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ABSTRACT

In this paper, an efficient method is proposed which accelerates the computation of the

optimal strikes in the comonotonic upper bound for the value of an arithmetic Asian op-

tion. Numerical applications are carried out in the setting of Heston’s model, in which the

distribution function of the underlying asset price is not available in closed form. These

numerical results highlight the efficiency of the proposed method.
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1 Introduction

Let S(t) be the price of an asset at time t and r > 0 the risk-free interest rate, which is assumed

to be constant. The pay-off of an arithmetic Asian option maturing at T with strike K is then

given by (
ξ

N∑

i=1

wiS(ti)− ξK

)+

, (1.1)

where (x)+ = max(x, 0),
N∑
i=1

wi = 1 and t1, t2, . . . , tN = T are the discrete monitoring times.

When ξ = 1, it is a call option; when ξ = −1 it is a put option. The price of such option



is difficult or impossible to be determined in closed form even in the Black–Scholes market

model. Although the Monte Carlo method or PDE-based method can be used to numerically

calculate the Asian option price, see, e.g., (Broadie and Glasserman, 1996; Vec̆er̆, 2001),

both approaches are rather time consuming. An alternative is to calculate sharp bounds of

the option value. The comonotonicity-based upper bound is an accurate approximation for

the Asian option value under different parametric models (Albrecher, Dhaene, Goovaerts and

Schoutens, 2005; Chen and Ewald, 2017). It also corresponds to the cheapest static super-

hedging strategy with European options; see, e.g., (Albrecher et al., 2005; Chen, Deelstra,

Dhaene and Vanmaele, 2008; Chen, Deelstra, Dhaene, Linders and Vanmaele, 2015).

(Simon, Goovaerts and Dhaene, 2000) and (Dhaene, Denuit, Goovaerts, Kaas and Vyncke,

2002a) pioneered the comonotonicity-based approach for calculating an upper bound of this

type of Asian options, and showed its application in the Black–Scholes setting. Then, (Albrecher

et al., 2005; Chen and Ewald, 2017) applied this approach in the setting of exponential Lévy

models and stochastic volatility models, respectively. Essentially, a comonotonicity-based

value bound is a weighted sum of European option prices matured on each monitoring time

with optimal strikes. To calculate the optimal strikes of the hedging instruments, (Albrecher

et al., 2005) numerically built up the distribution function from the density function of the under-

lying asset price, and its inverse is then found by a bisection method. This algorithm can be

computationally intensive, especially when the density function is complicated and not avail-

able in closed form. By simulating the stochastic differential system for the underlying asset

price process, (Chen and Ewald, 2017) approximated the distribution function of the underlying

asset by its empirical distribution. In this paper, we propose to recover the distribution function

of the underlying asset price from its characteristic function by using Fourier-cosine series.

This method is inspired by the COS method of (Fang and Oosterlee, 2008).

The paper is organized as follows. The problem is formulated in Section 2. In Section 3,

an efficient method is derived to calculate the optimal strikes associated with an upper value

bound for an arithmetic Asian option. Numerical applications are carried out in Section 4 to

show the efficiency of the proposed method. Section 5 concludes.

2 Comonotonic upper bounds and static super-hedging strate gies

Consider a finite time horizon T > 0. The financial market is described via a filtered probability

space (Ω,F , (F(t))0≤t≤T ,P), which satisfies the usual technical conditions of completeness

and right-continuity, and where F0 contains all P-null sets of Ω. Price processes of traded fi-

nancial instruments are modelled as stochastic processes on that probability space which are

adapted to the filtration (F(t))0≤t≤T .

Market participants are assumed to have access to a number of European options with ma-

turities ti, i = 1, . . . N , with 0 = t0 < t1 < · · · < tN = T . More precisely, they can trade in

European calls and puts on the individual stocks. In particular, consider an asset with a non-

negative stochastic price process denoted by (S(t))0≤t≤T , or in short by S, that pays dividends

continuously over time at a constant rate q per unit time. Further, we consider a discretely

monitored arithmetic Asian option of European-style maturing at T with strike price K ≥ 0.



The pay-off at T is given by (1.1) and depends on the underlying process S at the times ti,

i = 1, . . . N , weighted by corresponding positive weights wi, i = 1, . . . , N , which sum up to

one. In practice, an equally weighted sum is often used, i.e., all weights are chosen to be

equal to 1/N .

It is assumed that the financial market is arbitrage-free. For a given stochastic model for the

underlying asset price, we further assume that there exists a pricing measure Q, equivalent

to the physical probability measure P, such that the current price of any pay-off at time ti,

i ∈ {1, . . . , N}, can be represented as the expectation of the discounted pay-off. In this price-

recipe, we discount by means of a continuously compounded time-0 risk-free interest rate r,

and we take expectations with respect to Q. For simplicity in notation and terminology, we

assume deterministic interest rates. The case of a stochastic interest rate is covered in (Chen

et al., 2015).

The price of an Asian call or put at time t ∈ [0, T ] with maturity T and strike K is given by:

A(t, T,K; ξ) = e−r(T−t)E



(
ξ

N∑

i=1

wiS(ti)− ξK

)+ ∣∣∣∣F(t)


 . (2.1)

Note that without loss of generality we will assume that t < t1 in what follows. When t1 < t < T ,

we absorb the known asset prices in the strike.

Let us further introduce the following notation for the weighted sum given the information F(t),

or in a Markovian setting given S(t):

S =

N∑

i=1

wiS(ti) | F(t), (2.2)

and for its corresponding comonotonic counterpart, see, e.g., (Dhaene, Denuit, Goovaerts,

Kaas and Vyncke, 2002b)

Sc =
N∑

i=1

wi(F
t
S(ti)

)−1(U), (2.3)

with U a uniform (0, 1)-random variable and F t
S(ti)

the conditional cumulative distribution func-

tion (cdf) of S(ti) given the information F(t), or in a Markovian setting given S(t), under the

martingale measure Q:

F t
S(ti)

(x) = Q(S(ti) ≤ x | F(t)).

The conditional cdf of Sc given the information F(t) is analogously denoted by F t
Sc . When t = 0

we omit the superscript.

It is well known that Sc precedes S in the convex order sense, see, e.g., (Dhaene et al., 2002b),

E[S] = E[Sc], E[(S − d)+] ≤ E[(Sc − d)+], ∀d ∈ R. (2.4)

Consider the function f(d) = E[(Sc − d)+] − E[(S − d)+] of d, which first increases and then

decreases (from some c on), but remains non-negative (Dhaene et al., 2002b). Therefore, only

for in-the-money options, it is accurate to approximate the option value by the corresponding

comonotonic upper bound. For out-of-the-money options or at-the-money options this bound is

a real upper bound. Thus in the numerical experiments, we will focus on in-the-money options.



From the theory of comonotonic risks, see, e.g., (Kaas, Dhaene and Goovaerts, 2000; Dhaene

et al., 2002b), applied to Asian options, see, e.g., (Simon et al., 2000; Dhaene et al., 2002a;

Chen et al., 2008), we have the following result.

Theorem 2.1. The Asian option price at t ∈ [0, T ] defined by (2.1) with a strike K ∈
(
(F t

Sc)−1+(0),

(F t
Sc)−1(1)

)
is bounded above as follows

A(t, T,K; ξ) ≤ e−r(T−t)E

[
(ξSc − ξK)+

∣∣∣∣F(t)

]

= e−rT

N∑

i=1

wie
rtie−r(ti−t)E

[
(ξS(ti)− ξKi)

+

∣∣∣∣F(t)

]

=: e−rT

N∑

i=1

wie
rtiE(t, ti,Ki; ξ), (2.5)

where the strikes Ki ≥ 0 are given by

Ki = (F t
S(ti)

)−1(αi)(F t
Sc(K)), i = 1, . . . , N (2.6)

with the αi, i = 1, . . . , N , chosen in [0, 1] such that

N∑

i=1

wiKi = K.

Moreover, the comonotonic upper bound (2.5) is optimal in the sense that for any set of strikes

ki, i = 1, . . . , N , such that
∑N

i=1wiki = K, it holds that

A(t, T,K; ξ) ≤
N∑

i=1

wie
−r(T−ti)E(t, ti,Ki; ξ) ≤

N∑

i=1

wie
−r(T−ti)E(t, ti, ki; ξ). (2.7)

This upper bound can be determined in the infinite market case (Hobson, Laurence and Wang,

2005; Chen et al., 2015), where it is assumed that all European option prices E(t, ti,K; ξ) for

any maturity ti, i = 1, . . . , N , and any strike K ≥ 0 are known. These European option prices

can be calculated analytically or numerically for a given model of the underlying asset price,

such as the Black-Scholes model, the Heston model (Heston, 1993). To calculate this upper

bound (2.5), one of the key steps is to calculate Ki defined in (2.6). The next section focuses

on how to efficiently calculate these Ki for a given model of the underlying asset price.

3 Acceleration of the computation of the optimal upper bound

The distribution function of the underlying asset at time ti and its inverse play an important

role in calculating the optimal strikes (2.6). (Albrecher et al., 2005) numerically built up the

distribution function from the density function of the underlying asset price, and its inverse is

then found by a bisection method. It is computationally intensive to build up the distribution

function from its density function, especially when the density function is very complicated or

singular at some points, such as in the Heston model (Heston, 1993), see, e.g., (Drǎgulescu

and Yakovenko, 2002). To accelerate the procedure proposed by (Albrecher et al., 2005), we



recover the distribution function from the characteristic function of the log-asset price, which is

available in a large class of stochastic models, such as Lévy models (Albrecher et al., 2005)

and Heston’s model.

We approximate the distribution function Flog(St) by F̂log(St):

F̂log(St)(x) =





1 if x ≥ b,

x− a

b− a
+
∑n

k=1
Fk,t ·

b− a

kπ
· sin(kπx− a

b− a
) if x ∈ (a, b),

0 if x ≤ a,

(3.1)

where n ∈ N and a, b ∈ R (−∞ < a < b < +∞) are chosen for a given error tolerance of the

approximation (3.1), and

Fk,t =
2

b− a
Re

{
φ

(
kπ

b− a
, t

)
· exp

(
−i

kaπ

b− a

)}
, (3.2)

where φ(·, t) is the characteristic function of log(St). In practice, we can set a to be sufficiently

small while b is chosen sufficiently large. Correspondingly, the distribution function FSt
can be

approximated by F̂St
, given by

F̂St
(x) = F̂log(St) (log(x)) . (3.3)

Since F̂log(St) is given in closed form in terms of sine functions, its inverse can be easily calcu-

lated with the bisection method. Hence, the computational cost of the optimal strikes can be

significantly reduced in this case.

The approximation formula (3.1) for a general random variable X can be derived as follows:

1. Truncate the support of the density function into a finite interval.

Let f be the density function of a random variable X whose characteristic function φ is

defined by

φ(ω) =

∫

R

eiωxf(x)dx. (3.4)

As a density function, f , decays to zero at ±∞, the integration range in (3.4) can be

truncated in an interval [a, b] ⊂ R, which is large enough, such that

φ1(ω) =

∫ b

a

eiωxf(x)dx ≈ φ(ω). (3.5)

2. Approximate the density function f by an auxiliary function f1, defined by f1 = f · 1[a,b],
where 1[a,b] is an indicator function.

Since the function f1 has the compact support [a, b], its Fourier-cosine series expansion

is

f1(x) =
∑′∞

k=0
Ak · cos

(
kπ

x− a

b− a

)
, (3.6)

where
∑′

indicates that the first term in the summation is weighted by one-half, and

where the cosine series coefficients Ak are given by

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ

x− a

b− a

)
dx (3.7)

≡ 2

b− a
Re

{
φ1

(
kπ

b− a

)
· exp

(
−i

kaπ

b− a

)}
(3.8)



where Re{·} denotes the real part of the argument. Due to (3.5), Ak can be approximated

by Fk, with

Fk =
2

b− a
Re

{
φ

(
kπ

b− a

)
· exp

(
−i

kaπ

b− a

)}
. (3.9)

Hence, f1 can be approximated by f2, with

f2(x) =
∑′∞

k=0
Fk · cos

(
kπ

x− a

b− a

)
. (3.10)

Then, f2 can be approximated by a truncated summation f3, with

f3(x) =
∑′n

k=0
Fk · cos

(
kπ

x− a

b− a

)
. (3.11)

One may refer to (Fang and Oosterlee, 2008) for an error analysis on the Fourier-cosine

series expansion.

3. Approximate the distribution function

Given the approximations in the previous steps, we approximate the distribution function

FX on the finite interval [a, b] in the following way,

FX(x) =

∫ x

−∞

f(s)ds ≈
∫ x

a

f3(s)ds

=

∫ x

a

∑′n

k=0
Fk · cos

(
kπ

s− a

b− a

)
ds

=
∑′n

k=0
Fk

∫ x

a

cos

(
kπ

s− a

b− a

)
ds

=
x− a

b− a
+
∑n

k=1
Fk ·

b− a

kπ
· sin(kπx− a

b− a
) (3.12)

where Fk is given in (3.9).

Note that expressions (3.1) and (3.2) follow from (3.12) and (3.9), respectively, by putting X :=

log(St).

To conclude this section, we summarize the key steps to calculate an optimal upper bond for

an arithmetic Asian option.

Algorithm 1.

1. Calibrate the chosen stochastic model for the asset price to the market data; see, e.g.,

(Guillaume and Schoutens, 2012).

2. Approximate the distribution function of the underlying asset price at time t, according to

(3.1)-(3.3).

3. Calculate the optimal strikes (2.6) and the prices of the corresponding European options.

4. Calculate the upper bound (2.5).



4 Numerical applications

In this section, we consider the Asian option price (2.1) at time zero with equal weights wi, i.e.,

A(0, T,K; ξ) = e−rTE



(

1

N
ξ

N∑

i=1

Sti − ξK

)+∣∣∣∣S0 = s0


 , (4.1)

where S is the underlying asset price process. Rather than calculating A(0, T,K; ξ), we ap-

proximate it with the upper bound (2.5).

In the Heston model (Heston, 1993), the asset price process (S) and the variance process

(v) under a risk-neutral probability measure Q evolve according to the following system of

stochastic differential equations:



dSt = (r − q)St dt+

√
vtSt dWt, S0 > 0,

dvt = κ(η − vt) dt+ λ
√
vt dW̃t, v0 = σ2

0 > 0,
(4.2)

where (Wt)0≤t≤T and (W̃t)0≤t≤T are correlated Brownian motions satisfying dWt dW̃t = ρdt.

The parameter η is the long-term average variance, while κ is the speed of the mean-reversion

of the variance. The parameter λ is referred to as the volatility of variance since it scales the

diffusion term of the variance process.

Different from the Lévy models used in (Albrecher et al., 2005), the density function of the

underlying is not immediately available in closed form in the Heston model (Drǎgulescu and

Yakovenko, 2002). It is time-consuming to build up the distribution from its density function.

However, the characteristic function of the log-asset price in the Heston model is available and

reads

φ(ω, t) := E [exp (iω log(St)) | S0, v0] = exp(A+B + C), (4.3)

where

A = iω (log(S0) + (r − q)t),

B = ηκλ−2
(
(κ− ρλωi + d) t− 2 log

(
(1− gedt)/(1− g)

))
,

C = v0λ
−2(κ− ρλωi + d)(1 − edt)/(1 − gedt),

d =

√
(ρλωi− κ)2 + λ2(ωi + ω2),

g = (κ− ρλωi + d)/(κ − ρλωi− d).

Hence, we can use the method proposed in Section 3 to approximate the distribution function

and calculate its inverse with a bisection method. The parameters in (3.1) are set to be n = 214,

a = −10, b = 2500. The implementation is performed in MATLAB (2014b) (Processor: Intel

Core(TM) i7-3770 CPU @ 3.4GHz, RAM: 8GB). The computational cost to calculate the ap-

proximation of the distribution function (3.1) is less than 0.01s. Following the lines of (Albrecher

et al., 2005), we also approximated the distribution function by evaluating the integral of the

density function with the integral function of MATLAB. Its computational cost is about 9.5s.

Hence, our method can efficiently accelerate the computation of the optimal upper bound in



Table 1: Calibrated Heston’s model (Guillaume and Schoutens, 2012).

Calibration methods κ η λ v0

RMSE full 0.5527 0.1271 0.3748 0.2403

ARPE full 3.1022 0.0923 0.3285 0.2513

the infinite market case, compared to the numerical integral method proposed by (Albrecher

et al., 2005).

Based on the simulated paths from the underlying asset price (4.2), (Chen and Ewald, 2017)

proposed to approximate its distribution function by the empirical one. We refer to (Sun, Gan

and Vanmaele, 2015) for a comparison of the efficiency between this simulation-based method

and the characteristic function-based method of the present paper.

With the well-calibrated Heston models (Table 1) from (Guillaume and Schoutens, 2012)1, we

calculate the option prices and the value bounds of the in-the-money Asian options monitored

on the fourteen expiration dates of the benchmark SPX options. In the present case, we use the

Asian option value (4.1) with T = 737 days, N = 14 and ti ∈ {1, 9, 20, 37, 72, 100, 110, 191, 201,
282, 293, 373, 555, 737}. The continuously compounded interest rate r is set to be a constant

0.0153. The other model parameters are S0 = 873.59 and q = 0.0088. The strikes of the Asian

call options range from 500 to 860, while they range from 900 to 1200 for Asian put options.

The difference between two consecutive strikes is 20. The Asian option prices are simulated

using the Monte Carlo (MC) method with a control variate and 1 · 107 paths. The calculation

of the optimal upper bound (2.5) involves the calculation of European option prices with the

optimal strikes Ki from (2.6), which can be calculated with Algorithm 1. The European option

prices are calculated with the COS method (Fang and Oosterlee, 2008).

The results for Asian call and put options are presented in Table 2 and Table 3, respectively.

Comparing the Monte Carlo(MC)-based option price with the corresponding upper bound,

show that, the upper bound is a good approximation for the price of an arithmetic Asian op-

tion. Note that the upper bound in the infinite market case depends on the model parameters.

Hence, this upper bound can suffer from calibration risk as in the case when calculating the op-

tion price (Guillaume and Schoutens, 2012). When the monitoring dates of an arithmetic Asian

option and the optimal strikes coincide with a set of European options quoted in the market,

we can use the market prices of these European options to calculate the upper bound (2.5),

rather than using a calibrated model. This is one method to avoid calibration risk. One may

refer to (Chen et al., 2015) for more details on the aforementioned methods using European

option market prices.

1(Guillaume and Schoutens, 2012) proposed 18 calibration methods, and calibrated the Heston model to the

market prices of SPX options quoted on 2008/12/11. Although the resulting 18 calibrated models fit the market

data, we took, as illustrating examples, two of the calibrated models, RMSE and APE with full market data. The

maturities of the benchmark options range from 1 day to 737 days.



Table 2: 737-day Asian call option price with the model parameters given in Table 1 and S0 =

873.59, r = 0.0153, q = 0.0088.

Heston MC optimal upper bound

K RMSE full ARPE full RMSE full ARPE full

500 367.4518 366.7792 369.0387 366.8906

520 348.5431 347.6028 350.8762 348.1456

540 329.8178 328.5379 332.9937 329.6096

560 311.3189 309.6240 315.4228 311.3229

580 293.0906 290.9071 298.1945 293.3283

600 275.1790 272.4383 281.3387 275.6693

620 257.6328 254.2744 264.8838 258.3901

640 240.4985 236.4761 248.8565 241.5343

660 223.8214 219.1070 233.2817 225.1443

680 207.6446 202.2300 218.1826 209.2607

700 192.0092 185.9056 203.5799 193.9215

720 176.9539 170.1928 189.4926 179.1618

740 162.5132 155.1474 175.9371 165.0132

760 148.7144 140.8173 162.9279 151.5034

780 135.5832 127.2431 150.4768 138.6554

800 123.1359 114.4563 138.5931 126.4878

820 111.3872 102.4799 127.2833 115.0126

840 100.3455 91.3270 116.5512 104.2373

860 90.0111 81.0021 106.3977 94.1619



Table 3: 737-day Asian call option price with the model parameters given in Table 1 and S0 =

873.59, r = 0.0153, q = 0.0088.

Heston MC optimal upper bound

K RMSE full ARPE full RMSE full ARPE full

900 93.9196 85.2710 110.1975 98.4652

920 105.0721 96.7637 121.1472 109.8240

940 116.8996 109.0194 132.6505 121.8267

960 129.3802 122.0031 144.6951 134.4479

980 142.4921 135.6745 157.2668 147.6597

1000 156.2090 149.9936 170.3496 161.4318

1020 170.5015 164.9148 183.9262 175.7329

1040 185.3406 180.3935 197.9783 190.5310

1060 200.6961 196.3825 212.4864 205.7936

1080 216.5342 212.8325 227.4307 221.4886

1100 232.8195 229.6980 242.7904 237.5840

1120 249.5156 246.9353 258.5444 254.0486

1140 266.5878 264.5003 274.6713 270.8519

1160 284.0014 282.3541 291.1490 287.9645

1180 301.7213 300.4598 307.9555 305.3581

1200 319.7158 318.7826 325.0685 323.0059



5 Conclusion

In this paper, we proposed an efficient method to accelerate the calculation of the static super-hedging

portfolio (2.5)-(2.6) for an arithmetic Asian option for the case when the characteristic function of the

underlying asset price is available in closed form. Firstly, this method recovers the distribution function

of the underlying asset price from its characteristic function. Then, this approximation formula can be

used to efficiently calculate the optimal strikes of European options associated with the comonotonic

optimal upper bound for a discrete arithmetic Asian option value.

Numerical applications on the value bounds of an arithmetic Asian option were carried out with well-

calibrated Heston models (Table 1). The proposed method was used to approximate the distribution

function of the underlying asset, which is not available in closed form. Comparison between the time

costs of the proposed method with that of the numerical integration method originally used by (Albrecher

et al., 2005), highlights the efficiency of our method. Note that different calibrated models lead to

different upper value bounds for the same arithmetic Asian option. This issue is related to calibration

risk, which can be eliminated if the upper bound is calculated in a model-free framework; see, e.g., the

finite market case in (Chen et al., 2015).
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CAS - Centre of Advanced Study, at the Norwegian Academy of Science and Letter, research program
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under Lévy models, The Journal of Derivatives 12(3): 63–72.

Broadie, M. and Glasserman, P. 1996. Estimating security price derivatives using simulation, Manage-

ment Science 42(2): 269–285.

Chen, J. and Ewald, C. 2017. On the performance of the comonotonicity approach for pricing Asian op-

tion in some benchmark models from equities and commodities, Review of Pacific Basin Financial

Markets and Policies 20(01): 1750005.

Chen, X., Deelstra, G., Dhaene, J., Linders, D. and Vanmaele, M. 2015. On an optimization problem

related to static super-replicating strategies, Journal of Computational and Applied Mathematics

278: 213–230.

Chen, X., Deelstra, G., Dhaene, J. and Vanmaele, M. 2008. Static super-replicating strategies for a

class of exotic options, Insurance: Mathematics and Economics 42(3): 1067–1085.

Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R. and Vyncke, D. 2002a. The concept of comono-

tonicity in actuarial science and finance: applications, Insurance: Mathematics and Economics

31(2): 133–161.



Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R. and Vyncke, D. 2002b. The concept of comonotonicity

in actuarial science and finance: theory, Insurance: Mathematics and Economics 31(1): 3–33.
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