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Abstract

The computation of various risk metrics is essential to the quantitative risk management
of variable annuity guaranteed benefits. The current market practice of Monte Carlo simula-
tion often requires intensive computations, which can be very costly for insurance companies
to implement and take so much time that they cannot obtain information and take actions
in a timely manner. In an attempt to find low-cost and efficient alternatives, we explore the
techniques of comonotonic bounds to produce closed-form approximation of risk measures for
variable annuity guaranteed benefits. The techniques are further developed in this paper to
address in a systematic way risk measures for death benefits with the consideration of dynamic
policyholder behavior, which involves very complex path-dependent structures. In several nu-
merical examples, the method of comonotonic approximation is shown to run several thousand

times faster than simulations with only minor comprise of accuracy.
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1 Introduction

Quantitative modeling, pricing and risk management of variable annuities have become an active
area of research, driven by rapid market innovation and increasing complexity of guaranteed bene-
fits. Non-traditional quantitative techniques are required for quantifying, assessing and managing
embedded option-like investment features. In recent years, regulators in North American markets
have set up capital requirement standards for equity-linked insurance products based on Monte
Carlo simulations. Among their many great advantages, simulation methods are known for their
universal applications to complex systems of product designs and their easy implementation, es-

pecially with the rapid improvement of computational power. Bauer et al. (2008) and Bacinello



et al. (2011) give comprehensive treatments of major product designs of guaranteed benefits by
simulations. However, one should bear in mind that simulation-based techniques are sampling
procedures that provide statistical estimation. It is a well-known fact that the sampling error of
Monte Carlo simulation in general decreases by 1/4/n with n being the sample size. In other words,
the sample size has to increase a hundredfold in order for the estimate to improve one significant
digit. Many industrial surveys, such as Farr et al. (2008), have reported the growing problems of
inefficient simulation exercises which make it extremely difficult to obtain useful information and
make decisions on pricing and risk management in a timely manner. It is not surprising that prac-
titioners often have to strike a difficult balance between the accuracy of results and the efficiency
of their simulations.

There has been growing interest in both the industry and the literature for the improvement of
model efficiency by either analytical methods or statistical means. For example, Koursaris (2011)
discussed the computation of capital requirement by least squares Monte Carlo simulations. Bauer
et al. (2010) compared least squares Monte Carlo simulations and numerical PDEs for valuing
surrender options in equity-linked insurance.

The pricing of various types of variable annuity guaranteed benefits is extensively studied in
the actuarial literature. Hardy (2003) provides a comprehensive review of option pricing theory
and its applications to many investment guarantees. Ulm (2008) and Ulm (2014) derived analytical
solutions to guaranteed minimum death benefits (GMDB) with rollup and ratchet options; Chi and
Lin (2012) introduced a PDE method for pricing guaranteed minimum maturity benefit (GMMB)
and GMDB with continuously paying premiums. As an alternative, a closed-form approximation
for the same guarantees with flexible premium payments was derived in Costabile (2013). Marshall
et al. (2010) studied the valuation of a guaranteed minimum income benefit (GMIB). Bernard
et al. (2014) proposed models for optimal surrender strategy for various guaranteed benefits with
surrender options. However, less is known with regard to the risk management of these guaranteed
benefits. For many complex product designs, Monte Carlo simulations remain the only available
tool for computing risk measures. Nevertheless, efforts have been made in the recent literature
to draw analytical techniques non-conventional to actuarial literature to the computation of risk
measures. Feng and Volkmer (2012) developed integral solutions to risk measures of GMMB and
GMDB net liabilities using Yor’s representation of the joint distribution of geometric Brownian
motion and its time-integral. An improvement using spectral expansion techniques was made in
Feng and Volkmer (2014).

Variable annuities are financial contracts between annuity writers (typically life insurers) and
individual policyholders. Policyholders make purchase payments into investment accounts at the
inception and expect to reap financial gain on the investment of their accounts. Let us first
consider the cash flows of a stand-alone variable annuity contract. The life cycle of a variable
annuity contract can be broken down into two phases. The first is known as the accumulation
phase, in which policyholders’ investment accounts grow in proportion to certain equity-indices in

which policyholders choose to invest at the inception. Let {S;,0 < ¢t < T'} describe the dynamics



of the underlying equity-index from the inception of the contract to the maturity 7' (which is
assumed to be an integer) and {F;,0 < ¢t < T'} describe the evolution of fund values in a particular
policyholder’s investment account with Fy being the initial purchase payment. Let us consider the
discrete time model with a valuation period of 1/n of a time unit, i.e. t =1/n,2/n,---  k/n,--- | T.
The fees and charges by annuity writers are typically taken as a fixed percentage of the-then-current

account values on a periodic basis. The equity-linked mechanism for variable annuity dictates that
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where m is the annual rate of total charge compounded n times per year, and charges are made at
the beginning of each valuation period. This annual charge m is also referred to in practice as the
mortality and expense (M&E) fee. Let r be the continuously compounding yield rate per year on
bonds backing up the guaranteed benefits. Observe that the income from the insurer’s perspective
is generated by a stream of account-value-based payments. The present value of fee incomes, also

called margin offset, up to the k—th valuation period is given by

k—1
where m, is the annual rate of GMMB rider charge compounded n times each year (part of the
total charge m allocated to fund the GMMB). Although the fee incomes {M;,t > 0} are considered
seperately as the incoming cash flows, the fee rate m. is included in the M&E fee rate m, as m is
always greater than m, to allow for overheads, comissions and other expenses.
The second phase typically starts at the beginning of payments from guaranteed benefits and
is called the income phase. The models of the liabilities differ greatly by the designs of investment

guarantee. In this paper, we consider the two most common types of benefits.
Guaranteed Minimum Maturity Benefit (GMMB) - Individual Model

In the case of a GMMB, the policyholder is guaranteed to receive a minimum balance G in the

investment account at maturity 7. The present value of the gross liability to the insurer is
(G — Fr) I(T, > T),

where (z)y = max{z,0} and T, is the future lifetime of the policyholder of age = at inception.
Consider the net liability of the guaranteed benefits from the insurer’s perspective, which is the
gross liability of guaranteed benefits in the income phase less the fee incomes in the accumulation

phase. The present value of the GMMB net liability is given by

(nTATy)—1 m
n =T —ri/n e
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where z A y = min{z, y}.



We shrink the valuation period to zero by taking n to co and observe that lim (1—")" =e™™
n—oo
where m in this case should be interpreted as the continuously compounded annual rate of total

charges. As a result, for each sample path,
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where [z] is the integer ceiling of x. Similarly, the margin offset can be written as
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where m. is interpreted as the continuously compounded annual rate of rider charge allocated to
the GMMB rider.
The limit of L leads to a continuous time model. In the case of the GMMB,

TNy
LT =e7"T(G — Fr), I(Ty, > T) — / e " meFy ds. (1.2)
0

Guaranteed Minimum Death Benefit(GMDB) - Individual Model

In case of a GMDB, the policyholder is guaranteed to receive a minimum balance G regardless
of the performance of the investment account at the end of the 1/n-th period following his/her
death. It is fairly common that the guarantee amount accumulates interest at a fixed rate § > 0,

which is known as a roll-up option. The present value of the gross liability to the insurer is
e K (QeKe — B ) I(K, < T),
where K, is the curtate future lifetime
1

The present value of the GMDB net liability is given by

(NTAKg)—1 1
LINT,) = e Ko (G e — P )i I(Ko <T)— > e/ mgFy), <n> :
§=0
where my is the rate of fees per period allocated to fund the GMDB rider. Bear in mind that the
rider fees are not charged seperately, but rather as parts of the M&E fees, i.e. m > my. Similarly,

it is easy to use limiting arguments to show that in case of the GMDB,

TNy
Léoo) (Ty)=e"T=(Ge’Ts — Fr) I(T, <T) — /0 e "mgyFsds. (1.3)

The net liabilities L should be negative with a sufficiently high probability, as the products are

designed to be profitable. However, in adverse scenarios, the net liabilities can become positive.



The objective of actuarial risk management is to ensure that insurers set aside sufficient capitals
to absorb unexpected losses in the adverse scenarios. The amount of minimum capital is often
determined by risk measures of insurance liabilities, such as the value-at-risk, also known as quantile
risk measure, defined as

VaR,(L) := inf{y : P[L < y] > p}.

Another risk measure, which incorporates both the likelihood and severity of losses, is the condi-
tional tail expectation

CTE,(L) := E[L|L > VaR,].
The risk measures VaRp(Lgoo) ) CTEP(LEOO)),VaRp(LEZOO)), and CTEP(L&OO)) were studied in Feng
and Volkmer (2012) and Feng and Volkmer (2014) by analytical methods.

Guaranteed Minimum Maturity Benefit (GMMB) - Average Model

It is shown in Feng and Shimizu (2015) that if the future lifetimes of all policyholders are
mutually independent and all contracts are of equal size, i.e. all policyholders make the same

purchase payments and all contracts have the same guarantee level, then as N — oo,

e

N

1 i —(n

N g LTy — I ), almost surely,
i=1

where T denotes the future lifetime of the i-th individual. The GMMB net liability under the

average model is given by

nT—1

T -7 1 —rj/n

Lé ) =e TTpI (G —Fr)y — <n> g e "/ j/nPx meFj/na (1'4)
Jj=0

Observe that the mortality risk is fully diversified in the sense that there is no uncertainty on the
timing of cash flows. The continuous time analogue of the GMMB net liability under the average

model is given by
7 (00) !
Lo =e " 1pe(G — Fr); — me/ e ip. Fy dt. (1.5)
0

The risk measures VaRp(féoo)) and CTE, (ijx’)) were also studied in Feng (2014) using a numerical
PDE method. The comparison of risk measures under the two models (1.2) and (1.5) shows that
the financial risk is the dominating factor contributing to positive net liability in comparison with
the mortality risk for the GMMB.

Guaranteed Minimum Death Benefit (GMDB) - Average Model

Under the same assumption as mentioned above, it is known that as N — oo,

N

1 n ; —(n

N g Lé )(Tl@) — Lé ), almost surely.
i=1
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The GMDB net liability under the average model is given by

nT nT—1
_ o . 1 o
L = e Gty e 1 ntla 1y (G = Fypa) 4 — <n> Y eI aps maFy . (16)
j=1 §=0
The mortality risk is fully diversified in the sense that there is no uncertainty on the timing of
death benefits. The continuous time analogue of the GMDB net liability is determined by letting
n go to infinity

. T
ffioo) = /0 e 1Py foyr (GOt — Fy) . dt — md/o e " yp. Fy dt,

where py4y = —(d/dt) pz/ ps is the force of mortality in a continuous mortality model. Unlike
the previous models, the numerical PDE method used in Feng (2014) does not apply directly in this
case, although other PDE methods may be possible. In this paper, we sort to alternative methods
such as comonotonic approximations in this paper.

While the above formulation of net liabilities can be used for any equity return model, the tech-
nique of comonotonic approximation in this paper relies on analytical properties of the underlying
processes. We model equity returns by a geometric Brownian motion (GBM) {S;, ¢ > 0}, also

known as the independent lognormal model by the insurance industry,
Sy = SpetttoBt >0, (1.7)

where {By,t > 0} is a standard Brownian motion. This particular choice of asset model was made

for multiple reasons.

1. The GBM model is currently used in the industry. It is among several asset return mod-
els recommended by the American Academy of Actuaries (c.f. Gorski and Brown (2005)).
Parameter estimations for which the model meets calibration critaria can be found easily in

their report.

2. The GBM model has several desirable properties for modeling equity mix. In practice, most
equity funds offer a fixed (or relatively stable) make-up of subaccounts by periodic rebalancing.
For instance, 30%-high-yield-equity, 30%-low-yield-equity and 40%-bonds. If each of the
subaccounts in the equity fund is modeled by a GBM and the proportion attributable to
each subaccount is fixed, then the overall equity fund is also driven by a GBM. Continuously
rebalanced portfolios were studied with comonotonicity techniques in Dhaene et al. (2006),
Marin-Solano et al. (2010) and Dhaene et al. (2005).

3. Even though we only consider the model (1.7) in this paper, most results can be extended to

regime-switching geometric Brownian motions, also recommended in the AAA guideline.

The main contributions of the paper can be summarized as follows. (1) While there exists

actuarial literature on the pricing of exotic options using comonotonicity (c.f. Simon et al. (2000),



Albrecher et al. (2005), Hobson et al. (2005), Chen et al. (2008), Linders et al. (2012) amongst
others), this is the first paper to systematically explore this technique for risk measures of vari-
able annuity contracts. (2) In the same technical framework of comonotonicity, we address the
computational issue of dynamic policyholder behavior, which was only previously known by sim-
ulations in the literature and in practice. (3) Given the complexity of the (time-inhomogeneous)
average models, it is quite remarkable that the technique of comonotonicity produces easy-to-
implement explicit solutions (Propositions 3.1 and 4.1). The approximation can be viewed as a
“back-of-envelope-calculation” alternative to Monte Carlo simulations which require intensive com-
putations. The computational advantage is even more pronounced when policyholder behavior is
considered. (4) To the best of our knowledge, this is the first paper in the actuarial literature
to provide an analysis of risk metrics with dynamic policyholder behavior using a non-simulation
based approach.

In Section 2, we will introduce the concept of comonotonicity, its basic properties and a general
form of comonotonic bounds for path dependent equity-linked products. Comonotonic bounds for
the net liability of GMMB are discussed in detail in Section 3. A more complex development of
comonotonic approximations of the net liability of GMDB is introduced in Section 4. In Section
5, we compare the approximations developed in this paper with the benchmark of Monte-Carlo
simulation through several numerical examples. In Section 6, we extend the comonotonic approxi-
mation approach to address the computation of risk measures for net liabilities taking into account

dynamic policyholder behavior.

2 Comonotonicity

The theory of comonotonicity was originally studied in the actuarial literature with respect to
estimating aggregate claims, which are often sums of dependent random variables representing
individual claims. Over the past decades it has seen wider applications ranging from rate-making
of property-casualty insurance to pricing of exotic options. Readers can find a comprehensive review
on the theory of comonotonicity in Dhaene et al. (2002b), Dhaene et al. (2002a), Dhaene et al.
(2006), Deelstra et al. (2011) and the references therein. For the sake of completeness, we briefly
review the properties of comonotonic bounds which will be used in our calculations. Although
some error analysis is known for comonotonic bounds of option prices (c.f. Vanduffel et al. (2005)
and Vanmaele et al. (2006)), there appears to be no error estimation in the previous literature on
the TVaR of comonotonic lower bound, which we shall use for approximations of risk measures for

variable annuity guaranteed benefits. Hence, we first develop a formula for the error estimation.



2.1 Convex order and implication for TVaR

The random variable X is said to be smaller than the random variable Y in convex order, denoted
by X <. Y, if for all d € R,

E(X)=E(Y) and E(X-d)y<EY —d)..

There are several commonly used risk measures for loss random variables. The Value-at-Risk,

also known as the quantile risk measure, is defined by
VaR,(X) := inf{z : P(X > z) < p}, p € [0,1],

with inf @ = —oo. Another risk measure often used for regulatory capital requirements is the

Conditional Tail Expectation, defined by
CTE,(X) := E[X|X > VaR,(X)], p € [0,1].

Other risk measures include the Left-Tail-Value-at-Risk and the (right-)Tail-Value-at-Risk, defined
for p € 0, 1],

1 ! 1 (P
TVaR,(X) = 1—;0/ VaR,4(X) dg, LTVaR,(X) := p/o VaR4(X) dg,
P

where the definitions should be considered as limits of the fractions for TVaR; and LTVaRgy. In
the applications of this paper, we shall apply these risk measures to continuous random variables
such as L(en) and Lén). It is easy to show that CTE, is identical to TVaR, for continuous random
variables for all p € [0,1]. Hence, we do not distinguish them in this paper.

For insurance applications, we often encounter problems of computing risk measures of random
variables arising from complex structure. For example, it may be difficult to directly determine the

distribution of some random variable, X. Then we may use the convex order relation
X' = E(X|A) <w X, (2.1)
which implies that
TVaR,(X') < TVaR,(X),  Vpe€ (0,1). (2.2)

The proof of this result can be found, for example, in Dhaene et al. (2006). The TVaR of the
comonotonic approximation X' is sometimes much easier to compute than that of the original
variable X and serves as a lower bound. This is in particular the case where X is the sum of the
components of a multivariate lognormal random vector. For numerical implementation, we want

to know the magnitude of the errors of the lower bound.

Proposition 2.1. For all p € [0,1),

1
TVaR,(X) — TVaR,(X') <

- _ l
< 5y B0 =X, (2.3)




Proof. 1t is easy to prove that for two real-valued functions f and g bounded from below with the
same domain,
inf f +inf g < inf{f + g},

which implies

inf f —infg < —inf{g — f}.
Furthermore, if g — f is bounded, then

inf f —inf g < sup{f — g}.

We know from (Denuit et al., 2005, p.75) that

) 1
TV&RP(X) = ;Iél% {Cl + HE(X — CL)+} .

Let us denote the expression inside the brackets by fx(a). Then it is clear that

Fila)=1— lipp(x > a).

Therefore, there exists some number ag such that f is non-increasing on (00, ag) and non-decreasing

on (ap,00). Since

1 1 1
lim a—I—liE(X—a)Jeri lim a+E(X —a)t

a——00 -p — pa——0 - 1—p

E(X) > —o0,
we find that fx is indeed bounded from below. Note that by Jensen’s inequality,

fs(@) = fola) = T {B(S— ) ~B(S' =)} 20, VaeR.
Moreover, fg — fq is differentiable and

lim fs(a) — fq(a) =0.

a——+00

Thus fg — fq is bounded. Therefore,

TVaR,(S) — TVaR,(S") < sup {E(s —a)y —E(S' — a,)+}.

— P acR
It follows from (Rogers and Shi, 1995, (3.5)) that
1
E(Y,) ~ E(E(Y]A),) < JE(Y ~ E(Y[A))).
Let Y =S — a. Therefore, we find the error bound (2.3). O

Hereafter we provide some examples to demonstrate that (2.3) is a tight upper bound of the

difference in the sense that the upper bound can be reached for a particular choice of p € (0,1).



Example 2.1. Let A be independent of X, then (2.3) is reduced to the special form

1
—_—  E|X-EX
2(1—-p) | |

1. Consider X to be a standard normal random variable with cdf ®. It follows immediately that

TVaR,(X) — E(X)

N

1 1 i—1(1)2
VaR,(z) = ' (p and  TVaR,(X)= — ¢ 3(@7'®)
o) ) WX = v

Since EX =0 and E|X| = \/2/7, the upper bound is attained if and only if p = %

2. Consider X to be an exponential random variable with mean 1/\. Then
1 1—In(1-
VaR,(z) = 3 In(1 —p) and TVaR,(X) = nip)
and E|X — EX| = 2/(\e) where e is the Euler’s constant. It turns out that the upper bound
is attained at the constant p = (e — 1)/e ~ 0.6321205588.

3. Let X be a gamma random variable with mean /B and variance o /3. Then VaR,(x) is the

inverse function of F(x) = ﬁv(a,ﬂx} and vy is the lower incomplete gamma function. And

TVaR,(X) = Wf(a 1, BVaR,(X))
E|X - EX| = 2;;(6;;

where T'(+) and T'(-,-) are the gamma function and the upper incomplete gamma function. It
can be shown that the upper bound is attained at the constant p = y(a,a)/T'(«), which is
independent of (3.

Remark 2.1. In applications, it is often difficult to determine a closed-form expression for E(| X —
XY). Therefore, using the fact that E|X — X!| < Var(X|A), we find the following weaker upper

bound:

TVaR,(X) — TVaR,(X") < — E(Var(X|A)2),  forpe [0,1). (2.4)

~2(1-p)

Here, Var is to used to denote the variance, not to be confused with the value-at-risk VaR,. Note,

however, the upper bound in (2.4) may not be attained for any p in [0,1).

Although the error bounds in (2.3) and (2.4) are tight in the examples above, they are generally
very conservative for large p, and actual errors from comonotonic approximations for particular

applications in this paper are orders of magnitude smaller than the error bounds.

10



2.2 Comonotonic bounds for sums of random variables

We are often interested in the aggregate sum of random variables such as S = X; + Xo+ -+ X,
where the marginal distributions of random variables X, Xo,--- , X,, are known but their joint
distribution is either unknown or too complex to be useful for computations. In such cases, one
can exploit the theory of comonotonic bounds to find closed-form approximations that can be
implemented efficiently.

By definition, the random vector (X1, Xs,--- , X,,) is comonotonic if
(X17X23 e aXn) ~ (Ffl(U)v FEI(U)7 o 7F_1(U))7

where ~ means equality in distribution and F~ Lis the (generalized) inverse distribution function

of X for k =1,--- ,n. For any random vector (X, Xo,---,X,) and any random variable A,

n n

=1 i=1 =1

where U has a uniform distribution on [0,1]. We call S! the comonotonic lower bound of S based
on A. The right-hand side of the second inequality is called the comonotonic upper bound.

It is known in the literature (c.f. Vanduffel et al. (2005)) that in a multivariate lognormal setup
with appropriate choices of A, the comonotonic lower bound S* provides a better approximation of
S than the comonotonic upper bound. Since (2.1) implies (2.2), we have that for any conditioning
random variable A,

TVaR,(S') < TVaR,(S).

CTE,(S") < CTE,(S)

Then we can try to obtain the maximum value of the lower bound TVaR,(S?),

T ! 2.
max TVaR,(57), (2.5)

as the approximation of TVaR(S), where A is taken from a family © of normal random variables.

3 Guaranteed minimum maturity benefit

For brevity, we suppress the superscripts (n) and subscripts e in the notation introduced earlier, as
the frequency of charges and the type of benefit are clear from the context of this section. Given
that L > 0, we consider the net liability in the average model (1.4):

1
L=¢"T PG — <nmeF0 + S> ,

where for notational we use the continuous version of the account value in (1.1) to obtain

nT—1 .
) 2
S = Z;Oéiez7.7 ZZ:(M*T*TI’Z)Eﬁ»O'BZ/n’
1=

11



and the «;’s are positive constants defined by

1
o — ;z’/npzmeFo, i=1,---,nT —1,
=

TP Fo, i =nT.

Consider the comonotonic lower bound of S given by
nT—1
Sl = E[S|A] = Z OéiE[EZi|A],
i=1
where the conditioning random variable A is a linear combination of M appropriately chosen normal
random variables, {Ny,---, Nys}, derived from {By,t > 0}, i.e.

M
A= Z e N
k=1

In the work of Vanduffel et al. (2008b) and Vanduffel et al. (2008a), a total of M = nT normal
random variables was used with N, = Z;. Under this choice of random variables, the weights
{Mg,k=1,--- , M} were derived to approximately maximize TVaR,(S') or Var(S!), see Appendix
B. However, as we shall demonstrate in the numerical examples, it is possible to achieve roughly
the same maximum with fewer random variables, which require less computational efforts. For
example, we can let Ny = Z,, and M =T.

Using properties of conditional distributions, we obtain

nT
gl — ZaieE[Zi]‘*‘%(1—T?)U%i+riazi(A—E[A])/UA’

i=1

where E[Z;] and a%i are the expectation and variance of Z;, i.e.

i ;
E[Z] = (u—1 —m)~ R
[Z]=(u—r—m)_, oz 0\/;,

while r; is the correlation coefficient of Z; and A, and ai is the variance of A. Assume that all r;’s
are nonnegative numbers. Owing to the structure of the sum S!, we can find explicit expressions

for the risk measures
nT—1

VaR,[S'] = Z aieE[ZiH*%(lfr%)gzzi+riazi(}71(p)
i=1
and
1 1 1 nT—1
TVaR[5] 2 TVaRplS] = 1/ VaR, ('] dp = 1-p i EB[eZ)®(rioz, — @1 (p)).
o PO

The derivation can be found in Vanduffel et al. (2008b).

12



Proposition 3.1. Consider the net liability for the GMMB in the average model (1.4). The value-

at-risk and the conditional tail expectation of the comonotonic lower bound L' = E[L|A] are given

by

1
VaRp(Ll) =T PG — (nmeFQ + VaRl_p(Sl)> (31)
and
1
CTE, (L)) = e 7p,G — —mek - LTVaR;_,(S%) (3.2)
where
nT—1
VaR,(8) = 3 aeBlZilt30-rDot 4rioz, 87 0)
=1
and
1 nT—1
LTVaR;_,(S") = i o E[eZ)(1 — ®(rioz, — (1 —p))).
=1

Remark 3.1. Note that the risk measures VaR,(S') and LTVaR,,(S) only depend on the unspecified
vector (A1, -+ , Apr) through the vector (ri,--- ,rar). Rather than searching for \;’s, Vanduffel et al.
(2008a) proposed two methods for selecting optimal r;’s. Their first approach is to maximize the
first-order approzimation of the variance of S' (globally optimal choice), in which case Ny = Zy for
k=1,---,nT. The second approach maximizes the first-order approximation of TVaRp(Sl) (locally
optimal choice). The exact formulas for the optimal choice of r;’s can be found in the Appendiz.
The first numerical example in Section 5 provides a testimony to the remarkable effectiveness of
the approximations. However, even the first-order approximations can be difficult to find for the
GMDB. Hence, we propose to use numerical optimization algorithms to find \;’s that achieve (2.5).
Note that (Hainaut, 2014, (3.12)) also used a numerical method of choosing \;’s so that the sum

of squares of differences between r;r; and 1 for all i, 7.

4 Guaranteed minimum death benefit

For the net liability of the GMDB in the average model (1.6),

nT . nT—1
L= Zui(Ge&/n —Fn)s — Z ViFifn
i=1 i=0
where
g 1= e—rz/n (i=1)/nPa 1 /na+(i—1)/n> v = ﬁe_rz/nmd inDx-

We use random variable Np’s with mean zero,

M
A= Z Ao Ng.
k=1
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Since F;/,, = exp(Z;) where Z; = (u — m)% + 0B/, we must have

ZilA = X ~ Norm <,ui <A> ,U,~Q> ;
OA

aly) = m—m)nwa\/;y, 0? = 0> (1 - 12).

where

Recall that

E [(G _ Foeu+o<1>‘1(U))+] — G (hl(G/FO)”> _ Rttt 2 <IH(G/F0) —o’ M) '

(o2 g

Let pf(y) = pi(y) — di/n. Consider the conditional expectation

In(G/Fo) - () _ e () ratrg In(@/Fo) o — i ()

0j a;

nT
E[LIA =N =) u; |Ge/"®
i=1
nT—1

— > wviFyexp {M (;A) +a§/2}. (4.1)

1=0

It is easy to show that E [(G — Foe“+(’¢71(U))+} is a decreasing function of u. Therefore, each term
in (4.1) is a decreasing function of A. This implies that we have closed-form formulas for both risk
measures of L' := E[L|A].

Proposition 4.1. Consider the net liability for the GMDB in the average model (1.6). The value-

at-risk and the conditional tail expectation of the comonotonic lower bound L' are given by

VaR, (L) = iT: us [Ge&/nq) <1H(G/Fo) — (@711 p))>

o
i=1 v

oF)

Ry (7)ol 2 (hl(G/Fo) —op —pp (@711 - P))> ] (4.2)

nT—1 1
— Z vi Fyexp {p; (271 (1 = p)) + 07 /2} — —md Fo,
=0

and

nT
1 .
CTE, (L) = e > ui |G/ H (B (1 — p)ias, by)
i=1

Fye *(0)+1 2! H{o '1-p)—7r \/7a b io” (4.3)
- X i 50 — —p)—" —5 @4y 0 — .
0 €XP q Ky 20 n p g n no;

nT—1

1 1 51 ] 1
- v; Fyexp < 1 (0) + “o2lt o 11 —p)— ria\/7 — —mg Fp,
1—p 2 n n n

1=0
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where
o y _ I(G/Fy) = (5 —m —8)i/n
i = L rz» i = o .

and H is a special function whose definition and computation are discussed in the Appendix.

The derivation is largely based on the simple identity (A.1). It should be pointed out that
it is in general difficult to find explicit formulas for optimal choices of r; because of the complex
structure of H functions. Nevertheless, numerical methods for nonlinear optimization problems are
widely available in computational software packages such as Matlab. In Section 5, we shall provide

an example in which the optimization procedure is implemented.

5 Numerical example

We illustrate the computation of risk measures for variable annuity guaranteed benefits by two
examples, which are based on the following assumptions. The policyholder is 65-year-old at policy
issue, and the term of the variable annuity is 10 years, i.e. T = 10. The mean and standard
deviation of log-returns per annum in the Black-Scholes model (1.7) are set as p = 0.09 and
o = 0.3 respectively. In several cases, we also test the methods for o = 0.4 to verify consistency.
The yield rate per annum of the assets backing up the guarantee liabilities is » = 0.04. The M&E
fee per annum is m = 0.01, and rider charge m. or my is assumed to be 35 basis points per annum
of the separate account. The initial guarantee amount is set to be the initial purchase payment
G = Fy. To model the future lifetime of policyholders, we use the life tables published in the
actuarial study by the U.S. Social Security Administration in 2005.

All computations in Sections 5 and 6 are carried out on a personal computer with Intel Core
i7-4700MQ CPU at 2.40GHz and an RAM of 8.00 GB.

x Iz k kDz x Gz k kDz
65 | 0.01753 | 0 1 71 | 0.03059 | 6 | 0.87275
66 | 0.01932 | 1 | 0.98246 | 72 | 0.03343 | 7 | 0.84606
67 | 0.02122 | 2 | 0.96348 | 73 | 0.03633 | 8 | 0.81778
68 | 0.02323 | 3 | 0.94304 | 74 | 0.03942 | 9 | 0.78807
69 | 0.02538 | 4 | 0.92113 | 75 | 0.04299 | 10 | 0.75700
70 | 0.02785 | 5 | 0.89775

Table 1: Life Table

5.1 Guaranteed minimum maturity benefit

The purpose of the first example is to test the accuracy and efficiency of the comonotonic approx-

imations proposed in Proposition 3.1. The computation of risk measures for the GMMB under
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the continuous time average model (1.5) was investigated in (Feng, 2014, Tables 5 and 6) through
a numerical PDE method. As we shall demonstrate, the comonotonic approximations appear to
be very efficient with only small compromise of accuracy, which is likely negligible for practical

purposes. Hence, the comonotonic approximation is arguably superior to the PDE method for this

example.
’ ‘ Method VaRg. 9 CTEg g ‘ Time (secs) ‘
Global optimization AMY 0.14900 | 0.25944 0.04
Local optimization A® 0.14901 | 0.25948 0.04
o) Nonlinear optimization 0.14902 0.25948 33.95
T Monte Carlo 0.14914 | 0.25966 | 179.84
©1 (20 repetitions of 1 million) | (0.00043) | (0.00034)
Monte Carlo 0.14902 0.25949 18042.09
(20 repetitions of 100 millions) | (0.00007) | (0.00004)
Global optimization AMY 0.26283 | 0.35307 0.03
Local optimization A®) 0.26287 | 0.35307 0.04
<t Nonlinear optimization 0.26289 0.35317 31.16
? Monte Carlo 0.26315 0.35334 181.26
©1 (20 repetitions of 1 million) | (0.00043) | (0.00028)
Monte Carlo 0.26288 0.35319 18079.13
(20 repetitions of 100 millions) | (0.00005) | (0.00003)

Table 2: Risk measures for the GMMB net liability

We first run Monte Carlo simulations for the average model (1.4) with n = 4, i.e. fees are
collected on a quarterly basis. The probability of the policyholder surviving a non-integer period
is calculated under the assumption of constant force of mortality in each year. For each scenario
of investment accounts generated by the geometric Brownian motion, we calculate the net liability
based on the formulation (1.4). After repeating the simulation 1 million or 100 million times, the
net liability values form an empirical distribution, from which we use order statistics to obtain one
estimate of the value-at-risk and conditional tail expectation. Then we repeat the whole procedure
20 times to obtain a sample of risk measure estimates. In Table 2, we show the mean and standard
deviation (in brackets) of the estimated risk measures.

We test the comonotonic approximations (3.1) and (3.2) with various choices of A. In the first
case, we set Np = Z; for k = 1,--- ,nT and use the globally optimal choice of A, proposed by
Vanduffel et al. (2008b), which is the optimization of the linear approximation of Var(S') as a
function of the vector (r1,---,7ar). The exact expressions for r;’s are given in (B.1). In the second
case, we use the locally optimal choice of A, proposed in the same paper, which is the optimization
of the linear approximation of TVaR,(S') as a function of the vector (ry,--- 7). The exact

expressions for r;’s are given in (B.2). In the third case, we treat the risk measures as nonlinear
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functions of the vector (A1,---,Ay) and use Matlab’s fminsearch to find the optimal value of
the vector that minimizes —TVaR,(S"). This algorithm uses a version of the Nelder-Mead simplex
search method to obtain a local minimum value of the function. It works well in unconstrained
nonlinear optimization system, which suits our situation. Based on empirical data, we observe that
TVaRp(Sl) is in fact unimodal and hence the numerical algorithm is very stable and efficient.

It is not surprising that the approximations based on the global and local optimal choices of
r;’s are more efficient than the nonlinear optimization, as the former pins down the values of r;’s
by closed-form formulas where as the latter invokes a search algorithm for A;’s. It is also worth to
note that the nonlinear optimization brings TVaR,,(S%) closer to the true value of TVaR(S).

To further test if the aforementioned methods work well for other situations, we increase the
value of the volatility parameter o. As expected, risk measures increase with the volatility coef-
ficient, as high volatility increases the likelihood and severity of large losses. Comparing the first
part and the second part of Table 2, one observes the same level of accuracy and efficiency with

various methods.

5.2 Guaranteed minimum death benefit

Consider the net liability of the GMDB rider in (1.6). For simplicity, the net liabilities are evaluated
under the same valuation basis as in the GMMB case. Keep in mind that we no longer have closed-
form solutions to (A1, -+, Aps). In the case of Ny = Zj for k = 1,--- ,4T (quarterly valuation), a
10-year contract with quarterly fee payments require 40-dimensional optimization (the first row in
Table 3). Therefore, we intend to reduce computational efforts by restricting the space of normal
random variables © in (2.5). We use the results from Monte Carlo simulations as the bench mark
for accuracy and efficiency. In the second row of Table 3, the normal random variables are sampled
every half-year, i.e. Ny = Zg for k = 1,---2T. (The number of random variables is reduced by
half from the quarterly case.) In the third row of Table 3, the normal random variables are chosen
on yearly basis, i.e. Ny = Zy for k = 1,---,T. (The number of random variables is reduced by
75% from the quarterly case.) It appears that the running time can be reduced drastically with
small compromises of accuracy. We run the numerical example for both ¢ = 0.3 and ¢ = 0.4 to
show that the algorithm works consistently for various situations.

In the next example, we intend to consider the impact of offering a roll-up bonus on the GMDB
net liability. In this case, the guarantee base accumulates interests at the rate of 6 = 0.06 per
annum. In comparison with the tail behavior in Table 3 with no roll-up, the 90% risk measures
show that the tail of the net liability is heavier owing to the richer benefit payments. We have also

experimented with the reduction of normal random variables in A as was done in the previous case.

6 GMDB with dynamic policyholder behavior

We now incorporate into the average model a feature of dynamic policyholder behavior (DPB)

commonly used in practice. In many product designs, variable annuity policyholders have the op-

17



’ ‘ Method ‘ VaRg g CTEp.9 ‘Time (secs)‘

Nonlinear optimization 0.03035 0.06126 69.97
Nonlinear optimization ( 50% reduced) | 0.03031 | 0.06123 30.50
~ | Nonlinear optimization ( 75% reduced) | 0.03018 | 0.06111 7.83
? Monte Carlo 0.03059 0.06137 226.16
o (20 repetitions of 1 million) (0.00013) | (0.00010)
Monte Carlo 0.03035 0.06128 22602.80
(20 repetitions of 100 millions) (0.00002) | (0.00002)
Nonlinear optimization 0.05927 0.09042 65.80
Nonlinear optimization ( 50% reduced) | 0.05938 | 0.09072 28.11
<+ | Nonlinear optimization ( 75% reduced) | 0.05947 | 0.09116 8.52
ﬁ Monte Carlo 0.05901 0.09057 227.65
o (20 repetitions of 1 million) (0.00013) | (0.00011)
Monte Carlo 0.05899 0.09054 22726.37
(20 repetitions of 100 millions) (0.00001) | (0.00001)

Table 3: Risk measures for the GMDB net liability with =0

tion to surrender their contracts subject to a certain surrender charge. It is common to see that
policies tend to lapse at a higher rate when the guarantees are out-of-money than when they are
in-the-money. In the past few years, the Society of Actuaries has been publishing annual reports
on its industrial surveys on dynamic policyholder behavior. Interested readers are recommended
to consult TAA (2010) and Campbell et al. (2014) for the practitioner’s approach to modeling poli-
cyholder behavior. For illustration purpose, we construct a model based on the concepts described
in (TAA, 2010, II-50,IV-9). Practitioners typically break down lapse rates as

dynamic lapse rate = base lapse rate x dynamic lapse factor,

where the base rate reflects the average experience that varies with the duration of the contract and
the dynamic factor is modeled by a decreasing function of the in-the-moneyness ratio. According
to the SOA 2012 survey (c.f. PBITT working group (2013)), “a majority of insurers now use
dynamic lapse functions for GMDBs. The percentage increased from 25% in 2008 to over 55% in
2011 and 2012.” The majority of participating companies vary their basic lapse rates by applying
dynamic factors once the in-the-moneyness exceeds 10%. The definition of the in-the-moneyness
ratio (ITM) and the dynamic factor function vary company by company. Nevertheless, based on
the most common practice described in TAA (2010), we define the ITM as either

ITM — present value of the guaranteed benefit

6.1
account value ’ (6.1)

or alternatively,

present value of the guaranteed benefit

ITM = (6.2)

surrender value
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Method ‘ VaRg.9 CTE.9 ‘ Time (secs) ‘
Nonlinear optimization 0.10318 0.13681 63.75
Nonlinear optimization ( 50% reduced) | 0.10315 | 0.13677 31.08
Nonlinear optimization ( 75% reduced) | 0.10301 0.13664 7.23
Monte Carlo 0.10346 0.13710 223.51
(20 repetitions of 1 million) (0.00016) | (0.00009)
Monte Carlo 0.10335 | 0.13706 21955.19
(20 repetitions of 100 millions) (0.00001) | (0.00002)

Table 4: Risk measures for the GMDB net liability with 6=0.06

Hence, we consider the lapse factor determined by

1, T > b17

V25 by < < by,
fl@) =1 .

Yw> bw S$<bw_1,

where x represents the I'TM, the thresholds by = oo > by > by > -+ > by, = 0 and dynamic factors
0< 7 <7 < - <79 <1. An example can be found in Table 6 in the numerical example.
Yearly base lapse rates are typically estimated from experience data. In other words, the base rate
is considered as a decreasing piecewise function of time, which we denote by qg 1

The surrender charges are typically designed to decline over time so as to discourage early policy
surrender. We denote the surrender charges by a decreasing function of time, ¢;. An example of
base lapse rate and surrender charge is given in Table 5. If the ITM is defined as a percentage
of the current account value as in (6.1), then the dynamic lapse rate is determined by ¢, ;(F}),

with ¢! given by

st m ot
. b (Ge™ —y)1\ _ b Ge
Toyt—1(Y) = Goye1 - f (y) = zt-1 ;7’“[ <bk1+1

Geét

bk—Fl).

If the ITM is defined as a percentage of the surrender value as in (6.2), then the dynamic lapse

<y=

rate is given by ¢, +i—1(F}) where ¢' is determined by

Gedt — y m Gedt Gedt
ql$+t—1(y) =0 f <()+) = qg+t—1 Z%I (
k=1

<y< —|.
(1 — Ct)bk—l +1 y= (1 — Ct)bk + 1>

(1—c)y

The lapse survival rate is path-dependent, making the computation very difficult. Therefore, we
only consider the current state for the survival rate and then exponentially interpolate the path of

account values between the initial purchase payment Fj and the current value:

k

wints@) = [ (1 ~ 1ne+(i-1/n (y"/kFol*i/k)).
=1

(6.3)
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The net liability of the GMDB with the dynamic policyholder behavior is then given by

Ze R ) P 1 e (-1)/n (k1) P (Fr/n) (G — Fi )+

- Z e—rk/n (k—1)/nPx (k—l)/npft(Fk/n)I/RQEU+(k—1)/n(Fk/n) Ck/an/n
k=1
nT— 1

- Z "M -1y P (6—1) /P (Flosn) [1 = 1/n @ o1y jm (Fion) = 1/n -t (o—1)/n) Fij-

(6.4)

The first term of the formula represents the present value of outgoing payments of death benefits
to in-force policies up to k — 1 periods for which death occurs in the k-th period. The second term
shows the present value of incoming payments of surrender charges from in-force policies that lapse
during the k-th period. If the policy remains in force after the k-th period, the fees are collected

as a percentage of the then-current account value, as is shown in the third term of the formula.

1 T T T T T T

T T T 1 T T T T T T T T
Exponential approximation Exponential approximation
=] Fiece-wise approximation Fiece-wise approximation
0995 S 1 0.99 -"!—._|_\—L 1
nast 1 noa 1
0985 - oo7 | 1
098 1 1 1 1 . . | 1 1 0.9 . 1 1 . L | . N
a 0.1 0.2 03 04 0s 08 07 0.s 09 1 0 0.1 0z 03 04 0s s 07 0a 09 1
0.9s T T T T T T T T T 0.95 T T T T
“_‘—‘—H_._ Exponential approximation [tEs Exponential approximation
11\& Piece-wise approximation _\N"‘—\i Piece-wise approximation
0.96 B 08t B
0.94 B 0.851 B
082+ B 08¢ B
Dg 1 1 1 1 1 1 1 D?S 1 1 1 1 L 1 1 L 1
1} 01 0.2 0.3 0.4 05 0.6 07 0.8 09 1 0 01 0z 0.3 04 05 0.6 0.7 0.8 08 1

Figure 1: Approximations of dynamic lapse survival rates

To take advantage of the method developed in earlier sections, the random variables should
For the CTE calculation, each of

— Fj/n)+ terms in the net liability corresponds to an H function. As mentioned in the

only be a linear combination of (Ge?/™ —
(Geé/n

previous section, the computation of the H function is the most time-consuming part in the whole

Frm)+ and Fy/p.
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procedure. To make the algorithm efficient, we approximate pé by a piecewise constant function
with the same partition of the domain (0,00) as qff. The partition points n; are determined by
ko = 0, Mkw = +00 and
Geék/n
(1 — Ck/n)bl + 1’

Nei = k=1, nT;i=1,--- ,w—1.

Then we set the constants of q%{ /n and pﬁc In for the interval (9, Me(i11)):

1
= UnGoy ety Yis  Brii= 3 (el (Mki) + & ynh (Migis))] -

In other words, we approximate the lapse survival rate p' by
w—1

kDo) = Y Bril (ki < Y < Mhien))- (6.5)
k=0

Examples of the survival rates based on exponential interpolation and piecewise constant approx-
imation are given in Figure 2, for which the parameters can be found in the numerical example
below.

If we replace the lapse survival rate p! by its approximation p in (6.4), then the approximated

net liability of the GMDB with the dynamic policyholder behavior can be written as
nT w—2 nT w—1

L~ L:= Z Z Wk 1 /nlat (k1) /nBri (GE™™ — Fy 1) Ii — Z Z Ch/nWk BriOki Frojnlri
k=1 i=0 k=1 i=0
nT—1w-—1
-> Z fwf Bri(1 = ki —1/n ot (e—1)/n) Frfnlris (6.6)
k=0 =0
where
we = e "™ 1) e Tni =T (i < Fropn < Miign)) -

We are now ready to apply the technique of comonotonicity to determine closed-form expressions
for the risk measures of L' = E[L|A], which we propose to use as approximations of the risk measures
of L*.

Remark 6.1. Consider the net liability for the GMDB in the average model with DPB (6.6). The

value-at-risk and the conditional tail empectation of L' can be calculated by

VaR, (L)) Z U1 g, L Geokin Z/B (gk(z+1)> > (91%)]
Ok
Jrk(i+1) — U/% 9ki — o}
— Z’LLk 1q, , k= 1F0€“k (@)+oi/2 Z Bri |2 ——F— | - @ <k>
ok ok

=0

. _ g2 . 42
=S uy Ryt Z Buice e [¢ (W) s (%%%> ]

k=1

g
k=0 k
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where ¢ = 11— p), gri = In(nk; /o) — px(9), and

nT w—2
1
CTEp(Ll) = ﬂ Z Uk 1/an+(k—1)/nG€5k/n Z Bri H(¢, Qs bk(z—l—l)) (¢; Qs bkz)]
k=1 j

i=0
1 nT 9 w—2

ko2
- ZUk1/nqz+(k_1)/nFoe“’“ 0)+%
l=-r=

(0) B
i=0
k ko? k ko?
[H <</5 - 7“1@0\/7; g, bg(iv1) — ) - H <¢ - kaf\/i ag, bi — ) ]
n noy n noy

1 nT o2 w—1
"1, > upFoet O 5T N " Brick o (6.8)
k=1 =0

kyi—1)

X

1

k ko k ko?
[H <¢_7“k:(7\/7 ks Or(iy1) —) - H (Cb—rkff\[;ak,bm—)]
n nog n nog

nT—1
- Z up Fye!t O+ 5 Z /Bkz 1 — Qi = 1/nGa+(k—1)/n)

k ko k ko
[H <¢Tko-\/>;ak7bk(i+l)> H(d)?"ka\/» (Lk,bm)]
n nog n nog

ey Ilws/F) - (p = m)k/n
\J1— 7',% Ok

In the derivation of the expressions above, we divided (6.6) into three parts: the death benefit

A:/\>;

X

X

where

ap =

part A, the surrender charge part B, and the rider charge part C:

nT w—2

A(A) = <Z Z [Uk VGt (5—1)/nBri (GE™*™ — Fy )4 } Iyi

=1 =
A:)\>;

C(\):=E ( - g Bri —2 - (1 — o ~1/n Qot(k—1)/n) Fio/nlki

nT w—1

B(A) = < Z Z g Bri Cr/nki Feynlii
—0
—1

=)

Although it is difficult to prove monotonicity of A, B, ', numerical experiments show that they
appear to be decreasing functions in the example under consideration. Figure 2 shows the pattern
of E[L|A = )] as a decreasing function of A in the following numerical example. Using the mono-
tonicity, we obtain the approximations of risk measures in Remark 6.1. Each of the three sums

correspond to the risk measures of A, B, C respectively.

Remark 6.2. The formulas for the risk measures (6.7) and (6.8) in the model with DPB are more
general than their counterparts (4.2) and (4.3) in the model without DPB. When setting vy, = 1
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fork=1,---,w, and ¢®,, = ¢, =0 for all n, we observe that (6.7) and (6.8) reduce to (4.2) and

(4.3), respectively, after cancellations in the telescoping series.

01

E[LIA]

-0.05 - e

b | | | | |

Figure 2: Numerical illustration of the monotonicity of L

We provide a numerical example to demonstrate the effectiveness of the comonotonic approx-
imation for the net liability under the average model with DPB. As widely acknowledged in the
insurance industry, Monte Carlo simulations with models of policyholder behavior are very time-
consuming. With all computations performed on a personal computer, we restrict the policy term
to be T' = 5 with half-years fee collections (n = 2) in order to save computational efforts. There is
no roll-up of the guarantee base in this example, i.e. § = 0. The rest of the valuation assumptions
are the same as in Section 5, while additional assumptions on policyholder behavior are shown
in Tables 5 and 6. The surrender charges decline with time, which is to discourage policyholders
from early lapse. Accordingly, the basic lapse rates are relatively small in early years and then rise
drastically immediately after the lapse rates decrease to 0%. The first few columns of Table 6 show
the assumption that the contracts tend to persist (v ) when the guarantees are deep-in-the-money
(ITM 1). The last few columns show the opposite: the lapse rates are more or less around base
rates when the guarantees are at-the-money or out-of-the-money.

We first test the accuracy of approximation formulas developed in Proposition 6.1 for the model
with DPB by showing its convergence to the model without DPB, when damping down the lapse
rates. The convergence statements in Remark 6.2 are numerically verified in Table 7. The Matlab

algorithm Fminsearch is used in each of the calculations.
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Policyyear () | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |beyond|
Surrender charge (¢;) | 8% | ™% | 6% | 5% | 4% | 3% | 2% 0% 0%
Base lapse rate (¢?) | 1.5% | 2.5% | 3.0% | 3.0% | 4.0% | 5.0% | 8.0% | 25.0% | 10.0%

Table 5: Assumptions on surrender charges and base lapse rates

(k] 1 203 ]a]5 ] 6 |
br | 100% | 80% | 60% | 40% | 20% | 0%
e | 20% | 40% | 60% | 80% | 90% | 100%

Table 6: Assumptions on dynamic factors

Table 8 summarizes the risk measures under various models and levels of approximations. The
first row shows the risk measures in the model (1.6) without DPB using Monte Carlo simulations.
The second row shows the risk measures in the model (6.6) where the dynamic factor is set to
constant 1. Note that in this case the lapse rates are deterministic and the model (6.6) can be
incorporated into the model (1.6) by adding the lapse rates to the mortality rates.

Important is to bear in mind that we made three steps of approximations in order to achieve
a linear structure of the net liability. The first approximation is the exponential interpolation for
turning the path-dependent survival rate into a non-path-dependent one in (6.3), while the second
approximation in (6.5) produces a piece-wise constant approximation function. The last step is to
approximate CTE,(L) by the comonotonic bound CTE,(L'). We demonstrate the loss of accuracy
in each step of the approximation in Table 8. In all Monte Carlo procedures, we simulate 10-million
sample paths of account values for each estimate of the risk measure. The sample mean and variance
of 20 estimates are reported in Table 8. Despite the accumulation of approximation errors in three
steps, the relative errors appear to be under 5% for both risk measures, the nonlinear optimizations
of VaRgo(L') and CTEqg(L') reduce the time consumption by at least hundred times.

Again we test the sensitivity of risk measures to various values of the volatility . The results
are very similar in pattern, where the nonlinear optimization gives results that lie in between those
from policies with no lapse rate and policies with dynamic factor policyholder behavior. They have

roughly the same level of accuracy and efficiency.

7 Conclusion and Extension

This paper proposes a general framework for computing risk measures of variable annuity liabilities
using the techniques of comonotonicity. The framework allows us to analyze the tail events of
net liabilities under various guaranteed benefits and provides closed-form approximations of risk
measures, which are easy to compute with special functions such as the normal distribution function

and Owen’s T function. The paper also proposes an extension to the average model of the GMDB,
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Lapse rates ‘ Formula ‘ VaRg.9 ‘ CTEp9 ‘

¢ (6.7)&(6.8) | 0.0453 | 0.0749
0.2 ¢ (6.7)&(6.8) | 0.05019 | 0.07937
0.1¢° (6.7)&(6.8) | 0.05083 | 0.07995

0 (6.7)&(6.8) | 0.05150 | 0.08054

0 (4.2)&(4.3) | 0.05150 | 0.08054

Table 7: Comparison of risk measures for the GMDB with various lapse rates

’ ‘ Method ‘ VaRg g ‘ CTEqg ‘ Time (secs) ‘

MC with no lapse rate 0.05133 (0.00010) | 0.08057 (0.00012) | 1162.02
MC with constant dynamic factor 1 | 0.04317 (0.00009) | 0.07002 (0.00009) | 26645.13

g MC with dynamic factor 0.04473 (0.00016) | 0.07402 (0.00014) 23420.11

! MC with exponential interpolation | 0.04460 (0.00021) | 0.07376 (0.00018) | 51358.37
MC with piecewise approximation 0.04541 (0.00009) | 0.07564 (0.00011) 21782.75
Nonlinear optimization (L!) 0.04529 0.07490 237.32

<+ | MC with no lapse rate 0.08031 (0.00011) | 0.10970 (0.00015) 1155.39

5| MC with dynamic factor 0.07292 (0.00012) | 0.10254 (0.00009) | 23712.97

®| Nonlinear optimization (L) 0.07401 0.10308 233.57

Table 8: Risk measures for the GMDB with dynamic policyholder behavior

which incorporates the analysis of dynamic policyholder behavior. To the authors’ best knowledge,
no alternative method other than Monte Carlo simulation has ever been attempted in the previous
literature on models of DPB. Despite the model complexity, the same analytic framework allows
us to propose closed-form approximations, which have been numerically tested to be very efficient.

It should be pointed out that the framework can be easily extended to consider risk measures
of flexible premium variable annuity, where purchase payments are allowed throughout the accu-
mulation phrase. A related work on the pricing of flexible premium variable annuity is done in
Bernard et al. (2015). In the recent literature, there have been proposals in the actuarial literature
to introduce state-dependent fee rates to replace the constant fee rates in the classical cases, see
Delong (2014), Bernard et al. (2013). The techniques in Section 6 can also be used to compute risk
measures of net liabilities under the models with state-dependent fees. In the work of Vyncke et al.
(2004), authors also proposed an approximation based on a combination of comonotonic upper and
lower bounds for pricing Asian options. It might be interesting to investigate whether such an
approach extends to risk measures.

We only considered the geometric Brownian motion as the equity index process and determin-
istic interest rates. Under the independence assumption between mortality and equity returns, the

current framework can also include more general mortality models than a life table. It should be
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pointed out that comonotonic approximations have been used in stochastic interest rate models,
for example, in Liu et al. (2011). Further research is necessary to investigate the extension to more

general equity return, interest rate and mortality models.

A Appendix: Special function H

A key element in the computation of the conditional tail expectation is the double integral

z b—ay 1
me = [ [T e,
—o0 J—o0 27

This function was not previously studied in the literature. Although the integral can be evaluated
numerically, our application requires efficient computation as the integrals appear repeatedly for
multiple time points. Hence, we take advantage of the Owen’s T-function, for which fast and accu-
rate algorithms have been developed in the statistics literature. Owen’s T function was introduced
in Owen (1956). For a,h € RU £o00, T'(h,a) is defined by

= - [ b )
’ o 27T 0 1"_:[72

x.

This special function was implemented in Mathematica and can be computed very efficiently. The
probabilistic interpretation of the function is as follows: T'(h,a) stands for the probability mass of
two independent standard normal random variables falling in the domain on a plane between y = 0

and y = az and to the right of = h, which is referred to as a polygon in Owen (1956).

Proposition A.1. For a,b> 0 and z # 0, one has that

H(z;a,b)= % sgn(2)®(|z]) + T (z, azz— b>

+1(1)< b )_T< b (1+a2)zab>
2 \V1i+a2 V1+a? b ‘

Fora>0,b<0 and z # 0, one has that

H(z;a,b) = *% sgn(2)®(—|z|) + T (Z, azz_b)

+1¢)< b )—T( b (1+a2)z—ab>
2 V14 a? V1+aZ b '

When z = 0, the expressions are given by their limits:

H(0: a,b) = %cp (ﬁ) LT (\/1l—)r7a”> .

Similarly, when b =0, then one finds

H(z;a,0) = %(I)(Z) +T(z,a).
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Proof. Consider the case where z > 0. Even though Figure 1 only illustrates the case where
0 < z < b/a, all the decompositions and expressions in the case where z > b/a are exactly the
same. Hence, without loss of generality, we derive the expressions based on Figure 1. Note that
the line segments connecting A, F, G, E, I, J extend to infinity. Since the value H(z) is the total
probability mass of two independent standard normal random variables lying in the area below
JBI, we intend to decompose the total mass over polygons on which the probabilities can be
represented as Owen’s T functions. Note that the desired domain can be viewed as the area below
JBG less the sum of polygons GBDE and EDI. We indicate the probability mass over the latter
two polygons by (1) and (2), respectively.

Figure 1

The probability mass (1) can be determined by the probability mass over ABC DE, denoted by
(3), less that over ABG, denoted by (4). On one hand, note that ABCDE is the union of ABCF
and FCDE. Hence,

On the other hand, we see that ABG is equal to the area above LK G less the area bounded by
the polygon LK BA, which means that

(4) = %(1 o) =T (Z b= ‘”) .

z

The probability mass (2) is simply F'CI less FCDE, i.e.
b b 1 |b| ) ( b )
N=T(-——e 0] T a) =) T ——,a].
) (\/1+a2 > <v1+a2 > 2 ( V14 a? V1+a?
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Putting all pieces together, we obtain

which yields the desired expression for H after rearrangement.
When z < 0, the domain of integration of H is shown in Figure 2 as the area below JBI. We

shall use a slightly different decomposition to derive the expression for H.

L
N
F
M -
= E
O] .
J G
K
<. A
Figure 2

Think of the area below JBI as the area below JBG less the area bounded by the polygon
GBI. We denote the probability masses over GBI, FCBG and GBA by (5), (6), (7) respectively.
Note that GBA is same as the area below GK L less ABKL, i.e.

(7) = %@(z) -T <—z, b= “Z> Loy 41 <z, b Z“) .

2

Clearly, FCBG is equal to FCBA less GBA. Thus

a0 — a2z
<6):T<¢1?Ta2’ ’ (1b+ )>‘<7>-

Then GBI is equal to FCI less FCBG, which determines

Finally, the total probability over the area below JBI is given by

H(z)=®(z) - (5)

o= ) e ) (-25)
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The proof for the expression of H in the cases where a > 0,0 < 0 is very similar to the previous

cases and hence omitted. O

Proposition A.2.

1 co (1 d(B— AP~ (1 dg = L % H(®'(1-—¢)—C;A;B— AC
[ esvicata—ma(s - a0 ) a = e { G L@ -0 - a5 - d0).

(A.1)
Proof. Let y = ®~ (1 — ¢). Then the left-hand side of (A.1) is equal to

¢ (1—q) 1 &~ (1-q)-C 1 )
/ e“VO(B — Ay)o(y) dy = \/?ec /2/ (B - AC — Ay)ﬁefu /2 du,
—00 ™ —00 Y5

which is the right-hand side of (A.1) by definition. O

B Appendix: Choices of the conditioning random variable A

As discussed in Vanduffel et al. (2008a), the globally optimal choice of A refers to the set of r;’s

that maximizes the linear approximation of the variance of S':

Var[$S (Corr| Z o, Var Z o B ,

which attains its maximum value When

EOé] 75

and
n

rMV — Z%Ee i|Cov[Zy, Z]. (B.1)

O'ZkO'A

The covariances of the Z;’s and the variance of A can be calculated from the basic properties of

Brownian motion:

0_2 . . 2 nT nT
Cov|Zy, Z;] = Imm{k,j} 0% = Z Z)\
=1 j=1t

For a locally optimal choice, Vanduffel et al. (2008a) proposed a linear approximation of CTE,:
1 < _
CTE,[S'] ~ 1=p ZaJE[ }(ID’[ Zj - l(p)]rjazj + constant.
j=1
Its value is maximized when

and

P — o Z o, E[eZ]0 1MV 55 — &7 (p)]Cov|[Zk, Z;]. (B.2)
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