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Abstract

In this paper, we investigate the fair valuation of insurance liabilities in a dy-
namic multi-period setting. We define a fair dynamic valuation as a valuation which
is actuarial (mark-to-model for claims independent of financial market evolutions),
market-consistent (mark-to-market for any hedgeable part of a claim) and time-
consistent, extending the work of Dhaene et al. (2017) and Barigou and Dhaene
(2019). We provide a complete hedging characterization for fair dynamic valuations.
Moreover, we show how to implement fair dynamic valuations through a backward
iterations scheme combining risk minimization methods from mathematical finance
with standard actuarial techniques based on risk measures.

Keywords: Fair dynamic valuation, time-consistency, Solvency II, market-
consistent valuation, actuarial valuation.

1 Introduction

Fair valuation of insurance liabilities has become a fundamental feature of modern sol-
vency regulations in the insurance industry, such as the Swiss Solvency Test, Solvency II
and C-ROSS (Chinese solvency regulation). A fair valuation method combines techniques
from financial mathematics and actuarial science, in order to take into account and be
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consistent with information provided by the financial markets on the one hand and actu-
arial judgement based on generally available data about non-financial risks on the other
hand. Moreover, for the determination of the solvency capital requirement (SCR), each
insurance company is required to determine the fair value of its liabilities, not only today
but also in future points in time.

An actuarial valuation is typically based on a diversification argument which justifies
the mitigation of the risk borne by an individual by averaging out its consequences over
a large pool of individuals exposed to the same risk. This valuation is performed under
the real-world measure P and is defined as the expectation plus an additional risk margin
to cover any adverse economic-demographic development that is not diversified. Based
on historical data, the actuarial valuation involves a subjective actuarial judgement on
the choice of the model to be chosen, see e.g. Kaas et al. (2008) for non-life and Laurent
et al. (2016) for life insurance.

A market-consistent valuation is based on the minimal requirement that the value of a
purely hedgeable financial payoff should be equal to the amount necessary to hedge it. A
large branch of literature investigated valuations in this so-called market-consistent set-
ting, trying to extend the arbitrage-free pricing operators (initially defined in a complete
market) to the general set of unhedgeable claims. Several approaches were considered
such as utility indifference pricing (Hodges and Neuberger (1989)) or risk-minimization
techniques (Föllmer and Schweizer (1988) and Černỳ and Kallsen (2009)). The notion of
market-consistency has been recently formalized by diverse authors as an extension of the
notion of cash-invariance to all hedgeable claims, see e.g. Malamud et al. (2008), Pelsser
and Stadje (2014) and Dhaene et al. (2017).

An important question in a dynamic setting is how risk valuations at different times
are interrelated. In this context, time-consistency is a natural approach to glue together
static valuations. It means that the same value is assigned to a position regardless of
whether it is calculated over two time periods at once or in two-steps backwards in time.
Time-consistent valuations have been largely studied and we refer to Acciaio and Penner
(2011) for an overview.

In this paper, we investigate the fair valuation of insurance liabilities in a dynamic
multi-period setting. We define a fair dynamic valuation as a valuation which is actuarial
(mark-to-model for claims independent of financial market evolutions), market-consistent
(mark-to-market for hedgeable parts of claims) and time-consistent, and study their prop-
erties. In particular, we provide a complete hedging characterization for fair dynamic
valuations, extending the work of Dhaene et al. (2017) and Barigou and Dhaene (2019)
in a dynamic setting. Moreover, we show how we can implement fair dynamic valuations
through a backward iterations scheme combining risk minimization methods from math-
ematical finance with standard actuarial techniques based on risk measures. We remark
that Pelsser and Stadje (2014) proposed time-consistent and market-consistent valuations
via a so-called ’two-step market evaluation’. Compared to their paper which characterizes
time-consistent and market-consistent valuations in a complete financial market by op-
erator splitting, our valuation framework is hedge-based and allows for financial market
incompleteness.
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The paper is organized as follows. In Section 2, we describe the combined financial-
actuarial world and the notions of orthogonal and hedgeable claims. In Section 3, fair
t−valuations and the related notion of fair t−hedgers are introduced. In particular, we
show that any fair t−valuation can be characterized in terms of a fair t−hedger. In Section
4, we extend the results in a time-consistent setup and provide a time-consistent hedging
characterization for time-consistent and market-consistent valuations. Section 5 presents
a practical approach to apply our framework and some numerical illustrations. Section 6
concludes the paper.

2 The combined financial-actuarial world

Consider a combined financial-actuarial world which is home to tradable as well as non-
tradable claims. Now we are at time 0, while the time horizon is T ∈ {1, 2, . . .}. The set
of trading dates is denoted by τ = {0, 1, ..., T}. The financial-actuarial world is modeled
by the probability space (Ω,G,P), equipped with the finite and discrete time filtration
G = {Gt}t∈τ , such that G0 is equal to {∅,Ω} and GT = G. The σ−algebra Gt, t ∈ τ ,
represents the general information available up to and including time t in the combined
world. Further, P is the measure attaching a physical probability to any event in that
world. All random variables (r.v.’s) and stochastic processes in this paper are defined
on this filtered probability space and all equalities between r.v.’s are understood in the
P−almost sure sense. Throughout the paper, we assume that the second moments of all
r.v.’s that we consider exist under P. Furthermore, we will denote the set of all t−claims
defined on (Ω,G,G), that is the set of all Gt−measurable r.v.’s, by Ct. Hereafter, when
considering a t−claim, we will always silently assume that it is payable at time t, except
if stated otherwise.

The combined financial-actuarial world hosts a number of insurance liabilities. An
insurance liability due at time T will be generally denoted by S(T ) or simply S if no
confusion is possible. A simple example of an insurance liability related to the remaining
lifetime of an insured (x) observed at time 0 is the r.v. 1(x) ∈ CT defined by

1(x) =

{
0 : (x) dies before or at time T
1 : (x) dies after time T

(1)

The combined financial-actuarial world (Ω,G,P) is also home to a financial market of
n + 1 tradable (non-dividend paying1) assets. The tradable assets can be stocks, bonds,
mutual funds, options, etc. We introduce the notation Y (i)(t) for the t−claim denoting
the market price of risky asset i at time t ∈ τ . Moreover, we assume that any tradable
asset can be bought and/or sold in any quantities in a deep, liquid and transparent market
with negligible transactions costs and other market frictions.

The price processes of the traded assets are described by the (n+ 1)−dimensional
stochastic process Y = {Y (t)}t∈τ . Here, Y (t), t ∈ τ , is the vector of time−t prices of

1Without loss of generality, we assume that there are no dividends. Otherwise, one can replace the
traded asset by the gain process of the traded asset, which is the sum of its price process and the process
describing its accumulated dividends.
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all tradable assets, i.e. Y (t) =
(
Y (0)(t), Y (1)(t), . . . , Y (n)(t)

)
. We assume that the price

process Y is adapted to the filtration G, which means that

Y (t) is Gt −measurable, for any t = 0, 1, , . . . , T.

The filtration G may simply coincide with the filtration generated by the price process Y .
In this paper however, we will consider a more general setting, where G is not only related
to the price history of traded assets, but may also contain additional information, such as
information related to non-tradable claims or a survival index of a particular population.

A time−t trading strategy (also called a time−t dynamic portfolio), t ∈ {0, . . . , T − 1},
is an (n+ 1)−dimensional predictable process θt = {θt(u)}u∈{t+1,...,T} with respect to the
filtration G. The predictability requirement means that

θt(u) is Gu−1 −measurable, for any u = t+ 1, . . . , T.

Notice that a time−t trading strategy is only set up at time t by acquiring a portfolio

θt(t+ 1) at that time. Introducing the notations θt(u) =
(
θ

(0)
t (u), θ

(1)
t (u) . . . , θ

(n)
t (u)

)
for

the components of θt(u), we interpret the quantity θ
(i)
t (u) as the number of units invested

in asset i in time period u, that is in the time interval (u− 1, u]. The Gu−1−measurability
requirement means that the portfolio composition θt(u) for the time period u follows
from the general information available up to and including time u− 1. This information
includes, but is broader than the price history of traded assets in that time interval.

The initial investment or the endowment at time t of the trading strategy θt can be
expressed as

θt(t+ 1) · Y (t) =
n∑
i=0

θ
(i)
t (t+ 1)× Y (i)(t).

The value of the trading strategy θt at time u, just before rebalancing, is given by

θt(u) · Y (u) =
n∑
i=0

θ
(i)
t (u)× Y (i)(u), for any u = t+ 1, . . . , T,

whereas its value at time u, just after rebalancing, is given by

θt(u+ 1) · Y (u) =
n∑
i=0

θ
(i)
t (u+ 1)× Y (i)(u), for any u = t+ 1, . . . , T − 1.

Obviously, θt(u) · Y (u) and θt(u+ 1) · Y (u) are Gu−measurable.

A time−t trading strategy θt is said to be self-financing if

θt(u) · Y (u) = θt(u+ 1) · Y (u), for any u = t+ 1, ..., T − 1. (2)

This means that no capital is injected or withdrawn at any rebalancing moment u =
t + 1, ..., T − 1. We denote the set of self-financing time−t trading strategies by Θt.
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Taking into account (2), the time−T value of any self-financing time−t strategy θt ∈ Θt

can be expressed as

θt(T ) · Y (T ) = θt(t+ 1) · Y (t) +
T∑

u=t+1

θt(u) ·∆Y (u) , (3)

with ∆Y (u) = Y (u) − Y (u− 1). In this formula, θt(u) · ∆Y (u) is the change of the
market value of the investment portfolio in the time period u, i.e. between time u − 1
(just after rebalancing) and time u (just before rebalancing).

We assume that the market of traded assets is arbitrage-free in the sense that there is
no self-financing strategy θ0 ∈ Θ0 with the following properties:

θ0(1) · Y (0) = 0, P [θ0(T ) · Y (T ) ≥ 0] = 1 and P [θ0(T ) · Y (T ) > 0] > 0. (4)

In our discrete-time setting, the absence of arbitrage is equivalent to the existence of
an equivalent martingale measure Q (further abbreviated as EMM), under which the
discounted price process Y is a G−martingale:

Y (t− 1) = EQ
t−1

[
e−

∫ t
t−1 rsdsY (t)

]
, for any t = 1, ..., T, (5)

for some (possibly stochastic) interest rate rs. For the rest of the paper, we will use the
notation EQ

t [·] := EQ [ ·| Gt]. For a proof of this equivalence, we refer to Delbaen and
Schachermayer (2006).
Consider a time−t self-financing strategy θt ∈ Θt. From (5) it follows that its time−u
price is given by

θt(u+ 1) · Y (u) = EQ
u

[
e−

∫ T
u rsdsθt(T ) · Y (T )

]
, for any u = t, ..., T − 1. (6)

In the remainder of the paper, we assume that the asset 0 is the zero-coupon bond paying
an amount of 1 at maturity T . Its price at time t, denoted by B(t, T ), is given by

Y (0)(t) = B(t, T ) = EQ
t

[
e−

∫ T
t rsds

]
, for any t = 0, 1, ..., T − 1.

A simple example of a self-financing time−t trading strategy is the static trading strategy
βt consisting of buying one unit of the zero-coupon bond B(t, T ) at time t and holding it
until maturity T . The value of this strategy at time u is given by

βt(u) · Y (u) = EQ
u

[
e−

∫ T
u rsds

]
, for any u = t+ 1, ..., T.

Definition 1 (t−hedgeable T−claim) A t−hedgeable T−claim Sh is an element of CT
which can be replicated by a time−t self-financing strategy θt ∈ Θt :

Sh = θt(T ) · Y (T ),

where θt(T ) · Y (T ) is the time−T value of the hedging portfolio θt.
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We introduce the notation Ht
T for the set of all time−t hedgeable T−claims. For any

time−t hedgeable T -claim Sh, a time−t trading strategy which replicates Sh is called a
replicating t−hedge of Sh.

The time−t price of Sh is given by

θt(t+ 1) · Y (t) = EQ
t [e−

∫ T
t rsdsθt(T ) · Y (T )],

where Q is a generic member of the class of EMM’s and θt is a replicating t−hedge of Sh.

Notice that Ht
T is increasing in t. The T−claim

S = Y (1)(t) Y (2)(T ),

is an example of a T−claim which will in general not be an element of Hs
T for any

s = 0, 1, . . . , t− 1, while S ∈ Hs
T for any s = t, t+ 1, . . . , T − 1.

Next, we introduce the notion of t−orthogonal T−claims.

Definition 2 (t−orthogonal T−claim) A t−orthogonal T−claim S⊥ is an element of
CT which is P-independent of the stochastic process Yt+1 = {Y (u)}u∈{t+1,...,T} describing
the evolution of the traded assets from t+ 1 onwards:

S⊥ ⊥ Yt+1.

Hereafter, we will denote the set of all t−orthogonal T -claims by OtT . We remark that
the set OtT is also increasing in t. An example of a T−claim which does not belong to the
initial set of orthogonal claims O0

T , but which is an element of OtT is given by

S =
1

t

t∑
i=1

Y (1)(i) 1(x)

where 1(x) is the indicator variable which equals 1 if (x) survives until time T and 0
otherwise. Hence, in case of survival, the claim guarantees the average price of asset 1
between time 1 and time t. Under independence between mortality and the traded assets,
we have that S /∈ OuT , for u = 0, 1, . . . , t− 1, while S ∈ OuT for u = t, t+ 1, . . . , T .

3 t−valuations

In this section, we define different classes of t−valuations. In a dynamic multiperiod
setting, a t−valuation ρt assigns to each T−claim a Gt−measurable random variable
ρt [S] that represents the value of the T−claim given the available information at time t.
In Dhaene et al. (2017) fair valuations of insurance claims in a static one-period setting
are considered. The authors showed that any fair valuation can be characterized in terms
of a fair hedger. In this section, we generalize this result in a dynamic setting by showing
that any fair t−valuation can be characterized in terms of a fair t−hedger.
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3.1 Fair t−valuations

In this subsection, we define the notion of t−valuation. Furthermore, we introduce the
notions of actuarial, market-consistent and fair t−valuations, respectively.

Definition 3 (t−valuation) A t−valuation, t = 0, 1, . . . , T − 1, is a mapping ρt : CT →
Ct, attaching a t−claim to any T -claim S ∈ CT :

S → ρt [S] ,

such that

• ρt is normalized:
ρt [0] = 0.

• ρt is translation invariant:

ρt [S + a] = ρt [S] +B(t, T )a, for any S ∈ CT and a ∈ Ct payable at T .

For any T−claim, the value ρt [S] is a t−claim and hence, seen from the perspective
of time 0, it is a random variable. On the other hand, having arrived at time t, ρt [S] is
clearly deterministic. In Pelsser and Stadje (2014), t−valuations are called Gt−conditional
evaluations.

Important subclasses of t−valuations include the class of actuarial and market-consistent
t−valuations, which are defined hereafter.

Definition 4 (Actuarial and market-consistent t−valuations) Consider a t−valuation
ρt : CT → Ct.

• ρt is actuarial if any t−orthogonal T -claim is marked-to-model:

ρt
[
S⊥
]

= B(t, T )πt
[
S⊥
]
, for any S⊥ ∈ OtT , (7)

where the t−valuation πt : OtT → Ct is P−law invariant and P-independent of time−t
and future asset prices Yt = {Y (u)}u∈{t,...,T}.

• ρt is market-consistent (MC) if any t−hedgeable part of any T−claim is marked-to-
market:

ρt
[
S + Sh

]
= ρt[S] + EQ

t

[
e−

∫ T
t rsdsSh

]
, (8)

for any S ∈ CT and Sh ∈ Ht
T .
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The mark-to-model condition (7) corresponds to the traditional valuation of orthog-
onal (i.e. non-equity-linked) claims in an insurance context. It postulates that any
t−orthogonal claim is valuated by a P−law invariant t−valuation πt (e.g. standard de-
viation principle, mean-variance principle,...) multiplied by the time-t zero-coupon bond
price B(t, T ). For instance, in case πt is the standard deviation principle, we find that

ρt
[
S⊥
]

=
(
EP
t

[
S⊥
]

+ ασP
t

[
S⊥
])
B(t, T ),

with σP
t

[
S⊥
]

:=
√
V arP [S⊥ | Gt] and α > 0. As another example, one may consider a

distorted expectation as an actuarial valuation:

ρt
[
S⊥
]

= EP∗
t

[
S⊥
]
B(t, T ).

In this case, the distorted probability measure P∗ ∼ P is there to take into account the
uncertainty in the orthogonal claims, see e.g. Chapter 2.6 in Wüthrich (2016).

Moreover, we make the technical requirement that πt
[
S⊥
]

is P-independent of asset
prices at time t and beyond: Yt = {Y (u)}u∈{t,...,T} for any S⊥ ∈ OtT . Otherwise stated,
the actuarial value of a claim independent of future asset prices is independent of time−t
and future asset prices. This intuitive requirement will be used in the proof of Theorem
2.

In the literature, market-consistency is usually defined via a condition identical or sim-
ilar to the condition (8), see e.g. Kupper et al. (2008), Malamud et al. (2008), Artzner and
Eisele (2010) and Pelsser and Stadje (2014). This mark-to-market condition extends the
notion of cash-invariance to all t−hedgeable claims by postulating that any t−hedgeable
claim should be valuated at the price of its replicating t−hedge. We remark that the
mark-to-market condition can also be expressed as follows:

ρt
[
S + Sh

]
= ρt[S] + θt(t+ 1) · Y (t), (9)

for any S ∈ CT and Sh ∈ Ht
T , with θt a replicating t−hedge of Sh.

Combining these notions leads to the definition of a fair t−valuation.

Definition 5 (Fair t−valuation) A fair t−valuation is a t−valuation which is both ac-
tuarial and market-consistent.

Hereafter, we provide a simple example of a fair t−valuation for equity-linked life-
insurance contracts.

Example 1 [Fair t−valuation of product claims]
Consider a T−claim S for which we want to determine the fair valuation at time t. We
assume that we can decompose the claim as follows

S = S⊥ × Sh,

where S⊥ is a t−orthogonal T−claim and Sh is a t−hedgeable T−claim.
Such product claims often arise in insurance as payoffs of equity-linked life-insurance
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contracts. In such payoffs, Sh is typically a hedgeable claim contingent on the price history
of traded assets such as stock, mutual funds, options or bonds while S⊥ is contingent
on the survival or death of a policyholder. For any product T−claim S, we define the
t−valuation

ρt [S] = EP
t

[
S⊥
]
EQ
t

[
e−

∫ T
t rsdsSh

]
, for any S⊥ ∈ OtT and Sh ∈ Ht

T .

Hence, the t−valuation ρt appears as a product of two expectations. The non-equity
linked part S⊥ is valuated under the physical measure P modeling the non-hedgeable
risks and the hedgeable part Sh is valuated under a risk-neutral measure Q modeling
hedgeable risks.
One can easily verify that the t−valuation ρt is actuarial:

ρt
[
S⊥
]

= EP
t

[
S⊥
]
B(t, T ),

and market-consistent:

ρt
[
S + Sh

]
= ρt[S] + EQ

t

[
e−

∫ T
t rsdsSh

]
.

3.2 Fair t−hedgers

In this section, we introduce the class of t−hedgers, as well as the subclasses of actuarial,
market-consistent and fair t−hedgers. These notions are generalizations of the time−0
hedgers which were defined in Dhaene et al. (2017). In the forthcoming sections of this
paper, we will use these notions to express our main results.

Definition 6 (t−hedger) A t−hedger is a function θt : CT → Θt which maps any
T−claim S into a self-financing time−t trading strategy θt,S ∈ Θt such that

• θt is normalized:
θt,0 = 0t,

where 0t is the self-financing time−t trading strategy corresponding to the null in-
vestment at time t, i.e. 0t(u) = (0, 0, . . . , 0) for all u = t+ 1, . . . , T .

• θt is translation invariant:

θt,S+a = θt,S + aβt, for any S ∈ CT and a ∈ Ct payable at T ,

where βt is the static trading strategy which consists in buying one unit of the zero-
coupon bond B(t, T ) and holding it until maturity T .

The mapping θt : CT → Θt is called a t−hedger, whereas for any T -claim S, the
self-financing trading strategy θt,S is called a t−hedge for S. The value of the hedge θt,S
of S at time u = t + 1, . . . , T , before rebalancing, is given by θt,S(u) · Y (u), while after
rebalancing, it is θt,S(u+ 1) · Y (u).

Hereafter, we introduce the subclasses of actuarial, market-consistent and fair t−hedgers.
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Definition 7 (Actuarial and market-consistent t−hedgers) Consider a t−hedger θt.

• θt is actuarial in case any t−orthogonal T−claim S⊥ is hedged via an actuarial
t−valuation ρt in zero-coupon bonds:

θt,S⊥ =
ρt
[
S⊥
]

B(t, T )
βt for any S⊥ ∈ OtT . (10)

• θt is market-consistent (MC) in case any t−hedgeable part Sh of any T -claim S is
hedged by a replicating hedge:

θt,S+Sh = θt,S + θt,Sh , for any S ∈ CT and any Sh ∈ Ht
T , (11)

where θt,Sh is a replicating t−hedge of Sh.

We remark that an actuarial t−hedger θt is defined in terms of an actuarial t−valuation
ρt. Hereafter, we will call ρt the underlying actuarial t−valuation of the actuarial t−hedger
θt.

Combining the definitions of actuarial and market-consistent t−hedgers leads to the
definition of fair t−hedgers.

Definition 8 (Fair t−hedger) A t−hedger is fair in case it is actuarial and market-
consistent.

In the remainder of the paper, we often consider the trading strategy which consists
in investing (at time t) ρt [S] in the zero-coupon bond B(t, T ), for t = 0, 1, ..., T − 1. It is
clear that the initial investment at time t of this trading strategy is ρt [S] and its time−T
value, denoted by ρ̃t, is given by

ρ̃t [S] =
ρt [S]

B(t, T )
. (12)

Hereafter, we provide an example of a fair t−hedger. This will be used later in the
proof of Theorem 1.

Example 2 Fix t ∈ {0, . . . , T − 1} and define the t−hedger θt as follows:

1. For any t−orthogonal T−claim S⊥ ∈ OtT , we define the t−hedger θt by

θt,S⊥ = EP
t

[
S⊥
]
βt.

2. For all other T−claims S /∈ OtT , the t−hedger θt is defined as the mean-variance
hedger:

θt,S = arg min
θ∈Θt

EP
t

[
(S − θt,S(T ) · Y (T ))2] . (13)

As we assume that the time−T value of any time−t trading strategy is square-
integrable, a solution to the optimization problem (13) exists (see for instance Černỳ
and Kallsen (2009)). It is then easy to verify that θt is well defined and a fair
t−hedger.
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3.3 Characterization of t−valuations

In the following lemma, we consider properties of a t−hedger µt,S which is defined as the
sum of another t−hedger θt,S and an investment in zero-coupon bonds of the remaining
risk S − θt,S(T ) ·Y (T ). The proof of a forthcoming theorem is based on the construction
of such hedgers.

Lemma 1 Consider a t−hedger θt and a t−valuation ρt. Define the t−hedger µt by

µt,S = θt,S + ρ̃t [S − θt,S(T ) · Y (T )] βt, for any S ∈ CT , (14)

(a) If θt is an actuarial t−hedger and ρt is an actuarial t−valuation, then µt is an
actuarial t−hedger with underlying actuarial t−valuation ρt.

(b) If θt is a MC t−hedger, then µt is a MC t−hedger and µt,Sh = θt,Sh for any
t−hedgeable T−claim Sh.

(c) If θt is a fair t−hedger and ρt is an actuarial t−valuation, then µt is a fair t−hedger
with underlying actuarial t−valuation ρt.

Proof: It is a straightforward exercise to verify that µt is a t−hedger.
(a) Suppose that θt is an actuarial t−hedger with underlying actuarial t−valuation ψt.
Further, suppose that ρt is an actuarial t−valuation. For any t−orthogonal T−claim S⊥,
we have

µt,S⊥ = θt,S⊥ + ρ̃t
[
S⊥ − θt,S⊥(T ) · Y (T )

]
βt

= ψ̃t
[
S⊥
]
βt + ρ̃t

[
S⊥ − ψ̃t

[
S⊥
]]
βt

= ρ̃t
[
S⊥
]
βt,

where in the last step, we used the translation invariance of ρt. We can conclude that µt
is an actuarial t−hedger with underlying actuarial t−valuation ρt.
(b) Suppose that θt is a MC t−hedger. By definition of µt, we have that

µt,S+Sh = θt,S+Sh + ρ̃t
[
S + Sh − θt,S+Sh(T ) · Y (T )

]
βt, for any Sh ∈ Ht

T .

Given that θt is a MC t−hedger, we find

µt,S+Sh = θt,S + θt,Sh + ρ̃t [S − θt,S(T ) · Y (T )] βt

= µt,S + θt,Sh .

We can conclude that µt is a MC t−hedger.
(c) Finally, suppose that θt is a fair t−hedger with underlying actuarial t−valuation ψt,
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while ρt is an actuarial t−valuation. From (a) and (b) it follows immediately that µt is a
fair t−hedger with underlying actuarial t−valuation ρt.

In the following theorem it is shown that any actuarial t−valuation ρt can be repre-
sented as the time−t price of an actuarial t−hedger. Similar properties hold for market-
consistent and fair t−valuations.

Theorem 1 Consider a t−valuation ρt : CT−→ Ct.
(a) ρt is an actuarial t−valuation if and only if there exists an actuarial t−hedger θat such
that

ρt [S] = θat,S(t+ 1) · Y (t), for any S ∈ CT . (15)

(b) ρt is a MC t−valuation if and only if there exists a MC t−hedger θmt such that

ρt [S] = θmt,S(t+ 1) · Y (t), for any S ∈ CT . (16)

(c) ρt is a fair t−valuation if and only if there exists a fair t−hedger θft such that

ρt [S] = θft,S(t+ 1) · Y (t), for any S ∈ CT . (17)

Proof: (a) Let ρt be an actuarial t−valuation. For any S ∈ CT , we can write ρt [S] as

ρt [S] = ρ̃t [S]B(t, T )

= θat,S(t+ 1) · Y (t),

with θat,S defined by
θat,S = ρ̃t [S] βt.

Obviously, θat is an actuarial t−hedger.
(a’) Suppose that the t−valuation ρt is defined by (15) for some actuarial t−hedger θat
with underlying actuarial t−valuation πt. For any t−orthogonal T−claim S⊥, we have

ρt
[
S⊥
]

= θat,S⊥(t+ 1) · Y (t) = πt
[
S⊥
]

.

We can conclude that the valuation ρt is an actuarial t−valuation.
(b) Let ρt be a MC t−valuation. Consider a MC t−hedger θt, e.g. the t−hedger defined
in Example 2. For any T−claim S, we find from (8) that

ρt [S] = EQ
t

[
e−

∫ T
t rsdsθt,S(T ) · Y (T )

]
+ ρt [S − θt,S(T ) · Y (T )]

= θt,S(t+ 1) · Y (t) + ρt [S − θt,S(T ) · Y (T )]

= θmt,S(t+ 1) · Y (t),

with
θmt,S = θt,S + ρ̃t [S − θt,S(T ) · Y (T )] βt. (18)

12



From Lemma 1 we know that θm is a MC t−hedger.
(b’) Consider the t−valuation ρt defined by (16) for some MC t−hedger θmt . For any
T−claim S and any t−hedgeable T−claim Sh, we find that

ρt
[
S + Sh

]
= θmt,S+Sh(t+ 1) · Y (t)

= θmt,S(t+ 1) · Y (t) + θmt,Sh(t+ 1) · Y (t)

= ρt [S] + ρt
[
Sh
]
.

We can conclude that ρt is a MC t−valuation.
(c) Let ρt be a fair t−valuation. Consider a fair t−hedger θt, e.g. the t−hedger defined
in Example 2, with underlying actuarial t−valuation ψt. From (a) we know that for any
T−claim S, ρt [S] can be expressed as

ρt [S] = θmt,S(t+ 1) · Y (t),

with the MC t−hedger θmt given by (18). For any t−orthogonal T−claim S⊥, we find
that

θmt,S⊥ = θt,S⊥ + ρ̃t
[
S⊥ − θmt,S⊥(T ) · Y (T )

]
βt

= ψ̃t
[
S⊥
]
βt + ρ̃t

[
S⊥ − ψ̃t

[
S⊥
]]
βt

= ρ̃t
[
S⊥
]
βt.

As ρt is an actuarial valuation, we can conclude that the t−hedger θmt is not only market-
consistent but also actuarial and hence, a fair t−hedger.
(c’) Suppose that the t−valuation ρt is defined by (17) for some fair t−hedger θft . From
(a) and (b) we can conclude that the t−valuation ρt is actuarial and market-consistent,
which means that it is fair.

Taking into account (6), we have that the relation (17) for a fair t−valuation can be
rewritten as follows:

ρt [S] = EQ
t

[
e−

∫ T
t rsdsθft,S(T ) · Y (T )

]
, for any S ∈ CT . (19)

The fair valuation at time t of any T−claim can then be expressed as a conditional
expectation of the time−T value of a fair hedge for S, θft,S, under an equivalent martingale
measure Q. Actuarial considerations are implicitly involved since any fair valuation is an
actuarial valuation, implying actuarial judgement on the valuation of orthogonal claims.

4 Dynamic valuations

In the previous section, we introduced the concept of t−valuations which assess a time−t
value for any T−claim, taking into account the available information at time t, for any
time t = 0, 1, . . . , T−1. This approach was static in the sense that we considered the value
of a T−claim at different times t < T , without specifying the interconnection between the
t−valuations. Bringing the t−valuations together leads to the concepts of time-consistent
and dynamic valuations, which are defined hereafter.
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4.1 Fair dynamic valuations

In the following definition, we introduce the notion of dynamic valuation. See for instance
Acciaio and Penner (2011), Artzner et al. (2007) or Riedel (2004) for similar notions.

Definition 9 (Dynamic valuation) A dynamic valuation is a sequence (ρt)
T−1
t=0 where

for each t = 0, 1, ..., T − 1, ρt is a t−valuation.

After having introduced the concept of dynamic valuation, we now define actuarial,
market-consistent and time-consistent dynamic valuations. Notice that a t−valuation
ρt is defined for T−claims S payable at time T . In order to compare t−valuations at
different times, we consider the t−valuation ρ̃t [S] introduced in (12) which corresponds
to the value at time T of the investment of the t−valuation ρt [S] in the zero-coupon bond
B(t, T ).

Definition 10 (Actuarial, MC and TC dynamic valuations) Consider the dynamic
valuation (ρt)

T−1
t=0 .

• (ρt)
T−1
t=0 is actuarial in case any t−valuation ρt is actuarial.

• (ρt)
T−1
t=0 is market-consistent (MC) in case any t−valuation ρt is market-consistent.

• (ρt)
T−1
t=0 is time-consistent (TC) in case all t−valuations involved are connected in

the following way:

ρt [S] = ρt [ρ̃t+1 [S]] , for any S ∈ CT and t = 0, 1, ..., T − 2. (20)

Actuarial and market-consistent dynamic valuations are natural generalizations of
actuarial and market-consistent t−valuations. Time-consistency is a concept that couples
the different static t−valuations. It means that the same time−t value is assigned to a
T−claim regardless of whether it is calculated in one step or in two steps backwards
in time. Some weaker notions of time-consistency have been proposed in the literature,
see e.g. Roorda et al. (2005) and Kriele and Wolf (2014). The definition (20) is often
named the ”recursiveness” or ”tower property” definition. In the literature, an alternative
definition of time-consistency is often used: if a claim is preferred to another claim at time
t+ 1 in almost all states of nature, then the same conclusions should be drawn at time t:

ρt+1 [S1] ≤ ρt+1 [S2] =⇒ ρt [S1] ≤ ρt [S2] for all S1, S2 ∈ CT and t < T . (21)

Under monotonicity of the dynamic valuation (ρt)
T−1
t=0 , it is well-known that both notions

of time-consistency are equivalent (see for instance Acciaio and Penner (2011)). Since
(21) implies monotonicity, the advantage of using the definition (20) is that we can also
apply time-consistency to non-monotone dynamic valuations.

Time-consistent valuations have been discussed extensively in recent years. For the
discrete time case, we refer to Cheridito and Kupper (2011), Acciaio and Penner (2011)
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and Föllmer and Schied (2011). For the continuous case, we refer to Frittelli and Gianin
(2004), Delbaen et al. (2010), Pelsser and Stadje (2014) and Feinstein and Rudloff (2015).

Merging the notions of actuarial, market-consistent and time-consistent valuations
leads to the concept of fair dynamic valuations.

Definition 11 (Fair dynamic valuations) A fair dynamic valuation is a dynamic val-
uation which is actuarial, market-consistent and time-consistent.

4.2 Fair dynamic hedgers

After having defined the class of t−hedgers in the previous section, we introduce the
notion of a dynamic hedger.

Definition 12 (Dynamic hedger) A dynamic hedger is a sequence (θt)
T−1
t=0 where for

each t = 0, 1, . . . , T − 1, θt is a t−hedger.

Hereafter, we introduce natural definitions of actuarial, market-consistent and time-
consistent dynamic hedgers in accordance with Definition 10.

Definition 13 (Actuarial, MC and TC dynamic hedgers) Consider the dynamic hedger
(θt)

T−1
t=0 .

• (θt)
T−1
t=0 is actuarial in case any t−hedger θt is actuarial.

• (θt)
T−1
t=0 is market-consistent (MC) in case any t−hedger θt is market-consistent.

• (θt)
T−1
t=0 is time-consistent (TC) in case all t−hedgers involved are connected in the

following way:

θt,S = θt,ρ̃t+1[S], for any S ∈ CT and t = 0, 1, ..., T − 2, (22)

where ρt+1 [S] is the initial investment of θt+1:

ρt+1 [S] = θt+1,S(t+ 2) · Y (t+ 1).

The definition of a time-consistent dynamic hedger should be compared with the
definition of a time-consistent dynamic valuation. It means that the same hedger is
assigned to a T−claim regardless of whether it is hedged in one step (i.e. directly over
T − t periods) or in two steps backwards in time.

Similarly to the concept of fair dynamic valuations, we introduce the concept of fair
dynamic hedgers.

Definition 14 (Fair dynamic hedgers) A fair dynamic hedger is a dynamic hedger
which is actuarial, market-consistent and time-consistent.
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4.3 Characterization of fair dynamic valuations

In the following theorem we show that a fair dynamic valuation can be characterized in
terms of a fair dynamic hedger.

Theorem 2 A dynamic valuation (ρt)
T−1
t=0 is fair if and only if there exists a fair dynamic

hedger (µt)
T−1
t=0 such that

ρt [S] = µt,S(t+ 1) · Y (t), for any S ∈ CT . (23)

Proof: (a) Suppose that (ρt)
T−1
t=0 is a fair dynamic valuation. From Theorem 1, we have

that for any t = 0, 1, . . . , T − 1, there exists a fair t−hedger θt such that

ρt [S] = θt,S(t+ 1) · Y (t), for any S ∈ CT . (24)

The dynamic hedger (θt)
T−1
t=0 is actuarial and market-consistent but is a priori not time-

consistent. Based on the dynamic hedger (θt)
T−1
t=0 , we construct a dynamic hedger (µt)

T−1
t=0

which is actuarial, market-consistent and time-consistent. First, we set µT−1 = θT−1.
Obviously, µT−1 is a fair (T − 1)−hedger and

ρT−1 [S] = µT−1,S(T ) · Y (T − 1), for any S ∈ CT .

Second, we define the (T − 2)−hedger µT−2 via

µT−2,S = θT−2,ρ̃T−1[S], for any S ∈ CT .

Let us prove that µT−2 is a fair (T − 2)−hedger.

• Actuarial hedger: for any (T − 2)−orthogonal T−claim S⊥, we have

µT−2,S⊥ = θT−2,ρ̃T−1[S⊥].

Given that ρT−1 is an actuarial (T − 1)−valuation, ρ̃T−1

[
S⊥
]

equals πT−1

[
S⊥
]
,

which is by definition a (T − 2)−orthogonal T−claim. Given that θT−2 is actuarial,
we have

µT−2,S⊥ = θT−2,πT−1[S⊥]

= πT−2

[
πT−1

[
S⊥
]]
βT−2

= πT−2

[
S⊥
]
βT−2,

where we used the time-consistency of (ρt)
T−1
t=0 .

Hence, µT−2 is an actuarial (T − 2)−hedger.
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• Market-consistent hedger: for any (T − 2)−hedgeable T−claim Sh, we have

µT−2,S+Sh = θT−2,ρ̃T−1[S+Sh]

= θT−2,ρ̃T−1[S]+ρ̃T−1[Sh]

= θT−2,ρ̃T−1[S] + θT−2,Sh

= µT−2,S + θT−2,Sh ,

where we used the fact that any t−hedgeable claim is (t + 1)−hedgeable as well
(remark that the inverse is not true) and the market-consistency of θT−2.
Hence, µT−2 is a market-consistent (T − 2)−hedger.

Moreover, by (24), we have

ρT−2 [S] = θT−2,S(T − 1) · Y (T − 2)

= θT−2,ρ̃T−1[S](T − 1) · Y (T − 2) by time-consistency of (ρt)
T−1
t=0

= µT−2,S(T − 1) · Y (T − 2) by definition of µT−2.

Iteratively, starting from a fair t−hedger θt, we construct the time-consistent adaptation

µt,S = θt,ρ̃t+1[S], for any S ∈ CT .

Similarly to µT−2, one can verify that µt is a fair t−hedger. Moreover, (µt)
T−1
t=0 is time-

consistent by construction and we have

ρt [S] = θt,S(t+ 1) · Y (t)

= θt,ρ̃t+1[S](t+ 1) · Y (t) by time-consistency of (ρt)
T−1
t=0

= µt,S(t+ 1) · Y (t) by definition of µt,

which ends the proof.
(b) Suppose that there exists a fair dynamic hedger (µt)

T−1
t=0 such that

ρt [S] = µt,S(t+ 1) · Y (t), for any S ∈ CT . (25)

From Theorem 1, we know that any t−valuation ρt is fair. Moreover, we have

ρt [S] = µt,S(t+ 1) · Y (t)

= µt,ρ̃t+1[S](t+ 1) · Y (t) given (µt)
T−1
t=0 is time-consistent

= ρt [ρ̃t+1 [S]] by definition of ρt,

which ends the proof.
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5 Fair dynamic valuations: A practical approach

This section is dedicated to the practical application of the concepts introduced above.
In Section 5.1, we present a general procedure to determine the fair dynamic valuation of
insurance liabilities. The procedure is based on a backward iterations scheme combining
risk minimization methods from mathematical finance and standard actuarial techniques.
In Section 5.2, we apply the procedure to a portfolio of equity-linked life insurance con-
tracts via a Least Square Monte Carlo (LSMC) implementation. We provide numerical
results illustrating the impact of time-consistency on the fair valuation in Section 5.3.

5.1 Fair dynamic valuation problem

We study the problem of an insurer who needs to determine a fair (actuarial, market-
consistent and time-consistent) dynamic valuation for an insurance liability S which
matures at time T . We assume that the financial market consists of a risk-free asset
Y (0)(t) = ert and a risky asset Y (1)(t), t = 0, 1, ..., T . This objective is achieved by a back-
ward procedure in which the constructed hedger θt is optimal (in the quadratic hedging
sense) for the fair value ρt+1 [S] for any time t = 0, ..., T − 1. Moreover, for each time
step, the residual non-hedged risk is valuated via an actuarial t−valuation πt, implying
that the dynamic valuation is actuarial as well.

Consider a T−claim S. The optimal hedger at time T − 1 is defined by

θT−1,S(T ) = arg min
θ∈ΘT−1

EP
T−1

[(
S − θ(0)

T−1,S(T ) · erT − θ(1)
T−1,S(T ) · Y (1)(T )

)2
]

Hence, the hedging strategy is determined at time T −1 such that the value of the hedger
at time T is as close as possible to S in the quadratic hedging sense. Once the hedging
strategy is set up, we value the non-hedged risk via an actuarial (T − 1)−valuation πT−1.
The fair value of S at time T − 1 is then defined as the sum of the financial value of the
optimal hedge and the actuarial value of the remaining risk:

ρT−1 [S] = θT−1,S(T ) · Y (T − 1) + πT−1 [S − θT−1,S(T ) · Y (T )] .

Iteratively, the optimal hedge at time t for ρt+1 [S] is determined by

θt,S(t+ 1) = arg min
θ∈Θt

EP
t

[(
ρt+1 [S]− θ(0)

t,S(t+ 1) · er(t+1) − θ(1)
t,S(t+ 1) · Y (1)(t+ 1)

)2
]
.

After some direct derivations (see also Föllmer and Schweizer (1988) and Černỳ and
Kallsen (2009)), we find that

θ
(1)
t,S(t+ 1) =

CovPt
[
ρt+1 [S] , Y (1)(t+ 1)

]
V arPt [Y (1)(t+ 1)]

, (26)

θ
(0)
t,S(t+ 1) =

(
EP
t [ρt+1 [S]]− θ(1)

t,S(t+ 1) · EP
t

[
Y (1)(t+ 1)

])
· e−r(t+1). (27)
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Then, the fair value at time t is obtained via

ρt [S] = θt,S(t+ 1) · Y (t) + πt [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] ,

with πt an actuarial t−valuation.

The procedure is quite intuitive: for each time period, an optimal hedge is set up by
quadratic hedging and the remaining risk is valuated via an actuarial valuation, combining
actuarial judgement and market-consistency. Moreover, the scheme is iterated backward
in time to make it time-consistent. Since the hedger θt is fair, by Theorem 2, ρt is a fair
dynamic valuation.

5.2 Application to a portfolio of equity-linked life-insurance con-
tracts

The backward recursive scheme presented above is similar to the one solving the local
quadratic hedging problem and can be implemented by dynamic programming. Since the
optimal hedger is a function of conditional expectations, a popular technique consists of
constructing a Markov grid with the use of a multinomial tree model (see e.g. Černỳ
(2004), Coleman et al. (2006)). However, in order to decrease the calculation volume, we
follow a LSMC approach. This regression-based method was proposed by Carriere (1996)
and Longstaff and Schwartz (2001) for the valuation of American-type options. The key
idea is to regress the conditional expectations on the cross-sectional information of the
underlying risk drivers (in our case, mortality and equity risks). The LSMC technique
will be used in order to determine the dynamic hedger in the expressions (26)-(27).

For the remainder of this section, we assume that the insurance liability which matures
at time T has the following form

S = N(T )×max
(
Y (1)(T ), K

)
, (28)

with N(t) a mortality process, Y (1)(t) a risky asset process and K is a fixed guarantee
level.

For simplicity of illustration2, we assume that the stock follows a geometric Brownian
motion:

dY (1)(t) = Y (1)(t) (µdt+ σdW1(t))

with parameters µ, σ > 0. The conditional expectation and variance are then given by

EP
t

[
Y (1)(t+ 1)

]
= Y (1)(t)eµ+σ2

2 , (29)

V arPt
[
Y (1)(t+ 1)

]
=
(
Y (1)(t)

)2
e2µ+σ2

(
eσ

2 − 1
)
. (30)

2The presented approach can be easily adapted to other stock dynamics, e.g. stochastic volatility or
Lévy models.
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We assume that the mortality process N(t) counts the number of survivals among an
initial population of lx policyholders of age x. The mortality intensity is assumed to be
stochastic and follows the dynamics under P given by

dλx(t) = cλx(t)dt+ ξdW2(t),

with c, ξ > 0 and W2(t) a standard Brownian motion, independent of W1(t). The survival
function is then defined by

Sx(t) := P (Tx > t) = exp

(
−
∫ x+t

x

λx(s)ds

)
,

where Tx is the remaining lifetime of an individual who is aged x at time 0.

Moreover, deaths of individuals are assumed to be independent events conditional
on knowing population mortality (see Milevsky et al. (2006) for similar assumptions).
Further, if we denote D(t + 1) the number of deaths during year t + 1, the dynamics of
the number of active contracts can be described as a nested binomial process as follows:
N(t + 1) = N(t) − D(t + 1) with D(t + 1)|N(t), qx+t ∼ Bin(N(t), qx+t). Here, qx+t

represents the one-year death probability

qx+t := P (Tx ≤ t+ 1|Tx > t) = 1− Sx(t+ 1)

Sx(t)
, for t = 0, . . . , T − 1.

Knowing the dynamics of N(t) and Y (1)(t), one can simulate n scenarios for the mortality
and the equity risk factors for t = 1, . . . , T . Finally, the conditional expectations at time
t are regressed over the risk drivers at time t via a second-order3 least-squares regression:

EP
t [ρt+1 [S]] ≈ α0 + α1N(t)Y (1)(t) + α2

(
N(t)Y (1)(t)

)2
, (31)

EP
t

[
ρt+1 [S]Y (1)(t+ 1)

]
≈ β0 + β1N(t)

(
Y (1)(t)

)2
+ β2

(
N(t)

(
Y (1)(t)

)2
)2

. (32)

By inserting (29), (30), (31) and (32) into (26) and (27), we obtain a LSMC approximation
for θt,S(t + 1) based on simulations of N(t) and Y (1)(t). For the one-year actuarial
t−valuation, we consider a standard deviation principle:

πt [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] = e−r EP
t [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)]

+ e−r ασP
t [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] ,

with α > 0. From (26) and (27), one can find that EP
t [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] =

0. Therefore, the standard deviation of the residual risk is given by

σP
t [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] =

√
EP
t

[
(ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1))2]

and we use the following LSMC approximation:

EP
t

[
(ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1))2] ≈ γ0 + γ1N(t)Y (1)(t) + γ2

(
N(t)Y (1)(t)

)2
.

3The choice of type and number of basis functions was based on an equilibrium between bias and
complexity and the payoff structure in (28). For a discussion of the basis functions and its implications
on robustness and convergence, we refer to Areal et al. (2008), Moreno and Navas (2003) and Stentoft
(2012).
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5.3 Numerical analysis

In this section, we provide a numerical analysis for the fair dynamic valuation of the
insurance liability S introduced above. Our numerical results are obtained by generating
50000 sample paths for N(t) and Y (1)(t), for t = 1, . . . , T . The benchmark parameters
for the financial market are r = 0.01, µ = 0.02, σ = 0.1, K = 1 and Y (1)(0) = 1. The
mortality parameters (λx(0) = 0.0087, c = 0.0750, ξ = 0.000597) follow from Luciano
et al. (2017) and correspond to UK male individuals who are aged 55 at time 0. We
assume that there are lx = 1000 initial contracts at time 0 with a maturity of T = 10
years.

5.3.1 The effect of a time-consistent and actuarial dynamic valuation

First, we assess the effect of valuating the non-hedgeable risk in each step of our dynamic
valuation. To do so, we compare two situations:

• Situation 1: We determine the optimal hedger in each step by quadratic hedging
without adding an actuarial valuation for the remaining risk. In this case, the
dynamic valuation is market-consistent and time-consistent but not actuarial in the
sense that there is no risk margin for the mortality risk. Indeed, under this approach,
one can prove that

ρt [N(T )] = EP
t [N(T )] · e−r(T−t).

• Situation 2: We determine the optimal hedger in each step as explained above by
valuating the remaining risk through a dynamic standard deviation principle

πt [S] = e−r
[
EP
t [S] + ασP

t [S]
]
,

with α = 0.15. In that case, the dynamic valuation is market-consistent, time-
consistent and actuarial as well.

Figure 1 compares the dynamic valuations in situations 1 and 2 through time. Since
ρt [S] is random from the view point of time 0, we consider the evolution of the expected
dynamic valuation EP [ρt [S]].

In situation 1, we observe that the dynamic valuation is steadily increasing over time
to reach the expected payoff at maturity. This was expected since it is market-consistent,
the dynamic valuation follows the trend of the risky asset. We remark that given there
is no risk margin for the non-hedgeable risk (in particular the mortality risk), the insurer
will suffer losses in case policyholders live longer than expected.

On the other hand, in situation 2, we observe a slightly decreasing trend of the dynamic
valuation. This can be explained by two adverse effects: while the upward trend of the
stock increases the dynamic valuation through time, the value of the non-hedgeable risk
decreases over time (a shorter time horizon reduces the uncertainty). From Figure 1, we
observe that this latter effect decreases at a higher rate than the increase of the former
effect.
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Figure 1: Expected dynamic valuation for the life-insurance portfolio with and without
actuarial valuation for the non-hedgeable risk.

5.3.2 The effect of a static versus dynamic actuarial valuation for different
maturities

Now, we take another perspective: instead of considering the evolution of the fair valuation
until a fixed maturity, we consider the fair valuation at time 0 for different maturities.
Moreover, compared to the previous case, we add an intermediate situation in which the
non-hedgeable risk until maturity is valuated via a static actuarial valuation. The three
situations can be summarized as follows:

• Situation 1: We follow the situation 1 above, i.e. the optimal hedger in each step
is determined by quadratic hedging without adding an actuarial valuation for the
remaining risk. Hence, there is no risk margin for the non-hedgeable risk.

• Situation 2: We introduce an intermediate situation in which we follow the situation
1 but add a static risk margin at time 0 for the non-hedgeable risk

RM [S] =
T−1∑
t=0

π [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] (33)

with π is a static standard deviation principle.
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• Situation 3: We consider the fair (actuarial, MC and TC) valuation in which the
non-hedgeable risk is valuated via a dynamic standard deviation principle. This
corresponds to the situation 2 in Section 5.3.1.
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Figure 2: Fair valuation at time 0 with a static versus a dynamic actuarial valuation for
the non-hedgeable risk.

Figure 2 compares the three situations for different maturities T = 1, ..., 15 years.
In situation 1, we observe that the valuation decreases with the maturity increase. This
follows from two adverse effects: the longer the maturity, the fewer the number of survivals
N(T ). But at the same time, the longer the maturity, the higher the financial guarantee
max

(
Y (1)(T ), K

)
. Figure 2 shows that the mortality effect is stronger that the effect of

the financial guarantee.

Not surprisingly, the fair valuation in situations 2 and 3 are higher than the pure
market-consistent valuation because of the inclusion of a risk margin for the non-hedgeable
risk. Moreover, the fair valuation with dynamic actuarial valuation dominates the one
with static actuarial valuation. This difference is due to the iterating effect of the time-
consistent valuation. While in situation 2, the one-year remaining risks are added up (see
the relation (33)), the time-consistent valuation has a multiplicative effect since ρt [S]
contains all non-hedgeable risks from time t until maturity T .
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5.3.3 The effect of dependence between financial and actuarial risks

Finally, we study the impact of a dependence structure between mortality and equity
risks on the fair dynamic valuation of the insurance liability S. We assume that under P
the dynamics of the stock process and the population force of mortality are given by

dY (1)(t) = Y (1)(t) (µdt+ σdW1(t)) (34)

dλx(t) = cλx(t)dt+ ξdW2(t), (35)

with c, ξ, µ and σ are positive constants, and W1(t) = ρW2(t)+
√

1− ρ2Z(t). Here, W2(t)
and Z(t) are independent standard Brownian motions.

We consider three levels of correlation, namely ρ = {−1, 0, 1}. The case ρ = 0
corresponds to the independence case of our previous analysis while the extreme cases
ρ = 1 and ρ = −1 represents the comonotonic (respectively countermonotonic) situation
in which stock and force of mortality are driven by the same random source in the same
direction (respectively in the opposite direction). Intuitively, given the payoff

S = N(T )×max
(
Y (1)(T ), K

)
,

we could expect that if N(T ) and Y (1)(T ) move in the same direction, this is synonymous
with a better hedging and hence a reduction of the non-hedgeable risk.

Figure 3 represents the expected value for the non-hedgeable risk until maturity, com-
puted as the difference between the time-consistent valuation with and without inclusion
of an actuarial valuation for the non-hedgeable risk. The figure confirms our intuition:
if the number of survivals and the stock are moving in the same direction (i.e. force
of mortality and stock are moving in the opposite direction), the non-hedgeable risk is
reduced. Moreover, as expected, the non-hedgeable risk decreases when we come closer to
maturity. We remark that even in extreme cases, the non-hedgeable risk is not null given
that the financial guarantee max

(
Y (1)(T ), K

)
and the number of survivals N(T ) are not

completely hedgeable.

6 Concluding remarks

The determination of the fair valuation for insurance liabilities, which are often a combi-
nation of hedgeable and unhedgeable risks, has become a challenging task. Information
about prices of traded assets provided by the financial market should be combined with
information about mortality experience to provide a reliable market-consistent and ac-
tuarial valuation. Moreover, for the determination of future solvency capitals, the fair
valuations have to be determined at future points in time in a consistent way, leading to
time-consistent valuations.

In this paper, we have studied the fair valuation of insurance liabilities in a dynamic
discrete-time setting. We have proposed a new framework to merge actuarial, market-
consistent and time-consistent considerations in a set of so-called fair dynamic valuations,
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Figure 3: Expected value for the non-hedgeable risk under different dependence levels
ρ = {−1, 0, 1}.

extending the framework of Dhaene et al. (2017) and Barigou and Dhaene (2019). We
have provided a complete hedging characterization in Theorem 2 and illustrated how
these fair dynamic valuations can be implemented through a backward iterations scheme
combining risk minimization techniques with standard actuarial principles.
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Černỳ, A. and Kallsen, J. (2009), ‘Hedging by sequential regressions revisited’, Mathe-
matical Finance 19(4), 591–617.

Cheridito, P. and Kupper, M. (2011), ‘Composition of time-consistent dynamic mone-
tary risk measures in discrete time’, International Journal of Theoretical and Applied
Finance 14(01), 137–162.

Coleman, T. F., Li, Y. and Patron, M.-C. (2006), ‘Hedging guarantees in variable annuities
under both equity and interest rate risks’, Insurance: Mathematics and Economics
38(2), 215–228.

Delbaen, F., Peng, S. and Gianin, E. R. (2010), ‘Representation of the penalty term of
dynamic concave utilities’, Finance and Stochastics 14(3), 449–472.

Delbaen, F. and Schachermayer, W. (2006), The mathematics of arbitrage, Springer Sci-
ence & Business Media.

Dhaene, J., Stassen, B., Barigou, K., Linders, D. and Chen, Z. (2017), ‘Fair valuation of
insurance liabilities: merging actuarial judgement and market-consistency’, Insurance:
Mathematics and Economics 76, 14–27.

Feinstein, Z. and Rudloff, B. (2015), ‘Multi-portfolio time consistency for set-valued con-
vex and coherent risk measures’, Finance and Stochastics 19(1), 67–107.
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Wüthrich, M. V. (2016), Market-Consistent Actuarial Valuation, EEA Series, Springer.

27


	Introduction
	The combined financial-actuarial world
	t-valuations
	Fair t-valuations
	Fair t-hedgers
	Characterization of t-valuations

	Dynamic valuations
	Fair dynamic valuations
	Fair dynamic hedgers
	Characterization of fair dynamic valuations

	Fair dynamic valuations: A practical approach
	Fair dynamic valuation problem
	Application to a portfolio of equity-linked life-insurance contracts
	Numerical analysis
	The effect of a time-consistent and actuarial dynamic valuation 
	The effect of a static versus dynamic actuarial valuation for different maturities
	The effect of dependence between financial and actuarial risks


	Concluding remarks

