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ABSTRACT

Delong et al. (2018) presented a theory of fair (market-consistent and actuar-
ial) valuation of insurance liability cash-flow streams in continuous time. In
this paper, we investigate in detail two practical applications of our theory of
fair valuation. In the first example, we consider the fair valuation of a ter-
minal benefit which is contingent on correlated tradeable and non-tradeable
financial risks. In the second example, we consider a portfolio of unit-linked
contracts contingent on a non-tradeable insurance and a tradeable financial
risk. We derive partial differential equations (PDEs) which characterize the
continuous-time fair valuation operators in these two examples and we find
explicit solutions to these PDEs. The fair values of the liabilities are decom-
posed into the best estimate of the liability and a risk margin. The arbitrage-free
representations of the fair values of the liabilities are derived and the dynamic
hedging strategies associated with the continuous-time fair valuation opera-
tors are also established. Detailed interpretations of the results, which should
be useful both for researchers and practitioners, are provided.
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1. INTRODUCTION

In Delong et al. (2018), we presented a theory of fair (market-consistent and
actuarial) valuation of insurance liability cash-flow streams in continuous time.
We first considered one-period hedge-based valuations, where in the first step,
an optimal dynamic hedge for the liability is set up, based on the assets traded
in the market and a quadratic hedging objective, while in the second step,
the remaining part of the claim is valuated via an actuarial valuation. Then,

Astin Bulletin, 1-35. doi:10.1017/asb.2019.8 © 2019 by Astin Bulletin. All rights reserved.

Downloaded from https://www.cambridge.org/core. KU Leuven Libraries, on 10 Apr 2019 at 11:29:01, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2019.8


https://doi.org/10.1017/asb.2019.8
https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2019.8
https://www.cambridge.org/core

2 L. DELONG, J. DHAENE AND K. BARIGOU

we extended this approach to a multi-period setting by backward iterations
for a given discrete-time step 4, and considered the continuous-time limit
for h — 0. We formally derived a partial differential equation (PDE) for the
continuous-time valuation operator and proved that this valuation operator
is actuarial and market-consistent. We showed that our continuous-time fair
valuation operator has a natural decomposition into a best estimate of liability
and a risk margin.

In this paper, the main results of our theory of continuous-time fair val-
uation are illustrated with two detailed examples. In the first example, we
consider the fair valuation of a terminal benefit which is contingent on corre-
lated tradeable and non-tradeable financial risks. In the second example, we
consider a portfolio of unit-linked contracts contingent on a non-tradeable
insurance and a tradeable financial risk. We derive PDEs that characterize the
continuous-time fair valuation operators in these two examples and we find
explicit solutions to these PDEs. The fair values of the liabilities are decom-
posed into the best estimate of the liability and a risk margin. The arbitrage-free
representations of the fair values of the liabilities are also derived. The dynamic
hedging strategies associated with the continuous-time fair valuation operators
are established. Detailed interpretations of the results are provided. We believe
that this paper should be of interest both for researchers and practitioners in
actuarial science.

Fair valuation of insurance liabilities, which combines market-consistent
and actuarial valuations, is also investigated in Pelsser (2010), Pelsser and
Stadje (2014), Pelsser and Ghalehjooghi (2016), Happ et al. (2015), Engsner
et al. (2017), Engsner and Lindskog (2018), Engsner et al. (2018), Mohr (2011),
Dhaene et al. (2017), Barigou and Dhaene (2019) and Barigou et al. (2018).
In all these papers, a multi-period model and an iterative valuation operator
are considered. These papers and our paper differ essentially in the choice of
the financial and insurance models, the pricing and hedging objectives and the
mathematical techniques. All the papers share the similarity that the price of
the insurance liability can be represented as a best estimate and a risk mar-
gin, or as the value of the investment portfolio for the hedgeable risks and
the value of funds used to cover the non-hedgeable risks. The risk margin
can be derived from a subjective actuarial valuation or from a cost-of-capital
approach. Similar to our paper, the continuous-time limit of the iterative multi-
period valuation operator with the time step 2 — 0 is studied in Pelsser (2010),
Pelsser and Stadje (2014), Pelsser and Ghalehjooghi (2016) and Engsner et al.
(2017). In particular, Pelsser (2010), Pelsser and Stadje (2014) and Pelsser and
Ghalehjooghi (2016) also use PDEs to describe the continuous-time valuation
operator in their model.

In insurance practice, we use at least two valuation standards: Solvency
IT and IFRS 17. Both valuation standards use the terms called best estimate
and risk margin (or risk adjustment). These terms are well-understood in prac-
tice. However, they have not been formalized from mathematical point of
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view and the research on how to properly define a valuation rule that leads
to a best estimate and a risk margin is still ongoing. The best estimate corre-
sponds to the expected value (unbiased probability-weighted estimate) of the
future cash-flows discounted with an interest rate to reflect the time value of
money. The risk margin is added for non-hedgeable risks in order to protect
the insurer from adverse deviation in the non-hedgeable risks or to compen-
sate the insurer for taking the non-hedgeable risks. In Solvency II, the risk
margin is derived by calculating the 99.5% value-at-risk of the change in the
net asset value in a l-year time horizon, projecting the value-at-risk mea-
sures for the next years till maturity of the portfolio, discounting the 1-year
value-at-risk measures and applying the cost of capital rate. Our valuation
model works in the same way but, since we consider a continuous-time model,
we introduce a continuous-time (instantaneous) solvency capital requirement
which is continuously integrated in order to derive the total risk margin for
the liability. Our approach can be very useful for understanding the valuation
concept in Solvency II. Moreover, our approach can be also used for valu-
ation of insurance contracts under IFRS 17 where the risk adjustment is a
company-specific perception on the non-financial (non-hedgeable) risks and
can be freely defined by the insurance company. Since in IFRS 17, the risk
adjustment results from indifference pricing of the variable liability cash-flows,
the risk adjustment can be related to continuous-time solvency capital require-
ments if the shareholders decide to provide the capital on a continuous basis to
cover the non-financial (non-hedgeable) losses and ask for a continuous-time
compensation for bearing these risks. We believe that continuous measuring of
hedgeable and non-hedgeable risks and updating the capital requirement for
the non-hedgeable risks on higher frequency than annual is a good direction
in valuation and solvency requirements. It is interesting to note that the move
from discrete-time monitoring to continuous-time monitoring of risks in the
context of credit risk of an insurance company is advocated by Lindset and
Persson (2009).

We would like to remark that some important practical issues are not con-
sidered by us. The hedging portfolio in this paper is constructed based on a
standard quadratic hedging objective, whereas in practice the construction of
the replicating portfolio is a much more sophisticated decision process (see e.g.
Natolski and Werner 2018 and the references therein). We also assume that the
shareholders are always willing to provide the capital on a continuous basis to
cover the losses. The case of limited liability is studied, for example, by Mohr
(2011) and Engsner et al. (2018).

The remainder of this paper is structured as follows. In Section 2, we
describe the financial and insurance model and we introduce the two exam-
ples. Section 3 illustrates the one-period valuation operator and the optimal
hedging strategy for the liability by quadratic hedging. Section 4 focuses on
the continuous-time fair valuation operator. Finally, Section 5 provides some
numerical illustrations of our valuation framework.
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2. FINANCIAL AND INSURANCE MODEL

2.1. The financial market

We consider a Black—Scholes financial model. The financial market consists of
arisk-free asset R=(R(¢),0 <t < T)and two risky assets: Y =(Y(¢),0<t<T)
and F = (F(t),0 <t < T). The price of the risk-free asset grows exponentially:
dR(t
&zrdl, 0<t<T, RO)=1. 2.1
R(1)
We assume that the prices of the risky assets Y and F are modelled with
correlated geometric Brownian motions and follow the dynamics

4w _ prdt +oydWy(1), 0=t<T, Y(0)=), @2
Y(2)
% = prdt +opdWi()), 0<t<T, FO)=f, 3)

where uy, ur, oy, op denote the drifts and volatilities of the risky assets and
Wy, Wi denote two correlated Brownian motions with correlation coeffi-
cient p. We define

Wy(=wmi0), We()=pWi()+V1=p* W), 0=1=T, (24)

where W, W, are two independent Brownian motions.

The insurance company can dynamically invest in the risk-free asset R and
in the risky asset Y. The risky asset F is not available for dynamic trading. The
risky asset F' can have different interpretations depending on the application. It
may represent a non-tradeable financial risk factor which impacts the pay-offs,
see Example 1, or a policyholder’s unit-linked account which is not traded in
the financial market, see Example 2. We can note that the risky asset F has two
components: a tradeable component correlated with Y and a non-tradeable
component independent of Y. The tradeable component of F is modelled with
W, and the non-tradeable component of F is modelled with ¥,.

2.2. The insurance portfolio

The insurance company holds a homogeneous portfolio which consists of n
identical insurance policies issued at the same date. All policyholders have
the same age (or are classified to the same age group) at the inception of the
policies. Each policyholder is entitled to three types of benefits: a continuous
annuity benefit 4 paid as long as the policyholder is alive, a death benefit D
paid at the moment that the policyholder dies and a survival benefit S paid at
terminal time 7 if the policyholder survives until then. The benefits 4, D and S
are time-dependent and contingent on the values of the risky assets (Y, F).
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 5

We assume that the lifetimes of the policyholders ()=
are independent and exponentially distributed, that is,

» in the portfolio

,,,,,

Plte>t)=e™, k=1,....,n, 0<t<T.

We also assume that (t;)i=.., are independent of the financial market. For
simplicity, we use constant mortality intensity A. Let

Noy=> W u<t}, J@O)=n—N@), 0<i<T,

k=1

where N(¢) counts the number of deaths until time ¢, and J(¢) counts the num-
ber of in-force policies in the insurance portfolio at time ¢. We also introduce
the compensated counting process

N()=N(t) — /0 f (n—N(s)rds, 0<t<T,

which we use to define a stochastic integral for the insurance risk.
The stream of benefits from the insurance portfolio is modelled by the
process B=(B(t), 0 < ¢t < T), which is described by the equation

1

B(t) = /0[ (n — N(u —))A(u, Y(u), F(u))du + /0 D(u, Y(u), F(u))dN(u)

+(n—ND)S(Y(T), FD){t=T}, 0=<:<T. (2.5)

In our model, the insurer is exposed to three sources of risk:

e Tradeable (hedgeable) financial risk Y: The fluctuations of the risky asset
Y impact the payment process (2.5). This risk can be perfectly hedged by
trading in Y.

e Non-tradeable (non-hedgeable) financial risk F: The variations of the risky
asset F' impact the benefit stream (2.5) as well. This risk can be partially
hedged by trading in Y, since Y and F are correlated.

e Non-tradeable (non-hedgeable) insurance risk N: The risk arises since the
policyholders die at random times and death-related benefits have to be paid
at unpredictable times. This risk cannot be hedged since it is assumed to be
independent of the financial market.

We remark that the non-tradeable financial risk F' and its dynamics could
also be interpreted as a non-financial risk (e.g. health status) modelled by a
diffusion process, in contrast to the non-tradeable insurance risk N which is
modelled by a jump process.

In this paper, we focus on two special cases of (2.5) which are relevant for
applications.
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6 L. DELONG, J. DHAENE AND K. BARIGOU

Example 2.1 (Example 1). Tradeable and non-tradeable financial risk — terminal
claims: The insurer is only exposed to a terminal benefit S(Y(T), F(T)) which is
dependent on the tradeable risky asset Y(T) and the non-tradeable risky asset
F(T). We choose A(t, y,f)=D(t, y,f)=1=0in(2.5). The benefit stream (2.5)
takes the form

B(1)=S(Y(T), F(T))1{r=T}. (2.6)

Such claims are common in financial mathematics as payoffs of European-type
options on tradeable assets (e.g. exchange-traded stocks) or options on non-
tradeable assets (e.g. electricity, temperature, etc.). In insurance, such payoffs
are also considered by Pelsser (2010) as unit-linked contracts in which the non-
tradeable asset F represents an insurance process partially correlated to the
stock Y.

In particular, we will focus on valuating a put option on the non-tradeable
risky asset F:

S(Y(T), F(T)) = max {S* — F(T),0}. 2.7)
0

Example 2.2 (Example 2). Non-tradeable insurance risk and tradeable financial
risk — unit-linked contracts: Consider a portfolio consisting of n unit-linked insur-
ance contracts in which each policyholder pays a single premium P(0) at time 0.
An initial fee eP(0) is deducted from the premium to cover administrative costs,
and the remaining amount F(0)= P(0)(1 — e) is invested by the insurer in the
risky asset Y. The premium invested together with investment returns consti-
tutes the so-called policyholder’s fund. The policyholder’s fund is treated as a
non-tradeable risky asset F and its value is modelled with (2.3). However, the
insurer charges fees from the policyholder’s fund. Hence, we define the following
dynamics for the non-tradeable risky asset F':

% = (MY - C)dt + UydWy(Z), (28)
where ¢ denotes the continuously deducted fee from the policyholder’s fund to
be paid for the guarantees stipulated in the unit-linked contract. We point out
that the correlation coefficient p between Wy and Wy is here equal to 1 (since
Wp=Wy).

The unit-linked contracts offer death and survival benefits. The policyholders
own their funds and the insurer guarantees a minimal death benefit D* (also called
GMDB) and a minimal survival benefit S* (also called GMMB). For each policy,
the insurer is exposed to the death and survival guarantees: max{D* — F(t), 0} and
max{S* — F(T),0}. Hence, in the benefit stream (2.5) we choose

D(t, Y(1), F(t)) = max {D* — F(1),0},
S(Y(T), F(T)) = max {S* — F(T),0}.
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 7

Since the insurer collects the fees from the policyholders’ funds continuously, in
(2.5) we must set

A(t, Y (1), F(1)) = —cF(2).

The benefit stream (2.5) in this example is then given by

1

B(t) = — /0[ (n— N(u -))cF(u)du +/0 (D* — F(u)) " dN(u)

+(n— N(D))(S* = F(T)) 1,—r, (2.9)

where (x — x*)" =max{x — x*, 0}. Even though the guarantees and the fees are
contingent on the non-tradeable risky asset F, they can be perfectly replicated
by dynamic trading in the financial market since the risky asset F is perfectly
correlated with the tradeable risky asset Y. Consequently, the claims from the
benefit stream (2.9) are contingent on the tradeable financial risk and the non-
tradeable insurance risk. (]

2.3. Arbitrage-free pricing

From arbitrage-free pricing theory, it follows that the price at time ¢ of the
process B can be expressed as

T
wg(t)zE@[ / e"“”dB(s)m], 0<i<T 2.10)
t

with Q being an equivalent martingale measure. We now describe the set
of equivalent martingale measures in our combined financial and insurance
model. Let P denote the real-world measure under which the dynamics (2.2),
(2.3) and (2.5) are specified. We define

d
TN = M0, 0=1=T,

dMX (1) _(,uy —r

Mex(t—o) )dWl(l) + ¢(OAW(0) + x(dN(r),  (2.11)

Oy

for some processes (¢, x). By Girsanov’s theorem, we deduce that

Hy —T1
Oy

WE () = Wl(t)'i‘/l( )ds, 0<t<T,
0

W(t) = Wi(t) — / t{(s)ds, 0<t<T,
0

Ne(#) = N(1) — /r (n— NGNS (1 +x(®)ds, 0<t<T, (2.12)
0
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8 L. DELONG, J. DHAENE AND K. BARIGOU

are (Q-Brownian motions and Q-compensated counting process. The processes
(¢, x) are called the risk premiums for the non-tradeable financial and insur-
ance risk, and #— is the risk premium for the tradeable financial risk. In
our examples below we will directly show how our valuation operator implies
particular values for (¢, x).

Finally, we will consider a special case for Q. We define

dO R
%l}j =M(), 0<t<T,

dM©) _ _(uy—r

= dwi(¢). 2.13
e ) (1) 2.13)

Oy

The measure Q can be considered as the most objective measure from the set
of subjective measures Q from (2.11) since no subjective assumptions on (¢, x)
are made to define Q. Equivalently stated, there are zero risk premiums for the
non-tradeable risks and their dynamics under Q and P coincide.

3. THE ONE-PERIOD VALUATION OPERATOR

In this section, we present our one-period valuation operator that is the build-
ing block for the multi-period, discrete-time valuation operator and for the
continuous-time valuation operator.

We split the valuation of the benefit stream B into two parts and we valuate
a hedgeable and a non-hedgeable part of B separately. We define the value
of a hedgeable part of the benefit stream (2.5) as the initial market costs of
a hedging portfolio for the benefit stream. Let 6 = (6(¢),0 < < T) denote the
amount of money invested in the risky asset Y and V¥ = (V?(f),0 <t < T) the
hedging portfolio under the strategy 6. The dynamics of the hedging portfolio
V% is described with the following SDE:

dVO(1) = 0(t)(uydt + oydWy(1)) + (VO(2) — 6(2))rdt
—(n—N(t9)A(t, Y(2), F(t))dt — D(¢, Y(t), F(1))dN(r), 0<t<T, (3.1)

and the terminal claims (n — N(T))S(Y(T), F(T)) are subtracted from V?(T)
at the terminal time 7. We determine the optimal dynamic hedging strategy
and the optimal hedging portfolio by quadratic hedging under the equivalent
martingale measure @, that is, we solve:

infEC| | (n = N(T)S(Y(D), F(T)) = V(D]
¥ satisfies the dynamics (3.1). (3.2)

The reasons why we choose the equivalent martingale measure Q in (3.2)
can be found in Section 3 in Delong et al. (2018). From a practical point of
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 9

view, we strongly believe that it is reasonable not to include any assumptions
on the risk premiums for the non-hedgeable risks when we solve our hedging
problem and set the value of the hedging portfolio as the price of the hedgeable
part of the benefit stream (i.e. we should choose ¢(f) = x(¢1) =0 in (2.11)). In
our opinion, the risk premiums for the non-hedgeable risks should be implied
by the subjective one-period actuarial valuation operator rather than being
included in the equivalent martingale measure QQ used for determining the hedg-
ing portfolio. This way we are able to disentangle hedgeable and non-hedgeable
parts.

The solution to the quadratic hedging problem (3.2) can be found in
Proposition 3.1 in Delong ez al. (2018). The initial value of the optimal hedging
portfolio and the optimal dynamic hedging strategy are given by

V;(O) = vn(o, yOafé)a (33)

05(1) = v/ (1, Y(£), FO) Y (1) + v/ (1, Y (), F(z))F(z):—Fp, 0<:<T, (3.4)
’ Y
where

. T
Vk(l’ »f)= E?y,f,k[ / e"(ut)dB(u)],
(t,y,1)€[0, T] x (0,00) x (0,00), k €{0,...,n}.

The next examples confirm that the initial value of the optimal hedging port-
folio V}; can be used to define the value of the hedgeable part of the benefit
stream B.

Example 3.1 (Example 1 cont.). Let us consider the benefit stream from Example
2.1 with the terminal benefit S(Y(T), F(T)) = (S* — F(T))*. From the dynamics
of the risky asset (2.3) and the change of measure (2.12), we can deduce that

F(t) = & F (),

where 8% = Ur— “(’;;"ap,o — r is the excess return of the risky asset F over the

risk-free rate under Q, and

dF ;
T(t;) = rdt + opdW(1).

We directly find that
Vk(l, y;f) — V(Z,_f) — E(?f[e_r(T_t)(S* _ €8§(T_t)F(T))+i|

= P TOP(1, T, f, op, Ste ¥ TD), (3.5)

Downloaded from https://www.cambridge.org/core. KU Leuven Libraries, on 10 Apr 2019 at 11:29:01, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2019.8


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2019.8
https://www.cambridge.org/core

10 L. DELONG, J. DHAENE AND K. BARIGOU

where P(t, T,f, o, X) denotes the value of the put option at time t with maturity
T and strike X in the Black—Scholes model with volatility o when the underlying
is equal to f at time t. By (3.3)—~(3.4), the initial value of the optimal hedging
portfolio and the optimal dynamic hedging strategy are given by

Vi(0) = e TP(0, T, fy, o, S'e ") (3.6)
03(1) = TP (1, T, F(1), op, S T)F() 2L p. (3.7)
Oy

The strategy (3.7) is a delta-hedging strategy for the tradeable component of the
risky asset F, which is correlated with the tradeable risky asset Y. The value (3.6)
is the market cost of such a hedging strategy in the financial market consisting of
(R, Y, F) with zero risk premium for the non-tradeable component of the risky
asset F, which is independent of Y . d

Example 3.2 (Example 2 cont.). Let us consider the benefit stream (2.9) from
the unit-linked portfolio from Example 2.2 First, we determine the conditional

expectation under 0 of the terminal claims. By the independence between F and
N which holds under Q and the independence of the policyholders’ lifetimes under
Q, we obtain

B [0 = ND) (5" = F(D) ]
=ES[n— N(DJEY [ T0(S* = T H(T)) ]
= ke T 0= TOP(1, T, f, oy, S*e "),

where

@ _ o LY dY(Z)
o " rdt+ oy dWE (D = 0.

Therefore, the function V* for the benefit stream (2.9) is given by
T
(it v, )=Vt f)= k/ e CIP(t, s, f, oy, D) heHds
t

T
+ ke TOP(1, T, f, oy, S* T 0)e 0 — feef f e e s, (3.8)
t

The initial value of the optimal hedging portfolio and the optimal dynamic hedging
strategy are given by

V5(0)=v"(0, /o), (3.9)

Downloaded from https://www.cambridge.org/core. KU Leuven Libraries, on 10 Apr 2019 at 11:29:01, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2019.8


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2019.8
https://www.cambridge.org/core

FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 11
T
05(1) = (n — N(t —))F(t) / e_”(s_’)Pf(t, s, f, oy, D*e”(s_’)))»e_’\(x—[)ds
t

T
+ e*"(T*’)Pf(t, T.f,oy, S*e"(T*”)e*’\(T*” — c/ e"(s’)em’)ds) (3.10)
t

Under the hedging strategy (3.10), the insurer can perfectly replicate the guar-
antees embedded in the benefit stream (2.9) if the timing of the cash-flows from
the guarantees agrees with the expected run-off of the insurance portfolio. The
value (3.9) is the market cost of such a hedging strategy in the complete financial
market consisting of (R, Y) with deterministic times of cash-flows. The hedging
strategy (3.10) is often applied in practice as the insurers often assume that the
insurance risk is completely diversified, hence deterministic, and construct hedges
for the financial risk. O

Applying the hedging strategy (3.4) we can hedge the hedgeable part of
the benefit stream B and we are left with a non-hedgeable part of the benefit
stream B. The non-hedgeable part of the benefit stream (2.5) is valuated with a
subjective actuarial valuation operator 7. Consequently, we propose to use the
following one-period valuation operator p:

o(B)=V30)+ 7 (((n — N(T))S(Y(T), F(T)) — V;(T)) e—"T), (3.11)

where V() denotes the value of the optimal hedging portfolio from (3.3) to
(3.4), and 7 denotes a one-period actuarial valuation operator. In line with
traditional actuarial principles, we decompose the actuarial valuation operator
7 into the expected value operator and the actuarial risk margin, that is, we set

n(&)=E"[€]+ RMIE].

Our one-period valuation operator (3.11) takes the form
o(B) = Vi(0) + E [((n — N(T))S(Y(T), F(T)) — V;(T)>e*’T]

+RM [((n — N(D)S(Y(T), F(T)) - V;(T))e—”] (3.12)
In this paper, we focus on the standard deviation as the actuarial risk margin:

1
RM (&)= Ey\/ Vart[g], (3.13)

where y denotes the risk aversion parameter of the insurer.
Let us briefly discuss the price given by the one-period valuation operator
(3.12). The first two terms in (3.12) can be interpreted as the best estimate of
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12 L. DELONG, J. DHAENE AND K. BARIGOU

the future claims generated by the hedgeable and non-hedgeable risks of the
benefit stream B, respectively. The initial value of the hedging portfolio V;(0)
gives us the market cost (under zero risk premiums for the non-tradeable risks)
of the investment strategy which replicates the hedgeable part of the liability B.
The expected value operator provides the expected cost, under the real-world
measure [P, of the non-hedgeable claims which remain after the application of
the hedging portfolio V. The third term in (3.12) yields an additional capital
which is used by the insurer to cover the non-hedgeable part of the liability B
in adverse scenarios when the capital determined by the first two terms is not
sufficient to pay the claims. In the next section, we will show that this desired
decomposition of the price of the liability also holds for the continuous-time
valuation operator.

Pelsser (2010) and Pelsser and Ghalehjooghi (2016) propose a completely
different one-period valuation operator o, called a two-step valuation opera-
tor. Dhaene et al. (2017) and Barigou and Dhaene (2019) use the one-period
valuation operator (3.11) but they consider static hedging strategies. Let us
compare our hedging strategy (3.4) and the valuation operator (3.12) with the
hedging strategies and the valuation operators from the papers mentioned.

Example 3.3 (Example 2 — Special case). We consider the benefit stream
B(1)=(n— N(T)) Y(T)1{t =T},

which is a special case of the benefit stream from Example 2.2. All policyholders
still alive at time T get one unit of the risky asset Y. For simplicity of comparison,
we assume that the returns of (R, Y) are set equal to zero: uy =r=0. We note
that the assumption implies that the risky asset Y is a P and Q-martingale. Let
the terminal benefit (n — N(T)) Y(T) be denoted by AB(T).

Pelsser (2010) and Pelsser and Ghalehjooghi (2016) suggest a two-step valua-
tion operator to quantify the risk in a combined financial and insurance model in
one-period. Simply put, the first step consists of determining the actuarial value
conditional on the financial market evolution. In the second step, the actuarial
value from the first step is treated as a tradeable claim in a complete financial mar-
ket and its value is calculated (or in other words, the financial risk is quantified)
with the expectation operator under the unique equivalent martingale measure Q.
If we apply their valuation operator, we end up with the price

01(B) = E2 [EP[AB(TN Y(T)]+ %y\/ Var®? [ AB(T)| Y(T)]]

1
= 1p(0. T)Y(0)+ 3/ np(0. T)(1 = p(0. T)) Y0,

where we introduce the survival probabilities p(s, t) = e "=, The hedging strat-
egy implicitly assumed by Pelsser (2010) and Pelsser and Ghalehjooghi (2016)
is a delta-hedging strategy for the actuarial value of the claim, which is viewed

Downloaded from https://www.cambridge.org/core. KU Leuven Libraries, on 10 Apr 2019 at 11:29:01, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2019.8


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2019.8
https://www.cambridge.org/core

FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 13

as a derivative contingent on the tradeable risky asset Y. The dynamic hedging
strategy and the value of the hedging portfolio are given by

1
Op(1) = np(0, THY (1) + Sy /np(0, T)(1 = p(0, 7)) Y (1),

1
V(t) = np0, )Y (1) + Sy /np(0, T)(1 = p(0, 7)) Y (1).

Dhaene et al. (2017) and Barigou and Dhaene (2019) suggest to apply the
valuation operator (3.11) and find the static hedging portfolio by solving the
quadratic hedging problem (3.2) under the real-world measure P. From Theorem
1 from Barigou and Dhaene (2019), the static hedging strategy and the value of
the hedging portfolio are given by

05(0) =np(0, T)Y(0), V(1) =np(0, T) Y (2).

Therefore, the value of the benefit stream B, determined by (3.11), is equal to

02(B) = V3(0) + E'[AB(T) — Vi(T)] + %y\/ Var®[AB(T) — Vi(T)]

= mp(0. TYY(O) + Sy np(0. T)(1 = p(0. T)E[| V(TIF].

Finally, we apply the valuation operator (3.11) but we use the dynamic hedging
strategy found by solving (3.2). By Example 3.2, we find that the dynamic hedging
strategy and the initial value of the hedging portfolio are given by

05(1) = (n— N 9)p(t, TYY(0),  V3(0) =np(0, T) Y (0).
From the predictable representation of the martingale EF[AB(T)|F,]=

(n— N@)p(t, T)Y(2), see for example, Proposition 8.1.1 in Delong (2013), we
can conclude that

AB(T) = EF[AB(T)] + / (n—N(s9)p(s, T) Y (s)odW" (s)
0
- fo p(s. T Y(5)d N (5)

= ViyT) - /0 p(s, T)Y(s)dN"(s),

where the last line is deduced from the optimal hedging strategy 0y and the
dynamics of the hedging portfolio (3.1). Since the stochastic integrals involved
are martingales, we immediately find that

E°[AB(T) — Vi(T)] =0.
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14 L. DELONG, J. DHAENE AND K. BARIGOU

By the second moment property of the stochastic integrals, we can also calculate

T
Var[AB(T) — V;(T)]:EPU / (s, T)Y(s)d]\NfP(s)r]
0

r T
_ Eu»[ /0 Ps, T)Y*(s)(n — N(s)))»ds] = np(0, T)EP[ /0 o5, YT ds],

where we used the property that p(0, s)p(s, T)=p(0, T) and the independence
between N and Y. In consequence, the value of the benefit stream B, determined
by (3.11), is equal to

03(B) = np(0, T) Y (0)

eAS

Y Ads.

30, T)(1 0, T))/ | Elvor
0

Since E[|Y ()] > |E[Y ()] = Y2(0) and E[|Y (s)*] = Y (0)%e°™s < E[|Y(T)|], for
all s € [0, T], we obtain the following order between the three types of valuations:

01(B) < 03(B) < 02(B).

1t is clear that our valuation operator yields a lower price than the operator
from Dhaene et al. (2017) and Barigou and Dhaene (2019) since we allow for
dynamic hedging in continuous time and the hedging strategy is updated with the
current information on the insurance risk (the number of survivors). As expected,
the one-period valuation operator suggested by Pelsser (2010) and Pelsser and
Ghalehjooghi (2016) is different from ours. Interestingly, in the next section we
show that these two operators coincide when we consider the continuous-time limit
of the discrete-time operator with a time step h — 0. g

4. THE CONTINUOUS-TIME VALUATION OPERATOR

The price at time ¢ of the future claims from the process B is denoted by ¢p(1).
Let 7 ={0,h,..., T —h, T} for a fixed time step 4. The price ¢p(z) at t €T is
defined by the operator

op(T) = (n— N(T))S(Y(T), F(T)),

t+h
«»B(r)=g,(/ dé<s>), (=0 h..  T—h,
t

s

B(s) = /S (n— N(u-)A(u, Y(u), F(u))du —I—/ D(u, Y (u), F(u))dN (u)

t

Hop(t+h)l{s=t+h}, t<s<t+h, 4.1)
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 15

where the operator g, is the conditional version of (3.12), based on the up-
to-date information on the financial and insurance risks available at time
t. We point out that B in (4.1) is similar to B in (2.5), and the benefit
streams only differ with respect to the terminal claims. In a multi-period
model, in each subperiod [f, ¢ + /] the insurer must optimally hedge the claims
A, D arriving from the benefit stream B and the value of B at the terminal
time ¢ + .

We now extend the definition of the price ¢p(7) from t€ T to all times
t €0, T]. From (3.12) and (4.1), we can deduce that the discrete-time valuation
operator ¢ = (¢p(?)),c7 satisfies the discrete-time pricing equation:

B (ot 4+ h) = V(e +m)e ™ = (g() = V;(0) | 7]

+RM (G + 1) = Vit +W)e™ = (p() = Vi(0)I1F | =0,
i=0,h,....,T—h, 4.2)

where the hedging portfolio V' is derived from the mean-square hedging objec-

tive (3.2) with the benefit stream B, and the actuarial risk margin RM is chosen
by the insurer. The continuous-time valuation operator ¢ = (¢g(?)).cp0,77 15
defined as an operator which satisfies the continuous-time limit of the discrete-
time pricing equation (4.2) as the time step 7 — 0. More precisely, we are
interested in finding an operator ¢ which satisfies

B0+ = Vi e (o) - V30) ]
lim

h—0 h

RM,, J-,k[(go(z +h) = V(e + ) e — () - V;;(z))]
+ ; -0, (43)

forany (¢, v,f, k) €[0, T) x (0, 00) x (0, 00) x {0, ..., n}.

In Theorem 5.1 in Delong et al. (2018), we derived the continuous-time
limit of the discrete-time pricing equation (4.3) as well as the dynamic hedg-
ing strategy which underlies the continuous-time valuation operator ¢. Let us
choose standard deviation (3.13) scaled with ~/% as the one-period actuarial
risk margin RM . Hence, we choose

RM g (o4 ) = Vit + )e ™ = (o) = V(1) ]

1
=3¥ \/ Var,,, f,k[(<p(t +h) = Vit +h)e ™ — (o) — V;(t))]x/ﬁ
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16 L. DELONG, J. DHAENE AND K. BARIGOU

The one-period standard deviation risk margin must be scaled with +/ in order
to establish the limit of (4.3) as 7 — 0. Intuitively, the expected value of the It
process, which we investigate in (4.3), is of order /, but the standard deviation
is of order /4. Hence, we must add an additional scaling factor of order Vh
to the one-period standard deviation risk margin. For existence of continuous-
time limits of some static risk measures, we refer to Stadje (2010) and Engsner
and Lindskog (2018). The motivation for using standard deviation as the one-
period risk margin and the results under different risk margins are presented in
Delong et al. (2018).

From (4.3), we can conclude that the continuous-time valuation operator ¢
satisfies the system of PDEs:

OHE DL+ 0M .+ ¢t v S (1 = —0rp)

Oy
1 1
+ (p)kj(ta y:f)nyYGFp + Egﬁf}(ta y:f)yzalg + zgoj]}(ta yaf)fzan
+ kALY, )+ (@ @0, f)+ Dy, f) — @ (8, 3. ) kh — " (6, v, f)r

+ O (13, /) o/ T= 0% 67 (13,1 + Dt 2. f) = (1, 3.)) =0,
(t.7./) €[0. T) x (0, 50) x (0, 00),
G Ty [)=kS(r.f),  (3.f)€(0,00) x (0, 00), (4.4)
for k € {0, ..., n}, where ®*(x1, x,) = 1y/x7 + x3kn, and

q>k<¢_;((l’ y’f)fGF 1 - IO25 90/(71([’ y’f) + D(ls yaf) - on(ta J’sf))

. RM,,},,,-,k[(w(z +h) = V(e + ) e — (p(0) - V;(z))]
= h '

By (3.12) and (4.5), the function ®, which we have in the PDEs (4.4), can be
called an instantaneous actuarial risk margin and, intuitively, it puts a price on
the non-hedgeable financial and insurance risks in the continuous-time model.
The hedging strategy which underlies the continuous-time valuation operator
@ 1s given by

4.5)

9°(1) =" (1, Y(0), F0) Y(1) + ¢} 7 (1. Y (1), F(z))F(z)Z—jp, 0<t<T.
(4.6)

We illustrate Theorem 5.1 from Delong et al. (2018) for the benefit streams
from Examples 1-2.
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 17

Example 4.1 (Example 1 cont.). The system of PDEs (4.4) reduces to one single
PDE:

ot ]+ 010 W+ 9t 0 (1 = P

: 1 1
‘prf(ta yaf )nyYng + Ewy}f(t’yaf)yza)% + E(pff(t: yﬂ/{)fZO—]‘g - (p(tayaf)r

+0 (¢ (2.0 )fory/T=p?) =0, (1.3.f) €10, T) x (0,00) x (0, ),

(T, p.f)=S(.1),  (5.f)€(0,00) x (0, 00), 4.7

where ®(x) = %y |x|. The insurer is exposed to the hedgeable and the non-
hedgeable financial risk. The instantaneous actuarial risk margin ® puts a price
on the non-hedgeable financial risk, which is related to the independent component
of the risky asset F.

The PDE (4.7) agrees with the PDE derived by Pelsser (2010) and Pelsser and
Ghalehjooghi (2016). At the end of the previous section, we demonstrated that the
two-step valuation operator from Pelsser (2010) and Pelsser and Ghalehjooghi
(2016) is different from our valuation operator (3.12) if we consider a one-period
approach. However, if we consider the continuous-time limit of these operators,
both valuation approaches coincide. O

Example 4.2 (Example 2 cont.). The system of PDEs (4.4) takes now the
following form:

1
o () + o (L) (r— o)+ 590}}-(I,f) Yoy — kef

+HE @)+ D) — oM. )kr — ¢ (& f)r
+0M (" (. /) + D(f) = ¢"(t.1)) =0, (t.f) €0, T) x (0, 00),
O (T.f)=kS(f), [e(0,00), (4.8)

for k=0, ...,n where ®*(x)= %y\/xzk)». The insurer is exposed to the hedge-
able financial rvisk and the non-hedgeable insurance risk. The instantaneous
actuarial risk margin ® puts a price on the non-hedgeable insurance risk, which
is related to the independent policyholders’ death.

We remark that we make the assumption that the fee c is already given (by a
pricing department ) and we are interested in the fair valuation of the future claims
from the benefits stream (2.9). Alternatively, the fee ¢ could also be determined
by calculating the fair value of B at time t =0 and setting it to zero (this will be
performed in Section 5 ). (]
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18 L. DELONG, J. DHAENE AND K. BARIGOU

Applying the Feynman—Kac formula, see Theorem 5.2 in Delong et al.
(2018), we find that our continuous-time valuation operator (4.4) has the
following probabilistic representation:

. T T
gl)k(ls y’f) = E?y,f,k[ / e—r(s—t)dB(S) + / e"(St)(D(S)ds:|,
t t

(t,y,/)€l0,T] x (0,00) x (0,00), ke{0,...,k}, (4.9)

where @ is a short notation for the instantaneous actuarial risk margin
K40 ((p;&v)(s, Y(s), F(s))F(s)or m’
@’ (s, Y(s), F(s)) + D(s, Y(s), F(s)) — ¢”(s, Y(s), F(s))),

The representation (4.9) states that our valuation operator ¢ valuates liabilities
as the best estimate of the liability plus the total actuarial risk margin for the
liability:

¢p = Fair Value of B
= Best Estimate of B + Total Actuarial Risk Margin for B.

In our continuous-time model, we identify that the best estimate of a liability
is the expected value of the future claims from the liability, where the expected
value is taken under the measure Q given by (2.13). It perfectly agrees with
intuition that the best estimate assumptions for the non-tradeable financial and
insurance risks should not include any risk premiums for these risks (see also
Happ et al. 2015). The best estimate assumption for the tradeable financial risk
coincides with the risk premium derived from the tradeable risky asset ¥ and
is equivalent with risk-neutral valuation in the complete financial market with
(R, Y). We can deduce, as for the multi-period valuation operator (3.12), that
the best estimate of a liability contingent on the hedgeable and non-hedgeable
financial and insurance risks consists of the market cost of the replicating port-
folio for the hedgeable part of the benefit stream and the expected, real-world,
cost of the non-hedgeable claims which remain after the application of the
hedging portfolio.

Let us interpret the total actuarial risk margin. We introduce the net asset
value process NAV :=(NAV(t),0 <t < T). We define

NAV()=V*() —9(1), O0=<t=<T,

where V* denotes the hedging portfolio (3.1) under the hedging strategy ¢*
from (4.6) and ¢ is the continuous-time valuation operator from (4.4). The net
asset value process is the difference between the assets and the liabilities. By
Theorem 5.1 and the following results from Delong et al. (2018), we find the
dynamics
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 19
ANAV(s) = NAV(s)rds + ®(s)ds
—@/“ (s, Y(5), F(s)F(s)opy/1 — p2dWi(s)
("6 Y(5), F9) + DGs, Y(5), F(5))

—¢"C s, Y(5), F@))dN(s), 0<s=<T. (410

Since we do not have a stochastic integral driven by W) in (4.10), the tradeable
financial risk is eliminated by applying the hedging strategy (4.6). The insurer
is only exposed to the non-tradeable financial and insurance risks. The two
stochastic integrals in (4.10) describe the evolution of the non-hedgeable claims
dB(t) and the non-hedgeable change in the value of the claims do(¢):

e The first stochastic integral describes the risk that the value of the claims
changes due to a change in the non-hedgeable, independent component of
the risky asset F. The integrand is the delta-hedging replication strategy for
the non-tradeable, independent component of the risky asset F.

e The second stochastic integral describes the risk that in the case of the non-
hedgeable, independent event of the policyholder’s death the insurer pays
the death benefit and recalculates the value of the claims for the in-force
policies. The integrand is the sum at risk to which the insurer is exposed in
the event of the policyholder’s death.

The integrands, described above, can be interpreted as measures of the non-
hedgeable financial and the non-hedgeable insurance risk. We can observe
that the instantaneous actuarial risk margin @ is a function of two variables
which are directly related to the integrands of the stochastic integrals in (4.10).
Consequently, the instantaneous actuarial risk margin function combines the
measures of the non-hedgeable financial and the non-hedgeable insurance risk
into one measure of the total non-hedgeable risk. The fair value of the bene-
fit stream B is next derived by solving the PDEs (4.4) with the instantaneous
actuarial risk margin &.

Our valuation model works in the following way. At each time ¢ € [0, T),
the insurer should hold an additional capital, determined by the instanta-
neous actuarial risk margin ®(z), which protects the insurer against adverse
scenarios in the evolution of the non-hedgeable financial and insurance risks
in an infinitesimal period of time df. We can see that the instantaneous actu-
arial risk margin @ offsets the differentials of the stochastic integrals for the
non-hedgeable risks in (4.10). At time ¢ =0, the expected (best estimate) cost
of providing the capitals ® during the duration of the insurance portfolio is

equal to
X T
EQ[ / e‘”d>(s)ds].
0
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20 L. DELONG, J. DHAENE AND K. BARIGOU

This expectation is called the total actuarial risk margin and is the second part
of the technical provision (4.9), apart from the best estimate discussed before.
The technical provision (the value of the benefit stream), the best estimate of
the liability and the cost of financing the future instantaneous actuarial risk
margins are recalculated over the duration of the contract. If the initial tech-
nical provision, financed with the premiums collected from the policyholders
and invested with the optimal hedging strategy, is not sufficient to cover the
claims, the best estimate and the instantaneous actuarial risk margin at later
times, then the additional capital is provided by the shareholders. Since the
total actuarial risk margin should protect the insurer only against adverse sce-
narios in the evolution of the non-hedgeable financial and insurance risks, we
expect that the insurer (the shareholders) should earn, on average, the instan-
taneous actuarial risk margins as the time passes. The instantaneous actuarial
risk margins are released from the technical provision (4.9) and, on average,
they are not used to cover the losses since the realized loss on the hedgeable
risk is always zero and the expected loss on the non-hedgeable risks is also zero,
both under P and Q (the expected value of the stochastic integrals in (4.10) is
zero). We find that

t
E[NAV (1)e™" =9 | F,] = NAV (s) + E[ / e’(”S)CD(u)duI.FY], 0<s<t<T.
| @.11)

The second term in (4.11) can be interpreted as the expected dividend to the
shareholders.

Let us investigate in more details the valuation of the claims from Examples
1-2. The following examples present formulas for prices, risk premiums for
arbitrage-free valuations, best estimates, risk margins, hedging strategies,
dynamics of the net asset value and detailed interpretations of the results.

Example 4.3 (Example 1 cont.). We first derive the arbitrage-free representation
(2.10) for the valuation operator ¢ which solves the PDE (4.7). The arbitrage-free
representation allows us to identify the risk premium for the measure (2.11) used
for pricing the non-hedgeable financial risk, which is implied by our subjective
valuation operator.

Let Q denote the equivalent martingale measure defined by (2.11) with the
risk premium

1
¢y =5 sen(¢r (1 Y(0). F(0)).

By Girsanov’s theorem, the process

) . 1 t
W;Q(t) = W;@(t) — Ey /0 sgn ((pf(s, Y (s), F(s)))ds,
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FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 21

is a Q-Brownian motion and the dynamics of (Y, F) under Q are given by

dY (1) _ )
m = rdt + oydWy (1),
e
F(1) = F FpP
—l—%yop\/l — ,o2sgn((pf(t, Y (1), F(t)))dt + adeg(t). (4.12)

We can rewrite the PDE (4.7) as

o8, 1. 1) + @ (t, 3,/ )yr

Y

— 1
+ ot v, )f (MF K - Lorp + svorV1= p>sgn(pr(t, y.f ))>

, 1 1 . :
+(p};’f(ta yaf )nyYon + Efpyy([a y’f)y2JY2 + Egoff(t’ yaf) 2613 - QD(I, y’f )VZO,
o(T,y,./)=S8(.1). (4.13)

Applying the Feynman—Kac formula, we can show that the solution to the PDE
(4.13), and also the solution to the PDE (4.7), has the representation

oty f)=E},, [e"(T”)S (Y(1), F(T))]. (4.14)

Under the valuation operator ¢ determined by the PDE (4.7), we value the
claim S contingent on (Y, F) with the expected value operator under the measure
Q which distorts the dynamics of the non-tradeable risky asset F. This distor-
tion of the real-world probability measure is based on the subjective risk aversion
coefficient in the risk margin applied by the insurer. We note that the dynam-
ics of the tradeable risky asset Y is objective under the measure Q, in the sense
that the expected discounted future value of the risky asset Y under Q is equal
to the current price of 'Y (the martingale condition). From (4.12), we observe
that if the insurer is exposed to an increase in the price of the asset F, sgn(¢;) > 0,
then the process ¢ increases the drift of F, if the insurer is exposed to a decrease
in the price of the asset F, sgn(¢s) <0, then the process ¢ decreases the drift of F.
Such a mechanism of updating the parameters of the model used for pricing the
claim S contingent on the non-tradeable risky asset F agrees with intuition. The
sign of the derivative ¢, which determines whether the insurer is better off by an
increase or decrease in the price of the asset F, depends on the terminal payoff S
and its relation to F.

In general, the valuation operator (4.14) is not monotone. However, if we con-
sider pay-offs Si and S, such that S\ > S, and ¢; has the same sign for S, and S»,
then the valuation operator is monotone and ¢s, (¢, y,f) > ¢s,(t, v, f).
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Let us focus on a put option contingent on the non-tradeable asset F, that
is, we choose S(y,f)=(S* —f)*. We expect that the sign of the derivative ¢y is
negative since the insurer is worse off by a decrease in the price of the asset F. Let
us assume that sgn(epy(t, y,f)) =—1. From (4.12) and (4.14) we conclude that

0(t,y.1) =90t f) =B [T (s* = F(1) "], (4.15)

where

dr(n) WUy — T 1 5 )
m = (/,LF — O_—YO’F,O — 5}/0’]4‘\/ 1— p )d[+UFdWF(Z),

= (82 + r)dt + ordWE (1), (4.16)

and 89 denotes the excess return of the risky asset F over the risk-free rate under

the measure Q. The expected value (4.15) can be easily calculated. We can deduce
that

0(t.f) = TIOP(1, T f g, 8% T0), 4.17)

where P(t, T, f, o, X) denotes the value of a put option at time t with maturity T
and strike X in the Black—Scholes model with volatility o when the value of the
underlying at time t is equal to f. Now, we have to confirm that the sign of the
derivative gy, for the function ¢ defined in (4.17), is indeed negative. Derivatives
are well-known for put option prices. Consequently, we have

logf — log §* +83(T — 1)+ (r + ”—f)(T-z)) o
Of T—t ’

o(t.f) = —H TN ( B

where N denotes the cumulative distribution function of the standard normal
distribution. We conclude that the function (4.17) solves the PDE (4.7) with
S(y,f)=(S*—f)" and gives the price of the put option on the non-tradeable
risky asset F in our model.

Now, we focus on the representation (4.9) of the fair price of liability as the
sum of the best estimate of the liability and the total actuarial risk margin for the
liability. We have the following decomposition of the fair price:

o(t.f) =ES [e_"(T") (5" — F(T))+]

~ T
—E%[%yom/l — pzf e (s, F(s))F(s)ds]. (4.18)

The best estimate of the liability, the first term in (4.18), is the expected value
of the discounted claim from the put option, where the expected value is taken
under the measure Q. Intuitively, the best estimate of the hedgeable part of the
put option (S* — F(T))" results from taking the expected value of the hedgeable
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claim under the equivalent martingale measure Q, which is the unique martin-
gale measure in the complete financial market consisting of (R, Y). This value
coincides with the market cost of the investment portfolio which perfectly repli-
cates the hedgeable part of the put option. The best estimate of the non-hedgeable
part of the put option (S* — F(T))" results from taking the expected value of the
non-hedgeable claim under the real-world measure P. This value is the expected,
real-world, cost of the claim left after the application of the optimal hedging
portfolio. The best estimate in (4.18) is equal to

Q Q
BE=¢""""P(1, T, f,0p, S*eF"1),

where 82 = jup — B =opp —r is the excess return of F over the risk-free rate

under the measure @

In this example, the insurer is exposed to changes in the non-tradeable asset
price F, which imply changes in the price of the put option. The change of the
asset price F is driven by two components: a component correlated with the trade-
able asset Y and an independent, non-tradeable component. By (4.6) the optimal
hedging strategy consists of applying the delta-hedging strategy

97(1) = gy (1, F(t))F(t)Z—i p. (4.19)

Consequently, the insurer perfectly hedges the changes in the price of the claim
@ resulting from the component of F correlated with Y. However, the changes in
the price of the claim ¢ resulting from the independent component of F cannot be
hedged. Recalling (4.10), we derive the dynamics of the net asset value process:

ANAV(s) = NAV(s)rdt — %yap\/ 1 — p2;(s, F(s))F(s)ds
—@r (s, F(5))F(s)ory/ 1 — p2dWy(s). (4.20)

The stochastic integral in (4.20) models the changes in the price of the put option
resulting from changes in the non-tradeable asset F induced by the component
independent of the tradeable asset Y. At each time t €[0, T), the insurer must
hold an additional capital in the amount of

1
(1) = —5yory1 - P2 (1, F(1))F(1),

to compensate this non-hedgeable risk. The total actuarial risk margin, the sec-
ond term in (4.18), is the expected total cost of providing the capitals which
correspond in value with the delta-hedging strategy for the independent compo-
nent of F. This delta-hedging strategy cannot be applied by the insurer since the
risky asset F is not traded. However, the necessary capitals to perform this delta-
hedging strategy, are sufficient to cover the non-hedgeable financial loss (in our
model where the insurer uses a standard deviation risk margin for quantifying the
non-hedgeable risks).
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From (4.16), we can conclude that the drift of the risky asset F under the pric-
ing measure Q is a decreasing function of the risk aversion coefficient y, and from
(4.15), that the price ¢ is an increasing function of the risk aversion coefficient y.
Consequently, the higher the risk aversion coefficient of the insurer, the higher the
price of the put option contingent on the non-tradeable risky asset F. Moreover,
the price of the put option (4.15) is monotone with respect to strike level, in the
sense that S7 > S5 implies that ¢s:(1, ) > ¢s;(2,1).

d

Example 4.4 (Example 2 — special case). Before we investigate the benefit stream
(2.9) generated by unit-linked policies, let us consider the benefit stream generated
by traditional insurance policies. Let us assume that the benefits S and D in (2.9)
are constant. The premium is invested in the risk-free bank account and no fees
are continuously deducted from the policyholder’s account, that is, ¢ = 0.

Let us study a single life insurance policy with constant sum insured D, paid if
the policyholder dies. We choose S =0,k =1 in (2.9). The PDEs (4.8) reduce to
one PDE:

1
(p,l(t) + (D — (pl(t))k + iy\/ D — ' (1)*A — @' ()r=0
o (T)=0. 4.21)

It is natural to assume that the sum at risk, that is, D — ¢'(t), is positive at all
times t € [0, T). Hence, we try to solve the PDE

@ (1 + (D — wl(t))k(l + ——) —¢'(Or=0

2V
@' (T)=0. (4.22)
The solution to (4.22) is given by
_p [0 B ) e (1017 ),
ga‘(t)—D/t eI A(l + 2[) (4.23)

It is straightforward to show that ¢'(t) < D. Consequently, the function (4.23)
also solves the PDE (4.21). Hence, (4.23) represents the continuous-time valua-
tion operator for a single traditional life insurance policy.

Let us now study a single endowment insurance policy with constant terminal
benefit S paid if the policyholder survives till maturity. We choose D=0,k =1 in
(2.9). The PDEs (4.8) reduce to

1
9/ (1) — @' (DX + TALAC o' (r=0
(1) =S5. (4.24)
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It is obvious that ¢' is positive, and we deal with the PDE

(1) — wl(l)/\(l - 1L) —¢'(Or=0,

o(T)=S. (4.25)

The solution to (4.25) is given by

Ly

o'(1) = o0+ (1-45) a0, (4.26)

Hence, (4.26) is the continuous-time valuation operator for a single traditional
endowment insurance policy. We notice that if we choose y arbitrary large, then
o (1) > Se7" =D and ¢" yields an arbitrage price of the insurance risk. Hence,
when valuating endowment policies with the continuous-time valuation operator
(4.8), we must restrict possible values of the risk aversion coefficient y in order to
get reasonable, arbitrage-free prices. O

Example 4.5 (Example 2 cont.) We derive the arbitrage-free representation (2.10)
for the valuation operator ¢ which solves the PDE (4.8). The arbitrage-free rep-
resentation allows us to identify the risk premium for the measure (2.11) used
for pricing the non-hedgeable insurance risk which is implied by our subjective
valuation operator.

Let Q denote the equivalent martingale measure defined by (2.11) with the
risk premium

Iy
2. JJ(t 9
If the process x is smaller than —1, then an equivalent martingale measure cannot
be defined and our valuation operator (4.8) yields arbitrage prices of the insurance
risk (see Example 4.4). Clearly, such cases should be eliminated. For example,
for bounded ¢ and D, we can guarantee that x(t) > —1 by choosing y sufficiently
small. Note that the process x can be smaller than —1 only if o*~'(t,1) + D(f) —
©*(1, 1) is negative, that is, if the sum at risk is negative.

Let us assume that we can define the equivalent martingale measure Q. By
Girsanov’s theorem, the counting process N has the Q-intensity

x() = sgn (goJ N1, Ft)) + D(F(1)) — " (1, F(z))).

R 1 y
A% =k(1+——s n( @’ 7 (t, F(1)) + D(F(1)) — ¢’ (1, F(z )
0 3 Treseen(" T 6 F0) + D(F0) " F)
(4.27)
and the dynamics of the policyholder’s fund F is given by
dF (1) B )
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We can rewrite the system of PDEs (4.8) in the form

1
Wf([!f) + gO;‘([,f)f(V - C) + E(pr}([7f)f20)% - ka
+(e" @)+ D) - ¢41)

(14 3 sl 0.0+ DU =6 (01) ) = 0 =0

¢ (T.f)=kS(f). (4.29)

Applying the Feynman—Kac formula, we can show that the solution of the PDEs
(4.29), and also of the PDEs (4.8), has the representation

T
o(t.f) = ,,fk[ T~ N(D)S(F(T)) + / e " D(F(5))dN(s)

— / (n — N(s))e—"<s—f>cF(s)ds]. (4.30)

Under the valuation operator ¢ determined by the PDEs (4.8), we price the
unit-linked insurance claims contingent on (F, N) with the expected value oper-
ator under the measure Q which distorts the distributions of the policyholders’
lifetimes (the intensity of the counting process N ). The policyholder’s mortality
intensity is modified under the pricing measure Q with the risk premium x for
which the sign depends on the sign of 9"~ \(t,f )+ D(f) — ¢*(t, 1), that is the sum
at risk.

From (4.27), we can deduce that if the insurer is exposed to a positive sum at
risk, then the process y increases the mortality intensity, while if he is exposed
to a negative sum at risk, then the process y decreases the mortality intensity.
Moreover, the risk premium x for the insurance risk depends on the number of
policies in force in the portfolio: the larger the number of policies in force, the
smaller the risk premium, and the less significant the change in the policyholder’s
mortality intensity when we move from the real-world measure P to the pricing
measure Q. These properties agree with intuition, and the last property reflects
diversification of the unsystematic mortality risk.

The valuation operator (4.30) is not monotone. However, if we consider benefit
streams By and B, such that S, > S,, Dy > D, and the sum at risk has the same
sign for By and B, then the arbitrage-free valuation operator is monotone and
o (L) = @b (1.1).

We would like to point out that under the equivalent martingale measure Q,
the insurance risk may not be independent of the financial risk and the policyhold-
ers’ lifetime may not be independent of each other since y in general depends on
F. For example, let us consider policies with minimum death guarantees. If the
policyholder’s fund F is very low, then the insurer is exposed to a positive sum
at risk, while if this fund is very high, then the insurer is not exposed to a sum
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at risk. Consequently, the insurer may prefer to increase the death probabilities
in the first case, and keeps it unchanged in the second case. Moreover, since the
policyholders own the same risky asset F, their mortality intensities and future
lifetimes become correlated under the above mechanism of updating the model’s
parameters for pricing the future claims.

Let us investigate the minimal death guarantee (GMDB) for a single pol-
icy. Hence, we choose S(t,f)=0 and k =1 in the benefit stream (2.9). We also
assume that no fees are continuously deducted from the fund F, that is, c =0, and
the guarantee is financed with the initial fee. We expect that the sum at risk is pos-
itive in all scenarios. We note that this assumption implies that the insurance risk
is independent of the financial risk under Q. From (4.27) and (4.30) we conclude

that
T - .
wl(t,f):/ ng-[e"‘(‘g_’)(D*—F(s))ﬂe‘w‘g_’))»st,
t
T - -
_ / P(t, 5,09, f, D)e 200,84, 431)
t
where
. 1y
AW=x(14+="2). 4.32
( +2ﬁ> (4.32)

Unfortunately, the sum at risk D(f) — ¢'(t, ), where @' is defined in (4.31), is not
always positive for all parameters, in contrast to the traditional life insurance case
considered in Example 4.4. However, in practice the guaranteed death benefit D*
is very high compared to the fund value F. In this case one can show that

T ) .
o\t f)= / P(t,s,0v,f, D*)e%@(“t))»@ds
t

T ) .
~ / (D*e_’(s_’) — F(t))e_’\@(s_’))\@ds
t
<D —F@)P(rt < Tt >1t)< D" —F(1),
and the sum at risk, D(f) — @'(¢, f) with (4.31), is indeed positive. Consequently,
we can conclude that the function (4.31) solves the PDE (4.8) with k=1,
S(f)=0,D(f)=(D*—f)",c=0 and gives the price of the death guarantee

from a single unit-linked insurance policy with high mortality benefit D*.
From (4.9) we deduce the decomposition of the fair price:

. T
P'(t,f) = E%[/ e (D — F(s))*ek(“))»ds:|
t

—I—E?}-[%y /T e‘r(‘y_t)\/|D(F(s)) — (s, F(s))|2)»e_*(s_’)ds]. (4.33)
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The best estimate of the liability, the first term in (4.33), is the expected value
of the discounted future claim from the put option exercised at the random time
of the policyholder’s death, where the expected value is taken under the measure
Q. This value can be related to the market cost of the investment portfolio which
perfectly replicates the hedgeable part of the death guarantee, that is, the payoff
from the put option exercised at a pre-defined time. The timing of the benefit is
not hedgeable since it is triggered by the non-tradeable, independent insurance
risk. In the best estimate, the timing of the benefit payment is derived by taking
the expected value of the future lifetime of the policyholder under the real-world
measure P. The best estimate in (4.33) is equal to

T
BE:/ P(t, s, f, ay,D*)e_’\(X_’))»ds.
t

In this example the insurer is exposed to changes in the tradeable asset price
Y which imply changes in the value of the policyholder’s account F and, conse-
quently, changes in the price of the death guarantee embedded in the unit-linked
insurance contract. The insurer is also exposed to the unpredictable event of the
policyholder’s death and the related timing of the death payment. By (4.6), the
optimal hedging strategy consists of applying the delta-hedging strategy

9*(1) = g/ (1, F(0) F(). (4.34)

By performing this strategy, the insurer perfectly hedges the changes in the price
of the claim ¢ resulting from changes in Y and F, since F is perfectly correlated
with Y. However, the independent event of the policyholder’s death and the timing
of the payment cannot be hedged. From (4.10) we derive the dynamics of the net
asset value

dANAV(s) = NAV (s)rdt + %)/\/|D(F(S)) — (s, F(S))|2J(S —)Ads

- (D (F(s)) — ¢' (s, F(s)))dN(s). (4.35)

The stochastic integral in (4.35) represents the sum at risk in case of a policy-
holder’s death. At each time t € [0, T), the insurer must hold the additional capital
in the amount of

1
()= 57/ ID(FO) = ¢! (s, FO)PI(t ),

to protect himself against adverse scenarios in the evolution of the non-hedgeable
mortality risk in an infinitesimal period of time. The total actuarial risk mar-
gin, the second term in (4.33), is the expected total cost of providing sufficient
capitals to cover the future sum at risk to which the insurer is exposed in the
event of the policyholder’s death. The capital in the amount of the sum at risk
cannot be set aside by the insurer since this cost is too high to bear. However,
the capital ® is sufficient to cover the non-hedgeable insurance loss (in our
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model where the insurer uses a standard deviation risk margin for quantifying
the non-hedgeable risks).

If the sum at risk is positive, then from (4.27) we can conclude that the mor-
tality intensity under the pricing measure Q is an increasing function of the risk
aversion coefficient y, and from (4.30) we can conclude that the price ¢' is an
increasing function of the risk aversion coefficient y. Consequently, the higher the
risk aversion coefficient of the insurer, the higher the price of the minimum death
guarantee determined by our continuous-time valuation operator (4.8). These
interpretations agree with intuition. Moreover, if the sum at risk is positive, then
the valuation operator (4.30) is monotone with respect to the guaranteed death
benefit, in the sense that D} > D3 implies that ¢p:(,f) > @ps(t, f). If the guaran-
teed death benefit D* is high, then the function (4.31) approximates our valuation
operator. Clearly, (4.31) is a monotone function of D*.

We also investigate the minimum survival benefit (GMMB) for a single
policy. We now choose D(t,f)=0 and k=1 in the benefit stream (2.9). We
still assume that no fees are continuously deducted from the fund F, that is,
c=0, and the guarantee is financed with the initial fee. It is clear that the
sum at risk is negative in all scenarios in this example. Hence, the sign of
%t )+ D(t,f) — ¢'(t,f) can be determined, and the solution to the PDE (4.8)
can be found. From the general solution (4.30), we can deduce that the price of
the survival guarantee is given by

¢'(t.f) =EY [e""T") (8" - F(T))+]e—k@(T—t)’

= P(t,T,oy.f, S*)e”\@(T”), (4.36)
where
N 1 y
A =a(1-==L2). 4.
@) ( 2\/x) (4.37)

By Example 4.4, we have to choose a sufficiently small risk aversion coefficient y
in order to have an arbitrage-free price (4.36). By (4.9) we can decompose the fair
price of the liability into the best estimate of the liability and the total actuarial
risk margin:

9'(t.f) = E%-[e"’(r")(s* — F(T))+]e—A(T—z)

) T
—I—E%[%y/ e "0 |(pl(S,F(S))|2)u€_)\(x_t)dS:|. (4.38)
t

Finally, from (4.10) we derive the dynamics of the net asset value

ANAV (s)= NAV (s)rdt + ly\/ o' (s, F(s)) ]21(5 rds + @' (s, F(s))dN(s).
2 (4.39)

The hedging strategy takes the form (4.34).
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The interpretations of the results are similar as in the previous example with
death guarantee. In particular, the arbitrage-free price of the survival guarantee
(4.36) is monotone with respect to the guaranteed survival benefit, in the sense
that St > S5 implies that ¢s:(1,f) > ¢s;(t,f). Moreover, we should note that
the stochastic integral in (4.39) now models the unpredictable mortality gains to
which the insurer is exposed during the duration of the policy. Since we consider
an endowment policy, mortality gain arises if the policyholder dies. We note that
we deal with the dynamics

dANAV(s) = NAV(s)rdt + %y\/‘tpl (s, F(s)) {2J(s —)Ads

—@' (5, F(5))J(s DAds + @' (s, F(5))N(s),

and the insurer gains if dN(s)=1. At each time t€[0,T), the insurer holds
an additional capital ®(t) = %y\/ lpl(t, F(1))|2J(t )X to protect himself against
adverse scenarios in the non-hedgeable longevity risk, that is, in this case the risk
that policyholders live longer than expected. O

5. NUMERICAL EXAMPLES

This section reports some numerical examples illustrating the developments of
the previous sections.

5.1. Comparison of the explicit and approximate solution for a GMDB contract

In the previous section, we have seen that the function (4.31) solves the PDE
(4.8) for a single unit-linked insurance policy with a minimum death guarantee
excluding fees when the mortality guaranteed benefit D* is set sufficiently high.
We illustrate that the function (4.31) indeed closely approximates the true fair
value of the policy if the mortality benefit D* is set high compared to the ini-
tial fund value F(0), whereas the function (4.31) provides a (relatively) poor
approximation of the solution to the PDE (4.8) when the mortality benefit D*
is set low compared to the initial fund value F(0). Hence, one needs to be care-
ful when applying the price (4.31) as the solution to the PDE (4.8) and the fair
value of the GMDB contract.

Figure 1 illustrates the fair value at time ¢ =0 for the single GMDB con-
tract in terms of the risk aversion parameter y. The fair value is derived by
solving numerically the PDE (4.8) with a finite difference scheme. In addition,
the approximation price (4.31) is provided. We can observe that the differ-
ence between both approaches is quite significant for a low mortality benefit
(D* =12 > F(0) = 11), whereas the prices coincide for a high mortality benefit
(D* =20 >> F(0)=11). As expected, the fair value is an increasing function of
the risk aversion parameter.

Downloaded from https://www.cambridge.org/core. KU Leuven Libraries, on 10 Apr 2019 at 11:29:01, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2019.8


https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2019.8
https://www.cambridge.org/core

FAIR VALUATION OF INSURANCE LIABILITY CASH-FLOW STREAMS 31

3.0 H
- Approximate value
) -- Finite difference value
I
1
é 2.5 -
[
=
g
= 2.0
©
L
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Risk aversion parameter y

0.40
— - Approximate value
o -- Finite difference value
n 0.35
8
5 030
©
>
& 0.25 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Risk aversion parameter y

FIGURE 1: Comparison of the finite difference solution to the PDE (4.8) and the approximate solution (4.31)
for a single GMDB with high death benefit D* =20 and low death benefit D* = 12. We choose
r=0.02,06 =02,2,=02,F(0)=11,T=1.

5.2. Sensitivity analysis for a single unit-linked contract with death and survival
benefits

In this numerical example, we determine the fair value of a single unit-linked
policy with death and survival benefits and observe how the fair value is sen-
sitive to the numerical values chosen for the parameters. We set k =1, D(f') =
(D* =)', S(f)=(S*—f)" in (4.8). We solve the PDE (4.8) numerically by
applying a finite difference scheme.

Figure 2 depicts the fair value of the contract at time 1 =0 in terms of the
risk aversion parameter y, the mortality intensity A, the volatility parameter o
and the fee ¢. We observe the following phenomena:

e The fair value is an increasing function of y. Indeed, the risk aversion is
directly related to the actuarial risk margin for the non-hedgeable insurance
risk. Increasing the risk aversion parameter y is equivalent to increasing the
risk margin for the uncertainty around the policyholder’s death. The higher
the risk aversion parameter, the higher the price of the non-hedgeable insur-
ance risk determined by the instantaneous actuarial risk margin, and the
higher the value of the unit-linked contract.

e The fair value is an increasing function of . Intuitively, when the mortality
increases, the value of the GMDB increases while the value of the GMMB
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FIGURE 2: Sensitivity of the fair value of a single unit-linked contract with respect to risk aversion,
mortality, volatility and fee parameters. We choose r =0.02, ¢ =0.03,0 = 0.2, A =0.05,
FO0)=S*=11,D*=20,y =0.1,T=1.

decreases. Since this unit-linked contract offers both death and survival ben-
efits, the figure shows that the GMDB dominates the GMMB for our choice
of parameters. If we decrease the death benefit, the trend will be reversed.

e The fair value is an increasing function of ¢. This follows from the obser-
vation that more volatility in the financial market boosts the prices of the
put options for the death and survival guaranteed benefits yielding a higher
value of the unit-linked contract.

e The fair value is a decreasing function of ¢. The higher the fee deducted
from the policyholder’s account, the higher the profit earned by the insurer
and the lower the gains earned by the underlying risky asset credited to the
policyholder’s account which determine the benefits. As shown in Figure 2,
the fair value of the unit-linked contract can be negative if the fee ¢ deducted
by the insurer from the policyholder’s account is too high compared to the
value of the risk faced by the insurer. The fair fee is the fee for which the fair
value of the benefit stream at the inception of the contract is zero.
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5.3. Fair fee ¢ for a GMMB contract and sensitivity analysis

In this subsection we determine the fair fee ¢ for a single GMMB contract
and perform a sensitivity analysis for changes in the mortality and volatility
parameters. Starting from the general representation (4.30), we can derive the
expression for the fair value of a single GMMB contract:

- T
o' (t./)=E}, [e'”f)l{z > TY(S* — F(T))" — / 1{r > s}e"("")cF(s)dsi|.
(5.1

This expression reduces to

N T .
QDI(t,f) — eka(Tft)efc(sz‘)P(t, T,f, oy, S*ec(Tft)) _ Cf/ efc(sft)efx@(s—t)ds.
t
(5.2)

where

X©=A(1 _ %%) (5.3)

We remark that the price (5.2) has the same structure as the price (3.8), the
difference being that in (5.2) the insurance risk is priced with a risk margin,
that is, A? instead of A, while in (3.8) the insurance risk follows the expected
mortality A.

Since the continuously collected fee ¢ is used to hedge the GMMB, we deter-
mine the fair fee ¢ by setting the fair value at time 7 =0 in (5.2) equal to zero
(expected future benefits equal expected future fees). Hence, this boils down to
solving the following equation:

§ F(0 3
e HITP(0, T, F(0), oy, S*¢T) = — © (1 _ e—<AQ+f>T). (5.4)
AQ+ ¢
Figure 3 represents the fair fee ¢ in terms of the mortality parameter A and
the volatility parameter oy:

e The fair fee ¢ is a decreasing function of the mortality intensity A. When the
mortality intensity increases, this diminishes the survival probability until
maturity and the insurer therefore asks a lower fee for the maturity survival
guarantee.

e The fair fee ¢ is an increasing function of the volatility parameter oy. As
described in Section 5.2, a more volatile financial market is synonymous
with a higher price of the put option (§* — F(T'))* that the policyholder will
receive in case of survival. Hence, the higher the volatility in the financial
market, the higher fair fee for financing the maturity survival guarantee.
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FIGURE 3: Sensitivity of the fair fee for a single GMMB contract with respect to mortality and volatility
parameters. We choose r=0.02,0 =0.2,.=0.3, F(0)=S*=11,y=0.1,T=1.
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