MV hedge of S is now given by

θMV
S = argmin

µ∈Θ
EP
[(

S − µ(0)
− µ(1)Y (1)

− µ(2)Y (2))2]
=

(
2
3
, −

1
2
, −

1
3

)
,

while the MVHB valuation (54) of S takes the form

ρ [S] =
7
36

+ π

[
S −

2
3

+
1
2
Y (1)

+
1
3
Y (2)

]
.

In case the actuarial valuationπ is given by the cost-of-capital prin-
ciple (56), taking into account that VaR0.995

[
S −

2
3 +

1
2Y

(1)
+

1
3Y

(2)
]

= 1/3, we find that

ρ [S] =
193
900

.

(c) Let us now assume that, apart from the zero-coupon bond, the
stock and the survival index I, also the call option with current
price y(3) =

1
6 and payoff at time 1 given by

Y (3)
= Y (2)

× (Y (1)
− 0.5)+ (57)

is traded. The MV hedge of S now equals

θMV
S = argmin

µ∈Θ
EP
[(

S − µ(0)
− µ(1)Y (1)

− µ(2)Y (2)
− µ(3)Y (3))2]

= (1, −1, −1, 2) .

The claim S is now perfectly hedged by its MV hedge:

S = Y (0)
− Y (1)

− Y (2)
+2Y (3).

This is due to the fact that the introduction of the call option leads
to a complete market, see forthcoming Example 5. In this case,
the MVHB value (54) of S is given by the price of the replicating
portfolio:

ρ [S] =
1
6
.

In this example, the fair value of S decreases by introducing
additional traded assets. Notice however that this is not always
necessarily the case. ◀

Example 4. (a) Consider a national population of Nnat members.
For member i, we introduce the Bernoulli r.v. Ii, which equals 0 if
i dies in the coming year, while it equals 1 in the other case. The
‘national survival index’ I is given by

I = I1 + I2 + · · · + INnat .

Next, we consider an insured population, consisting of N ins mem-
bers, with Ji, i = 1, 2, . . . ,N , the Bernoulli r.v. which equals 1 in
case insured i survives and 0 otherwise. Notice that the insured
population is not necessarily a subset of the national population.
The insurance claim at the end of the year is given by

S = J1 + J2 + · · · + JN ins . (58)

Suppose the financial market consists of 3 traded assets. The zero-
coupon bond has current value y(0) = 1, while its value at time 1 is
given by Y (0)

= er . The second traded asset is a stock with current
price y(1) and payoff at time 1 given by Y (1), which takes a value
in the set A. Finally, also the national survival index is traded. Its
current value is y(2), while its payoff at time 1 is given by Y (2)

= I .
We model this financial–actuarial world by the probability space(
Ω, 2Ω ,P

)
, with

Ω =
{
(x1, x2, x3) | x1 ∈ A; x2 = 0, 1 . . . ,Nnat

;

x3 = 0, 1, . . . ,N ins} ,

where any triplet (x1, x2, x3) describes a possible outcome of the
stock Y (1), the national survival index I and the insurance claim S,
respectively. Throughout this example, we assume that mortality
is independent of the stock price evolution. To be more precise,
Y (1) and (I, S) are assumed to be mutually independent under the
physical probability measure P.
From (49) with n = 2, it follows that the mean–variance hedge
θMV
S =

(
θ
(0)
S , θ

(1)
S , θ

(2)
S

)
of the insurance claim S is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ
(0)
S = e−r

(
EP [S] − EP [I]

covP [I, S]
varP [I]

)
θ
(1)
S = 0

θ
(2)
S =

covP [I, S]
varP [I]

.

(59)

This MV hedging strategy for S does not contain an investment in
the stock, due to its assumed P- independence with mortality. A
higher correlation between the insurance claim and the national
survival index leads, ceteris paribus, to a higher investment in the
national survival index and a lower investment in zero coupon
bonds.
(b) From here on, we assume that the insured population is a
subset of the national population. More specifically, we assume
that N ins

≤ Nnat and Ji = Ii for i = 1, 2, . . . ,N ins. Furthermore,
all Ii are assumed to be i.i.d. under P, with P [Ii = 1] = p. In this
case we find that

covP [I, S] = varP [S] .

Taking into account the P-i.i.d. assumption of the Bernoulli vari-
ables, one has that varP [S] = Np(1 − p), varP [I] = Mp(1 − p).
These observations lead to the following MV hedge for S:⎧⎪⎨⎪⎩

θ (0)
= 0

θ (1)
= 0

θ (2)
=

N ins

Nnat ,

(60)

which corresponds with an investment in the national survival
index only. The MVHB value (54) of S is then given by

ρ [S] =
N ins

Nnat y
(2)

+ π

[
S −

N ins

Nnat Y
(2)
]

.

Suppose now that the actuarial valuation π is the standard-
deviation principle:

π [X] = EP [X] + β
√
var [X], for any X ∈ C,

for some β ≥ 0. In this case, we find that the MVHB value of S is
given by

ρ [S] =
N ins

Nnat y
(2)

+ β

√
N ins

Nnat

(
Nnat − N ins

)
p(1 − p). (61)

Obviously, when N ins
= Nnat, the insurance claim S is fully

hedgeable, and we find that ρ [S] is equal to the time-0 price of
the national survival index. ◀
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5. Two-step valuations

5.1. Conditional valuations and two-step valuations

In this section, we will introduce a class of valuations which
is very closely related to, but slightly different from the two-step
valuations proposed by Pelsser and Stadje (2014). Hereafter, a
derivative of the vector of asset prices Y has to be understood as
a claim that can be expressed in the form f (Y), for some measur-
able function f . Hence, a derivative of Y is a r.v. defined on the
measurable space

(
Ω,FY

)
, where FY

⊆ G is the sigma-algebra
generated by the asset price vector Y. Examples of derivatives of Y
are EP [S | Y], VarP [S | Y] and θS · Y, where S is a claim and θ is a
hedger. We denote the set of all derivatives of Y by CY.

Definition 16 (Conditional Valuation). A conditional valuation is a
mapping πY : C → CY attaching a derivative of Y to any claim S:

S → πY [S]

such that
(1) πY is normalized:

πY [0] = 0

(2) πY is conditionally translation invariant:

πY
[
S + Sh

]
= πY [S] + e−r Sh, for any S ∈ C and Sh ∈ Ch.

A conditional valuation is a mapping from the set of claims
defined on (Ω, G) to the set of claims defined on

(
Ω,FY

)
. For any

conditional valuation, one has that

πY [a] = e−r a, for any scalar a.

Notice that the derivative πY [S] may be hedgeable or not. Our
definition of a conditional valuation is closely related but slightly
different from the one proposed in Pelsser and Stadje (2014).

Definition 17 (Actuarial Conditional Valuation). An actuarial condi-
tional valuation πY is a conditional valuation which reduces to an
actuarial valuation on C⊥:

πY
[
S⊥
]

= π
[
S⊥
]
, for any S⊥

∈ C⊥,

for some actuarial valuation π .

Hereafter, we will always denote the underlying actuarial valu-
ation of an actuarial conditional valuation πY by π .

A first example of an actuarial conditional valuation is the
conditional standard deviation principle:

πY [S] = e−r
(
EP [S | Y] + β

√
VarP [S | Y]

)
, for any S ∈ C, (62)

where β is a non-negative real number.
As a second example of an actuarial conditional valuation, con-

sider the conditional cost-of-capital principle:

πY [S] = e−r (EP [S | Y] + i
(
VaRp [S | Y] − EP [S | Y]

))
,

for any S ∈ C, (63)

for a given probability level p and cost-of-capital rate i, and where
VaRp [S | Y] is the Value-at-Risk of S at confidence level p, condi-
tional on the available information concerning the asset prices at
time 1.

A third example of an actuarial conditional valuation is given by

πY [S] = e−r θ
f
S · Y, (64)

where θf is a fair hedger.

Definition18 (Two-Step Valuation). Amappingρ : C → R is a two-
step valuation (TS valuation) if there exists an actuarial conditional
valuation πY and an EMM Q such that for any claim S, ρ [S] is
determined by

ρ [S] = EQ [πY [S]] . (65)

One can easily verify that the mapping defined in (65) is nor-
malized and translation invariant, implying that a TS valuation
is indeed a valuation as defined above. For any claim S, ρ [S] is
called the two-step value (TS value) of S. The two-step valuation
is characterized by an actuarial conditional valuation πY and an
EMMQ. It is determined by first applying the actuarial conditional
valuation πY to S, and then determining the market price of the
derivative πY [S], based on a given pricing measure Q.

As a first example of a TS valuation, consider the two-step
standard deviation valuation, where the value of any claim S is
determined by

ρ [S] = e−r EQ
[
EP [S | Y] + β

√
VarP [S | Y]

]
. (66)

This means that ρ [S] is determined as the financial market price
of the derivative that arises from applying the conditional standard
deviation principle on the claim S, given the time-1 prices of traded
assets.

A second example of a TS valuation is the two-step cost-of-
capital valuation:

ρ [S] = e−r EQ [EP [S | Y] + i
(
VaRp [S | Y] − EP [S | Y]

)]
. (67)

Finally, a third example of a TS valuation is given by

ρ [S] = e−r EQ
[
θ
f
S · Y

]
, (68)

where θf is a fair hedger.
Pelsser and Stadje (2014) assume that the financial market of

the (n + 1) traded assets is complete in
(
Ω,FY,P

)
. Equivalently

stated, they assume that any derivative f (Y) is hedgeable. In par-
ticular, any claim πY [S] is hedgeable, and hence, its market value
is uniquely determined. The completeness condition means that
there exists a mapping θTS

: C → Θ such that

θTS
S · Y = er πY [S] , for any S ∈ C. (69)

We call θTS the two-step hedger of the two-step valuation ρ. Due
to the non-redundancy assumption (1), the time-1 value θTS

S · Y
uniquely determines θTS

S . It is straightforward to prove that θTS is
a fair hedger with

θTS
S⊥ =

(
π
[
S⊥
]
, 0, . . . , 0

)
, for any S⊥

∈ C⊥. (70)

Under the completeness assumption, the TS value ρ [S] of S can be
expressed as

ρ [S] = e−r EQ [θTS
S · Y

]
= θTS

S · y, (71)

which does not depend on the particular choice of the pricing
measure Q.

Hereafter, we will not make the completeness assumption,
which implies thatwe have to choose a particularmeasureQ in the
set of all feasible pricing measures and hence ρ [S] might depend
on this choice.

In the special case there is no financial market, except the risk-
free bank account, any claim S is an orthogonal claim, and the two-
step valuation reduces to an actuarial valuation:

ρ [S] = π [S] .

In the following theorem, we prove that the class of two-step
valuations is identical to the class of fair valuations.
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Theorem 8. A mapping ρ : C → R is a TS valuation if and only if it
is a fair valuation.

Proof. (a) Consider the TS valuation ρ with ρ [S] = EQ [πY [S]] for
any claim S. It is straightforward to prove that ρ is both market-
consistent and actuarial valuation, which means that ρ is a fair
valuation.
(b) Consider the fair valuation ρ. From Theorem 1, we know that
there exists a fair hedger θf such that

ρ [S] = e−r EQ
[
θ
f
S · Y

]
, for any S ∈ C.

As e−r θ
f
S · Y is an actuarial conditional valuation, we can conclude

that ρ is a TS valuation. ■

Consider the TS valuation ρ with underlying conditional valua-
tion πY and EMM Q. Let Sh ∈ Ch and S⊥

∈ C⊥. In case

πY
[
Sh × S⊥

]
= Sh × π

[
S⊥
]
, (72)

we find that the TS value of Sh × S⊥ is given by

ρ
[
Sh × S⊥

]
= EQ [Sh]× π

[
S⊥
]
. (73)

In the special case of complete diversification of the orthogonal
claim, i.e. when S⊥

= EP
[
S⊥
]
, we have that the condition (72) is

satisfied and (73) reduces to the Brennan–Schwartz formula (21).
From this result, it follows that the formula (73) is an intuitive gen-
eralization of the formula (21), proposed by Brennan and Schwartz
(1976). It is a straightforward exercise to prove that the generalized
Brennan-Schwartz formula (73) holds for the TS standard deviation
valuation as well as for the TS Cost-of-Capital valuation, defined in
(66) and (67), respectively, provided Sh ≥ 0.

5.2. Examples

We end this section with two illustrative examples, which are
the counterparts of Examples 3 and 4 considered in Section 4.4.

Example 5. (a) Consider the financial–actuarial world
(
Ω, 2Ω ,P

)
as described in Example 3, with a non-traded survival index and
a market of traded assets consisting of a zero-coupon bond and a
stock. Suppose thatwewant to determine the fair value ρ [S] of the
hybrid claim S defined in (55) according to the two-step cost-of-
capital valuation (67) with r = 0, p = 0.995 and i = 0.06. Taking
into account that I ∈ C⊥ and applying the generalized Brennan-
Schwartz formula (73), we find that

ρ [S] = EQ [1 − Y (1)]
× π [1 − I] =

53
200

.

Notice that in this setting, the vector of time-1 asset prices is given
by Y =

(
Y (0), Y (1)

)
and any derivative f (Y ) is hedgeable. One can

easily verify that the TS hedger θTS is given by

θTS
= (0.53, − 0.53) ,

from which we find that

ρ [S] = θTS
S · y =

53
200

.

(b) Suppose now that, apart from the zero-coupon bond and the
stock, also the survival index I is traded, with current price y(2) =

2/3 and time-1 value Y (2)
= I. In this case, the vector of time-

1 asset prices is Y =
(
Y (0), Y (1), Y (2)

)
and S is a non-hedgeable

derivative of Y . The two-step cost-of-capital valuation (67) trans-
forms into

ρ [S] = EQ [(1 − Y (1))
×
(
1 − Y (2))] .

In order to fully characterize ρ, one has to choose a particular risk-
neutral measure Q for the financial market. One can easily verify

that Q ≡ (q00, q10, q01, q11) is an EMM if and only if there exists
a q ∈

(
0, 1

3

)
such that

q00 = q, q10 =
1
3

− q, q01 =
1
2

− q and

q11 =
1
6

+ q. (74)

Given that the payoff of S only differs from zero in the scenario(
Y (1), Y (2)

)
= (0, 0), we find that

ρ [S] = q.

The two-step value ρ [S] can take any value in
(
0, 1

3

)
, depending on

the choice of the EMM. In case we require e.g. that Y (1) and I are
independent underQ, we find that the two-step value of S is equal
to 1/6.
(c) Let us now assume that apart from the zero coupon bond, the
stock and the survival index, also the call option with current price
y(3) =

1
6 and payoff at time 1 given by (57) is traded in the market.

In this case, the set of EMM’s is defined by (74) for some q ∈
(
0, 1

3

)
,

complemented with the additional requirement

y(3) = EQ [Y (3)] .
This situation leads to a unique EMMQ characterized by (74) with
q =

1
6 . We can conclude that in this complete market setting, the

fair value of S is given by

ρ [S] =
1
6
.

Notice that under this unique EMM Q, the payoffs Y (1) and I are
independent. ◀

Example 6. Consider the financial–actuarial world described in
Example 4(b). We model this world by

(
Ω, 2Ω ,P

)
with

Ω =
{
(x1, x2) | x1 ∈ A; x2 = 0, 1 . . . ,Nnat} ,

where any (x1, x2) is a possible outcome of
(
Y (1), Y (2)

)
. Sup-

pose that the insurance claim S defined in (58) is valuated ac-
cording to the TS standard deviation valuation (66), with Y =(
Y (0), Y (1), Y (2)

)
. From the assumedP-independence betweenmor-

tality and the stock price, we find that

ρ [S] = e−r EQ
[
EP [S | I] + β

√
varP [S | I]

]
.

Taking into account that

EP [S | I] =
N ins

Nnat I

and

varP [S | I] =
N ins(Nnat

− N ins)
Nnat(Nnat − 1)

I
Nnat

− I
Nnat ,

one finds that

ρ [S] =
N ins

Nnat y
(2)

+ βe−r
×

EQ

⎡⎣√N ins(Nnat − N ins)
Nnat(Nnat − 1)

Y (2)N
nat − Y (2)

Nnat

⎤⎦ . (75)

The incompleteness of the market requires the choice of an EMM
Q for the valuation of S. Let us assume that A is a countable
set and also that P

[
Y (1)

= x1, Y (2)
= x2

]
> 0 for any (x1, x2) ∈

Ω . We introduce the notation qx1,x2 for Q
[
Y (1)

= x1, Y (2)
= x2

]
.

Furthermore, qx1· =
∑Nnat

x2=0qx1,x2 and q·x2 =
∑

x1∈Aqx1,x2 . The set
M of all EMM’s can be characterized as the set of all probability
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measures Qwith qx1,x2 > 0 for any (x1, x2) ∈ Ω , satisfying

∑
x1∈A

x1 × qx1· = ery(1) and
Nnat∑
x2=1

x2 × q·x2 = ery(2).

In case the insurance and national populations coincide, it follows
from (75) that the TS value ρ [S] of S is equal to the price y(2) of the
‘national survival index’. ◀

6. Final remarks

The fair value of a hybrid claim, which is by definition neither
hedgeable nor orthogonal, is in general not uniquely determined.
This is not only due to the involvement of actuarial judgement,
but at an earlier stage in the valuation process also due to the
ambiguity that exists in how to determine the hedgeable part of
such a hybrid claim.

In this paper we proposed a framework to combine market-
consistency and actuarial considerations in a so-called fair valua-
tion. In such a setting, a market-consistent valuation of claims is
based on an extension of cash invariance to all hedgeable claims,
such that all claims are valuated in agreement with current mar-
ket prices. Under a market-consistent valuation, the valuation of
hedgeable claims is consistent with risk-neutral pricing based on
an EMM Q. An actuarial valuation on the other hand, is typically
performed with an actuarial premium principle, based on a physi-
cal probability measure P, chosen by the actuary. In such a setting,
the problem the actuary is solving is to value the claim such that the
insurer will be able to pay the observed claim amount at the end
of the period, ignoring the existence of a financial market. A fair
valuation combines the financial approach of a market-consistent
valuation and the actuarial approach of an actuarial valuation. Such
a fair valuation makes use of P- and Q-measures and in this sense,
it can be considered as the right setting to value claims which have
financial and actuarial components.

We presented a fair valuation technique, baptized hedge-based
valuation, where one first unbundles the hybrid claim in a hedge-
able claim (determined from the original claim according to some
well-defined hedging procedure) and the remaining claim (i.e. the
original claim minus the payoff of the hedgeable claim). The fair
value of the claim is then defined as the sumof the financialmarket
price of the hedge and the actuarial value of the remaining claim.

We also investigated the class of two-step valuations. The defi-
nition of a two-step valuation proposed in this paper is inspired by
the two-step valuations definition of Pelsser and Stadje (2014). Our
definition is slightly different, as opposed to the original approach
of Pelsser and Stadje (2014), we do not require that the market of
traded assets is complete.

We showed that the set of fair valuations coincides with the
set of hedge-based valuations and also with the set of two-step
valuations. The two-step and the hedge-based approaches are only
two different ways of identifying the different members of the set
of fair valuations. The hedge-based approach starts from the choice
of a hedger and does not require the choice of an EMM. In general,
the two-step approach starts from the choice of an EMM. In case
the market of traded assets is complete, the two-step approach
does not require the choice of an EMM and the underlying two-
step hedger is determined via (69). The hedge-based approach has
the advantage of providing an explicit additive decomposition of
the fair value into a financial price and an actuarial value while in
the two-step approach the decomposition is performed through a
less intuitive conditional procedure.

In a forthcoming paper, we will extend the notion of fair valu-
ation which was defined here in a static one-period setting to the
case of amultiperiod settingwhere dynamic hedging strategies are

allowed. Moreover, we will investigate the requirement of time-
consistency of dynamic fair valuations.
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