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Abstract

This paper addresses systematic longevity risk in long-term insurance business.
We analyze the consequences of working under unknown survival probabilities on
the efficiency of the Law of Large Numbers and point out the need for appropriate
and feasible risk management techniques. We propose a setting for risk sharing
schemes between the insurer and policyholders via a dynamic equivalence principle.
We focus on a pure endowment contract and derive conditions for a viable risk
sharing scheme which enhances the solvency situation of the insurer while being
more favorably priced for the policyholders.

Keywords: systematic longevity risk, risk sharing, solvency, dynamic equivalence
principle, (conditional) Law of Large Numbers.

1 Introduction

The evolution of the overall mortality pattern of a population is impacted by factors
which can be either positive, due to medical advances and developments in health care,
or negative, due to epidemics and other natural disasters. In the context of long-term
insurance business, the fact that these factors are common to all individuals in the pop-
ulation induces a positive dependence between the remaining lifetimes of policyholders,
implying that the independence assumption necessary for the Law of Large Numbers
(LLN) is violated. Although increasing the number of identically distributed policies may
help to hedge against the diversifiable part of the risk, the insurer remains exposed to a
systematic part that requires alternative hedging techniques.

The solutions proposed in the existing literature to cope with the systematic risk
can be summarized in two categories: internal or external hedging. Internal hedging
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essentially consists in implementing natural hedging strategies. This solution is however
not sufficient, since insurance companies in practice cannot treat their business lines as
financial assets; see e.g. Cox and Lin (2007) and Luciano et al. (2017) for a discussion.
External hedging, on the other hand, involves a third party to which the systematic risk
is transferred. The third party can for instance be a reinsurer or a pension insurer who is
better able to perform the internal hedge. We refer to Blake et al. (2013) for a discussion
on the pension (re)insurance market and to Denuit et al. (2011) for some limitations
related to reinsurance for life insurance, the most important one being related to credit
risk. The third party can also be an investor seeking for diversification opportunities.
This implies that the risk is transferred in the form of a longevity-linked derivative; see
Blake et al. (2013) and Blake et al. (2017), among others, for more details on the growing
life market.

In this paper, we investigate how to design a product that allows to manage unpre-
dictable longevity risk throughout the life of the contract. This is achieved by transferring
this risk back to policyholders via an agreed-upon risk sharing scheme. Our contribution
is threefold. First, inspired by previous work of e.g. Milevsky et al. (2006), we analyze
the performance of the LLN when policyholders’ future lifetimes are only conditionally
independent. One of the (obvious) findings is that increasing the size of the portfolio is
still beneficial for the insurer. However, the risk stemming from the uncertainty on the
survival index of the portfolio cannot be eliminated, which highlights the risk of spec-
ifying the elements of the insurance contract in absolute term. Second, we propose a
framework in which the information stream can be used to update the contract elements
over time. Under a pricing scheme which we label the dynamic equivalence principle, the
insurer and the policyholders agree upon how the experienced loss is shared between both
parties on, say, a yearly basis. Third, we focus on a pure endowment contract and we
provide indexing formulas for the updated premium plan and/or the benefit package. It
is shown that an appropriate updating mechanism has to comply with two conditions.
The first one aims at enhancing the solvency situation of the insurer. The second one
follows from the fact that the premium of the contract has to be lower compared to the
one from the corresponding classical contract in order to remain sufficiently appealing for
policyholders. Taking into account these two constraints enables us to derive a viable
updating mechanism.

Updating mechanisms shifting (part of) the burden of systematic risk back to pol-
icyholders are not new in the literature. The main idea is to design the product such
that the insurer is less exposed to systematic deviations by adapting premiums, benefits
and/or the date of the first benefit payment. Particularly well-known examples of such
products are unit-linked policies which consist in linking the benefits to the performance
of a fund, and in this way, putting the down- as well as upside systematic investment risk
on the shoulders of the policyholders. Another example of products where the benefits
are adapted to the experienced survival is a tontine scheme or a survival fund; see e.g.
Milevsky and Salisbury (2016), Forman and Sabin (2016) as well as the tonuity proposal of
Chen et al. (2017) which combines a tontine and an annuity. Contracts where systematic
longevity risk is coped with by regularly updating the benefit have also been considered
in Dahl (2004). Indexing may as well be related to group self-annuitization, in which
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retirees pool and form a fund to provide protection against longevity; see Piggott et al.
(2005) and Valdez et al. (2006). Moreover, Denuit et al. (2011) and Richter and Frederik
(2011) advocate indexing mechanisms for life annuities. We also refer to the participating
variable investment-linked deferred annuities (VILDAs) studied in Mauer et al. (2013).
More recently, Denuit et al. (2017) and Dhaene et al. (2017) studied premium indexing
for lifelong health insurance contracts.

The present work provides a setting for updating the various contract elements. It may
offer a superior protection to policyholders, since the insurer can contribute to restore the
break of the actuarial equivalence. An additional advantage of working under the proposed
framework is that it enables to design a risk sharing scheme which enhances the insurer’s
solvency. Furthermore, the proposed setting allows us to derive conditions on the yearly
share and on the longevity risk loadings such that contracts priced with the dynamic
equivalence principle lead to lower premiums than their classical counterparts. Note that
Mauer et al. (2013) find, under a lifecycle portfolio choice model with CRRA utility
function, that policyholders would be keen to purchase participating contracts provided
the loading of this contract is below a certain threshold; see also Weale and van de Ven
(2016). In the same spirit, Boon et al. (2018) compare the CRRA-based preferences of
policyholders between annuity contracts and GSA plans and include the perspective of
equity holders. Our results differ and generalize those mentioned above at different levels.
The proposed setting goes beyond the no-transfer/full-transfer binarism and provides a
scheme where the systematic risk is shared among the two parties. Additionally, the
conditions under which each party has an advantage in engaging in the dynamic contract
are given in closed-form expression. Moreover, the constraint imposed from the viewpoint
of the policyholder is that the risk sharing scheme should lead to a contract where, taking
into account the potential future payments, the premium has to be lower than that of the
corresponding classical contract priced in a classical way. This implies that the results
hold for any utility function describing the choice of a profit-seeking decision maker, and
thus, no assumption is required on its functional form. Also, the loading considered here
is not restricted to a given choice of the loading function and includes e.g. the quantile-
based loading considered in Mauer et al. (2013) as a particular case. Last but not least,
our work reconciles both the solvency constraint of the insurer and the price constraint
of policyholders, leading to a viable risk sharing scheme.

The remainder of the paper is organized as follows. Section 2 addresses the systematic
longevity risk and the consequences of replacing the independent remaining lifetimes as-
sumption by a conditional independence assumption. This section is supplemented by the
discussion in Appendix A. In Section 3, we introduce the dynamic equivalence principle
as a possible solution to reduce the insurer’s exposure to systematic risk. We apply the
approach to a portfolio of pure endowments in Section 4 and show how to design a viable
contract which is appealing to both the insurer and policyholders. This section contains
also a numerical analysis of these viable contracts. Finally, Section 5 concludes the paper.

We end the introduction by noting that although the angle taken here is from the
longevity aspect of the risk, our results and conclusions can readily be generalized to
include other elements of the technical basis such as interest rates and lapse rates.
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2 Systematic longevity risk

Consider a portfolio of lx policyholders all aged x at time 0 whose remaining lifetimes
are denoted by T1, . . . , Tlx . At time 0, the survival-or-not upon time t of policyholder i is
represented by the following survival indicator:

Ii(0, t) =

{
1 if Ti > t
0 otherwise

, (1)

whereas the corresponding survival index of the portfolio is defined as follows:

I(0, t) =
1

lx

lx∑
i=1

Ii(0, t). (2)

Throughout the paper, as in most models for projecting mortality and survival, the
conditional remaining lifetimes of the policyholders, given a particular mortality scenario
Θ = θ, are assumed to be mutually independent. We introduce the notations tpx(θ) and

tqx(θ) for the conditional survival and death probabilities, respectively:

tpx(θ) = P [Ii(0, t) = 1 | Θ = θ] = 1− tqx(θ). (3)

The unconditional survival probability, which is denoted by tpx, is given by:

tpx = P [Ii(0, t) = 1] = E [tpx(Θ)] , (4)

and a similar expression holds for the corresponding death probability.

In this setting, we find that the probability of joint survival for insureds i and j, for
i 6= j, equals

P [Ii(0, t) = 1, Ij(0, t) = 1] = E
[
(tpx(Θ))2] . (5)

Furthermore, from (4) and (5), we find that the covariance between the variables Ii(0, t)
and Ij(0, t), for i 6= j, is given by

Cov[Ii(0, t), Ij(0, t)] = Var [tpx(Θ)] , (6)

which implies a non-negative dependence between the survival indicators. This expression
shows that the degree of our ignorance about the future survival probability drives the
dependence between the survival indicators: the more tpx(Θ) is uncertain, in the sense
that it has a larger variance, the more the survival indicators are correlated1. In case

tpx(Θ) is deterministic, meaning that the survival probability is known with certainty, the
covariance between Ii(0, t) and Ij(0, t) is zero and the survival indicators are independent
(since zero correlation is equivalent to independence in the Bernoulli case). This latter
case is in line with the standard actuarial assumption of independence.

1We refer to Appendix A for a more detailed discussion on the dependence between policyholders’
survival indexes and its consequence on the LLN.
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Using the law of total variance, we find that Var[I(0, t)] can be split into two parts:

Var [I(0, t)] =
1

lx
E [tpx(Θ) tqx(Θ)] + Var [tpx(Θ)] . (7)

The diversifiable part of the insurance risk is captured by the first term in (7), which
depends on the size of the portfolio. The second term is related to the uncertainty on
the survival probabilities, and hence, captures the systematic part. This two-components
representation implies that the variance of the average benefit payment is a decreasing
function of the number of insureds. The cases where lx goes to infinity and to 1 lead to
the following lower and upper bounds:

Var [tpx(Θ)] ≤ Var [I(0, t)] ≤ Var [Ii(0, t)] , (8)

implying that it is beneficial to increase the size of the portfolio; see Appendix A for
further discussion.

The main conclusion of this section is that in case of conditional independence, only
part of the insurance risk can be diversified by pooling. Taking into account this observa-
tion, it seems that specifying the elements of the insurance contract in absolute terms at
policy issue can be extremely dangerous, because of the substantial systematic longevity
risk captured in Var [tpx(Θ)].

3 Dynamic equivalence principle

3.1 The actuarial equivalence principle at contract initiation

The main idea behind the proposed risk sharing scheme is that at the end of each period,
the retrospective reserve is compared to the required liabilities (determined prospectively,
taking into account new information on the insured risks). The experienced loss, that is
the difference between the retrospective and prospective reserves, is then shared between
the policyholder and the insurer, according to an agreed-upon risk sharing scheme which
is determined at policy issue. We focus in this section on deriving rules for a risk shar-
ing scheme for insurance contracts with survival benefits but the approach consisting in
sharing the experienced loss is applicable to other types of insurance contracts, including
those with a death benefit.

We consider an insurance contract sold to lx policyholders aged x at time 0. The
policy stipulates that upon survival at times k + 1, k = 0, 1, 2, . . . , the beneficiary will
receive the amount b

(0)
k+1 ≥ 0, while upon survival at time k, the policyholder will pay the

premium π
(0)
k ≥ 0. Given the information available at time 0, hence, the superscript (0),

we denote by C(0)
0 the contract elements agreed-upon at time 0 :

C(0)
0 =

{
b

(0)
0 , π

(0)
0

}
,
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where b
(0)
0 = (b

(0)
1 , b

(0)
2 , ...) and π

(0)
0 =

(
π

(0)
0 , π

(0)
1 , ...

)
are the benefit package and the

premium plan, respectively. The present value at time 0 of all future benefit payments
per-policy is denoted by the random variable B

(0)
0 :

B
(0)
0 =

∞∑
j=0

b
(0)
j+1v

j+1
j+1px(Θ),

whereas the present value of all future premium payments is given by the random variable
Π

(0)
0 :

Π
(0)
0 =

∞∑
j=0

π
(0)
j vj jpx(Θ),

where v is the constant yearly discounting factor. The loss random variable at time
0 is denoted by L0 and is defined as the present value of future benefits minus future
premiums, i.e.:

L0 = B
(0)
0 − Π

(0)
0 . (9)

Recall that the j-year survival of policyholder i is characterized by the conditional
probability jpx(Θ). Based on the knowledge available at time 0 and by using the notation
F0, the actuary attaches the following values to these probabilities:

E [jpx(Θ)|F0] = jp
(0)
x , (10)

for j = 1, 2, .... Henceforth, we will also use the superscript (k) to indicate quantities that
are based on information and expert opinion available at time k, k = 1, 2, ..., and we
replace the notation E [.|Fk] by Ek [.]. Note that apart from the probabilities introduced
above, at time 0, the actuary also has to determine other factors of the technical basis.

The expected present value of the benefit and premium cash flow streams are then
given by the following expected present values:

E0

[
B

(0)
0

]
=
∞∑
j=0

b
(0)
j+1v

j+1
j+1p

(0)
x ,

and

E0

[
Π

(0)
0

]
=
∞∑
j=0

π
(0)
j vj jp

(0)
x ,

respectively. We assume that the premiums and benefits of the contract are set such that
they fulfill the actuarial equivalence principle, i.e. such that the expected value of the loss
in (9), conditionally on the information available at time 0, is equal to 0 at that time:

E0 [L0] = 0 ⇐⇒ E0

[
B

(0)
0

]
= E0

[
Π

(0)
0

]
. (11)

The valuation approach based on the actuarial equivalence principle (11) is the one
commonly used in practice for classical life insurance, where the benefit and premium cash
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flow streams b
(0)
0 and π

(0)
0 are fixed at policy issue and remain, in principle, unchanged

during the life of the contract. This means that the risk of having chosen a wrong technical
basis is fully taken by the insurer. In order to cope with this risk, the insurer commonly
charges a (implicit) loading which is used to cover the diversifiable as well as the undi-
versifiable parts of the risk. In this section, we discard this loading, but we will include
it in Section 4.

3.2 The dynamic equivalence principle

Let us now consider a non-classical life insurance contract whose features can be changed
over time. In contrast to classical insurance pricing, we allow to take into account the
new knowledge about the survival probabilities.

Suppose that we have arrived at time 1 and that the policy is still in force. Assuming
that the technical interest rate is guaranteed, the available provision (or reserve) at that
time is given by:

V
(0)

1 =
π

(0)
0

vI(0, 1)
,

where I(0, 1) is the observed survival index over the first year which is assumed to be
strictly greater than 0. This assumption means that there is at least one survivor at time
1. In case I(0, 1) = 0 then all contracts are terminated at time 1 and no updating is
needed anymore. Note that throughout the paper and for any k = 1, 2, ..., the reserves
are calculated before benefit and premium payment.

Having arrived at time 1, the realization I(0, 1) provides the insurer with additional
information. Moreover, assuming that the insured i is still alive, we know that Ii(0, 1) = 1.
Based on this and other knowledge F1 available at time 1, we obtain the following updated
survival probabilities:

E1 [ jpx+1(Θ)] = jp
(1)
x+1, j = 1, 2, . . . (12)

From (12), it follows that the required reserve based on the new information is given by:

E1

[
B

(0)
1 − Π

(0)
1

]
=
∞∑
j=0

b
(0)
j+1v

j
jp

(1)
x+1 −

∞∑
j=0

π
(0)
j+1v

j
jp

(1)
x+1.

In general, the actuarial equivalence will be broken because the realization of the retro-
spective reserve deviates from its assumption and the estimate of the technical basis has
changed. In order to restore it, the following capital is required:

E1

[
B

(0)
1 − Π

(0)
1

]
− V (0)

1 ,

which represents the deviation between the required and the retrospective reserve at time
1. We suppose now that this required amount is shared among the insurer and the
policyholder. For α1 ∈ [0, 1], let 1 − α1 be the share of the loss covered by the insurer
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whereas the contribution of the policyholder is given by α1

(
E1

[
B

(0)
1 − Π

(0)
1

]
− V (0)

1

)
.

On the one hand, the retrospective reserve after having been increased by the insurer’s
participation is given by:

V
(1)

1 = V
(0)

1 + (1− α1)
(
E1

[
B

(0)
1 − Π

(0)
1

]
− V (0)

1

)
.

On the other hand, from time 1 on, the remaining premium plan π
(0)
1 is replaced by π

(1)
1 :

π
(1)
1 =

(
π

(1)
1 , π

(1)
2 , ...

)
, (13)

and the remaining benefit package b
(0)
1 is replaced by b

(1)
1 :

b
(1)
1 =

(
b

(1)
1 , b

(1)
2 , ...

)
. (14)

We denote the expected actuarial present value at time 1 of the updated remaining pre-
miums and benefits as:

E1

[
Π

(1)
1

]
=
∞∑
j=0

π
(1)
j+1v

j
jp

(1)
x+1, (15)

and

E1

[
B

(1)
1

]
=
∞∑
j=0

b
(1)
j+1v

j
jp

(1)
x+1, (16)

respectively. The updated premium plan and benefit package are determined such that
the actuarial equivalence is restored at time 1, i.e. when the following equation is satisfied:

E1

[
Π

(1)
1 −B

(1)
1

]
= E1

[
Π

(0)
1 −B

(0)
1

]
+ α1

(
E1

[
B

(0)
1 − Π

(0)
1

]
− V (0)

1

)
.

Taking into account the contributions of both the insurer and the policyholders, one finds
that:

V
(1)

1 = E1

[
B

(1)
1 − Π

(1)
1

]
,

which means that the actuarial equivalence has been restored at time 1.

A similar reasoning can be applied at time 2 where the available reserve based on the
updating up to time 1 is given by:

V
(1)

2 =
V

(1)
1 + π

(1)
1 − b

(1)
1

vI(1, 2)
,

with I(1, 2) being the survival index of the portfolio from time 1 to time 2, and assumed
to be strictly positive. Using the new information available at time 2, the estimates of
the future survival probabilities at that time are updated to jp

(2)
x+2, for j = 1, 2, ..., such

that the value of the required reserve is as follows:

E2

[
B

(1)
2 − Π

(1)
2

]
=
∞∑
j=0

b
(1)
j+2v

j
jp

(2)
x+2 −

∞∑
j=0

π
(1)
j+2v

j
jp

(2)
x+2.
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The amount needed to restore the actuarial equivalence is E2

[
B

(1)
2 − Π

(1)
2

]
− V (1)

2 . For

α2 ∈ [0, 1], the share of the insurer is given by 1− α2, such that:

V
(2)

2 = V
(1)

2 + (1− α2)
(
E2

[
B

(1)
2 − Π

(1)
2

]
− V (1)

2

)
.

The contribution of the policyholder is α2

(
E2

[
B

(1)
2 − Π

(1)
2

]
− V (1)

2

)
. The updated pre-

mium plan π
(2)
2 and benefit package b

(2)
2 are determined from the following updated actu-

arial equivalence:

E2

[
Π

(2)
2 −B

(2)
2

]
= E2

[
Π

(1)
2 −B

(1)
2

]
+ α2

(
E2

[
B

(1)
2 − Π

(1)
2

]
− V (1)

2

)
.

Insurance regulation requires that having arrived at time k, the actuarial equivalence
has to be restored. In case of a classical life insurance contract, where benefits and pre-
miums are fixed at policy issue, the insurer is fully responsible for restoring the actuarial
equivalence, i.e. αk = 0. In our present setting, the cost of restoring the actuarial equiv-
alence is covered by both the insurer and policyholders. The available provision as well
as all future benefits and premiums are updated according to a pre-specified risk shar-
ing scheme which is characterized by the coefficients α1, α2, .... This flexible approach to
manage longevity risk for newly underwritten contracts can be see as a series of successive
(yearly) applications of the fundamental static equivalence principle. We say here that
such a contract is managed by a dynamic equivalence principle, which is defined hereafter
for any time k.

Definition 1 (Dynamic equivalence principle) At any time k, the k − 1 values of
the remaining contract features

C(k−1)
k =

{
b

(k−1)
k , π

(k−1)
k

}
,

are replaced by

C(k)
k =

{
b

(k)
k , π

(k)
k

}
,

taking into account the information stream over time, such that the actuarial equivalence
is restored at that time, i.e.

Ek
[
Π

(k)
k −B

(k)
k

]
= Ek

[
Π

(k−1)
k −B(k−1)

k

]
+ αk

(
Ek
[
B

(k−1)
k − Π

(k−1)
k

]
− V (k−1)

k

)
, (17)

where αk ∈ [0, 1] is the share of the loss born by the policyholder at time k. The retro-

spective reserve at time k before updating, i.e. V
(k−1)
k , is given by:

V
(k−1)
k =

V
(k−1)
k−1 + π

(k−1)
k−1 − b

(k−1)
k−1

vI(k − 1, k)
,
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where V
(k−1)
k−1 is the retrospective reserve at time k − 1 after having been increased by the

insurer’s participation in the deviation risk:

V
(k−1)
k−1 = V

(k−2)
k−1 + (1− αk−1)

(
Ek−1

[
B

(k−2)
k−1 − Π

(k−2)
k−1

]
− V (k−2)

k−1

)
,

and where I(k − 1, k) represents the (strictly positive) survival index from time k − 1 to
time k in the portfolio which is composed of policyholders aged x + k − 1 at time k − 1.
Taking into account the contribution of both the insurer and the policyholders, one finds
that:

V
(k)
k = Ek

[
B

(k)
k − Π

(k)
k

]
,

which means that the actuarial equivalence has been restored at time k.

4 A pure endowment contract with single premium

4.1 The updating mechanism

In this section, we focus on a portfolio of t-year pure endowments sold to lx policyholders
aged x at time 0. The contract pays a benefit of b

(0)
t at time t upon survival of the

policyholder at that time, and is sold for a single pure premium π
(0)
0 . We assume that

the policy is flexible, in the sense that it allows the contract elements to be updated over
time. Based on the estimate tp

(0)
x at time 0 of the t-year survival probability, we use the

actuarial equivalence principle (10) to determine the value of the pure premium π
(0)
0 at

contract inception:
π

(0)
0 = b

(0)
t vt tp

(0)
x . (18)

We include a premium loading in this section and we denote it by ϕ, which is assumed to
be positive. This results in the loaded single premium P

(0)
0 :

P
(0)
0 = π

(0)
0 + ϕ.

This setting includes a wide range of possible pricing principles; see Kaas et al. (2008)
for some examples. The loading ϕ can also be determined by applying shocks on the
estimated survival probabilities, in the spirit of the Solvency II regulation. Because the
loaded premium is the sum of the actuarial value of the benefit b

(0)
t and a loading, we

can interpret P
(0)
0 as the pure premium for a contract paying the benefit b

(0)
t + ϕ

vt tp
(0)
x

at

maturity. Thus, the contract can be described by the benefit package b
(0)
0 = (0, ..., 0, b

(0)
t +

ϕ

vt tp
(0)
x

, 0, ...) and the pure premium plan P
(0)
0 =

(
P

(0)
0 , 0, 0, ...

)
. Under this setting, the

insurer estimates at time 0 both the pure premium and the loading. As the future unfolds
and new information becomes available, the estimate of the premium may require an
adjustment and the estimate of the loading may turn out to be insufficient to cope with
the deviation risk for the remaining years. In the sequel, the time-0 estimates of the
pure premium as well as the loading will both be updated over time. Note that another
simpler setting which is not considered here and requires only minor modifications in the
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subsequent results is to update the pure premium only, without taking into account the
loading in the dynamic equivalence principle.

At time 1, the value of the retrospective reserve per policy still in force is:

V
(0)

1 =
P

(0)
0

vI(0, 1)
. (19)

The new information available at time 1 leads to a new estimate t−1p
(1)
x+1 of the (t− 1)-

year survival probability of the policyholder now aged x+ 1. The required reserve is then
estimated at time 1 by b

(0)
t vt−1

t−1p
(1)
x+1.

From time 1 on, the benefit package b
(0)
1 = (0, ..., 0, b

(0)
t + ϕ

vt tp
(0)
x

, 0, ...) and the premium

plan P
(0)
1 = (0, 0, 0, ...) at that time are replaced by b

(1)
1 = (0, ..., 0, b

(1)
t + ϕ

vt tp
(0)
x

, 0, ...) and

P
(1)
1 =

(
P

(1)
1 , 0, 0, ...

)
, respectively, where we assume that only a single extra-premium

P
(1)
1 is paid at time 1. This means that the benefit is updated from b

(0)
t to b

(1)
t , and/or an

additional amount P
(1)
1 is paid by the policyholders.

Let us now apply the dynamic equivalence principle (17) to obtain the values of the
updated benefit and the additional premium. The present values of future premiums
using the information available at time 1 before and after the updating are given by:

E1

[
Π

(1)
1

]
= P

(1)
1 , (20)

and
E1

[
Π

(0)
1

]
= 0, (21)

respectively. Moreover, the present values of future benefits using the information avail-
able at time 1 before and after the updating are given by:

E1

[
B

(1)
1

]
=

(
b

(1)
t +

ϕ

vt tp
(0)
x

)
vt−1

t−1p
(1)
x+1, (22)

and

E1

[
B

(0)
1

]
=

(
b

(0)
t +

ϕ

vt tp
(0)
x

)
vt−1

t−1p
(1)
x+1, (23)

respectively. Plugging Expressions (20)–(23) as well as (19) in Equation (17) and multi-

plying both sides of the resulting equation by
(
−vt−1

t−1p
(1)
x+1

)−1

leads to:

b
(1)
t −

P
(1)
1

vt−1
t−1p

(1)
x+1

= b
(0)
t − α1

((
b

(0)
t +

ϕ

vt tp
(0)
x

)
− P

(0)
0

vtI(0, 1) t−1p
(1)
x+1

)
. (24)

Furthermore, by noting that P
(0)
0 =

(
b

(0)
t + ϕ

vt tp
(0)
x

)
vt tp

(0)
x , we find that b

(1)
t and P

(1)
1

satisfy the following equation:

b
(1)
t −

P
(1)
1

vt−1
t−1p

(1)
x+1

= b
(0)
t − α1

(
b

(0)
t +

ϕ

vt tp
(0)
x

)(
1− tp

(0)
x

I(0, 1) t−1p
(1)
x+1

)
. (25)
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Using (25), we find that the retrospective reserve at time 2 is given by:

V
(1)

2 =

(
b

(1)
t +

ϕ

vt tp
(0)
x

)
vt−2 t−1p

(1)
x+1

I(1, 2)
.

If we apply the dynamic equivalence principle (17), we find that the time-2 updated value

of the benefit b
(2)
t and the additional premium P

(2)
2 satisfy the equation:

b
(2)
t −

P
(2)
2

vt−2
t−2p

(2)
x+2

= b
(1)
t − α2

(
b

(1)
t +

ϕ

vt tp
(0)
x

)(
1− t−1p

(1)
x+1

I(1, 2) t−2p
(2)
x+2

)
.

In general, the retrospective reserve V
(k−1)
k at time k, for k = 2, ..., t, is given by:

V
(k−1)
k =

(
b

(k−1)
t +

ϕ

vt tp
(0)
x

)
vt−k

t−k+1p
(k−1)
x+k−1

I(k − 1, k)
,

such that b
(k)
t and P

(k)
k satisfy:

b
(k)
t −

P
(k)
k

vt−k t−kp
(k)
x+k

= b
(k−1)
t − αk

(
b

(k−1)
t +

ϕ

vt tp
(0)
x

)(
1− t−k+1p

(k−1)
x+k−1

I(k − 1, k) t−kp
(k)
x+k

)
. (26)

Thus, the values of the couple (b
(k)
t , P

(k)
k ) depend on the realization of the survival index,

the new estimate of the mortality table and the participation of the insurer to cover the
systematic deviation through the choice of the parameters α1, ..., αk. However, there is no
unique couple which can be determined from (26). Hereafter, we consider two particular
cases; updating the premium plan only, and updating the benefit package only.

Case 1 (Updating the premium plan only) In case the benefit is not subject to re-
vision, we find that the reserve at time k is as follows:

V
(k−1)
k =

(
b

(0)
t + ϕ

vt tp
(0)
x

)
vt−k+1

t−k+1p
(k−1)
x+k−1

vI(k − 1, k)
=

P
(0)
0

vk tp
(0)
x

t−k+1p
(k−1)
x+k−1

I(k − 1, k)
.

Let us now derive a general expression for the additional premium. Starting with the
time-1 additional amount P

(1)
1 , we find from (25):

P
(1)
1 = α1

((
b

(0)
t +

ϕ

vt tp
(0)
x

)
vt−1

t−1p
(1)
x+1 −

P
(0)
0

vI(0, 1)

)
= α1

P
(0)
0

v tp
(0)
x

(
t−1p

(1)
x+1 −

tp
(0)
x

I(0, 1)

)
.

(27)

The premium P
(1)
1 corresponds to the value at time 1 of the loaded single premium using the

time-0 information. This is then corrected from the deviation
(
t−1p

(1)
x+1 − tp

(0)
x

I(0,1)

)
and scaled

by the contribution α1 of the policyholders. Thus, the contribution of the policyholders

12



takes into account changes of both the past realizations and the new estimates. At time 2,
the additional amount P

(2)
2 is given by:

P
(2)
2 = α2

((
b

(0)
t +

ϕ

vt tp
(0)
x

)
vt−2

t−2p
(2)
x+2 − V

(1)
2

)
= α2

P
(0)
0

v2
tp

(0)
x

(
t−2p

(2)
x+2 −

t−1p
(1)
x+1

I(1, 2)

)
,

(28)
and has a similar interpretation as the time-1 additional amount.

In general, we find that the additional amounts P
(k)
k required from the policyholders at

the successive times k = 2, 3, ..., t are given by:

P
(k)
k = αk

P
(0)
0

vk tp
(0)
x

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
. (29)

The numerical value of P
(k)
k can be negative, implying that the insurer pays back the

policyholder for being too conservative. Also, by considering that k takes values 1, 2, ..., t,
we implicitly assume that policyholders could pay an additional positive amount P

(t)
t at

contract expiration. This assumption may not be realistic in practice. However, in such
a case, this can be compensated by a benefit reduction.

Let us notice that in case we use the multiplicative form P
(0)
0 = π

(0)
0 (1 + ϕ) instead of

the additive form P
(0)
0 = π

(0)
0 + ϕ, the updating formula (29) implies that

P
(k)
k = π

(k)
k (1 + ϕ) ,

where π
(k)
k is the time-k pure additional amount which satisfies (29), such that:

π
(k)
k = αk

π
(0)
0

vk tp
(0)
x

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
.

This means that the loading ϕ is constant over time and is applied to the future pure
additional amounts, even when they are negative. However, we can still write the future
required amounts in the additive form

P
(k)
k = π

(k)
k + ϕ(k),

where ϕ(k) = ϕ

π
(k)
k

is a time-varying loading.

Case 2 (Updating the benefit package only) Let us now assume that policyholders
do not pay additional premiums. Instead, the benefit at time t can be revised throughout
the contract to account for deviations. In this case, it follows directly from (26) that the
time-k updated value of the benefit has the following expression:

b
(k)
t = b

(k−1)
t − αk

(
b

(k−1)
t +

ϕ

vt tp
(0)
x

)(
1−

p
(k−1)
x+k−1

I(k − 1, k)

t−kp
(k−1)
x+k

t−kp
(k)
x+k

)
. (30)

Note that we also find the following expression for the reserve at time k:

V
(k−1)
k =

(1− αk−1)
(
b

(k−1)
t + ϕ

vt tp
(0)
x

)
vt−k t−k+1p

(k−1)
x+k−1 + αk−1V

(k−1)
k

vI(k − 1, k)
.

13



Cases 1 and 2 are two particular risk sharing schemes which have the same goal of
restoring the actuarial equivalence. In the remainder of the paper, we focus on Case 1
and set b

(t)
t = b

(0)
t = bt. Moreover, we simplify the setting by assuming that αk = α for all

k = 1, 2, ..., t, meaning that the insurer transfers back to the policyholders the same share
of the shortfall every year. We answer two specific questions. The first question is raised
by the insurer who wants to determine under what condition a contract managed by the
dynamic equivalence principle provides more safety than a classical one, where safety is
measured by the probability of loss. Second, from the point of view of policyholders, we
search for conditions under which buying a contract priced under the dynamic equivalence
principle will be cheaper than its classical counterpart. Here, a classical pure endowment
contract is a contract without updating (i.e. α = 0) whose single premium is denoted by
PΨ:

PΨ = π
(0)
0 + Ψ, (31)

with Ψ > 0. Note that despite not being formally imposed here, it is reasonable to expect
that ϕ ≤ Ψ. Moreover, the contracts should have the same loading when the insurer
covers all the shortfall, i.e. ϕ = Ψ for α = 0, whereas there should be no loading when
the policyholders are covering the shortfall, i.e. ϕ = 0 for α = 1.

4.2 Impact on the insurer’s solvency

The analysis in this subsection is carried out from the point of view of the insurer who has
the choice between selling a pure endowment under the classical setting or under the risk
sharing scheme described in Case 1. The time-0 shortfall risk per-policy for a portfolio
of pure endowments priced in the classical static setting is denoted by RΨ, whereas its
counterpart priced in the dynamic setting is denoted by Rα,ϕ. For the classical contract,
we have:

RΨ = I(0, t)btv
t − PΨ, (32)

which can also be written as:

RΨ =

(
I(0, t)

tp
(0)
x

− 1

)
π

(0)
0 −Ψ. (33)

On the other hand, we find in the dynamic case:

Rα,ϕ = I(0, t)btv
t − P (0)

0 −
t∑

k=1

vkI(0, k)P
(k)
k ,

From (29), we see that Rα,ϕ can also be written as:

Rα,ϕ = I(0, t)b
(0)
t vt − P (0)

0 − α P
(0)
0

tp
(0)
x

t∑
k=1

I(0, k)

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
,

or, in its simplified form:

Rα,ϕ =

(
I(0, t)

tp
(0)
x

− 1

)(
π

(0)
0 − αP

(0)
0

)
− ϕ, (34)
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where we use

t∑
k=1

I(0, k)

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
= I(0, t)− tp

(0)
x .

The insurer will have a loss in case the shortfall is positive, i.e. in case the payments
to the policyholders are higher than expected. In the following theorem, we provide a
condition on Ψ, ϕ and α such that the probability of a loss for a contract priced under
the dynamic equivalence principle is lower compared to its classical counterpart.

Theorem 1 If
P [Rα,ϕ ≥ 0] < P [RΨ ≥ 0] (35)

then α, ϕ and Ψ have to satisfy:

π
(0)
0

π
(0)
0 + ϕ

(
1− ϕ

Ψ

)
≤ α <

π
(0)
0

π
(0)
0 + ϕ

. (36)

Proof. From (33) and (34), we can write (35) as follows:

P

[
I(0, t)

tp
(0)
x

− 1 ≥ ϕ

π
(0)
0 − αP

(0)
0

]
< P

[
I(0, t)

tp
(0)
x

− 1 ≥ Ψ

π
(0)
0

]
,

which implies that
ϕ

π
(0)
0 − αP

(0)
0

≥ Ψ

π
(0)
0

. (37)

A necessary condition in order for (37) to be satisfied is given by

π
(0)
0 > αP

(0)
0 , (38)

and provides the upper bound in (36). Moreover, rearranging (37) leads to the corre-
sponding lower bound.

Theorem 1 shows that in case the insurer wants to reduce the loss probability, the
proportion α of the risk that is borne by the policyholders has to be set according to
(36). This observation raises the question of whether policyholders would be interested
in buying such contracts. We investigate this question in the following subsection.

4.3 Policyholders’ perspective

The goal of this subsection is to derive an additional constraint on the loadings and on
the risk sharing scheme. In particular, we take into account the constraint that contracts
priced under the dynamic equivalence principle should have lower premiums compared to
their classical counterparts.

15



Let us first derive the actuarial value of the premiums per-policy for each contract.
Obviously, for the classical contract we simply have PΨ. For the dynamic contract, poli-
cyholders pay the single premium P

(0)
0 at time 0 and potentially some additional amounts

P
(k)
k . The time-0 random present value of all payments per-policy is given by

Π = P
(0)
0 +

t∑
k=1

I(0, k)P
(k)
k vk = P

(0)
0 + α

P
(0)
0

tp
(0)
x

(
I(0, t)− tp

(0)
x

)
. (39)

We find immediately that E0 [Π] = P
(0)
0 , which implies that policyholders are not expected

to pay additional premiums.

We now state the theorem showing that under a condition on Ψ, ϕ and α, it remains
favorable to buy a contract under the dynamic setting, although policyholders may have
to pay additional amounts in the future. The reasoning here is based on the fact that if the
dynamic contract leads to lower premiums (including the future potential payments), then
it would be preferred by profit-seeking policyholders regardless of their risk preference.

Theorem 2 A pure endowment contract with single premium and loading ϕ priced under
the dynamic equivalence principle is more favorably priced than its counterpart with loading
Ψ and priced using a classical premium principle if the yearly share α ∈ (0, 1] satisfies the
following condition:

α ≤ tp
(0)
x

1− tp
(0)
x

Ψ− ϕ
π

(0)
0 + ϕ

. (40)

Proof. For a fixed benefit bt, if Π ≤ PΨ, then the dynamic contract is more favorably
priced than the classical one. Since PΨ is a constant, this inequality is always fulfilled if
and only if the upper bound of the support of Π, that is

P
(0)
0 + α

P
(0)
0

tp
(0)
x

(1− tp
(0)
x ),

is smaller than PΨ, which completes the proof.

4.4 A viable risk sharing scheme

It appears from Theorems 1 and 2 that an appropriate updating mechanism has to comply
with two conditions. The first one aims at improving the solvency situation of the insurer
whereas the second one follows from the fact that the contract has to remain appealing
to policyholders. It is however important that both conditions do not conflict. In the
following, we introduce a definition for a viable risk sharing scheme.

Definition 2 (Viable risk sharing scheme) Consider a pure endowment contract priced
under a dynamic equivalence principle (characterized by a loading ϕ and a yearly share
α) and a classical pure endowment (with loading Ψ). Moreover, assume that

btv
t ≤ PΨ (41)
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holds in case:
Ψ− ϕ ≤ btv

t
(
1− tp

(0)
x

)
. (42)

Then, compared to the classical contract, the proposed updating mechanism improves the
solvency situation of the insurer and is more favorably priced for policyholders if the
following condition holds:

π
(0)
0

Ψ

Ψ− ϕ
π

(0)
0 + ϕ

≤ α ≤ min

{
tp

(0)
x

1− tp
(0)
x

Ψ− ϕ
π

(0)
0 + ϕ

,
π

(0)
0

π
(0)
0 + ϕ

}
. (43)

The above definition provides a condition on the contract such that both the insurer and
the policyholders are better off with the updating mechanism. We can extract from (43)
some limiting cases. On the one hand, setting ϕ = Ψ leads to α = 0, which means that if
the dynamic contract is as expensive as the classical one, then there must be no additional
premiums. On the other hand, setting ϕ = 0 leads to α = 1, which means that if the
dynamic contract does not include any loading, then the policyholder should bear all the
deviation risk. Moreover, imposing α ∈ [0, 1] implies that the initial price of the dynamic
contract has to be cheaper than that of the classical one, i.e. ϕ ≤ Ψ. In this sense, the
viable risk sharing scheme is consistent with intuition.

Inequality (41) ensures the existence of a range of α on which both parties agree in case
(42) is fulfilled. Inequality (42) compares the difference between worst-estimate premium
(i.e. when the t-year survival probability is set to 1) and the best-estimate premium (i.e.

when the t-year survival probability is given by tp
(0)
x ) with the difference between the

loadings Ψ and ϕ. Thus, these inequalities mean that if the difference between the prices
of the classical and dynamic contracts is lower than the difference between the worst- and
best-estimate premiums, then the loaded premium for the classical contract has to be at
least equal to the worst-estimate premium.

4.5 Analysis of the viable risk sharing scheme

We study the pairs (α, ϕ) leading to a viable risk sharing scheme by considering three
specific cases. The analysis is performed by determining the possible values of that pair
for three different values of the ratio:

γ =
Ψ

π
(0)
0

.

For illustrative purpose only, assume that the time-0 estimate of the t-year survival prob-
ability tp

(0)
x is given by 0.981. This number has been estimated from a Lee-Carter model

fitted to the Belgian population and corresponds to that of a 30-year survival probability
of a life aged 35. The estimation procedure follows the methodology described in Pitacco
et al. (2009).

Figure 1 displays an example where γ is such that inequality (41) is not satisfied. It
is then straightforward to show that for ϕ ≥ 0, inequality (42) will always be satisfied. In
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Figure 1: Bounds of α from inequality (43) as a function of ϕ, where γ is such that inequality (42) is
satisfied, while (41) is not.

this case, the lower bound from (43) is greater than the upper bound. As a consequence,
we cannot find any α on which the insurer and policyholders would both agree. The
reason is that the classical contract is too cheap. Thus, against a too cheap contract,
policyholders would chose the dynamic one only if α is sufficiently low, and in particular,
lower than the minimum required by the insurer to enhance its solvency situation. This
translates into a conflict between the constraints of the two parties.

In the right panel of Figure 2, the ratio γ is such that (41) becomes an equality.
Again, we have that for ϕ ≥ 0, inequality (42) is always fulfilled. Moreover, since (41) is
an equality, we have that:

γ = γ? =
1− tp

(0)
x

tp
(0)
x

,

and in this example we have γ? ≈ 1.94%. Additionally, combining the fact that (42) is
fulfilled with γ = γ?, we find that this case implies an equality between the upper and
lower bounds from (43). This means that for each value of ϕ, there exists a unique value
of α on which the two parties agree. In particular, any pair (α, ϕ) on that line of the graph
will have the same loss probability for the insurer, and the same price for policyholders,
taking into account their potential future payments. We can also conclude that a loading
Ψ = γ?π

(0)
0 is the optimal loading for a classical contract in the sense of (43). The left

panel of Figure 2 displays the ratio γ? as a function of the initial estimate tp
(0)
x . Clearly,

higher values of this estimate imply lower values of γ?. This would typically be the case
for (relatively) short-term contracts or for young policyholders. Therefore, for high value

of tp
(0)
x , the threshold level of the loading Ψ (relatively to the pure premium) such that a

viable risk sharing scheme can be determined will be very low.

In Figure 3, inequality (42) does not hold before the point ϕ ≈ 35.4%Ψ, but it does
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Figure 2: Right: Bounds of α from inequality (43) as a function of ϕ where γ is such that (41) becomes
an equality. Left: Ratio γ? as a function of the initial estimate of the t-year survival probability.

Figure 3: Bounds of α from inequality (43) as a function of ϕ, where γ is such that inequality (41) is
satisfied. The shaded area provides the possible (α,ϕ) leading to a viable risk sharing scheme.
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hold after that point. Moreover, the ratio γ is chosen such that (41) is satisfied in both
cases, although this condition is not necessary for the existence of α before ϕ ≈ 35.5%Ψ.
This implies that for each value of ϕ, we can find a range of α on which both parties
agree. Thus, the possible pairs (α, ϕ) leading to a viable risk sharing scheme constitute a
surface, which depends on the value of γ. In particular, we observe that if the loading of
the classical contract is too high, then even for high values of ϕ (i.e. before ϕ ≈ 35.4%Ψ),
policyholders would still prefer to bear a significant part of the deviation risk. Note that
the point ϕ ≈ 35.4%Ψ is such that (42) becomes an equality, and thus, the ratio 35.4%
from this example is determined from:

1− γ?

γ
.

5 Concluding remarks

In this paper, we have addressed systematic risk in long-term insurance business in a
setting where both the assumption of independence and the assumption of known survival
probabilities are violated. Increasing the size of the portfolio remains efficient for reducing
the diversifiable part of the risk, but the deviation risk cannot be eliminated in this way.
It appears that transferring the risk, or at least part of it, to policyholders is an efficient
solution. However, in order for a risk sharing scheme to be viable, it should meet both
the insurer’s and the policyholders’ constraints.

Any updating mechanism may suffer from a transparency drawback when the initial
estimates are compared to the portfolio survival index. A solution coping with this issue
consists in comparing the initial predictions with their corresponding realizations in a
reference group (e.g. the general population of the country) instead of the realizations in
the portfolio. This would enhance the transparency of the updating scheme, but in turn
leaves the insurance company with an extra basis risk, on top of the random variations
in the number of survivors. This approach can be a topic for future research.
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A Appendix

Building on the reasoning of Section 2, we have for i 6= j that

P[Ij(0, t) = 1 | Ii(0, t) = 1] =
E[Ii(0, t)× Ij(0, t)]

E[Ii(0, t)]
= P[Ij(0, t) = 1]+

Cov[Ii(0, t), Ij(0, t)]

E[Ii(0, t)]
.

Taking into account (6), we find that the t-year conditional survival probability of poli-
cyholder j, given that policyholder i is alive at that time, can be expressed as

P[Ij(0, t) = 1 | Ii(0, t) = 1] = P[Ij(0, t) = 1] +
Var [tpx(Θ)]

E [tpx(Θ)]
≥ P[Ij(0, t) = 1]. (A.44)

From this expression, we see that the knowledge that policyholder i survives increases
the probability that policyholder j survives. Additionally, the more uncertain tpx(Θ), the
more the conditional survival probability of j exceeds the unconditional one.

The dependence between remaining lifetimes implies that the strong LLN is not ap-
plicable. In other words, increasing the portfolio size will not fully diversify the longevity
risk. The classical strong LLN has to be replaced by the conditional strong LLN which
states that

lim
lx→∞

1

lx

lx∑
i=1

Ii(0, t) = E [I1(0, t)|Θ] = tpx(Θ), (A.45)

almost surely; see e.g. Majrek et al. (2005). The limiting survivor proportion, or equiva-
lently the average benefit, is a random variable which is related to the systematic part of
the portfolio’s risk per pure endowment policy.

However, it appears from Inequality (8) that by using the variance as a risk measure,
increasing the size of the portfolio remains beneficial for the insurer. The benefit of
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diversification can also be illustrated via the tail value-at-risk which we denote for the
random variable X and the level ε ∈ (0, 1) by TVaRε [X] . Hence,

TVaRε[X] =
1

1− ε

∫ 1

ε

VaRq[X] dq,

where VaRq[X] is the value-at-risk at the level q ∈ (0, 1).

The inequality

1

lx + 1
TVaRε

[
lx+1∑
i=1

Ii(0, t)

]
≤ 1

lx
TVaRε

[
lx∑
i=1

Ii(0, t)

]

holds for all probability levels ε, and for any possible conditional dependence between the
Ii(0, t)’s; see e.g. Denuit et al. (2005) and Feng and Shimizu (2016). Thus, the relative
contribution of each endowment policy to the solvency capital (determined as the TVaR
minus the best estimate) decreases as the size of the portfolio increases.
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