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ABSTRACT
A general class of fair valuations which are both market-consistent (mark-
to-market for any hedgeable part of a claim) and actuarial (mark-to-model
for any claim that is independent of financial market evolutions) was intro-
duced in Dhaene et al. [Insurance: Mathematics & Economics, 76, 14–27
(2017)] in a single period framework. In particular, the authors consid-
ered mean-variance hedge-based (MVHB) valuations where fair valuations
of insurance liabilities are expressed in terms of mean-variance hedges and
actuarial valuations. In this paper, we generalize this MVHB approach to a
multi-period dynamic investment setting. We show that the classes of fair
valuations and MVHB valuations are equivalent in this generalized setting.
Wederive tractable formulas for the fair valuationof equity-linked contracts
and show how the actuarial part of their MVHB valuation decomposes into
a diversifiable and a non-diversifiable component.
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1. Introduction

Insurance liabilities may be partially replicable by traded assets. This may be due to the fact that the
payoffs of the underlying insurance contracts are defined in terms of a combination of hedgeable and
unhedgeable claims (e.g. unit-linked insurance) or due to the existence of traded insurance-linked
securities of which the payoff is correlated with the payoff of the insurance liability (e.g. CAT bonds).
Recent insurance regulations (Swiss Solvency Test, Solvency II) require insurers to take into account
themarket prices of the hedgeable parts of insurance liabilities when determining technical provisions
for these liabilities. Loosely speaking, any hedgeable (part of a) claim has to be valuated at the price
of its hedge. Otherwise, the value of the claim is determined by its expected present value (called the
best estimate), augmented by an appropriate risk loading (called the risk margin, e.g. based on cost-
of-capital arguments). For insurance claims which are not completely hedgeable, the hedgeable part
of the claim is usually not uniquely determined, implying that different feasible valuation approaches
are possible.

In this paper, we extend the approach proposed by Dhaene et al. (2017). These authors intro-
duced a so-called fair valuation in a single period setting. A fair valuation is a valuation which is
market-consistent and actuarial. It is market-consistent in the sense that any hedgeable part of a claim
is valuated at the price of the underlying hedge. Moreover, it is actuarial in the sense that a claim
which is independent of the financial market evolutions is valuated using a mark-to-model approach
based on actuarial judgement. As an example of a fair valuation, the authors introduced the so-called
mean-variance hedge-based valuation (hereafter abbreviated as MVHB valuation) which is a two-
stage valuation procedure. In a first step, a mean-variance hedge is set up for the claim, based on the
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available traded assets. In a second step, an actuarial valuation is applied to the remaining non-hedged
part of the claim. The fair value is then defined as the sum of the price of the mean-variance hedge
and the actuarial value of the residual claim. In this paper, we will generalize the MVHB valuation
approach in a dynamic investment setting and investigate properties of this valuation framework.

Several authors have investigated the market-consistent valuation of insurance liabilities, see
e.g. Salzmann and Wüthrich (2010), Moehr (2011), Wüthrich and Merz (2013) and Pelsser and
Stadje (2014). Assuming that the financial market is complete, Pelsser and Stadje (2014) pro-
posed a ’two-step’ valuation which extends standard actuarial valuations into time-consistent and
market-consistent valuations. Mean-variance hedging in relation to the market-consistent valuation
of partially hedgeable insurance claims is considered e.g. in Thomson (2005), Dahl andMøller (2006)
and Tsanakas et al. (2013).

In this paper, we will show that the classes of fair valuations and MVHB valuations are identical.
We will illustrate how in the MVHB valuation framework applied to the valuation of equity-linked
insurance claims in a stochasticmortality setting, the actuarial part of the valuation decomposes into a
diversifiable and a non-diversifiable component. As another illustration, we will consider the fair val-
uation of a portfolio of equity-linked contracts where the self-financing trading strategy depends on
the number of survivors in the insured population, a case which is rarely considered in the literature.

Throughout the paper, we will give particular attention to time-T claims of the form

S = S⊥ × S f ,

where S⊥ is a T-claim which is independent of the financial market evolutions, while S f is a finan-
cial T-claim. Such product claims often arise in insurance as payoffs of equity-linked life-insurance
contracts. For local risk minimization of such payoffs, see e.g. Pansera (2012) and Gaillardetz and
Moghtadai (2017).

The paper is structured as follows. In Section 2 we define the combined financial-actuarial world.
In this world, we introduce the concepts of orthogonal claims, financial trading strategies and
financially hedgeable claims. In Section 3 we consider mean-variance hedging in discrete time. We
investigate the mean-variance hedge for product claims, as well as the mean-variance hedge for gen-
eral claims in a linear subset of self-financing trading strategies available to the valuator. In Section 4,
fair valuations and MVHB valuations are introduced. In particular, we show that these two classes
of valuations are equivalent and provide some detailed illustrative examples. Section 5 concludes the
paper.

2. The combined financial-actuarial world

Consider a combined financial-actuarial world which is home to tradable as well as non-tradable
claims. The time horizon is given byT, which is an element of the set {1, 2, . . .}. The financial-actuarial
world is modeled by the probability space (�,G,G,P), equipped with the finite and discrete-time fil-
tration G = {Gt}t∈τ with τ = {0, 1, . . . ,T}. The initial σ -algebra G0 is set equal to {∅,�} while the
σ -algebra GT is identical to G. The σ -algebra Gt , t ∈ τ , represents the general information available
up to and including time t in the combined world. Further, P is the measure attaching physical prob-
abilities to all events in that world. All random variables (r.v.’s) and stochastic processes in this paper
are defined on this filtered probability space. Throughout the paper, we assume that all r.v.’s that we
consider have finite second order moments under P. Equalities and inequalities between r.v.’s have to
be understood in the P−almost sure sense. Furthermore, we will denote the set of all t-claims defined
on (�,G,G), that is the set of all Gt-measurable r.v.’s, by Ct .

The combined financial-actuarial world hosts a number of insurance liabilities, which are due at
time T. Any insurance liability is represented by a T-claim, which will be generally denoted by S(T)

or simply by S if no confusion is possible. A simple example of an insurance liability related to the
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remaining lifetime Tx of an insured (x) observed at time 0 is the indicator variable S defined by

S =
{
0 : Tx ≤ T
1 : Tx > T (1)

The combined financial-actuarial world (�,G,P) is also home to a financial market of n ∈ {1, 2, . . .}
tradable (non-dividend paying) risky assets and a risk-free bank account. For any i = 1, 2, . . . , n, we
introduce the notation Y(i)(t) for the market price of 1 unit of risky asset i at time t ∈ τ . The risky
assets can be stocks, bonds, mutual funds, etc. The time-t value of an investment of amount 1 at time
0 in the risk-free bank account is given byY(0)(t) = ert , where r ≥ 0 is the deterministic and constant
risk-free interest rate. We assume that any tradable asset can be bought and/or sold in any quantities
in a deep, liquid and transparentmarket with negligible transactions costs and othermarket frictions.

The price processes of the traded assets are described by the (n + 1)-dimensional stochastic pro-
cess Y = {Y(t)}t∈τ . Here, Y(t), t ∈ τ , is the vector of time−t prices of all tradable assets, i.e. Y(t) =
(Y(0)(t),Y(1)(t), . . . ,Y(n)(t)). We assume that the price process Y is adapted to the filtration G:

Y(t) is Gt − measurable, for any t ∈ τ .

The filtrationGmay simply coincide with the filtration generated by the price processY . In this paper
however, we will consider a more general setting, where G is not only related to the price history of
traded assets, butmay also contain information related to non-tradable claims such as a survival index
of a particular population.

A trading strategy (also called a dynamic portfolio) θ = {θ(t)}t∈{1,2,...,T} is a predictable (n + 1)-
dimensional process with respect to the filtration G:

θ(t) is Gt−1 − measurable, for any t ∈ {1, 2, . . . ,T} .
The vector θ(t) = (θ(0)(t), θ(1)(t) . . . , θ(n)(t)) represents the number of units θ(i)(t) invested in each
asset i in time period t, that is in the time interval (t − 1, t]. The Gt−1-measurability requirement
means that the portfolio composition θ(t) for the period (t − 1, t] follows from the general informa-
tion available up to and including time t−1, i.e. the information collected in time interval [0, t − 1].
This information includes in particular the price history of traded assets in that time interval.

The value at time t of the trading strategy θ is denoted by Vθ (t):

Vθ (t) = θ(t) · Y(t) =
n∑

i=0
θ(i)(t)Y(i)(t), for any t = 1, 2, . . . ,T,

while

Vθ (0) = θ(1) · Y(0) =
n∑
i=0

θ(i)(1)Y(i)(0).

Obviously,Vθ (t) isGt-measurable. For any t> 0, we have thatVθ (t) is the value of the trading strategy
at time t, just before eventual rebalancing, whereas Vθ (0) is the initial investment or the endowment
of the trading strategy θ .

Fair valuation in the single period case T= 1 is investigated in detail in Dhaene et al. (2017). Here-
after, we will always assume that T ≥ 2, implying that there is at least one rebalancing moment. A
trading strategy θ is said to be self-financing if

θ(t) · Y(t) = θ(t + 1) · Y(t), for any t = 1, . . . ,T − 1. (2)

This means that no capital is injected or withdrawn at any rebalancing moment t = 1, . . . ,T − 1. We
denote the set of self-financing trading strategies by �. Taking into account (2), the time−T value of



4 K. BARIGOU AND J. DHAENE

any self-financing strategy θ ∈ � with initial investment Vθ (0) can be expressed as

Vθ (T) = θ(T) · Y(T) = Vθ (0) +
T∑
t=1

θ(t) · �Y (t) , (3)

with�Y(t) = Y(t) − Y(t − 1). In this formula, θ(t) · �Y(t) is the change of the market value of the
investment portfolio in the time period (t − 1, t], i.e. between time t−1 (just after rebalancing) and
time t (just before rebalancing).

We will always assume that the market of traded assets is arbitrage-free in the sense that there is
no self-financing strategy θ ∈ � with the following properties:

P

[
Vθ (0) = 0

]
= 1, P

[
Vθ (T) ≥ 0

]
= 1 and P

[
Vθ (T) > 0

]
> 0. (4)

In our discrete-time setting, the absence of arbitrage is equivalent to the existence of an equivalent
martingale measure Q, such that the price Y(i)(t) of any traded asset i at any trading date t can be
expressed as

Y(i)(t) = e−r(T−t)EQ
[
Y(i)(T) | Gt

]
. (5)

For a proof of this equivalence, we refer to Chapter 6 in Delbaen and Schachermayer (2006).

Definition 2.1 (Hedgeable T-claim): A hedgeable T-claim S is an element of CT that can be
replicated by a self-financing strategy θ ∈ �:

S = Vθ (T).

We will denote the set of all hedgeable T-claims byHT . The no-arbitrage assumption guarantees
that the time-t price S(t) of a hedgeable T-claim S is equal to the time−t price of the underlying
self-financing strategy θ :

S(t) = Vθ (t) = e−r(T−t)EQ [S | Gt] . (6)

In this paper, we consider an incomplete market setting. This means that apart from the hedgeable
T-claims, of which the valuation is straightforward, there are also T-claims that cannot be perfectly
replicated. A possible example of an unhedgeable T-claim is the r.v. S defined in (1).

A self-financing strategy is by definition G−predictable. Hence, the rebalancing of the portfolio
at any time t may depend on all information available up to time t, not only including observed
asset prices, but also actuarial information such as survival indices, earthquake indices, etc. Hereafter,
we will often consider the smaller set of self-financing strategies which are predictable with respect
to the financial information. For this purpose, we introduce the financial filtration F. The filtration
F = {Ft}t∈τ contains all information about financial events. This filtration may coincide with the
filtration FY generated by the price process Y but may include additional financial information, such
as economic barometers and/or information about non-traded securities. Hence, in general we have
that

FY ⊆ F ⊆ G.

We will denote the set of all financial t-claims, that is the set of all Ft-measurable r.v.’s, by CFt . It is
obvious that

CFt ⊆ Ct .
Furthermore, we introduce the notation �F for the set of self-financing strategies which are pre-
dictable with respect to F and call its elements financial self-financing trading strategies, as they are



SCANDINAVIAN ACTUARIAL JOURNAL 5

based on the financial filtration. We have that

�F ⊆ �.

For any financial self-financing strategy θ ∈ �F , the investor selects his period (t − 1, t] portfolio,
based on the financial information observed in the time period [0, t − 1], including asset prices and
other additional financial information.

Next, we define the set of financially hedgeable T-claims.

Definition 2.2 (Financially hedgeable T-claim): A financially hedgeable T-claim S is an element of
CFT which can be replicated by a financial trading strategy θ ∈ �F :

S = Vθ (T).

We introduce the notationHF
T for the set of all financially hedgeable T-claims. One has that

HF
T ⊆ HT .

Finally, we introduce orthogonal T-claims. We will use the term P-independence for independence
between r.v.’s under the measure P.

Definition 2.3 (Orthogonal claim): An orthogonal T-claim S is an element of CT which is
P-independent of the financial filtration F.

Hereafter, we will denote the set of all orthogonal T-claims byOT . Hence, S ∈ OT means that S is
P-independent of any FT-measurable random variable. An example of an orthogonal T-claim is the
indicator variable S defined in (1), provided Tx is independent of the financial market evolution. In
case F ≡ FY , one has that S ∈ OT if and only if S is P-independent of any r.v. which can be expressed
as f (Y) for some measurable function f.

We remark that

EP
[
S⊥ × S

f
]

= EP
[
S⊥
]

× EP
[
S f
]
, for any S⊥ ∈ OT and S f ∈ CFT .

In particular, we find that

EP
[
S⊥ × Vθ (T)

]
= EP

[
S⊥
]

× EP
[
Vθ (T)

]
, for any S⊥ ∈ OT and θ ∈ �F .

This follows immediately from the fact that Vθ (T) ∈ CFT .

3. Mean-variance hedging of insurance liabilities

3.1. Some general results onmean-variance hedging

Mean-variance hedging (further abbreviated asMV hedging) is the technique of approximating, with
minimal mean squared error, a given T-claim by the time-T value of a self-financing trading strategy.
The literature on MV hedging is extensive. We refer to Schweizer (2010) for a survey. Two main
approaches are considered in the literature: the first one uses martingale measures and projection
arguments, see e.g. Černỳ and Kallsen (2007), while the second one describes the problem in terms
of a linear backward stochastic differential equation, see e.g. Delong (2013).

In this section, we introduceMVhedging to determine the ‘closest’ hedge of a combined financial-
actuarial claim. This hedge will constitute the first step of the mean-variance hedge-based valuation
which will be considered in Section 4. Hereafter, whenever we consider a subset �′ of the set of all
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self-financing trading strategies�, we assume that�′ is a linear subspace (closed under addition and
scalar multiplication) of �. This assumption implies, in particular, that the set {Vθ (T) | θ ∈ �′} is a
linear subspace of CT .

Definition 3.1 (Mean-variance hedging): Consider a T-claim S. The MV hedge of S in �′ ⊆ � is
the self-financing strategy θMV

S ∈ �′ for which the expected quadratic hedging error at time T is
minimized:

θMV
S = arg min

θ∈�′E
P

[(
S − Vθ (T)

)2]
. (7)

The existence of a solution to the minimization problem (7) is tantamount to the condition that
{Vθ (T) | θ ∈ �′} is a closed set. In this paper, we will always assume that this condition is satisfied.1
Uniqueness of this solution holds under the additional condition of non-redundancy of �′. Non-
redundancy of �′ means that for any θ ∈ �′, one has that Vθ (T) = 0 implies that θ = 0, where 0
is the trivial zero investment strategy with all components equal to 0. Hereafter, we will not require
non-redundancy of �′. This means that a T-claim S can have several mean-variance hedges. Notice
however that the time−T values of all these self-financing strategies are identical. In the remainder of
the paper, we will denote the unique time−T value of all the mean-variance hedges of S by VMV

S (T).
The determination of the solution of the discrete time minimization problem (7) for the set

� of G-predictable self-financing strategies is considered in Černỳ and Kallsen (2009), see also
Schweizer (2010) and the references therein.

It is well-known that MV hedging in the linear subspace �′ has the following properties:

VMV
α×S(T) = α × VMV

S (T), for any scalar α ≥ 0, (8)

and

VMV
S1+S2(T) = VMV

S1 (T) + VMV
S2 (T), for any S1 and S2 ∈ CT . (9)

A no-arbitrage argument leads to

VMV
S1+S2(0) = VMV

S1 (0) + VMV
S2 (0), for any S1 and S2 ∈ CT . (10)

As a special case of the additivity property (9), we have that

VMV
S+Sh(T) = VMV

S (T) + Sh, for any S ∈ CT and Sh = Vθ (T), with θ ∈ �′. (11)

In the following subsection, wewill considermean-variance hedging of claimswhich can be expressed
as the product of an orthogonal claim and the time-T value of a financial self-financing strategy.

3.2. MV hedging of product claims

The benefit payment of an insurance contract at contract termination date T can often be expressed
as

S = S⊥ × S f , with S⊥ ∈ OT and S f ∈ CFT . (12)

This situation occurs for unit-linked contracts in case the corresponding claim S is the product of an
actuarial and a financial component, where the actuarial component is independent of the financial
information flow over time. In the following theorem, we determine theMV hedge of T-claims of the
form (12) in a subset of financial trading strategies: �′ ⊆ �F .

1 The closedness assumption is satisfied for �′ = � and for �′ = �F , see Černỳ and Kallsen (2009) for technical details. It is
also satisfied for the set �(θ1,...,θm) = {∑m

j=1 αjθ j | (α1,α2, . . . ,αm) ∈ Rm}, with θ j , j = 1, . . . ,m, ∈ �, which is considered in
Section 3.3.
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Theorem 3.1: Consider the T-claim S defined in (12). The MV hedge θMV
S of S in the subset �′ of the

set �F of financial self-financing strategies is given by

θMV
S = EP

[
S⊥
]

× θMV
S f , (13)

where θMV
S f is the MV hedge of S f in �′. Moreover, the time-T value of the MV hedge of S equals

VMV
S (T) = EP

[
S⊥
]

× VMV
S f (T). (14)

Proof: For any financial self-financing strategy μ ∈ �′, we find that

EP
[(
S − Vμ(T)

)2] = EP

[((
EP

[
S⊥
]
S f − Vμ(T)

)
+ (S⊥ − EP

[
S⊥
]
)S f
)2]

= EP

[(
EP

[
S⊥
]
S f − Vμ(T)

)2]+ EP

[(
(S⊥ − EP

[
S⊥
]
)S f
)2]

,

where the last step follows from taking into account that S⊥ ∈ OT , which is independent of S f and
Vμ(T).

As EP[((S⊥ − EP[S⊥])S f )2] does not depend on μ, we find that the MV hedge θMV
S in the set �′

follows from

θMV
S = arg min

μ∈�′E
P

[(
EP

[
S⊥
]
S f − Vμ(T))

)2]
.

Taking into account that �′ is a linear space, we can conclude that VMV
S (T) is given by (14) and the

self-financing strategy θMV
S defined in (13) is a solution of the minimization problem (7). �

A special case of Theorem 3.1 arises when the financial part of the payoff at time T is equal to
the time−T value of a financial self-financing trading strategy in �F . This case is considered in the
following corollary, with �′ = �F .

Corollary 3.1: Let S⊥ ∈ OT and consider the following T-claim:

S = S⊥ × Vθ (T) , with S⊥ ∈ OT and θ ∈ �F . (15)

The MV hedge of S in the set �F is given by

θMV
S = EP

[
S⊥
]

× θ ,

while the time-T value of this MV hedge equals

VMV
S (T) = EP

[
S⊥
]

× Vθ (T). (16)

In the following corollary, we consider the special case of Corollary 3.1, where the financial part
of the payoff at time T is equal to the time−T price of a traded asset.
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Corollary 3.2: Let S⊥ ∈ OT and consider the following T-claim:

S = S⊥ × Y(i)(T), i = 0, 1, . . . , n. (17)

The MV hedge of S in the set �F is given by

θMV
S = EP

[
S⊥
]

× θ (i),

where θ (i) ∈ �F is the static financial investment strategy consisting of buying 1 unit of asset i at time
0 and holding it until time T. The time-T value of θMV

S is given by

VMV
S (T) = EP

[
S⊥
]

× Y(i)(T). (18)

The MV hedge of an orthogonal claim is considered in the following corollary.

Corollary 3.3: The MV hedge of S⊥ ∈ OT in the set �F is given by

θMV
S⊥ = e−rTEP

[
S⊥
]
θ (0),

where θ (0) ∈ �F is the static investment strategy consisting of a risk-free investment of 1 at time 0, which
is maintained until time T. The time-T value of θMV

S⊥ is given by

VMV
S⊥ (T) = EP

[
S⊥
]
. (19)

The proof of this corollary follows immediately from Corollary 3.2.

3.3. MV hedging of general claims

3.3.1. MV hedging in the set of linear combinations of self-financing strategies
In this subsection, we consider a general T-claim S and search for the self-financing strategy with the
minimal expected quadratic hedging error at time T, where we restrict our search to the set of all
strategies which can be expressed as linear combinations of a number of given self-financing trading
strategies which are available to the decision maker. More specifically, we consider a vector ofm self-
financing trading strategies (θ1, θ2, . . . , θm), with any θ j ∈ �, and the following set of self-financing
investment strategies:

�(θ1,...,θm) =
⎧⎨
⎩

m∑
j=1

αjθ j | (α1,α2, . . . ,αm) ∈ Rm

⎫⎬
⎭ . (20)

Notice that �(θ1,...,θm) ⊆ �, but it is not necessary a subset of �F . In the following theorem, we
determine the MV hedge of a general T-claim S in the set of trading strategies defined in (20). The
MV hedge θMV

S of S in �(θ1,...,θm) is determined from

min
α∈Rm

EP

⎡
⎣
⎛
⎝S −

m∑
j=1

αjVθ j(T)

⎞
⎠

2⎤
⎦ . (21)

Hereafter, we use the notationAᵀ for the transpose of a matrix A and the notation × for the product
of 2 matrices.
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Theorem 3.2: Consider the vector (θ1, θ2, . . . , θm) of self-financing investment strategies θ i ∈ � and
assume that their time-T values Vθ i(T), i = 1, 2, . . . ,m, are linearly independent. The MV hedge θMV

S
of the T-claim S in the set �(θ1,...,θm) is given by

θMV
S =

m∑
j=1

αjθ j,

where the m-vector α = (α1,α2, . . . ,αm) is given by

αᵀ = W−1 × Vᵀ. (22)

In this expression,W is the (m × m)-matrix with elements (i, j) defined by

(W)ij = EP
[
Vθ i(T)Vθ j(T)

]
, (23)

while V is the (1 × m)-matrix with jth element given by

(V)j = EP
[
SVθ j(T)

]
. (24)

Proof: Taking the derivatives of the objective function in (21) with respect to the αi and setting them
equal to 0 leads to the following set of equations:

m∑
j=1

(W)ij αj = EP[SVθ i(T)], i = 1, . . . ,m,

where the elements (W)ij are defined in (23). This set of equations can be rewritten as follows:

W × αᵀ = Vᵀ.

The assumption of linear independence of the r.v.’s Vθ1(T), Vθ2(T), . . . ,Vθm(T) is equivalent to the
non-singularity of the matrixW. This proves (22). �

The MV hedge of the T-claim S in the set �(θ1,...,θm) takes into account the mutual depen-
dency structure between the time T-values of the m self-financing strategies via the components
EP[Vθ i(T)Vθ j(T)] of the matrix W, while the dependency between the time T-values of these m
strategies and the claim S is captured by the components EP[SVθ j(T)] of the vector V.

Remark that the optimization problem solved in Theorem 3.2 is very similar to the general MV
hedging problem in the single period setting. This problem is strongly related to portfolio repli-
cation where one searches for a linear combination of traded assets which generates cash-flows
which approximate the cash-flows of a given T-claim. For further details, we refer to Pelsser and
Schweizer (2016) and Natolski and Werner (2017).

3.3.2. MV hedging in the set of linear combinations of a risk-free and risky self-financing
strategies
In this subsection, we consider the special case of Theorem 3.2, where apart from a risk-free invest-
ment, there is a number of risky self-financing strategies. This case is considered in the following
corollary.

Corollary 3.4: Consider the vector (θ (0), θ1, θ2, . . . , θm), where θ (0) is the static strategy consisting of
a risk-free investment of 1 at time 0, while θ1, θ2, . . . , θm are self-financing investment strategies in �.
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Assume that the m+1 time−T values of the self-financing strategies are linearly independent. The MV
hedge θMV

S of any T-claim S in the set �(θ (0),θ1,θ2,...,θm) is then given by

θMV
S = α0θ

(0) +
m∑
j=1

αjθ j,

with the αj determined by the set of equations

m∑
j=1

covP
[
Vθ i (T) ,Vθ j (T)

]
αj = covP

[
S,Vθ i (T)

]
, i = 1, 2, . . . ,m, (25)

while α0 follows from

α0 = e−rT

⎛
⎝EP [S] −

m∑
j=1

αjE
P
[
Vθ j (T)

]⎞⎠ (26)

Moreover, we have that

EP
[
VMV
S (T)

] = EP [S] . (27)

Proof: The proof follows from (22). �

As a special case of the previous corollary, consider the case where m= 1. Then we find that the
MV hedge of S is given by

θMV
S = α0θ

(0) + α1θ1 (28)

with

α1 = covP
[
S,Vθ1 (T)

]
VarP

[
Vθ1 (T)

] (29)

and

α0 = e−rT
(
EP [S] − α1E

P
[
Vθ1 (T)

])
. (30)

For the particular case of a single-period setting, i.e. T= 1, these equations can be found e.g. in
Tsanakas et al. (2013) and Černỳ and Kallsen (2009). In the particular case that S is P-independent
of the time−T value Vθ1(T) of the risky self-financing strategy θ1, we find that

α1 = 0

and

α0 = e−rTEP [S] .

Hence, in this particular case, the MV hedge is given by e−rT EP[S] θ (0), which is a static investment
strategy of amount e−rT EP[S] in the risk-free asset at time 0.
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3.3.3. MV hedgingwith a single self-financing strategy
In this subsection, we consider a self-financing strategy θ1 ∈ � and determine the MV hedge of the
T-claim S in the set

�(θ1) = {αθ1 | α ∈ R} .
From Theorem 3.2, we immediately find the following corollary.

Corollary 3.5: Consider the self-financing investment strategy θ1 ∈ �. The MV hedge of the T-claim
S in the set �(θ1) is given by

θMV
S = αθ1,

with α determined by

α = EP
[
SVθ1(T)

]
EP

[(
Vθ1(T)

)2] . (31)

Hereafter, we consider two special cases of this corollary.
First, suppose the strategy θ1 coincides with the static risk-free investment strategy θ (0). In this

case, we have that Vθ (0)
(T) = erT , which leads to

α = EP [S] e−rT .

Hence, the MV hedge of S in �(θ (0)) consists of buying EP[S] e−rT zero-coupon bonds at time 0 and
holding this portfolio until time T. Obviously, the time T-value of this hedge is given by

Vθ (0)

S (T) = EP [S] .

Next, suppose that θ1 ∈ �F and consider the T-claim S = S⊥ × Vθ1(T), where S⊥ ∈ OT . In this
case, we find that α is given by

α = EP
[
S⊥
]
.

This means that the MV hedge of S in �(θ1) equals

θMV
S = EP

[
S⊥
]
θ1.

This result was to be expected, taking into account Theorem 3.1.

3.4. Examples

In this subsection, we consider two examples illustrating the calculation of MV hedges of insurance
liabilities. In a first example, we consider the MV hedge of an equity-linked life insurance contract
with payment guarantee.

Example 3.1 (MV hedging of equity-linked liabilities): Consider a portfolio of equity-linked life
insurance contracts underwritten at time 0 on lx persons of age x. Each contract specifies that at time
T the financial T-claim S f ∈ CFT is paid out, provided the underlying insured is still alive at that time.
Let Ti be the remaining lifetime of insured i, i = 1, 2, . . . , lx, at contract initiation. The time−T payoff
for policy i is given by

Si = 1{Ti>T} × S f , i = 1, 2, . . . , lx, (32)

where 1{Ti>T} is the indicator variable which equals 1 in case Ti > T and 0 otherwise.We assume that
the remaining lifetimes of all insureds follow the same distribution and introduce the notation Tpx
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for the survival probability P[Ti > T]. The average claim per policy at time T is given by the time−T
claim

S = Lx+T

lx
× S f , (33)

with

Lx+T =
lx∑
i=1

1{Ti>T}. (34)

Furthermore, we assume that the policyholders’ remaining lifetimes T1, . . . ,Tlx are independent of
the financial market evolution in the sense that any Ti ∈ OT . This implies that the indicator variables
1{Ti>T} ∈ OT and also that Lx+T ∈ OT .

In case mortality is fully diversifiable and the portfolio is sufficiently large, we can substitute
Lx+T/lx by Tpx in (33) and we have that the claim S is a financial T-claim: S = Tpx × S f ∈ CFT , see
Brennan and Schwartz (1976) and Boyle and Schwartz (1977).

An example of a payoff S f is given by

S f = max
(
f
(
Y(1)(T)

)
,K
)
. (35)

Here, Y(1)(T) is the market price of 1 unit of risky asset 1 at time T, while f is a real-valued non-
negative non-decreasing function, e.g. f (x) = (1 − ε)Tx, where ε is an annual fee rate. Furthermore,
K ≥ 0 is the guaranteed minimal survival benefit. It is well-known that the payoff (35) can be split
into a deterministic payment and a call option payoff:

max
(
f
(
Y(1)(T)

)
,K
)

= K + max(0, f
(
Y(1)(T)

)
− K). (36)

Hereafter, we investigate the valuation of the claim S defined in (33) in case the actuarial risk Lx+T/lx
is not necessarily fully diversified.

(a) Let us first consider the case where the payoff upon survival is a financially hedgeable T-claim,
i.e. S f ∈ HF

T . This means that

S f = Vθ (T), for some θ ∈ �F . (37)

From Corollary 3.1 it follows that the MV hedge of the equity-linked payoff S in �F is given by

θMV
S = Tpx × θ , (38)

while the time-0 value of the MV hedge of S equals

VMV
S (0) = Tpx × Vθ (0). (39)

(b) Usually, the time horizon for equity-linked life insurance policies (typically 5 to 10 years) is dif-
ferent from the time horizon of standard call options (typically less than a few years). This makes
that the claim S f is often unhedgeable. Therefore, let us now assume that S f /∈ HF

T . In this case, one
could determine the MV hedge of the claim S in the set�(θ (0),θ1,θ2,...,θm), where θ (0) is the static zero-
coupon bond investment and each θ i ∈ �F is a financial self-financing strategy. We assume that the
time−T values of the m+1 self-financing strategies are linearly independent. Taking into account
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Theorem 3.1 and Corollary 3.4, we find that

θMV
S = Tpx × θMV

S f = Tpx ×
⎛
⎝α0θ

(0) +
m∑
j=1

αjθ j

⎞
⎠ (40)

and

VMV
S (0) = Tpx ×

⎛
⎝α0Vθ (0)

(0) +
m∑
j=1

αjVθ j (0)

⎞
⎠ , (41)

with the αj determined by the set of Equations (25) and (26). From (27), if follows that

EP
[
VMV
S (T)

] = EP [S] . (42)

Notice that in case S f can be replicated by a hedge in the set �(θ (0),θ1,θ2,...,θm), the two values (39)
and (41) are equal. For instance, in the one-period binomial model (Cox et al. 1979), one can verify
that (α0,α1) is a perfect hedge for max(f (Y(1)(T)),K).

In the following example, we consider a two-period binomial setting and apply Theorem 3.2 to
derive the MV hedge of a financial-actuarial liability with a survival benefit at time 2 equal to the
maximum of two dynamic investment strategies.

Example 3.2 (Equity-linked contract with themaximumof twodynamic strategies): Suppose that
the combined financial-actuarial world is home to a financial market where a risk-free and two risky
assets are traded in a two-period setting. The current value of risky asset i= 1,2, is given by Y(i)(0) =
1, while its price dynamics follows a binomial tree over 2 periods. At each time t= 1,2, the value
of asset i can go up to Y(i)(t − 1) u(i) or down to Y(i)(t − 1) 1/u(i), with u(i) > 1. We assume that
u(1) 
= u(2).

First, consider a constant-mix strategy, which is defined as the self-financing strategy θ1 =
{θ1(t)}t=1,2 with

θ1(1) = (1, 1)

θ1(2) =
(
Y(1)(1) + Y(2)(1)

2Y(1)(1)
,
Y(1)(1) + Y(2)(1)

2Y(2)(1)

)
.

At time 0, 1 unit of each risky asset is bought. Hence, the time-0 market price of the strategy is 2. At
time 1, the portfolio is rebalanced such that the initial proportions of 50% investment of the available
capital in each risky asset, are restored. The time-2 value of this 50% / 50% mix portfolio is given by

Vθ1(2) = θ1(2) · Y(2)

=
2∑

i=1

Y(1)(1) + Y(2)(1)
2Y(i)(1)

Y(i)(2).

Next, consider the buy-and-hold strategy which keeps the number of units constant over time:

θ2(t) = (1, 1) , for t = 1, 2.

The time-0 price of this strategy is 2, while its time-2 value is given by

Vθ2(2) =
2∑

i=1
Y(i)(2).
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Suppose that the combined financial-actuarial world is also home to the indicator variable S⊥ ∈ O2
defined by

S⊥ =
{
0 : Tx ≤ 2,
1 : Tx > 2 (43)

where Tx is the remaining lifetime of (x).
Consider an insurance liability S ∈ C2 which guarantees the maximum payoff of the two self-

financing strategies defined above, provided the insured (x) is still alive at time 2:

S = S⊥ × max
(
Vθ1(2),Vθ2(2)

)
. (44)

By Theorem 3.2, we know that the MV hedge of S in the set �(θ1,θ2) is given by

θMV
S = α1θ1 + α2θ2,

with the αi determined by

αi=
2∑

j=1

(
W−1)

ij E
P
[
SVθ j (2)

]
, i = 1, 2, (45)

whereW is the (2 × 2)-matrix with elements (i, j) defined by

(W)ij = EP
[
Vθ i(2)Vθ j(2)

]
. (46)

Apart from the claim S defined in (44), we also consider claims S̃ ∈ C2 of the form

S̃ = S⊥ ×
(
β1Vθ1(2) + β2Vθ2(2)

)
,

for given real numbers β1 and β2.
From Theorem 3.1, we find that the MV hedge of S̃ in the set �F is given by

θMV
S̃

= EP
[
S⊥
]
(β1θ1 + β2θ2) .

As θMV
S̃

∈ �(θ1,θ2) ⊆ �F , it is obvious that the MV hedge of S̃ in �F is equal to the MV hedge of S̃
in �(θ1,θ2).

Let us now suppose that u(1) = 4
3 and u(2) = 8

3 , indicating that the second asset is more volatile.
Furthermore, we suppose that the P−probability of an up-movement equals 1/2 for each risky
asset and each time period. Finally, suppose that P[Tx > 2] = 0.9, implying that EP[S⊥] = 0.9. The
numerical values of theMV hedges of different time−2 claims are summarized in the following table.

Time-2 claim MV hedge

S⊥ × Vθ1 (2) 0.9 θ1
S⊥ × Vθ2 (2) 0.9 θ2
S⊥ × (0.5Vθ1 (2) + 0.5Vθ2 (2)) 0.45 θ1 + 0.45θ2
S⊥ × max(Vθ1 (2), Vθ2 (2)) 0.52 θ1 + 0.46θ2

The claims considered in the previous examples were in general not perfectly hedgeable. In the
next section, we introduce an approach which values unhedgeable claims as the sum of the time-0
price of their MV hedge and an actuarial value for the remaining (unhedged) part of the claim.
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4. Fair valuation of insurance liabilities

In this section, we define the class of fair valuations as well as the class of mean-variance hedge-
based (MVHB) valuations in amulti-period setting. These concepts were introduced and investigated
in Dhaene et al. (2017) in a single period framework. In Section 4.2, we show that the classes of
fair valuations and MVHB valuations are equal. In Section 4.3, we provide some detailed examples
illustrating the MVHB valuation.

4.1. Fair valuations

Solvency II, the European regulatory framework for insurance and reinsurance companies, focuses on
the fair valuation of insurance liabilities. A distinction ismade between hedgeable and non-hedgeable
claims. For a hedgeable claim, the fair value equals themarket value of the underlying hedging portfo-
lio. The fair value of a non-hedgeable claim is defined as the sum of the expected present value (called
best estimate) and a risk margin, see CEIOPS (2010). The application of this regulatory principle is
not always straightforward as insurance liabilities are often partially replicable and it is usually not
clear how the regulatory valuation principle should be applied in such a case.

Dhaene et al. (2017) define a general class of fair valuationswhichmeet the fundamental regulatory
requirements by merging actuarial judgement and market-consistency. Hereafter, we first define the
class of valuations and then introduce the classes of market-consistent, actuarial and fair valuations.

Definition 4.1 (Valuation): A valuation is a mapping ρ : CT → R, attaching a real number to any
claim S ∈ CT :

S → ρ [S] ,

such that ρ is normalized:

ρ [0] = 0,

and ρ is translation invariant:

ρ [S + a] = ρ [S] + e−rTa, for any S ∈ CT and a ∈ R.

Our convention of identifying r.v.’s which are equal in theP-almost sure sense implies that ρ[S1] =
ρ[S2] in case S1 and S2 are equal in that sense.

Definition 4.2 (Market-consistent valuation): A valuation ρ : CT → R is market-consistent (MC)
if any financially hedgeable part of any claim is marked-to-market:

ρ
[
S + Sh

]
= ρ[S] + Vθ (0), for any S ∈ CT and any Sh = Vθ (T)with θ ∈ �F . (47)

In the literature, market-consistency is usually defined via a condition equal or similar to condi-
tion (47), see e.g. Artzner and Eisele (2010), Malamud et al. (2008) and Pelsser and Stadje (2014). The
mark-to-market condition (47) postulates that any financially replicable part of a claim is valuated by
the price of its hedge. The MC condition (47) can be seen as an extension of translation invariance
from scalars to financially hedgeable claims. We remark that the condition (47) is closely related to
the market-consistent property defined in Pelsser and Stadje (2014).

In order to define actuarial valuations, we first have to introduce the notions of P-law invariant
and market-invariant mappings on the set of orthogonal claimsOT .

Definition 4.3 (P-law invariant mapping): Amapping ρ : OT → R is P-law invariant if for any S⊥
1

and S⊥
2 ∈ OT with the same P-distribution, one has that ρ[S⊥

1 ] = ρ[S⊥
2 ].
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The P-law invariance property stems from the fact that changing the r.v. S⊥
1 into S⊥

2 does not
change the value of themapping, provided both have the sameP-distribution. In other words, aP-law
invariant mapping ρ : OT → R is in fact a mapping from the set of all P-distributions of orthogonal
claims to the real line. In this sense, one can say that ρ[S⊥] only depends on the P-distribution of the
orthogonal claim S⊥.

Definition 4.4 (Market-invariantmapping): Amapping ρ : OT → R is market-invariant if for any
S⊥ ∈ OT , the value ρ[S⊥] is independent of the current risky asset prices Y(1)(0), . . . ,Y(n)(0).

In this case, the market-invariance property results from the observation that ρ[S⊥] is constant
with respect to any change in the current risky asset prices.

Definition 4.5 (Actuarial valuation): A valuation ρ : CT → R is actuarial if any orthogonal claim
is marked-to-model:

ρ
[
S⊥
]

= e−rTEP
[
S⊥
]

+ RM
[
S⊥
]
, for any S⊥ ∈ OT , (48)

where RM : OT → R is a P−law invariant and market-invariant mapping.

The mark-to-model (or actuarial) condition (48) introduces actuarial aspects in the valuation of
claims by stating that for claims that are independent of the financial market information that will
become available over time, the valuation does not depend on the current prices of traded risky assets
and hence, also does not depend on Q.

Notice that all results that we will derive hereafter in this paper remain valid if we define an actuar-
ial valuation as amember of a given subset of the broad class of valuations considered in the definition
above. For instance, we could define an actuarial valuation as a valuation of the form (48) where RM
[S⊥] = e−rTβvarP[S⊥], for some deterministic β ≥ 0.

Definition 4.6 (Fair valuation): A fair valuation is a valuation which is both market-consistent and
actuarial.

Our definition of a fair valuation in a multi-period setting is in line with current insurance sol-
vency regulations which impose mark-to-market as well as mark-to-model requirements for the fair
valuation of assets and liabilities.2 Definition 4.6 combines market-consistency considerations con-
cerning financially hedgeable parts of claims with the traditional actuarial view involving actuarial
judgement of insurance claims. We remark that our definition of a fair valuation is generic and does
not necessarily fully correspond to any particular definition of fair value in a particular regulation.

4.2. Mean-variance hedge-based valuations

Valuating a T-claim S via MV hedging starts with finding the optimal self-financing trading strategy
θMV
S which hedges the claim S with minimal expected quadratic hedging error in a linear subspace

�′ of�. Defining the value of the claim S as the initial cost VMV
S (0) of the MV hedging strategy θMV

S
leads to the same value for theT-claim S and forVMV

S (T), neglecting the part of Swhich is not hedged,
i.e. S − VMV

S (T). In order to solve this issue, Dhaene et al. (2017) considered a class of fair valuations,
the members of which are called mean-variance hedge-based (MVHB) valuations. Determining the

2 In the ‘Solvency II Glossary’ of the ‘Comité Européen des Assurances’ and the ‘Groupe Consultatif Actuariel Européen’ of 2007, Fair
Value is defined as ‘the amount for which ··· a liability could be settled between knowledgeable, willing parties in an arm’s length
transaction. This is similar to the concept of Market Value, but the Fair Value may be a mark-to-model price if no actual market
price for the ··· liability exists.’
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MVHB value of a T-claim S departs from splitting this claim into the time-T value of its MV hedge
and the remaining claim:

S = VMV
S (T) + (

S − VMV
S (T)

)
.

The MVHB value of S is then defined as the sum of the financial market price of the MV hedge and
an actuarial value of the remaining claim.

Definition 4.7 (MVHB valuation): A mapping ρ : CT → R is a mean-variance hedge-based
(MVHB) valuation in case there exists a linear subspace �′ of � and an actuarial valuation π such
that

ρ [S] = VMV
S (0) + π[S − VMV

S (T)], for any S ∈ CT , (49)

where VMV
S (0) and VMV

S (T) are the time-0 and time-T values of the MV hedge θMV
S of S in �′,

respectively.

It is straightforward to prove that a MVHB valuation is normalized and translation invariant,
and hence, a valuation in the sense of Definition 4.1. Moreover, a MVHB valuation is positive
homogeneous, provided the underlying actuarial valuation is positive homogeneous.

In the following lemma, a MVHB valuation formula is derived for product claims, taking into
account Theorem 3.1.

Lemma 4.1: Consider the MVHB valuation with underlying MV hedging in the linear space of self-
financing trading strategies �′ ⊆ �F and actuarial valuation π . For any S⊥ ∈ OT and any S f ∈ CFT ,
the MVHB value of S = S⊥ × S f is given by

ρ [S] = EP
[
S⊥
]
VMV
S f (0) + π

[
S⊥ × S f − EP

[
S⊥
]
VMV
S f (T)

]
. (50)

In the following theorem, we prove that the class of MVHB valuations is identical to the class of
fair valuations.3

Theorem 4.1: A mapping ρ : CT → R is a MVHB valuation with underlying MV hedging in the set
�F if and only if it is a fair valuation.

Proof: (a) Consider theMVHB valuation ρ defined in (49). In order to show that ρ is a fair valuation,
we have to verify whether ρ is a market-consistent and actuarial valuation.

(i) Let S ∈ CT and Sh = Vθ (T) with θ ∈ �F . We have that

VMV
S+Sh(T) = VMV

S (T) + Sh,

and hence, also

VMV
S+Sh(0) = VMV

S (0) + Vθ (0),

see (11). Taking into account these additivity relations, we find that

ρ
[
S + Sh

]
= VMV

S+Sh(0) + π
[
S + Sh − VMV

S+Sh(T)
]

= VMV
S (0) + Vθ (0) + π[S − VMV

S (T)]

= ρ[S] + Vθ (0).

Hence, ρ is market-consistent.

3 This paper focuses on valuations basedon theMVhedgebutwe remark thatDefinition 4.7 canbe restated in terms ofmore general
hedges. Notice that Theorem4.1 remains to hold in this generalized setting. Dhaene et al. (2017) consider thismore general setting
in a one-period model.
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(ii) Let S⊥ ∈ OT . FromCorollary 3.3, we know that θMV
S⊥ = e−rT EP[S⊥] θ (0). Taking into account

the translation-invariance of π leads to

ρ
[
S⊥
]

= VMV
S⊥ (0) + π[S⊥ − VMV

S⊥ (T)]

= e−rTEP
[
S⊥
]

+ π[S⊥ − EP
[
S⊥
]
]

= π[S⊥].

Given that π is an actuarial valuation, we find that ρ is also an actuarial valuation.
(b) Consider the fair valuation ρ. LetVMV

S (T) be the time-T value of theMV hedge of the T-claim
S in �F . By the market-consistency property, we immediately find that

ρ [S] = ρ
[
VMV
S (T) + (

S − VMV
S (T)

)]
= VMV

S (0) + ρ
[
S − VMV

S (T)
]
.

Given that ρ is fair, it is also actuarial. Hence, we can conclude that the fair valuation ρ is a MVHB
valuation. �

Theorem 4.1 holds for MVHB valuations with MV hedge determined in the set of financial self-
financing strategies�F whereas theMC condition (47) in the definition of a fair valuation has to hold
for all Sh = Vθ (T)with θ ∈ �F . Important to notice is that Theorem 3 remains to hold if we replace
�F by a linear subspace �′ of �F which includes θ (0) as one of its elements, provided we redefine a
MC valuation as a valuation which satisfies theMCproperty only for claims which are hedgeable with
a self-financing strategy in �′, while we redefine a MVHB valuation as a valuation of the form (49),
where the MV hedge is determined in the set �′. We remark that the self-financing strategy θ (0) is
required to be an element of �′ in order to guarantee that the MVHB valuation is actuarial.

Moreover, Theorem 4.1 is a generalization of Theorem 3 inDhaene et al. (2017) in theMVhedging
case as it allows periodic rebalancing (for instance yearly) for long term T-claims. Obviously, this
cannot be achieved within a single period model.

4.3. Examples

We end this section with two examples illustrating the fair valuation of insurance liabilities.
In Example 4.1, we consider the fair value of the liabilities related to a portfolio of equity-linked life

insurance contracts by applying the MVHB valuation with a standard deviation actuarial valuation
principle for the non-hedged part of the claims. Under the assumption of diversifiability of mortality,
the actuarial value of the non-hedged part per policy converges to zero due to the law of large numbers
(LLN). In case of conditional independence, instead of independence of the remaining lifetimes of
the insureds, the LLN breaks down and the actuarial value in the MVHB valuation converges to a
non-zero constant, giving rise to a risk margin for non-diversifiable mortality risk, see also Milevsky
et al. (2006).

Example 4.1 (Valuation of equity-linked liabilities): Consider the portfolio of lx contracts under-
written at time 0 as described in Example 3.1. Each contract guarantees to its beneficiary the payment
S f ∈ CFT at time T, provided the insured is still alive at that time. All insureds are assumed to be x
years old at policy issue. As in Example 3.1, we assume that the policyholders’ remaining lifetimes
T1, . . . ,Tlx are identically distributed and independent of the financial market evolution in the sense
that any Ti ∈ OT . As before, we use the notation Tpx for EP[Lx+T/lx].
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The average claim per policy at time T is given by (33):

S = Lx+T

lx
× S f ,

with

Lx+T =
lx∑
i=1

1{Ti>T}.

Suppose that we apply the MVHB valuation (49) with underlying MV hedging in the space of of self-
financing trading strategies �(θ (0),θ1,θ2,...,θm) defined in Example 3.1, and as actuarial valuation π the
standard deviation principle, i.e.

π [S] = e−rT
(
EP [S] + βσP[S]

)
, for any S ∈ CT ,

with β a given non-negative real number.
From (42), we know that

θMV
S = Tpx × θMV

S f ,

with

θMV
S f =

⎛
⎝α0θ

(0) +
m∑
j=1

αjθ j

⎞
⎠ ,

where the coefficients αj follow from (25) and (26).
Taking into account Lemma 4.1 and (42), we find that the MVHB value of S is given by

ρ [S] = Tpx × VMV
S f (0) + e−rTβσP

[
Lx+T

lx
× S f − Tpx × VMV

S f (T)

]
. (51)

After some straightforward calculations, this value can be rewritten as follows:

ρ [S] = Tpx × VMV
S f (0) + e−rTβσ (52)

with

σ 2 = (
Tpx

)2 × VarP
[
S f − VMV

S f (T)
]

+ EP

[(
S f
)2]× VarP

[
Lx+T

lx

]
. (53)

The actuarial premium for the non-hedged part of the claim, i.e. e−rT β σ , can be interpreted as a
‘risk loading’ composed of two components. The first component is related to the fact that S f is not
perfectly hedgeable, whereas the second component is due to the fact that the survival risk is not fully
diversified. In case S f is perfectly hedgeable in�(θ (0),θ1,θ2,...,θm), the first term of σ 2 vanishes, whereas
in case of full diversification of the survival risk, its second term disappears. Due to (27), we remark
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that

VarP
[
S f − VMV

S f (T)
]

= EP

[(
S f − VMV

S f (T)
)2]

= min
μ∈�(θ(0) ,θ1,θ2,...,θm)

EP

[(
S f − Vμ(T))

)2]
.

(a) Let us additionally assume that T1, . . . ,Tlx are i.i.d under P. In this case, we find that

VarP
[
Lx+T

lx

]
= Tpx(1 − Tpx)

lx
.

The MVHB value ρ[S] of the average claim per policy is then given by (52) with

σ 2 = (
Tpx

)2 × VarP
[
S f − VMV

S f (T)
]

+ EP

[(
S f
)2]× Tpx(1 − Tpx)

lx
.

Increasing the number of policies leads to a decrease of the value of the average claim per policy for
the non-hedged part of the claim. Moreover, we have that

lim
lx→∞

ρ [S] = Tpx
(
VMV
S f (0) + e−rTβσP

[
S f − VMV

S f (T)
])

.

Therefore, when lx goes to infinity, the actuarial value per policy for the non-hedged part of the claim
is only due to the hedging error.

(b) Instead of assuming that T1, . . . ,Tlx are P-i.i.d, let us now assume that there exists a r.v. P with
P-cdf given by FP

P (p), p ∈ [0, 1], such that given P= p, the remaining lifetimes T1, . . . ,Tlx are P-i.i.d.,
with

P
[
Ti > T | P = p

] = p, p ∈ [0, 1] .

P can be interpreted as the ’stochastic survival probability’ and we find that

P [Ti > T] = EP [P] .

Due to the random nature of P, the remaining lifetimes Ti are not mutually independent anymore.
Instead they have become conditionally independent.

The expectation and the variance of Lx+T/lx are now given by

EP

[
Lx+T

lx

]
= EP [P]

and

VarP
[
Lx+T

lx

]
= EP [P(1 − P)]

lx
+ VarP [P] .

Inserting these expressions in (53), we find that the MVHB value ρ[S] of the average claim per policy
is given by (52) with

σ 2 = (
Tpx

)2 × VarP
[
S f − VMV

S f (T)
]

+ EP

[(
S f
)2]×

(
EP [P(1 − P)]

lx
+ VarP [P]

)
.
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Again, we can conclude that increasing the number of policies leads to a decrease of the actuarial
value per policy for the non-hedged part of the claim. Moreover, we have that

lim
lx→∞

σ 2 = (
Tpx

)2 × VarP
[
S f − VMV

S f (T)
]

+ EP

[(
S f
)2]× VarP [P] .

Hence, in case VarP[P] 
= 0, the survival risk is not fully diversifiable: even if the number of insureds
becomes infinitely large, the actuarial premium of the unhedged risk contains a term related to the
undiversifiable survival risk.

In the following example, we investigate the fair value of a product claim of the form S = S⊥ ×
Vθ (T)where the trading strategy θ depends on S⊥ (hence, θ /∈ �F ). In particular, we consider the fair
value of a pool of equity-linked contracts in which the investment portfolio depends on the number
of survivors. We further quantify the impact on the fair value when the aggregate longevity risk is
transferred from the pool to the insurer.

Example 4.2 (Transfer of the longevity risk in equity-linked liabilities): (a) Consider a portfolio
of T-year equity-linked policies underwritten at time 0 on a cohort of lx insureds aged x at policy
initiation. The random number of survivors a time t is denoted by Lx+t , t = 0, 1, . . . ,T. At time T,
the value Vθ (T) of a self-financing investment strategy θ ∈ �, set up at time 0, is equally distributed
among the survivors in the portfolio. Hence, the payoff per policy in force at time T is given by

Si = Vθ (T)

Lx+T
1{Ti>T}, i = 1, 2, . . . , lx, (54)

where Ti is the remaining lifetime of insured i. Any policyholder i faces three sources of risk:
investment risk (caused by the random nature of the final value Vθ (T) of the investment strat-
egy), individual longevity risk (due to the randomness of the remaining lifetime Ti of the insured)
and aggregate longevity risk (because of the random nature of the number of survivors Lx+T). The
aggregate portfolio liability at time T equals

S =
lx∑
i=1

Si = Vθ (T) .

As S is a hedgeable claim, its fair value at time 0 is given by the cost of the initial investment of the
trading strategy θ :

ρ [S] = Vθ (0) . (55)

The insurer who charges a single premium of Vθ (0)/lx per underwritten contract and sets up the
investment strategy θ at time 0 does not take any risk: all sources of risk are born by the pool of poli-
cyholders. The portfolio can be considered as a pool of tontine-like policies. For the reader interested
in pooled funds and tontines, we refer to Milevsky and Salisbury (2015), Bräutigam et al. (2017) and
the interesting book on the 1693 tontine by Milevsky (2015).

(b) Let us now in addition assume that θ ∈ �F and that all Ti, and hence also Lx+t , are orthogo-
nal claims. Furthermore, we adapt the contract payoff (54) in the sense that the random number of
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survivors Lx+T is replaced by its deterministic estimate lx+t = EP[Lx+T] in the payoff per policy:

Si = Vθ (T)

lx+T
1{Ti>T}. (56)

In this adapted contract, the aggregate longevity risk is transferred to the insurer, i.e. he bears the
uncertainty on the number of survivors at maturity. The aggregate portfolio liability is now given by

S = Vθ (T)
Lx+T

lx+T
. (57)

As the aggregate liability S is no longer hedgeable, the insurer determines the fair value of S via a
MVHB valuation.

From Corollary 3.1, it follows that the MV hedge of S in �F is given by

θMV
S = θ .

From Lemma 4.1, we find that the MVHB value of S equals

ρ [S] = Vθ (0) + π

[(
Lx+T − lx+T

lx+T

)
Vθ (T)

]
.

Let us now choose, as actuarial valuation, the standard deviation principle, i.e.

π [S] = e−rT
(
EP [S] + βσP [S]

)
,

for some β > 0. Taking into account that

VarP
[(

Lx+T − lx+T

lx+T

)
Vθ (T)

]
= EP

[(
Vθ (T)

)2]× VarP
[
Lx+T

lx+T

]
,

we find that

ρ [S] = Vθ (0) + β e−rT
√

EP
[(
Vθ (T)

)2]× σP

[
Lx+T

lx+T

]
.

In case the insurer charges a premium of ρ[S]/lx per policy, we observe that the first part of the
premium corresponds with the premium charged in (a), whereas the second part is the extra loading
per policy for the transfer of the aggregate longevity risk to the insurer. This extra loading is caused
by the volatility of both Vθ (T) and Lx+T .

(c) As a special case of (b), suppose that θ = lx+T e−rT θ (0). The time−T payoff per policy is then
given by

Si = 1{Ti>T}. (58)

In this case, the policyholder only bears the individual longevity risk. The aggregate portfolio liability
is now given by

S =
lx∑
i=1

Si = Lx+T , (59)

while the fair value of the portfolio liability is given by

ρ [S] = e−rT
(
lx+T + βσP [Lx+T]

)
.

Notice that the insurance contract considered in (c) corresponds to a classical pure endowment.
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(d) Let us go back to (a) and consider the portfolio of lx contracts with time−T benefits given
by (54), with trading strategy θ ∈ � defined in the following way:

At time 0, for any underwritten policy, an amount A/lx is fully invested in the risk-free bank
account. Furthermore, any time an insured dies in any year (j − 1, j), the amount (A/lx) erj is with-
drawn from the bank account at time j and is fully invested in asset 1, from time j until time T. The
aggregate portfolio liability is then equal to the time−T value of the investment strategy θ :

S = Vθ (T) = A
lx

⎛
⎝Lx+T erT +

T∑
j=1

Dx+j−1 erj
Y(1)(T)

Y(1)(j)

⎞
⎠ ,

= A
lx
Lx+T erT + S′,

where Dx+j−1 is the number of people who died during the year (j − 1, j) and S′ denotes the part of
the aggregate survival benefits which was invested in the risky asset 1 (after the death of the respective
insureds). Obviously, θ is a self-financing trading strategy withVθ (0) = A. Moreover, θ /∈ �F as the
investment strategy depends on the number of survivors at each time j. As in (a), we have that S is a
hedgeable claim and the fair value of the portfolio is given by

ρ [S] = A.

From (56), it follows that the time−T payoff per policy Si is given by

Si =
(
A
lx
erT + S′

Lx+T

)
1{Ti>T},

which clearly shows that the policyholder bears the risky investment risk, as well as the individual
and the aggregate longevity risk.

(e) Let us consider the self-financing strategy θ introduced in (d). Suppose now that the time−T
payoff per policy is defined by

Si =
(
A
lx
erT + S̄′

lx+T

)
1{Ti>T}, (60)

where

S̄′ = A
lx

T∑
j=1

dx+j−1 erj
Y(1)(T)

Y(1)(j)
,

with dx+j−1 = EP[Lx+j−1 − Lx+j], the expected number of people who will die during the year (j −
1, j). The aggregate portfolio liability is now given by

S =
(
A
lx
erT + S̄′

lx+T

)
Lx+T . (61)

From the expression (61), we observe that the aggregate longevity risk is transferred to the insurer
and also that the aggregate portfolio liability is no longer hedgeable. Notice that S can be written as

S = A
lx

⎛
⎝lx+T erT +

T∑
j=1

dx+j−1 erj
Y(1)(T)

Y(1)(j)

⎞
⎠ Lx+T

lx+T

= Vμ (T)
Lx+T

lx+T
,
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where μ is similar to the strategy θ introduced in (d), but with the real numbers of deaths and sur-
vivors (Dx+t and Lx+t) replaced by their respective expectations (dx+t and lx+t). As μ ∈ �F , we can
follow the same approach as in (b) to determine the MVHB value of S.

From Corollary 3.1, the MV hedge of S in �F is given by

θMV
S = μ,

and from Lemma 4.1, we find that the MVHB value of S equals

ρ [S] = Vμ(0) + π

[(
Lx+T − lx+T

lx+T

)
Vμ(T)

]
.

Since Vμ(0) = Vθ (0) = A, the second term in this expression for ρ[S] can be interpreted as the fair
value for the transfer of the aggregate longevity risk to the insurer.

5. Summary and concluding remarks

The fair value of an insurance liability, which is often neither completely hedgeable nor orthogonal, is
in general not uniquely determined. This is not only due to the involvement of actuarial judgement,
but also at an earlier stage in the valuation process due to the ambiguity in the current regulatory
directives on how to determine the hedgeable part of such a liability.

In this paper, we investigated the fair valuation of insurance liabilities based on mean-variance
hedging and extended the results of Dhaene et al. (2017) to a multi-period dynamic investment set-
ting. We focused on product claims, i.e. claims which can be expressed as the product of an actuarial
and a financial claim. Under independence between the actuarial claim (typically a mortality-related
claim) and the financial market, we derived theMV hedge in Theorem 3.1 and obtained tractable for-
mulas for the fair valuation of such product claims. For general claims,we derived theMVhedge in the
set of all strategies which can be expressed as linear combinations of a number of given self-financing
trading strategies. The obtained results have been illustrated with numerous examples.

In Section 4, we showed that the class of fair valuations is identical to the class of mean-variance
hedge-based valuations. Under theMVHB approach, we showed that the riskmargin in equity-linked
contracts can be decomposed into a risk loading for non-diversifiablemortality risk and a risk loading
for non-hedgeable financial risk. Moreover, we determined the extra loading in the fair value when
the longevity risk in pooled equity-linked contracts is transferred to the insurer.

As considered in Dhaene et al. (2017), one can also define a two-step valuation based on a con-
ditional actuarial valuation, which extends the two-step valuation of Pelsser and Stadje (2014) by
introducing actuarial considerations. In the same manner as in Dhaene et al. (2017), one can show
that the set of two-step valuations coincides with the set of fair valuations and hence, also with the
set of MVHB valuations. These results can be seen as generalizations of the equivalences which hold
in a one-period static setting in Dhaene et al. (2017).

Under the MVHB approach, the valuation gives an explicit hedge and an additive decomposition
of the claim into a financial hedgeable part and an actuarial non-hedgeable part. Therefore, we believe
that theMVHB valuation provides a relevant framework to determine the hedgeable part and the fair
valuation of insurance liabilities which involve both actuarial and financial components.
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