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How to determine the value of things?

I "Res tantum valet quantum vendi potest." (Latin quote)
A thing is worth only what someone else will pay for it.

I "What is a cynic? ... A man who knows the price of
everything and the value of nothing."
Oscar Wilde, Lady Windermere�s Fan (1893).

I "The greatest of all gifts is the power to estimate things at
their true worth."
François De La Rochefoucauld (1613-1680).

I Question to be answered in this chapter:
For what price would another party be willing to take over a
future insurance liability, taking into account hedging
opportunities in the �nancial market?
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1. Introduction
Di¤erent types of valuations

I Valuation according to the �nancial quant:
I A �nancial valuation is based on the principle of no-arbitrage:

I Fundamental Theorem of Asset Pricing.
I Claim S due at time 1:

Time-0 value of S = e�r EQ [S ]

I Set of feasible Q�s follows from observed �nancial market
prices.

I Valuation according to the traditional actuary:
I An actuarial valuation is based on principle of diversi�cation:

I Law of Large Numbers.
I Claim S due at time 1:

Time-0 value of S = e�r
�
EP [S ] + RM [S ]

�
I Expectation EP [S ] and risk margin RM[S ] follow from an
actuarial model set up by the actuary.
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Introduction
Di¤erent types of valuations

I Valuation according to Solvency II2:
I If (part of) the cash �ows of an insurance liability can be
replicated, then the value of the (part of the) cash �ows is
determined on the basis of the market value of these �nancial
instruments.

I Otherwise, the value is equal to the sum of the
best estimate3 and a risk margin4.

I We will de�ne 5 types of valuations: �nancial, actuarial,
market-consistent, model-consistent and fair valuations.

I Results can be applied in a reserving and in a pricing context.

2Solvency II Directive 2009/138/EC, Article 77.
3Best Estimate : The probability-weighted average, also referred to as the

mean (Solvency II Glossary).
4Risk Margin: The value of the deviation risk of the actual outcome

compared with the best estimate, expressed in terms of a de�ned risk measure
(Solvency II Glossary).
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Introduction
What question does each valuation answer?

I Financial quant: What is a correct price of claim S when
traded in an arbitrage-free market?

I Hedgeable claim: Value is equal to the �nancial market price
of the underlying hedge.

I Non-hedgeable claim: Inherent uncertainty about how S would
be priced.

I Traditional actuary: For what price is another party willling
to take over liability S, ignoring the �nancial market, except
for the riskfree bank account?

I Orthogonal claim: A valuation based on an actuarial model is
appropriate.

I Non-orthogonal claim: Ignorance of existence of the �nancial
market.

I Modern actuary: For what price is another party willing to
take over liability S, taking into account hedging
opportunities in the �nancial market?
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2. The �nancial-actuarial world
I We investigate the valuation of insurance liabilities in a single
period �nancial-actuarial framework.

I The �nancial-actuarial world : (Ω,G,P)
I Time 0 = now.
I Ω = set of all possible states of the world at time 1.
I G = σ� algebra of all events that may (or may not) occur.
I P = physical probability measure.

I Contingent claims:
I A (contingent) claim is a r.v. de�ned on (Ω,G).
I Examples:

I Time-1 price of a traded asset,
I Insurance liability due at time 1.

I The linear space of all claims in which we are interested is
denoted by C.

I We identify claims which are equal a.s.
I We assume that C � L2 (or di¤erent if stated explicitely).
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The �nancial-actuarial world

I (Ω,G,P) is home to a market of n + 1 traded assets.
I These assets are denoted by 0, 1, ..., n.
I Price process of asset m:

I Current price:

y (m) > 0

I Price at time 1:

Y (m) 2 C
I Notations:

y =
�
y (0), y (1), . . . , y (n)

�
and

Y =
�
Y (0),Y (1), . . . ,Y (n)

�
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The �nancial-actuarial world

I Risk-free zero coupon bond: (asset 0)

I Current price: y (0) = 1.
I Payo¤ at time 1:

Y (0) = er

I Risky asset m: (m = 1, 2, . . . , n)

I Current price: y (m) > 0.
I Price at time 1:

Y (m) � 0 : non-deterministic
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The �nancial-actuarial world

I Trading strategies:

I A trading strategy is a vector θ =
�

θ(0), θ(1), . . . , θ(n)
�
, with

θ(m), m = 0, 1, . . . , n, the number of units invested in asset m
at time 0.

I The linear space of all trading strategies is denoted by Θ.

I Value of trading strategy θ:
I Time-0 value:

θ � y =
n

∑
m=0

θ(m) y (m)

I Time-1 value:

θ �Y =
n

∑
m=0

θ(m) Y (m)
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The �nancial-actuarial world

I Assumption 1: The n+ 1 assets can be bought or sold in any
quantity in a deep, liquid, transparent and frictionless market.

I Assumption 2: The assets are non-redundant:

I For any trading strategy θ =
�

θ(0), θ(1), . . . , θ(n)
�
one has

that
θ �Y = 0) θ = (0, 0, . . . , 0)

I Remark: (in-)equalities between r.v.�s have to be understood
in the a.s. sense.

I Assumption 3: The market is arbitrage-free: There exists no
investment strategy θ 2 Θ such that

θ � y = 0, P [θ �Y � 0] = 1 and P [θ �Y > 0] > 0
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The �nancial-actuarial world

I Equivalent martingale measures:
Q is an equivalent martingale measure (or a risk-neutral
measure) if :

I Q is a probability measure de�ned on (Ω,G).
I Q and P are equivalent:

Q [A] = 0 if and only if P [A] = 0, for all A 2 G.

I The current price of any traded asset can be expressed as

y (m) = e�r EQ
h
Y (m)

i
, for m = 0, 1, ..., n.

I Fundamental theorem of asset pricing:
I The no-arbitrage condition is equivalent to the existence of at
least one equivalent martingale measure.
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The �nancial-actuarial world
Hedgeable claims

I De�nition :
Sh 2 C is a hedgeable claim if there exists a trading strategy
ν =

�
ν(0), . . . , ν(n)

�
such that

Sh = ν �Y

I Time-0 price of a hedgeable claim:

I Suppose that Sh = ν �Y.
I Let Q be an EMM.
I Current price:

Time-0 price of Sh = ν � y = e�r EQ
h
Sh
i

I The linear space of all hedgeable claims is denoted by Ch.
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The �nancial-actuarial world
Hedgeable claims

Exercise 1:

I Consider the hedgeable claim Sh.
I Q: Show that the hedge of Sh is uniquely determined.
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The �nancial-actuarial world
Orthogonal claims

I De�nition :
S? 2 C is an orthogonal claim if it is P-independent of the
traded claims Y (1), . . . ,Y (n):

S? ?
�
Y (1),Y (2), . . .Y (n)

�
I The linear space of all orthogonal claims is denoted by C?.
I Remark: The risk-free claims a 2 R are the only claims
which are both hedgeable and orthogonal.
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The �nancial-actuarial world
Orthogonal claims

Exercise 2: The Cost-of-Capital principle.

I Consider a portfolio of N insurance policies with respective
claims X1,X2, . . . ,XN 2 C.

I Assumptions:

I Under P, the Xi are i.i.d. with mean µ and variance σ2 > 0.
I Each Xi ?

�
Y (1),Y (2), . . .Y (n)

�
.

I N is su¢ ciently large such that ∑Ni=1 Xi is (approximately)
normal distributed.

I The insurance portfolio liability is given by

S? = ∑N
i=1 Xi
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The �nancial-actuarial world
Orthogonal claims

Exercise 2: The Cost-of-Capital principle (cont�d).

I Suppose that the value ρ
�
S?
�
of S? is determined by :

ρ
�
S?
�
= e�r

�
EP
�
S?
�
+ RM

�
S?
��

I EP
�
S?
�
is the best estimate of S?.

I RM
�
S?
�
is the risk margin, determined according to the

cost-of-capital approach:

RM
h
S?
i
= i

�
VaRP

p

h
S?
i
�EP

h
S?
i�

for given probability level p and perunage i .

I Q: Determine ρ
�
S?
�
and show that the value per policy

ρ
�
S?
�

/N is a decreasing function of N.
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The �nancial-actuarial world
Hybrid claims

I De�nition :
Claim S is a hybrid claim if it is neither hedgeable nor
orthogonal:

S 2 C n
�
Ch [ C?

�
I Examples:

I Sum of a hedgeable and an orthogonal claim:

S = Sh + S?

I Product of a hedgeable and an orthogonal claim:

S = Sh � S?

I Remarks:
I Insurance regulations allow di¤erent approaches for valuating
hybrid claims.

I Insurance securitization may lead to hybrid liabilities for
insurers.
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The �nancial-actuarial world
Hybrid claims

Exercise 3: Decomposing insurance liabilities.

I Consider a portfolio of N insurance contracts, with payo¤
of contract i at time 1 given by Sh � Xi for any i .

I Assumptions:

I Sh 2 Ch .
I X1,X2, . . . ,XN are P�i.i.d. orthogonal claims.

I Insurance portfolio liability:

Sh � S?N

with S?N = ∑N
i=1 Xi 2 C?.
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The �nancial-actuarial world
Hybrid claims

Exercise 3 (cont�d):
I The insurance portfolio liability per policy can be
decomposed into a hedgable and a diversi�able hybrid claim:

Sh � S?N
N = Y h + Y dN

I Hedgeable claim:

Y h = Sh �EP [X1]

I Diversi�able hybrid claim:

Y dN = S
h �

�
S?N
N �EP [X1]

�
I Q1: Show that the variance of the diversi�able claim is
given by

VarP
�
Y dN
�
= 1

N �EP
h�
Sh
�2i� VarP [X1]
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The �nancial-actuarial world
Hybrid claims

Exercise 3 (cont�d):
I A sequence of r.v.�s X1,X2,X3 . . . converges in probability
to a r.v. X , notation XN

P! X , if for all ε > 0 one has that

lim
N!∞

P [jXN � X j > ε] = 0

I Q2: Use Chebyshev�s inequality to show that Y d1 ,Y
d
2 ,Y

d
3, . . .

converges in probability to zero:

Y dN
P! 0

I This convergence result can also be stated as follows:

Sh � S?N
N

P! Sh �EP [X1]

I Special case: The (weak) Law of Large Numbers:

S?N
N

P! EP [X1]
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The �nancial-actuarial world
Hybrid claims

Exercise 3 (cont�d):

I In the remainder of this exercise, assume that

Xi =
�
0 : insured i dies before time 1
1 : insured i is alive at time 1

with
P [Xi = 1] = p

I Q3: Derive an expression for VarP
�
Y dN
�
.
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The �nancial-actuarial world
Hybrid claims

Exercise 3�: Decomposing insurance liabilities.

I Consider a portfolio of N insurance contracts, with payo¤
of contract i at time 1 given by Sh � Xi for any i .

I Assumptions:

I Sh 2 Ch and any Xi 2 C.
I There exists a r.v. Z 2 C? with support A � R, such that for
any z 2 A, one has that (X1 j Z = z) , . . . , (XN j Z = z) are
P�i.i.d. orthogonal claims.

I Q1: Show that X1,X2, . . . ,XN 2 C?.
I Insurance portfolio liability:

Sh � S?N

with S?N = ∑N
i=1 Xi 2 C?.
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The �nancial-actuarial world
Hybrid claims

Exercise 3�(cont�d):
I The insurance portfolio liability per policy can be
decomposed into a hedgable claim, a diversi�able hybrid claim
and a residual hybrid claim:

Sh � S?N
N = Y h + Y dN + Y

r

I Hedgeable claim:

Y h = Sh �EP [X1]

I Diversi�able hybrid claim:

Y dN = S
h �

�
S?N
N �EP [X1 j Z ]

�
I Residual hybrid claim:

Y r = Sh �
�
EP [X1 j Z ]�EP [X1]

�
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The �nancial-actuarial world
Hybrid claims

Exercise 3�(cont�d):

I Q2: Show that the variance of the diversi�able claim is
given by

VarP
�
Y dN
�
= 1

N �EP
h�
Sh
�2i�EP

h
VarP [X1 j Z ]

i
I Q3: Show that the variance of the residual claim is given by

VarP [Y r ] = EP
h�
Sh
�2i� VarP �EP [X1 j Z ]

�
I Q4: Show that the diversi�able claim and the residual claim
are uncorrelated:

CovarP
�
Y dN , Y

r
�
= 0
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The �nancial-actuarial world
Hybrid claims

Exercise 3�(cont�d):

I Q5: Use Chebyshev�s inequality to show that Y d1 ,Y
d
2 ,Y

d
3, . . .

converges in probability to zero:

Y dN
P! 0

I This convergence result can also be stated as follows:

Sh � S?N
N

P! Sh �EP [X1 j Z ]

I Special case: Conditional (weak) Law of Large Numbers:

S?N
N

P! EP [X1 j Z ]
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The �nancial-actuarial world
Hybrid claims

Exercise 3�(cont�d):

I In the remainder of this exercise, assume that

Xi =
�
0 : insured i dies before time 1
1 : insured i is alive at time 1

with

P [Xi = 1 j Z = z ] not.= p (z) , for any z 2 A

and
P [Xi = 1] = EP [p(Z )]

not.
= p

I Z describes systematic survival risk (= population-wide
variability of survival).
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The �nancial-actuarial world
Hybrid claims

Exercise 3�(cont�d):

I Q6: Show that

covarP [X1,X2] = VarP [p (Z )]

I Q7: Show that

P [X2 = 1 j X1 = 1] = p + VarP[p(Z )]
p

I Q8: Derive an expression for VarP
�
Y dN
�
and VarP [Y r ].
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3. Valuations
I De�nition: A valuation is a mapping ρ : C ! R, attaching
a real number to any claim S :

S ! ρ [S ]

such that
I ρ is normalized:

ρ [0] = 0

I ρ is translation invariant:

ρ [S + a] = ρ [S ] + e�r a for any S 2 C and a 2 R

I Interpretation: ρ [S ] is the time-0 value of insurance claim S .

I As we identify r.v.�s which are equal in the a.s. sense, we have
that

P [X = Y ] = 1) ρ [X ] = ρ [Y ]
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Valuations

I For any X ,Y 2 C, the notation X P
= Y is used for

P [X � x ] = P [Y � x ] , for all x 2 R

I Let C 0 be a linear subspace of linear space C and consider the
mapping ρ : C 0 ! R.

I Properties that ρ may or may not satisfy:
I P-law invariance:

ρ [X ] = ρ [Y ] for any X ,Y 2 C 0 with X P
= Y

I Positive homogeneity : ρ [aX ] = a ρ [X ] for any scalar

a > 0 and any X 2 C 0.
I Subadditivity :

ρ [X + Y ] � ρ [X ] + ρ [Y ] for any X ,Y 2 C 0

34 / 138



Valuations
Two well-known types of valuations

I De�nition: A �nancial valuation is a valuation ρ : C ! R

such that

ρ [S ] = e�r EQ [S ] for any S 2 C

where Q is an equivalent martingale measure (EMM).

I De�nition: An actuarial valuation is a valuation ρ : C ! R

such that

ρ [S ] = e�r
�
EP [S ] + RM [S ]

�
for any S 2 C

where the mapping RM : C ! R is P-law invariant.
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Valuations
Some remarks on actuarial valuations

I Properties of the risk margin:

RM [0] = 0 and RM [S + a] = RM [S ]

I The de�nition of an actuarial valuation:
I is based on the subjective choice of the properties that
RM : C ! R has to satisfy.

I Here, we assume P-law invariance of this mapping RM.
I Other possible choices:

I RM is P-law invariant and subadditive in C.
I RM[S ] = 2 σP

S , for any S in C.

I The equivalence results that we will derive hereafter remain to
hold for any subjective choice of the properties that the
mapping RM : C ! R is supposed to satisfy.
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Valuations
Two examples of actuarial valuations

I The CoC principle:

ρ [S ] = e�r
�

EP [S ] + i
�
VaRP

p [S ]�EP [S ]
��

with 0 < i < 1, 0 < p < 1.

I The Standard Deviation (SD) principle:

ρ [S ] = e�r
�
EP [S ] + α σP [S ]

�
with α � 0.
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Valuations
Valuating di¤erent types of claims

I Hedgeable claims: A �nancial valuation is appropriate.
I Orthogonal claims: An actuarial valuation is appropriate.
I Hybrid claims:

I In general, the classes of �nancial and actuarial valuations are
disjunct.

I Neither a �nancial nor an actuarial valuation is appropriate for
valuating hybrid claims.

I We will enlarge the class of �nancial valuations to the class of
market-consistent valuations, such that hedgeable parts of
claims are still valuated with a �nancial valuation.

I We will enlarge the class of actuarial valuations to the class of
model-consistent valuations, such that orthogonal claims are
still valuated with an actuarial valuation.

I We propose to valuate a hybrid claim by a fair valuation,
which is de�ned as a valuation which is in the intersection of
the classes of market-consistent and model-consistent
valuations.
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Valuations
Valuating di¤erent types of claims
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Valuations
Valuating di¤erent types of claims
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Valuations
Valuating di¤erent types of claims
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Valuations
Market-consistency

I De�nition: A valuation ρ is market-consistent5 if any
hedgeable part of a claim is marked-to-market6:

ρ
�
S + Sh

�
= ρ [S ] + ν � y for any S 2 C and any Sh = ν �Y 2 Ch

I Remarks:
I Market-consistency means that the value of any hedgeable part
of a claim is determined by the �nancial market, i.e. it is
based on observed �nancial market prices.

I Market�consistency is an an extension of the notion of
translation invariance.

I Any �nancial valuation is market-consistent.

5Cont (2006), Kupper et al. (2008), Malamud et al. (2008), Artzner &
Eisele (2010), Stadje & Pelsser (2014).

6Mark-to-market is the practice of valuing ... using current market prices
(Solvency II Glossary).
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Valuations
Model-consistency

I De�nition: A valuation ρ : C ! R is model-consistent if
any orthogonal claim is marked-to-model7:

ρ
�
S?
�
= π

�
S?
�
for all S? 2 C?

for a given actuarial valuation π.
I Remarks:

I Model-consistency means that the value of any orthogonal
claim is determined by an actuarial model, i.e. it is based on
an actuarial valuation.

I π is called the underlying actuarial valuation of ρ.
I Any actuarial valuation is model-consistent.

7Mark-to-model is the practice of valuing ... based on modeling (Solvency II
Glossary).

43 / 138



Valuations
I De�nition: A valuation ρ is a fair valuation8 if it is both
market-consistent and model-consistent:

I Mark-to-market for any hedgeable part of a claim:
For any claim S and any hedgeable claim Sh = ν �Y, one has

ρ
h
S + Sh

i
= ρ [S ] + ν � y

I Mark-to-model for any orthogonal claim:
For any orthogonal claim S?, one has

ρ
�
S?
�
= π

�
S?
�

for a given actuarial valuation π.

I We consider the generic meaning of fair valuation, and not a
particular meaning that is given to it by a particular regulation.

8Fair Value is the amount for which ... a liability could be settled between
knowledgeable, willing parties in an arm�s length transaction. This is similar to
the concept of Market Value, but the Fair Value may be a mark-to-model price
if no actual market price for the ... liability exists (Solvency II Glossary).
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Valuations

Exercise 4:

I Consider an EMM Q and de�ne the following valuations:
I Valuation 1:

ρ1 [S ] = e�r EQ [S ] for any S 2 C

I Valuation 2:

ρ2 [S ] = e�r EP [S ] for any S 2 C

I Valuation 3:

ρ3 [S ] = e�r EQ
�
EP [S j Y]

�
for any S 2 C

I Q: Verify whether these valuations are market-consistent,
model-consistent and/or fair.
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Valuations

I De�nition: A valuation ρ is strong model-consistent if any
orthogonal part of a claim is marked-to-model:

ρ
�
S + S?

�
= ρ [S ] + π

�
S?
�
for any S 2 C and any S? 2 C?

where π is a given actuarial valuation.
I Strong model-consistency implies model-consistency.
I A strong model-consistent valuation is additive for orthogonal
claims:

ρ
�
X? + Y ?

�
= ρ

�
X?
�
+ ρ

�
Y ?
�

for any X? and Y ? 2 C?.
I Conclusion: Strong model-consistency is not appropriate for
fair valuation as it ignores diversi�cation bene�ts from pooling
P - i.i.d. orthogonal claims .
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Valuations
I Fair valuation of Sh + S?:

ρ
�
Sh + S?

�
= e�r EQ

�
Sh
�
+ π

�
S?
�

where π is the underlying actuarial valuation of ρ.
I Fair valuation of Sh � S?:

I General case:
I Solvency regulations do not specify the hedgeable part of
Sh � S?.

I Special case: The Brennan-Schwartz9 formula:
I Assumption: The insurer is risk-neutral towards the
orthogonal risk:

S? = EP
h
S?
i

I Fair Valuation of Sh � S?:

ρ
h
Sh � S?

i
= e�r EQ

�
Sh
�
�EP

h
S?
i

9Brennan and Schwartz (1976, 1979a,b)
47 / 138



4. Hedgers

I De�nition: A hedger is a function θ : C ! Θ which maps
any claim S into a trading strategy:

S ! θS =
�

θ
(0)
S , θ

(1)
S , . . . , θ(n)S

�
such that

I θ is normalized:
θ0 = (0, 0, . . . , 0)

I θ is translation invariant:

θS+a = θS + (e�r a, 0, . . . , 0) for any S 2 C and a 2 R
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Hedgers

I Remarks:
I The mapping θ : C ! Θ is called a hedger.
I The trading strategy θS is called a hedge for S .
I θS may be a partial or a perfect hedge for S .

I Time-0 value of the hedge θS :

θS � y =
n

∑
m=0

θ
(m)
S y (m) = e�r EQ [θS �Y]

I Time-1 value of the hedge θS :

θS �Y =
n

∑
m=0

θ
(m)
S Y (m)
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Hedgers

Possible properties of hedgers:

I Positive homogeneity :

θa S = a θS for any scalar a > 0 and any S 2 C

I Additivity :

θS1+S2 = θS1 + θS2 for any S1,S2 2 C
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Hedgers

I De�nitions:
I θ is a market-consistent hedger in case

θS+S h = θS + ν for any S 2 C and any Sh = ν �Y 2 Ch

I θ is a model-consistent hedger in case there exists an
actuarial valuation π such that

θS? =
�
π
�
S?
�
, 0, . . . , 0

�
for any S? 2 C?

I θ is a fair hedger in case it is market-consistent and
model-consistent.

I The actuarial valuation π is called the underlying actuarial
valuation of the model-consistent hedger θ.
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Hedgers
Exercise 5: Consider a claim S , an orthogonal claim S?, a
hedgeable claim Sh = ν �Y and a scalar a . Prove the following
statements:

I Q1: For any hedger θ :

θa = (e�r a, 0, . . . , 0)

I Q2: For any market-consistent hedger θ:

θS h = ν

I Q3: For any fair hedger θ with underlying actuarial valuation
given by π:

θS?+S h =
�
π
�
S?
�
, 0, . . . , 0

�
+ ν
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Hedgers
Convex hedgers

I Goal: Find the hedger θ such that any claim S is as close as
possible to θS �Y.

I De�nition:
I Consider the strictly convex function u � 0 with u(0) = 0.
I The convex hedger θu is de�ned by

θuS = argminµ2Θ EP [u (S � µ �Y)] for any S 2 C

I Theorem: The convex hedger θu is a fair hedger with
underlying actuarial valuation πu given by

πu
�
S?
�
= argmins2R EP

�
u
�
S? � er s

��
for any S? 2 C?
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Hedgers
The Mean-Variance (MV) hedger

I De�nition: The Mean-Variance hedge of S is the trading
strategy θMVS that minimizes the expected quadratic hedging
error :

θMVS = argminµ2Θ EP
h
(S � µ �Y)2

i
I The MV hedge is also called the quadratic hedge.

I The MV hedger of S is the function θMV : C ! Θ which
maps any claim S into its MV hedge:

S ! θMVS

I Corollary: The MV hedger θMV is a fair hedger with
underlying actuarial valuation πMV given by

πMV
�
S?
�
= e�r EP

�
S?
�

for any S? 2 C?
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Hedgers
The Mean-Variance hedger

I Theorem: The Mean-Variance hedge θMVS =
�

θ
(0)
S , . . . , θ(n)S

�
of S 2 C is uniquely determined from
n

∑
m=0

EP
h
Y (k ).Y (m)

i
� θ

(m)
S = EP

h
S .Y (k )

i
for k = 0, 1, ..., n

I Exercise 6:
I Q1: Give a proof of the Theorem.
I Q2: Show that θMVS can also be determined from

n

∑
m=1

covP
h
Y (k ),Y (m)

i
� θ

(m)
S = covP

h
Y (k ),S

i
for k = 1, ..., n

and

θ
(0)
S = e�r

 
EP [S ]�

n

∑
m=1

EP
h
Y (m)

i
� θ

(m)
S

!
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Hedgers
The Mean-Variance hedger

I Theorem: Properties of the MV hedger.
I Let S ,S1,S2 2 C, Sh = ν �Y 2 Ch , S? 2 C? and a > 0.
I A claim and the time-1 value of its MV hedge are equal in
expectation:

EP [S ] = EP
h
θMVS �Y

i
I The MV hedger is additive:

θMVS1+S2 = θMVS1 + θMVS2

I The MV hedger is positive homogeneous:

θMVa�S = a� θMVS

I The MV hedge of the product of a hedgeable and an
orthogonal claim:

θMVS h�S? = ν�EP
�
S?
�
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Hedgers
The Mean-Variance hedger

I Theorem: Further properties of the MV hedger.
I Consider S 2 C, S? 2 C? and a Borel-measurable function f .

I The MV hedge of the product of a derivative and an
orthogonal claim:

θMVf (Y)�S? = θMVf (Y) �EP
�
S?
�

I The MV hedge of a claim vs. the MV hedge of its conditional
expectation:

θMVS = θMV
EP[S jY]

I Exercise 7: Give a proof for the properties of the MV hedger
considered on the previous and the current slide.
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Hedgers
Exercise 3�: Decomposing insurance portfolio liabilities.

I Consider a portfolio of N insurance contracts, with payo¤
of contract i at time 1 given by

S � Xi i = 1, 2, . . . ,N

I Assumptions:
I S and all Xi are elements of C.
I There exists a r.v. Z 2 C with support A, such that for any
z 2 A, one has that (X1 j Z = z) , . . . , (XN j Z = z) are P�
i.i.d. claims.

I Insurance portfolio liability per policy:

S � SN
N

with SN = ∑N
i=1 Xi
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Hedgers
Exercise 3� (cont�d):
I The insurance portfolio liability per policy can be
decomposed into:

S � SN
N = Y h + Y dN + Y

r

I In this decomposition formula,
I Y h is given by

Y h = θMV
S� SN

N

�Y

I Y dN is given by

Y dN = S �
�
SN
N �EP [X1 j Z ]

�
I Y r is given by

Y r = S �EP [X1 j Z ]� θMV
S� SN

N

�Y
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Hedgers
Exercise 3� (cont�d):

I According to the Conditional LLN, we have that

SN
N

P! EP [X1 j Z ]

I Q1: Show that

Y dN
P! 0

I Hint: If YN
P! Y and ZN

P! Z , then f (YN ,ZN )
P! f (Y ,Z )

for any continuous function f .
I This convergence result can also be stated as

S � SN
N

P! S �EP [X1 j Z ]

I Q2: Give an interpretation of Y h, Y dN and Y
r .
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Hedgers
Exercise 3� (cont�d):

I Q3: Show that in case S � f (Y) and SN/N 2 C?, the
insurance portfolio liability per policy can be expressed as

f (Y)� SN
N = Y h + Y dN + Y

r
act + Y

r
�n

with

Y h = θMVf (Y) �Y�EP [X1]

Y dN = f (Y)�
�
SN
N
�EP [X1 j Z ]

�
Y ract = f (Y)�

�
EP [X1 j Z ]�EP [X1]

�
Y r�n =

�
f (Y)� θMVf (Y) �Y

�
�EP [X1]

I Q4: Give an interpretation of each of the 4 terms in this
decomposition.

61 / 138



5. Linking valuations and hedgers

Lemma:

I Consider a hedger θ and a valuation ρ. De�ne the hedger µ by

µS = θS + (ρ [S � θS �Y] , 0, . . . , 0) for any S 2 C

I If θ is a market-consistent hedger, then µ is a
market-consistent hedger.

I If θ is a model-consistent hedger10 and ρ is a model-consistent
valuation with underlying actuarial valuation π, then µ is a
model-consistent hedger with underlying actuarial valuation
π.

10This condition can be weakened to �θ hedges any orthogonal claim by a
zero coupon bond trading strategy�.
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Linking valuations and hedgers

Lemma:

I Let θ be a fair hedger11.
I Let ρ be a model-consistent valuation with underlying
actuarial valuation π.

I Then the hedger µ de�ned by

µS = θS + (ρ [S � θS �Y] , 0, . . . , 0) for any S 2 C

is a fair hedger with underlying actuarial valuation π.

11This condition can be weakened to �θ is a market-consistent hedger which
hedges any orthogonal claim by a zero coupon bond trading strategy�.
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Linking valuations and hedgers
Theorem:

I Consider the valuation ρ : C ! R.

I ρ is a market-consistent valuation if and only if there exists
a market-consistent hedger µmac such that

ρ [S ] = µmacS � y for any S 2 C

I ρ is a model-consistent valuation if and only if there exists
a model-consistent hedger µmoc such that

ρ [S ] = µmocS � y for any S 2 C

I ρ is a fair valuation if and only if there exists a fair hedger µf

such that
ρ [S ] = µfS � y for any S 2 C
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Linking valuations and hedgers

Remark: Why we can�t get rid of actuaries

I The valuation ρ de�ned by

ρ [S ] = e�r EQ [S ] for any S 2 C

is not a fair valuation (see Exercise 4).
I A fair valuation ρ can always be expressed as

ρ [S ] = e�r EQ
�
µfS �Y

�
for any S 2 C

for some fair hedger µfS , which implies that an actuarial
valuation is involved.
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6. Hedge-based valuations

I De�nition:
ρ : C ! R is a hedge-based valuation if

ρ [S ] = θS � y+ π[S � θS �Y] for any S 2 C

where θ is a fair hedger and π is a model-consistent valuation.
I Remark: An important subclass of the class of hedge-based
(HB) valuations arises if we require π to be an actuarial
valuation.

I Exercise 8:
I Consider a hedge-based valuation ρ.
I Q1: Show that ρ is normalized and translation invariant, and
hence, a valuation.

I Q2: Show that

ρ
h
Sh
i
= e�r EQ

h
Sh
i

and ρ
�
S?
�
= π[S?]
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Hedge-based valuations

I Theorem:
I A HB valuation ρ is positive homogeneous:

ρ [a S ] = a ρ [S ] for any a > 0 and S 2 C

if its underlying θ and π are positive homogeneous.
I A HB valuation ρ is subadditive:

ρ [S1 + S2 ] � ρ [S1 ] + ρ [S2 ] for any S1,S2 2 C

if its underlying θ is additive and π is subadditive.

I Theorem:

ρ is a HB valuation , ρ is a fair valuation
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Hedge-based valuations
Convex hedge-based valuations

I De�nition:
I Consider the strictly convex function u � 0 with u(0) = 0.
I The valuation ρ : C ! R de�ned by

ρ [S ] = θuS � y+ π[S � θuS �Y]

with convex hedger θu and model-consistent valuation π is
called a convex hedge-based valuation (CHB valuation).

I Corollary:

Any CHB valuation is a fair valuation
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Hedge-based valuations
Mean-variance hedge-based valuations

I De�nition:
I Consider the MV hedger θMV and a model-consistent
valuation π.

I The valuation ρ : C ! R de�ned by

ρ [S ] = θMVS � y+ π[S � θMVS �Y]

is a mean-variance hedge-based valuation (MVHB)12.

I Corollary: Properties of the MVHB valuation ρ with
model-consistent valuation π.

I ρ is a fair valuation.
I If π is positive homogeneous, then ρ is positive homogeneous.
I If π is subadditive, then ρ is subadditive.

12MV hedging for valuating insurance liabilities is also considered in
Tsanakas, Wütrich and Cerny (2013).
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Hedge-based valuations
Mean-variance hedge-based valuations

I For the subclass of MVHB valuations where π is an actuarial
valuation, we �nd :

ρ [S ] = θMVS � y+ e�r RM
h
S � θMVS �Y

i
I MVHB valuation with CoC principle π:

ρ [S ] = θMVS � y+ e�r i VaRP
p

h
S � θMVS �Y

i
I MVHB valuation with SD principle π:

ρ [S ] = θMVS � y+ αe�rσP
h
S � θMVS �Y

i
I Exercise 9:

I Consider the following fair valuation:

ρ [S ] = e�r EQ
�
EP [S j Y]

�
for any S 2 C

I Q: Express ρ as a MVHB valuation.
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Hedge-based valuations
Brennan-Schwartz formula for MVHB valuations

I Consider the MVHB valuation ρ de�ned by

ρ [X ] = θMVX � y+ π[X � θMVX �Y] for any X 2 C

I Consider the product liability S :

S = Sh � S? with Sh 2 Ch and S? 2 C?

I Brennan-Schwartz formula for MVHB valuations:

ρ [S ] = e�r EQ
�
Sh
�
�EP

�
S?
�
+ π

�
Sh �

�
S? �EP

�
S?
���
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Hedge-based valuations
Exercise 10: Brennan-Schwartz formula.
I Consider the MVHB valuation ρ de�ned by

ρ [X ] = θMVX � y+ π[X � θMVX �Y], for any X 2 C
with π the standard deviation principle:

π [X ] = e�r
�

EP [X ] + α σP [X ]
�
, for all X 2 C

I Consider the product liability S :

S = Sh � S? with Sh 2 Ch and S? 2 C?

I Q1: Show that

ρ [S ] = e�r EQ
�
Sh
�
�EP

�
S?
�
+ α e�r σP

�
S?
�r

EP
h
(Sh)2

i
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Hedge-based valuations
Exercise 10: (cont�d).

I Consider an insurance portfolio of N policies, where policy i
pays Sh � X?i .

I Assume that Sh 2 Ch and the X?i are P�i.i.d. elements of
C?.

I The aggregate claims of the insurance portfolio is given by
Sh � S?, with

S? = ∑N
i=1 X

?
i

I Suppose that each policy is charged a premium
ρ[S h�S?]

N .
I Q2: Show that

ρ[S h�S?]
N = e�r EQ

�
Sh
�

EP
�
X?1
�
+ αe�r

σP[X ?1 ]p
N

r
EP
h
(Sh)2

i
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Hedge-based valuations
Mean-variance hedge-based valuations

Exercise 10: (cont�d).

I Suppose:

I Sh > 0.
I Each insurance contract is charged a premium

ρ[S h�S?]
N .

I These premiums are fully invested in units of Sh .

I Q3: Show that the probability that the time-1 value of the
invested premiums exceeds the time-1 liability Sh � S? is
given by

P

"
S?�EP[S?]

σP[S?]
� α

q
EP[(S h)2]
EQ[S h ]

#
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Hedge-based valuations
Mean-variance hedge-based valuations

Exercise 11: Unit-linked insurance.
I Consider a portfolio of N insureds, with

X?i =
�
0 : insured i dies before time 1
1 : insured i is alive at time 1

I The orthogonal claims X?i are i.i.d. with mean p (under P).
I Number of survivors at time 1:

S?N = ∑Ni=1 X
?
i

I Each insured i underwrites a unit-linked contract with
time-1 payo¤:

max
�
Y (1),K

�
� X?i with K > 0

I Suppose that the traded assets are
Y (0), Y (1) and Y (2) =

�
K � Y (1)

�
+
.
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Hedge-based valuations
Mean-variance hedge-based valuations

Exercise 11: (cont�d).
I Unit-linked insurance portfolio liability:

Sh � S?N = max
�
Y (1),K

�
�∑N

i=1 X
?
i

I Q1: Show that the MV hedge of Sh � S?N is N � p� (0, 1, 1).
I Consider the MVHB valuation ρ de�ned by

ρ [S ] = θMVS � y+ π[S � θMVS �Y] for any S 2 C
with π the standard deviation principle:

π [X ] = e�r
�

EP [X ] + α σP [X ]
�
, for any X 2 C

I Q2: Show that the MVHB value of the unit-linked liability
(per policy) is given by

ρ[S h�S?N ]
N =

�
y (1) + y (2)

�
p + α e�r

q
p(1�p)
N

r
EP
h
(Sh)2

i
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Hedge-based valuations
Mean-variance hedge-based valuations

Exercise 11: (cont�d).

I Suppose:

I Each unit-linked contract is charged a premium
ρ[S h�S?N ]

N .
I These premiums are fully invested in units of Sh .

I Assumption: S?N is (approx.) normal distributed (under P).

I Q3: Show that the probability that the time-1 value of the
invested premiums exceeds the time-1 liability Sh � S? is
given by

Φ

"
αe�r

q
EP[(S h)2]
(y (1)+y (2))

#
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Hedge-based valuations

Exercise 12: Unit-linked insurance.

I Consider a portfolio of N insurance contracts, with payo¤
of contract i at time 1 given by Sh � Xi for any i .

I Assumptions:

I Sh 2 Ch .
I Any Xi 2 C.
I There exists a r.v. Z 2 C? with support A, such that for any
outcome z 2 A, one has that
(X1 j Z = z) , . . . , (XN j Z = z) are P�i.i.d. orthogonal
claims.
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Hedge-based valuations
Exercise 12: (cont�d).

I Unit-linked insurance portfolio liability:

Sh � S?N

with S?N = ∑N
i=1 Xi 2 C?.

I Consider the MVHB valuation of Sh � S?N :

ρ
�
Sh � S?N

�
= θMVS h�S?N

� y+ π[Sh � S?N � θMVS h�S?N
�Y]

with π the standard deviation principle:

π [X ] = e�r
�

EP [X ] + α σP [X ]
�
, for any S 2 C
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Hedge-based valuations
Exercise 12: (cont�d).

I Q1: Show that the MVHB value of the unit-linked liability
per policy is given by

ρ[S h�S?N ]
N = e�r EQ

�
Sh
�

EP [X1] + αe�r
r

EP
h
(Sh)2

i � A
N + B

�
with

A = EP
h
VarP [X1 j Z ]

i
and B = VarP

h
EP [X1 j Z ]

i
I Q2: Show that the MVHB value of the unit-linked liability per
policy can also be expressed as follows:

ρ[S h�S?N ]
N = e�r EQ

�
Y h
�
+ αe�r

q
VarP

�
Y dN
�
+ VarP [Y r ]

with Y h, Y dN and Y
r the hedgeable, diversi�able and residual

claim as de�ned in Exercise 3�.
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Hedge-based valuations

Exercise 12: (cont�d):

I In the remainder of this exercise, assume that

Xi =
�
0 : insured i dies before time 1
1 : insured i is alive at time 1

with P [Xi = 1 j Z ] = p (Z ) and P [Xi = 1] = p.

I Q3: Show that

A = EP [p (Z )� (1� p (Z ))] and B = VarP [p (Z )]
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Hedge-based valuations
Exercise 13-1:
Consider the �nancial-actuarial world

�
Ω, 2Ω,P

�
with

I Universe:

Ω = f(0, 0) , (0, 1) , (1, 0) (1, 1)g
I First component = price Y (1) of stock 1 at time 1.
I Second component = value of survival index I at time 1.

I Probabilities: 8>><>>:
p0,0 = 1/6
p1,0 = 2/6
p0,1 = 1/6
p1,1 = 2/6
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Hedge-based valuations
Exercise 13-1 (cont�d):
The �nancial-actuarial world

�
Ω, 2Ω,P

�
is home to

I A traded zero-coupon bond:
I Current price: y (0) = 1
I Price at time 1: Y (0) = 1

I A traded stock:
I Current price: y (1) = 1/2
I Price at time 1: Y (1) is either 0 or 1

I A non-traded survival index:

I =
�
0 if few people survive
1 if many people survive

I A non-traded combined claim:

S =
�
1� Y (1)

�
� (1� I)
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Hedge-based valuations
Exercise 13-1 (cont�d):

I Q1: Show that the survival index I is an orthogonal claim.
I Q2: Show that the MV hedge of I is given by

θMVI =
� 1
2 , 0
�

I Q3: Determine the MVHB value ρ [I ] of I :

ρ [I ] = θMVI � y+ π[I � θMVI �Y]

I Q4: Determine the numerical value of ρ [I ] in case π is a
cost-of-capital principle:

ρ [I ] = θMVI � y+ 0.06 VaRP
0.995

h
I � θMVI �Y

i
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Hedge-based valuations

Exercise 13-1 (cont�d):

I Q5: Show that the MV hedge of S is given by

θMVS =
� 1
2 ,�

1
2

�
I Q6: Determine the MVHB value ρ [S ] of S :

ρ [S ] = θMVS � y+ π[S � θMVS �Y]

I Q7: Determine the numerical value of ρ [S ] in case π is a
cost-of-capital principle:

ρ [S ] = θMVS � y+ 0.06 VaRP
0.995

h
S � θMVS �Y

i
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Hedge-based valuations
Exercise 13-2:
Consider the �nancial-actuarial world

�
Ω, 2Ω,P

�
with

I Universe:

Ω = f(0, 0) , (0, 1) , (1, 0) (1, 1)g
I First component = price Y (1) of stock 1 at time 1.
I Second component = value of survival index I at time 1.

I Probabilities: 8>><>>:
p0,0 = 1/6
p1,0 = 2/6
p0,1 = 1/6
p1,1 = 2/6
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Hedge-based valuations
Exercise 13-2 (cont�d):
The �nancial-actuarial world

�
Ω, 2Ω,P

�
is home to

I A traded zero-coupon bond:

I Current price: y (0)(0) = 1.
I Price at time 1: Y (0) = 1.

I A traded stock:
I Current price: y (1)(0) = 1/2.
I Price at time 1: Y (1), which is either 0 or 1.

I A traded survival index:
I Current price: y (2) = 2/3.
I Payo¤ at time 1: Y (2) = I .

I A non-traded combined claim:

S =
�
1� Y (1)

�
� (1� I)
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Hedge-based valuations

Exercise 13-2 (cont�d):

I Q1: Show that the MV hedge of S is given by

θMVS =
� 2
3 ,�

1
2 ,�

1
3

�
I Q2: Determine the MVHB value ρ [S ] of S :

ρ [S ] = θMVS � y+ π[S � θMVS �Y]

I Q3: Determine the numerical value of ρ [S ] in case π is a
cost-of-capital principle:

ρ [S ] = θMVS � y+ 0.06 VaRP
0.995

h
S � θMVS �Y

i
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Hedge-based valuations

Exercise 13-2�:

I Consider the setting of Example 13-2, except that the current

price of the traded survival index is given by y (2) 2 (0, 1) .

I Consider the non-traded claim S =
�
1� Y (1)

�
� (1� I).

I The MVHB value of S is determined by

ρ [S ] = θMVS � y+ 0.06 VaRP
0.995

h
S � θMVS �Y

i
I Q: Show that

ρ [S ] = 131�100 y (2)
300
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Hedge-based valuations
Exercise 13-3:
Consider the �nancial-actuarial world

�
Ω, 2Ω,P

�
with

I Universe:

Ω = f(0, 0) , (0, 1) , (1, 0) (1, 1)g
I First component = price Y (1) of stock 1 at time 1.
I Second component = value of survival index I at time 1.

I Probabilities: 8>><>>:
p0,0 = 1/6
p1,0 = 2/6
p0,1 = 1/6
p1,1 = 2/6
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Hedge-based valuations
Exercise 13-3 (cont�d):
The �nancial-actuarial world

�
Ω, 2Ω,P

�
is home to

I A traded zero-coupon bond: see Exercise 11-2.
I A traded stock: see Exercise 11-2.
I A traded survival index: see Exercise 11-2.
I A traded call option:

I Current price: y (3) = 1/6.
I Payo¤ at time 1:

Y (3) = I�
�
Y (1) � 0.5

�
+

I A non-traded combined claim:

S =
�
1� Y (1)

�
� (1� I)
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Hedge-based valuations

Exercise 13-3 (cont�d):

I Q1: Show that the MV hedge of S is given by

θMVS = (1,�1,�1, 2)

I Q2: Determine the MVHB value ρ [S ] of S :

ρ [S ] = θMVS � y+ π[S � θMVS �Y]
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Hedge-based valuations
Exercise 14:
I Consider a national population of Nnat members:

Ii =
�
0 : member i dies before time 1
1 : otherwise

I National survival index:

I = I1 + I2 + . . .+ IN nat

I Consider an insured population of N ins members:

Ji =
�
0 : insured i dies before time 1
1 : otherwise

I Insurance bene�t payments at time 1:

S = J1 + J2 + . . .+ JN ins

I Remark: The insured population is not necessary a subset of
the national population.
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Hedge-based valuations
Exercise 14 (cont�d):
I There is a �nancial market consisting of 3 traded assets:

I Zero-coupon bond:
I Current price: y (0) = 1
I Price at time 1: Y (0) = e r

I Stock:
I Current price: y (1)
I Price at time 1: Y (1) 2 A.

I National survival index:
I Current price: y (2)
I Price at time 1: Y (2) = I .

I Financial-actuarial world
�
Ω, 2Ω,P

�
:

Ω =
�
(x1, x2, x3) j x1 2 A; x2 = 0, ...,Nnat; x3 = 0, ...,N ins

	
I Ω is support of

�
Y (1), I ,S

�
.
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Hedge-based valuations

Exercise 14 (cont�d):

I Assumption: Y (1) and (I ,S) are P - independent.

I Q1: Show that the MV hedge θMVS =
�

θ
(0)
S , θ

(1)
S , θ

(2)
S

�
of S

is given by8>><>>:
θ
(0)
S = e�r

�
EP [S ]�EP [I ] covP[I ,S ]

varP[I ]

�
θ
(1)
S = 0

θ
(2)
S = covP[I ,S ]

varP[I ]
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Hedge-based valuations

Exercise 14 (cont�d):

I Additonal assumptions:

I N ins � Nnat and Ji = Ii for i = 1, 2, . . . ,N ins.
I All Ii are i.i.d. under P with P [Ii = 1] = p > 0.

I Q2: Show that the MV hedge θMVS =
�

θ
(0)
S , θ

(1)
S , θ

(2)
S

�
of S

is now given by 8><>:
θ(0) = 0
θ(1) = 0
θ(2) = N ins

N nat
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Hedge-based valuations

Exercise 14 (cont�d):

I Consider the MVHB valuation

ρ [S ] = θMVS � y+ π[S � θMVS �Y]

with π the standard deviation principle:

π [X ] = e�r
�
EP [X ] + α σP [X ]

�
for any X 2 C

I Q3: Show that ρ[S ]
N ins is given by

ρ[S ]
N ins =

y (2)

N nat + e
�r α

q� 1
N ins �

1
N nat
�
p(1� p)
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7. Two-step valuations
I De�nition:

I Consider the vector of asset prices Y in (Ω,G,P).
I A derivative of Y is a r.v. of the form f (Y), for some
Borel measurable function f .

I Equivalent de�nition:
I Let FY � G be the sigma-algebra generated by the asset
prices Y.

I A derivative of Y is a r.v. on
�

Ω,FY
�
.

I We denote the linear space of all derivatives of Y by CY.

I Examples of derivatives:
I Conditional expectation: f (Y) = EP [S j Y]
I Conditional variance: f (Y) = VarP [S j Y]
I Time-1 value of trading strategy µ: f (Y) = µ �Y
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Two-step valuations

I De�nition: A conditional valuation is a mapping
πY : C ! CY attaching a derivative of Y to any claim S :

S ! πY [S ]

such that
I πY is normalized:

πY [0] = 0

I πY is translation invariant:

πY [S + a] = πY [S ] + e�r a for any S 2 C and a 2 R

I Examples of conditional valuations:

I πY [S ] = e�r EP [S j Y]
I πY [S ] = e�r θS �Y, where θ is a hedger
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Two-step valuations
I De�nitions:

I Consider the conditional valuation πY : C ! CY.

I πY is market-consistent if

πY

h
S + Sh

i
= πY [S ] + e�r ν �Y for any S 2 C and Sh = ν �Y

I πY is model-consistent if there exists an actuarial valuation
π such that

πY
�
S?
�
= π

�
S?
�

for any S? 2 C?

I πY is fair if it is market-consistent and model-consistent.

I Example of a fair conditional valuation:

πY [S ] = e�r θfS �Y where θf is a fair hedger
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Two-step valuations

I For any market-consistent conditional valuation πY, one has
that

πY
�
Sh
�
= e�r Sh for any Sh

I But there exist market-consistent conditional valuations πY
and derivatives f (Y) for which

πY [f (Y)] 6= e�r f (Y)

I Example:
I Consider the market-consistent conditional valuation

πY [S ] = e�rθ
MV
S �Y.

I In case f (Y) /2 Ch , one has that

πY [f (Y)] 6= e�r f (Y)
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Two-step valuations
Exercise 15:

I Q1: Show that the following mappings S ! πY [S ], for any
S 2 C, are fair conditional valuations:

I Conditional standard deviation principle: (α � 0)

πY [S ] = e�r
�
EP [S j Y] + α σP [S j Y]

�
I Conditional cost-of-capital principle: (i , p 2 [0, 1))

πY [S ] = e�r
�

EP [S j Y] + i
�
VaRP

p [S j Y]�EP [S j Y]
��

I Q2: For both conditional valuations, show that

πY
�
f (Y)� S?

�
= f (Y)� π

�
S?
�

holds for any non-negative f (Y) 2 CY and any S? 2 C?.
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Two-step valuations

I De�nition13: A mapping ρ : C ! R is a two-step valuation
(TS valuation) if there exists a fair conditional valuation πY
and an EMM Q such that

ρ [S ] = EQ [πY [S ]] for any S 2 C

I Examples:
I TS standard deviation valuation: (TSSD)

ρ [S ] = e�r EQ
�
EP [S j Y] + α σP [S j Y]

�
I Two-step CoC valuation: (TSCoC)

ρ [S ] = e�r EQ
h
EP [S j Y] + i

�
VaRP

p [S j Y]�EP [S j Y]
�i

13Pelsser & Stadje (2014) de�ne sligthly di¤erent two-step valuations in a
complete �nancial market setting.
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Université d�Abomey-Calavi, Benin, May 2017.
104 / 138



Two-step valuations
I Theorem:

ρ is a TS valuation , ρ is a fair valuation

I Exercise 16:
I Consider the MVHB valuation ρ:

ρ [S ] = θMVS � y+ π[S � θMVS �Y] for any S 2 C

I Q: Show that ρ can be expressed as a TS valuation:

ρ [S ] = EQ [πY [S ]] for any S 2 C

with

πY [S ] =
�

θMVS + (π [S � θS �Y] , 0, . . . , 0)
�
�Y
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Two-step valuations
Two-step valuations in a market where any derivative is hedgeable

I Assumption (only made on this slide!):
I Any derivative f (Y) is hedgeable.
I Equivalently, the �nancial market of (n+ 1) traded assets is

complete in
�

Ω,FY,P
�
.

I De�nition: The two-step hedger of the fair conditional
valuation πY is the mapping θTS : C ! Θ such that

θTSS �Y = er πY [S ] for any S 2 C

I Properties:
I θTS is uniquely determined.
I θTS is a fair hedger.

I Two-step values:

ρ [S ] = EQ [πY [S ]] = θTSS � y for any S 2 C
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Two-step valuations
The Brennan - Schwartz formula for TS valuations

I Consider the TS valuation ρ de�ned by

ρ [S ] = EQ [πY [S ]] for any S 2 C

with fair conditional valuation πY and underlying actuarial
valuation π.

I Brennan - Schwartz formula for TS valuations:
I Let f (Y) 2 CY and S? 2 C?, such that

πY

h
f (Y)� S?

i
= f (Y)� π

h
S?
i

I Then one has

ρ
�
f (Y)� S?

�
= EQ [f (Y)]� π

�
S?
�

I This generalized B-S formula holds in particular for the TSSD
valuation and the TSCoC valuation, provided f (Y) � 0.
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Two-step valuations
Exercise 17:
I Consider the TS valuation given by

ρ [S ] = EQ [πY [S ]] for any S 2 C

I Consider a unit-linked insurance portfolio liability Sh � S?:
I Suppose that

Sh > 0 and πY

h
Sh � S?

i
= Sh � π

h
S?
i

I The insurer charges a premium ρ
h
Sh � S?

i
.

I The premium is fully invested in Sh .

I Q: Show that the probability that at time 1, the insurer will
be able to pay Sh � S? from the invested premium is given by

P
�
S? � er π

�
S?
��

I This result holds in particular for the TSSD valuation and the
TSCoC valuation.
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Prof. Dr. Ichiro Shigekawa, head actuarial science section,
Kyoto University, November 2018.
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Two-step valuations
Exercise 18: Brennan-Schwartz formula.
I Consider the TSSD valuation ρ : C ! R, de�ned by

ρ [S ] = e�r EQ
�
EP [S j Y] + α σP [S j Y]

�
for any S 2 C

I Consider the portfolio liability Sh � S? with 0 < Sh 2 Ch and
S? 2 C?.

I Q1: Show that

ρ
�
Sh � S?

�
= e�r EQ

�
Sh
�
�
�
EP
�
S?
�
+ α σP

�
S?
��

I Q2: Suppose that S? = X?1 + . . .+ X?N with X?1 , . . . ,X?N
being P - i.i.d. orthogonal claims. Show that

1
N ρ

�
Sh � S?

�
= e�r EQ

�
Sh
�
�
�

EP
�
X?1
�
+ αp

N
σP
�
X?1
��
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Two-step valuations

Exercise 18: (cont�d)

I Suppose:

I Each unit-linked contract is charged a premium
ρ[S h�S?]

N .
I These premiums are fully invested in units of Sh .

I Q3: Show that the probability that the time-1 value of the
invested premiums exceeds the time-1 liability Sh � S? is
given by

P

�
S?�EP[S?]

σP[S?]
� α

�
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Two-step valuations
Exercise 19: Unit-linked insurance.
I Consider a portfolio of N insureds, with

X?i =
�
0 : insured i dies before time 1
1 : insured i is alive at time 1

I The orthogonal claims X?i are i.i.d. with mean p (under P).
I Number of survivors:

S? = ∑Ni=1 X
?
i

I Each insured i has underwritten a unit-linked contract with
payo¤ at time 1 given by

max
�
Y (1),K

�
� X?i with K > 0

I Suppose that the traded assets are Y (0),Y (1) and
Y (2) =

�
K � Y (1)

�
+
.
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Two-step valuations
Exercise 19 (cont�d):

I Unit-linked insurance portfolio liability:

Sh � S? = max
�
Y (1),K

�
�∑N

i=1 X
?
i

I Consider the fair valuation ρ de�ned by

ρ [S ] = e�r EQ
�
EP [S j Y] + α σP [S j Y]

�
for any S 2 C

with α � 0.
I Q1: Show that the fair value of the unit-linked liability is
given by

ρ
�
Sh � S?

�
=
�
y (1) + y (2)

� �
Np +

p
Nα
p
p(1� p)

�
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Two-step valuations

Exercise 19 (cont�d):

I Suppose:

I Each unit-linked contract is charged a premium
ρ[S h�S?]

N .
I These premiums are fully invested in Sh .

I Q2: What is the probability that the insurer will be able to
pay his time-1 liability?

I Assumption: S? is (approx.) normal distributed (under P).

I Q3: Determine the probability that the insurer will be able to
pay his time-1 liability in case of a pure unit-linked contract
(K = 0).
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Two-step valuations
Exercise 20:

I Consider a portfolio of N insurance contracts, with payo¤
of contract i at time 1 given by

f (Y)� Xi i = 1, 2, . . . ,N

I Assumptions:

I 0 � f (Y) 2 CY and any Xi 2 C.
I There exists a r.v. Z 2 C? with support A, such that for any
z 2 A, one has that (X1 j Z = z) , . . . , (XN j Z = z) are P�
i.i.d. orthogonal claims.

I Unit-linked insurance portfolio liability:

f (Y)� S?N

with S?N = ∑N
i=1 Xi 2 C?.
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Two-step valuations
Exercise 20 (cont�d):

I Consider the following TSSD valuation:

ρ [S ] = e�r EQ
h
EP [S j Y] + α σP [S j Y]

i
with α � 0.

I Q1: Show that the TSSD value of the unit-linked liability
per policy is given by

ρ[f (Y)�S?N ]
N = e�r EQ [f (Y)]

�
EP [X1] + α

q
A
N + B

�
with

A = EP
h
VarP [X1 j Z ]

i
and

B = VarP
h
EP [X1 j Z ]

i
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Two-step valuations

Exercise 20 (cont�d):

I In the remainder of this exercise, assume that
f (Y) � Sh 2 Ch.

I Let Y h, Y dN and Y
r the hedgeable, diversi�able and residual

part of S
h�S?N
N as de�ned in Exercise 3�.

I Q2: Show that the TSSD value of the unit-linked liability per
policy can then be expressed as follows:

ρ[S h�S?N ]
N = e�r EQ

�
Y h
�
�
�
1+ α

r
VarP[Y dN ]+Var

P[Y r ]

EP[(Y h)2]

�
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Two-step valuations
Exercise 21-1:
Consider the �nancial-actuarial world

�
Ω, 2Ω,P

�
with

I Universe:

Ω = f(0, 0) , (0, 1) , (1, 0) (1, 1)g
I First component = price Y (1) of stock 1 at time 1.
I Second component = value of survival index I at time 1.

I Probabilities: 8>><>>:
p0,0 = 1/6
p1,0 = 2/6
p0,1 = 1/6
p1,1 = 2/6
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Two-step valuations
Exercise 21-1 (cont�d):
The �nancial-actuarial world

�
Ω, 2Ω,P

�
is home to

I A traded zero-coupon bond:
I Current price: y (0) = 1
I Price at time 1: Y (0) = 1

I A traded stock:
I Current price: y (1) = 1/2
I Price at time 1: Y (1) is either 0 or 1

I A non-traded survival index:

I =
�
0 if few people survive
1 if many people survive

I A non-traded claim:

S = (1� I)�
�
1� Y (1)

�
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Two-step valuations

Exercise 21-1 (cont�d):

I Q1: Show that any derivative of Y =
�
Y (0),Y (1)

�
is

hedgeable.
I Consider the fair conditional valuation πY (with underlying
actuarial valuation π) and the non-traded claim S :

S = (1� I)�
�
1� Y (1)

�
I Q2: Express both the TS hedge θTSS of πY [S ] and the
TS value ρ [S ] = EQ [πY [S ]] of S as functions of π [1� I ].

I Q3: Determine the TS CoC value ρ [S ] of S , when i = 0.06
and p = 0.995.
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Two-step valuations
Exercise 21-2:
Consider the �nancial-actuarial world

�
Ω, 2Ω,P

�
with

I Universe:

Ω = f(0, 0) , (0, 1) , (1, 0) (1, 1)g
I First component = price Y (1) of stock 1 at time 1.
I Second component = value of survival index I at time 1.

I Probabilities: 8>><>>:
p0,0 = 1/6
p1,0 = 2/6
p0,1 = 1/6
p1,1 = 2/6
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Two-step valuations
Exercise 21-2 (cont�d):
The �nancial-actuarial world

�
Ω, 2Ω,P

�
is home to

I A traded zero-coupon bond:

I Current price: y (0) = 1.
I Price at time 1: Y (0) = 1.

I A traded stock:
I Current price: y (1) = 1/2.
I Price at time 1: Y (1), which is either 0 or 1.

I A traded survival index:
I Current price: y (2) = 2/3.
I Payo¤ at time 1: Y (2) = I .

I A non-traded claim:

S = (1� I)�
�
1� Y (1)

�
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Two-step valuations
Exercise 21-2 (cont�d):

I Q1: Show that Q = (q00, q10, q01, q11) is an EMM for the
�nancial market in

�
Ω, 2Ω,P

�
if and only if

q00 2
�
0, 13
�
, q10 = 1

3 � q00, q01 = 1
2 � q00, q11 = 1

6 + q00

I Q2: Show that S = (1� I)�
�
1� Y (1)

�
is a non-hedgeable

derivative of Y =
�
Y (0),Y (1),Y (2)

�
.

I Q3: Show that the TS CoC value ρ [S ] of S is given by

ρ [S ] = q00

I Q4: Determine the TS CoC value of S in case I and Y (1) are
independent under Q.
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Two-step valuations
Exercise 21-3:
Consider the �nancial-actuarial world

�
Ω, 2Ω,P

�
with

I Universe:

Ω = f(0, 0) , (0, 1) , (1, 0) (1, 1)g
I First component = price Y (1) of stock 1 at time 1.
I Second component = value of survival index I at time 1.

I Probabilities: 8>><>>:
p0,0 = 1/6
p1,0 = 2/6
p0,1 = 1/6
p1,1 = 2/6
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Two-step valuations
Exercise 21-3 (cont�d):
The �nancial-actuarial world

�
Ω, 2Ω,P

�
is home to

I A traded zero-coupon bond: see Exercise 15-2.
I A traded stock: see Exercise 15-2.
I A traded survival index: see Exercise 15-2.
I A traded call option:

I Current price: y (3) = 1/6.
I Payo¤ at time 1:

Y (3) = I�
�
Y (1) � 0.5

�
+

I A non-traded claim:

S = (1� I)�
�
1� Y (1)

�
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Two-step valuations

Exercise 21-3 (cont�d):

I Q1: Show that the market is complete in
�
Ω, 2Ω,P

�
.

I Q2: Determine the hedge of S = (1� I)�
�
1� Y (1)

�
.

I Q3: Show that any fair value of S is given by

ρ [S ] = 1
6
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Two-step valuations
Exercise 22:
I Consider a national population of Nnat members:

Ii =
�
0 : member i dies before time 1
1 : otherwise

I National survival index:

I = I1 + I2 + . . .+ IN nat

I Consider an insured population of N ins members:

Ji =
�
0 : insured i dies before time 1
1 : otherwise

I Insurance claim at time 1:

S = J1 + J2 + . . .+ JN ins

I Assumption:
I N ins � Nnat and Ji = Ii for i = 1, 2, . . . ,N ins.
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Two-step valuations

Exercise 22 (cont�d):

There is a �nancial market consisting of 3 traded assets:

I Zero-coupon bond:

I Current price: y (0) = 1
I Price at time 1: Y (0) = er

I Stock:
I Current price: y (1)
I Price at time 1: Y (1) 2 A.

I National survival index:
I Current price: y (2)
I Price at time 1: Y (2) = I .
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Two-step valuations
Exercise 22 (cont�d):

I Financial-actuarial world
�
Ω, 2Ω,P

�
:

Ω =
�
(x1, x2, x3) j x1 2 A; x2 = 0, 1...,Nnat, x3 = 0, 1...,N ins

	
I Ω is a support of

�
Y (1), I , S

�
.

I Assumption: Y (1) and (I ,S) are P - independent.

I Suppose that the fair value of the insurance claim S is
determined by the TSSD principle:

ρ [S ] = e�r EQ
�
EP [S j Y] + α σP [S j Y]

�
129 / 138



Two-step valuations
Exercise 22 (cont�d):

I Q1: Show that ρ [S ] is given by

ρ[S ]
N ins =

y (2)

N nat + α e�r EQ

�r� 1
N ins �

1
N nat
�
� Y (2)

N nat�1 �
�
1� Y (2)

N nat

� �
I Additional assumptions:

I A is a countable set.
I All Ii are i.i.d. under P with P [Ii = 1] = p > 0.

I Q2: Write down the set of equations which determines the
set of EMM�s for the �nancial market in

�
Ω, 2Ω,P

�
.

I Q3: Does ρ [S ] depend on the choice of Q?
I Suppose that Q is an EMM under which all Ii are i.i.d.

I Q4: Determine the Q-distributions of Ii , I and S , respectively.
I Q5: Is ρ [S ] uniquely determined in this case?
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Two-step valuations
Exercise 23: HB valuations vs. TS valuations.

I Let α � 0. Consider the mapping ρ : C ! R de�ned by

ρ [S ] = θMVS � y+ α e�r EQ
�
σP [S j Y]

�
for any S 2 C

I Q1: Show that ρ is a fair valuation.
I Q2: Show that ρ can be expressed as a MVHB valuation
with model-consistent valuation π given by

π [X ] = e�r EP [X ] + α e�r EQ
�
σP [X j Y]

�
for any X 2 C

I Q3: Show that ρ can be expressed as a TS valuation with
underlying fair conditional valuation πY given by

πY [S ] = e�r θMVS �Y+ α e�r σP [S j Y] for any S 2 C
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Two-step valuations

Exercise 23 (cont�d):

I Q4: Let 0 � Sh 2 Ch and S? 2 C?. Show that

ρ
�
Sh � S?

�
= ρTS

�
Sh � S?

�
where ρTS is the TSSD valuation with parameter α.

I Q5: Does the following statement holds:

ρ [S ] = ρTS [S ] , for any S 2 C?

I Q6: Does the statement above holds in case all derivatives of
Y are hedgeable?
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8. Conclusions
I We introduced the fair valuation of �nancial-actuarial
liabilities in a single period setting:

I We combined prices observed in the �nancial market with a
valuation based on an actuarial model.

I Both P- and Q-measures are involved.

I We proved the equivalence of the following statements :

1. ρ is a fair valuation.
2. There exists a fair hedger θf, such that

ρ [S ] = e�rθfS � y for any S 2 C

3. ρ is a hedge-based valuation.
4. ρ is a two-step valuation.

I These equivalences hold for any subjective choice of the
properties that an actuarial valuation has to satisfy.

133 / 138



Main reference and some generalizations
I Static valuation of time-T claims, static hedging:

I Dhaene, Stassen, Barigou, Linders & Chen (2017).
Fair valuation of insurance liabilities: merging actuarial
judgement and market-consistency.
Insurance : Mathematics & Economics, 76, 14-27.

I Static valuation of time-T claims, dynamic hedging:
I Barigou & Dhaene (2019).
Fair valuation of insurance liabilities via mean-variance hedging
in a multi-period setting.
Scandinavian Actuarial Journal, 2019(2), 163-187.

I Dynamic valuation of time-T claims, dynamic hedging:
I Barigou, Chen & Dhaene (2019).
Fair dynamic valuation of insurance liabilities: merging
actuarial judgement with market- and time-consistency.
Insurance : Mathematics & Economics, 88, 19-29.

134 / 138



Appendix
I Consider the fair valuation ρf:

ρf [S ] = θfS � y]

I ρf can be expressed as a HB valuation:

ρf [S ] = θfS � y+ π[S � θfS �Y]

with
π [X ] = θfX � y.

I ρf can be expressed as a TS valuation:

ρf [S ] = EQ [πY [S ]]

with
πY [S ] = e

�r θfS �Y.
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Appendix
I Consider the HB valuation ρHB:

ρHB [S ] = θS � y+ π[S � θS �Y]

I ρHB can be expressed as a fair valuation:

ρHB [S ] = θfS � y

with
θfS = θS + (π[S � θS �Y], 0, . . . , 0) .

I ρHB can be expressed as a TS valuation:

ρHB [S ] = EQ [πY [S ]]

with Q any EMM and

πY [S ] = e
�r (θS + (π[S � θS �Y], 0, . . . , 0)) �Y.
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Appendix
I Consider the TS valuation ρTS:

ρTS [S ] = EQ [πY [S ]]

I ρTS can be expressed as a fair valuation:

ρTS [S ] = θfS � y

with

θfS = θMVS +
�

EQ
h
πY

h
S � θMVS �Y

ii
, 0, . . . , 0

�
.

I ρTS can be expressed as a HB valuation:

ρTS [S ] = θfS � y+ π[S � θMVS �Y]

with θf de�ned above and

π [X ] = EQ [πY [X ]] .
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