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Abstract

Hedging techniques have been widely adopted in market-consistent or fair val-
uation approach required by recent solvency regulations, to take into account the
market prices of the hedgeable parts of insurance liabilities. In this study, we inves-
tigate the fair dynamic valuation of insurance liabilities, which are model-consistent
(mark-to-model), market-consistent (mark-to-market), and time-consistent, as pro-
posed by Barigou et al. (2019) in a multi-period setting. We introduce the loss
averse convex hedging technique, which ‘punishes’ loss outcomes more than gain
outcomes. We prove that fair dynamic valuations are equivalent to the class of loss
averse convex hedge-based valuation. Moreover, we propose and provide a complete
characterization of loss averse mean-variance hedging and show how to implement
loss averse mean-variance hedge-based dynamic valuations using numerical exam-
ples.

Keywords: Fair valuation, loss aversion, convex hedging, market-consistent
valuation, safety margins.

1 Introduction

Recent solvency regulations for the insurance industry such as Solvency II and the Swiss
Solvency Test have required insurance companies to adopt a fair valuation and take into
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account the market prices of the hedgeable parts of insurance liabilities. The fair valuation
of insurance liabilities, which are often a combination of hedgeable and unhedgeable risks,
equals the sum of the best estimate (hedge) and a risk margin. Under Solvency II, the
technical provisions of a fair valuation consist of the best estimate (hedge) and a risk
margin. The best estimate (hedge) determines the hedgeable parts of insurance liabilities
using the price of its hedge, known as market-consistency. The risk margin is obtained by
applying an appropriate risk measure (e.g. the cost-of-capital principle) to the remaining
parts after hedging.

Due to the ambiguity in the current regulatory directives on how to determine the
hedgeable part of a claim, the calculation of the best estimate is not usually uniquely
determined, implying that different hedging techniques are feasible. Dhaene et al. (2017)
and Barigou et al. (2019) proposed fair (dynamic) valuation techniques for valuating in-
surance liabilities in both single-period and multi-period settings and showed that fair
valuation is equivalent to a hedge-based valuation approach. Moreover, Dhaene et al.
(2017) and Chen et al. (2019) showed that the class of fair (dynamic) valuation is equiva-
lent to convex hedge-based, or CHB, (dynamic) valuations. Specifically, the fair valuation
of insurance liabilities follows a two-stage process. In the first step, a convex hedge is set
up for the claim to determine its hedgeable part. In the second step, a risk margin is
calculated on the basis of the remaining non-hedged part of the claim. The fair value is
then the sum of the market value of the hedge and the risk margin value of the residual
claim (Figure 1).

Figure 1: Fair dynamic valuations.

In this study, we extend the work of Barigou et al. (2019) and Chen et al. (2019)
by investigating the fair valuation of insurance liabilities using loss averse convex (LAC)
hedging, a particular class of convex hedging, in a multi-period setting. The underly-
ing optimization convex function of LAC hedging ‘punishes’ loss outcomes more than
gain outcomes. We further show that the proposed LAC hedging technique tends to
‘over-hedge’ insurance liabilities to provide an implicit safety margin. The idea behind
proposing LAC hedging comes from that any fair (dynamic) valuation is equivalent to the
market value of the fair (dynamic) hedging of insurance liabilities (Dhaene et al., 2017,
Chen et al., 2019). Thus, a more conservative fair hedging approach can also provide
safety margin (or called as prudence margin), that is necessary to ensure that insurers
can meet their future obligations. After proposing the LAC hedging approach, we further
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introduce LAC dynamic valuation and prove its equivalence to the class of fair dynamic
valuation.

Conventionally, the safety margin of the fair valuation is calculated explicitly using the
risk margin. Risk margins are often obtained by applying risk measures to the remaining
non-hedgeable risk, such as the widely used cost-of-capital and standard deviation meth-
ods. Take mean-variance (MV) hedge-based (MVHB) valuation as an example. Here, the
underlying MV hedging approximates the insurance liability using a hedging strategy with
a minimal mean squared error (Schweizer, 2010). The MVHB valuation is then obtained
by attaching the risk margin to the MV hedge. Similar to the finding of Barigou et al.
(2019) that MVHB dynamic valuation is equivalent to the class of fair dynamic valua-
tion, we introduce loss averse MV (LAMV) hedging and prove that LAMV hedge-based
(LAMVHB) valuation is also equivalent to fair dynamic valuation. Therefore, any fair
dynamic valuation is equivalent to (i.e. can be represented as) MVHB and LAMVHB
dynamic valuations. The difference lies in that the safety margin of MVHB valuation
only comes from the explicit risk margin after its ‘best’ hedge, while that of LAMVHB is
calculated via both the risk margin and LAMV hedging.

Figure 2: Overall safety/prudence margin of fair/CHB dynamic valuations.

In this paper, we propose a LAC hedging approach to realize the fair dynamic valua-
tion. The LAC hedging approach provides another approach, in addition to the explicit
conventional risk margin, to realize the safety margin of fair dynamic valuation implic-
itly (Figure 2). In particular, we provide a complete characterization of LAMV dynamic
hedging and valuation. We further show how to implement fair dynamic valuations using
LAMV hedging and provide numerical illustrations.

Our work is related to several streams of the literature. The first stream is related
to works on market-consistent and fair valuations of insurance liabilities such as Dhaene
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et al. (2017), Barigou et al. (2019), Chen et al. (2019), Salzmann and Wüthrich (2010),
Moehr (2011), Tsanakas et al. (2013), Wüthrich et al. (2013), and Pelsser and Stadje
(2014). Another related field is the study of the actuarial valuation principle, including
the studies by Kaas et al. (2008) and Norberg (2014). Moreover, time-consistency is an
important property of fair dynamic valuations, as shown by the overview by Acciaio and
Penner (2011). Lastly, our work is also related to works on thesafety margin of valuation
principles, including Christiansen (2013).

The remainder of the paper is structured as follows. In Section 2, we define the general
framework of the financial-actuarial world. In Section 3, we revisit the dynamic fair and
CHB valuation framework of Chen et al. (2019) and introduce LAC hedge-based (LACHB)
and dynamic hedging and valuation. In Section 4, we propose the LAMV dynamic hedge
and valuation as well as provide complete characterizations. Section 5 shows fair dynamic
valuation using LAMV hedging. Section 6 concludes.

2 General framework

We consider a multi-period financial-actuarial world modelled by the probability space
(Ω,G,P). The current time is 0 and the set of time points t is denoted by τ = {0, 1, ..., T}.
The finite and discrete time filtration is G = {Gt}t∈τ , where σ−algebra Gt, t ∈ τ , represents
the general information available up to and including time t. In this setting, P is the
physical probability measure attaching a probability to any event. Throughout the paper,
all the random variables and stochastic processes are defined on this filtered probability
space, and all the equalities between the random variables are understood in the P−almost
sure sense. We assume that the second moments of all the random variables considered
exist under P.

2.1 Financial market

We assume n+1 non-dividend tradable assets are traded in a deep, liquid, and transparent
financial market, which means any tradable asset can be bought or sold at any quantity
without transaction costs and other market frictions. In our notation, we denote the
market price of risky asset i at time t ∈ τ by the notation Y (i)(t). The vector Y (t),
Y (t) =

(
Y (0)(t), Y (1)(t), . . . , Y (n)(t)

)
and t ∈ τ arethe time−t prices of all tradable assets.

The (n+ 1)−dimensional stochastic process Y = {Y (t)}t∈τ represents the price processes
of the traded assets. The price process Y is adapted to the filtration G, which means
that

Y (t) is Gt − measurable, for any t = 0, 1, , . . . , T.

The filtration G may simply coincide with the filtration generated by the price process
Y . However, we consider a more general setting, where G is not only related to the price
history of traded assets, but may also contain additional information on, say, non-tradable
claims or a survival index of a particular population.
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A time−t trading strategy (also called a time−t dynamic portfolio), t ∈ {0, . . . , T − 1},
is an (n+ 1)−dimensional predictable process θt = {θt(u)}u∈{t+1,...,T} with respect to the
filtration G,

θt(u) is Gu−1 − measurable, for any u = t+ 1, . . . , T.

Thus, a time−t trading strategy is only set up at time t by acquiring a portfolio θt(t+1)
at that time.

We introduce the notations θt(u) =
(
θ
(0)
t (u), θ

(1)
t (u) . . . , θ

(n)
t (u)

)
for the components

of θt(u); the quantity θ
(i)
t (u) is the number of units invested in asset i in time period u,

specifically in the time interval (u− 1, u]. The Gu−1−measurability requirement means
that the portfolio composition θt(u) for the time period u follows from the general infor-
mation available up to and including time u− 1.

At time t, the initial investment or endowment of a trading strategy θt is given by

θt(t+ 1) · Y (t) =
n∑

i=0

θ
(i)
t (t+ 1)× Y (i)(t).

The value of the trading strategy θt at time u, just before rebalancing, is expressed as

θt(u) · Y (u) =
n∑

i=0

θ
(i)
t (u)× Y (i)(u), for any u = t+ 1, . . . , T,

whereas its value at time u, just after rebalancing, is expressed as

θt(u+ 1) · Y (u) =
n∑

i=0

θ
(i)
t (u+ 1)× Y (i)(u), for any u = t+ 1, . . . , T − 1.

Both θt(u) · Y (u) and θt(u+ 1) · Y (u) are Gu−measurable.
A time−t trading strategy θt is said to be self-financing if

θt(u) · Y (u) = θt(u+ 1) · Y (u), for any u = t+ 1, ..., T − 1. (1)
That is, no capital is injected or withdrawn at any rebalancing moment u = t+1, ..., T−1.
Then, the time−T value of any self-financing time−t strategy θt can be expressed as

θt(T ) · Y (T ) = θt(t+ 1) · Y (t) +
T∑

u=t+1

θt(u) ·∆Y (u) ,

with ∆Y (u) = Y (u) − Y (u− 1). In this formula, θt(u) · ∆Y (u) is the change in the
market value of the investment portfolio in the time period u, namely between time u− 1
(just after rebalancing) and time u (just before rebalancing). Hereafter, we denote the
set of self-financing time−t trading strategies by Θt.

Throughout this study, we assume that the market for traded assets is arbitrage-free.
That is, there is no self-financing strategy θ0 ∈ Θ0 such that

θ0(1) · Y (0) = 0, P [θ0(T ) · Y (T ) ≥ 0] = 1 and P [θ0(T ) · Y (T ) > 0] > 0.

In our discrete time setting, the absence of arbitrage is equivalent to the existence of
an equivalent martingale measure Q1, under which the discounted price process Y is a

1For a proof of this equivalence, see Delbaen and Schachermayer (2006).
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G−martingale:

Y (t− 1) = EQ
t−1

[
e−

∫ t
t−1 rsdsY (t)

]
, for any t = 1, ..., T, (2)

for some (possibly stochastic) interest rate rs. In the remainder of the study, we use the
notation EQ

t [·] := EQ [ ·| Gt]. Then, for a time−t self-financing strategy θt ∈ Θt, from (2)
we know its time−u price is given by

θt(u+ 1) · Y (u) = EQ
u

[
e−

∫ T
u rsdsθt(T ) · Y (T )

]
, for any u = t, ..., T − 1. (3)

Hereafter, the asset 0 is assumed to be the zero-coupon bond paying an amount of 1
at maturity T . Its time-t price B(t, T ) is given by

Y (0)(t) = B(t, T ) = EQ
t

[
e−

∫ T
t rsds

]
, for any t = 0, 1, ..., T − 1.

A simple example of a self-financing time−t trading strategy is the static trading strategy
βt consisting of buying one unit of the zero-coupon bond B(t, T ), which pays 1 at T , at
time t and holding it until maturity T . The value of this strategy at time u is given by

βt(u) · Y (u) = EQ
u

[
e−

∫ T
u rsds

]
, for any u = t+ 1, ..., T.

2.2 Insurance liabilities

The combined financial actuarial world also hosts a number of insurance liabilities. In our
notation, a t−claim is payable at time t unless stated otherwise. Furthermore, we denote
the set of all t−claims defined on (Ω,G,G), that is the set of all Gt−measurable random
variables, by Ct. In this study, we consider T−claims in most cases, which are payable at
time T and belong to the set CT . The notation is generally denoted by S(T ) or simply S
if no confusion would result. Categorized by whether insurance claims can be hedged by
trading strategies, we introduce the notions of two special classes of claims: t−hedgeable
T−claims and t−orthogonal T−claims.

Definition 1 (t−hedgeable T−claim) A t−hedgeable T−claim Sh is an element of CT
that can be replicated by a time−t self-financing strategy θt ∈ Θt :

Sh = θt(T ) · Y (T ),

where θt(T ) · Y (T ) is the time−T value of the hedging portfolio θt.

The set of all time−t hedgeable T−claims is Ht
T . For any time−t hedgeable T -claim

Sh, a time−t trading strategy that replicates Sh is called a replicating t−hedge of Sh. The
time−t price of Sh is given by

θt(t+ 1) · Y (t) = EQ
t [e

−
∫ T
t rsdsθt(T ) · Y (T )],

where Q is a generic member of the class of equivalent martingale measures and θt is a
replicating t−hedge of Sh.
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Definition 2 (t−orthogonal T−claim) A t−orthogonal T−claim S⊥ is an element of
CT that is P-independent of the stochastic process Yt+1 = {Y (u)}u∈{t+1,...,T} describing
the evolution of the traded assets from t+ 1 onwards:

S⊥ ⊥ Yt+1.

Hereafter, we denote the set of all t−orthogonal T -claims by Ot
T . Both Ht

T and Ot
T

are increasing in t. Most T -claims are neither t−orthogonal nor t−hedgeable, but are
correlated with the market price of tradable assets.

2.3 Fair dynamic valuation

We next revisit the fair dynamic valuations introduced by Barigou et al. (2019) and Chen
et al. (2019). In the multi-period setting, a t−valuation ρt assigns to each T−claim a
Gt−measurable random variable ρt [S] that represents the t−value of the T−claim S, given
the available information at time t. A dynamic valuation is a sequence of t−valuations2.

Definition 3 (t−valuation) A t−valuation, t = 0, 1, . . . , T − 1, is a mapping ρt : CT →
Ct, attaching a t−claim to any T -claim S ∈ CT :

S → ρt [S] ,

such that

• ρt is normalized:
ρt [0] = 0.

• ρt is translation invariant:

ρt [S + a] = ρt [S] +B(t, T )a, for any S ∈ CT and a ∈ Ct payable at T .

Definition 4 (Dynamic valuation) A dynamic valuation is a sequence (ρt)
T−1
t=0 where

for each t = 0, 1, ..., T − 1, ρt is a t−valuation.

Now, we introduce an often used equation. Consider a time−t trading strategy that
invests ρt [S] at time t in the zero-coupon bond B(t, T ), for t = 0, 1, ..., T−1. The time−T
value of this trading strategy ρ̃t satisfies that

ρ̃t [S] =
ρt [S]

B(t, T )
. (4)

The t−valuation ρ̃t [S] introduced in (4), which corresponds to the value at time T of
the investment of the t−valuation ρt [S] in the zero-coupon bond B(t, T ), is adopted to
compare the t−valuations at different times hereafter.

2See, for instance, Chen et al. (2019), Barigou et al. (2019), Acciaio and Penner (2011), Artzner et al.
(2007), and Riedel (2004), who used similar notions.
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Table 1 summarizes some important classes of t− and dynamic valuations.

Table 1: Properties of t− and dynamic valuations.
Property t-valuation ρt Dynamic valuation (ρt)

T−1
t=0

Actuarial If it satisfies ρt [S] = B(t, T ) · (EP [S] +RMt [S]),
for any S ∈ CT , where the mapping RMt : CT →
Ct is P-law invariant and P-independent of time−t
and future asset prices Yt = {Y (u)}u∈{t,...,T}.

N.A.

Model-consistent If any t−orthogonal T -claim is marked-to-model:
ρt
[
S⊥] = B(t, T ) · At

[
S⊥] , for any S⊥ ∈

Ot
T , where the t−valuation At is an actuarial

t−valuation.

If any t−valuation ρt is
model-consistent.

Market-consistent If any t−hedgeable part of any T−claim is
marked-to-market:
ρt
[
S + Sh

]
= ρt[S] + EQ

t

[
e−

∫ T
t rsdsSh

]
, for any

S ∈ CT and Sh ∈ Ht
T .

If any t−valuation ρt is
market-consistent.

Time-consistent N.A. If all t−valuations in-
volved are connected
in the following way:
ρt [S] = ρt [ρ̃t+1 [S]] ,
for any S ∈ CT and t =
0, 1, ..., T − 2.

Fair If it is model- and market-consistent. If it is model-, market-
and time-consistent.

The actuarial and model-consistent properties of t− and dynamic valuations corre-
spond to the traditional valuation of claims in an insurance context. The actuarial con-
dition is a generalization of various insurance premium principles such as the variance
principle and standard deviation principle, as discussed by, for example, Bowers (1986),
Kaas et al. (2008), and Norberg (2014). One example of actuarial t−valuation is the
standard deviation principle,

At

[
S⊥] = B(t, T ) ·

(
EP

t

[
S⊥]+ ασP

t

[
S⊥]) ,

with σP
t

[
S⊥] :=

√
V arP [S⊥ | Gt] and α > 0. The actuarial t−valuation is independent

of time−t and future asset prices. The model-consistent condition, defined on the basis
of actuarial t−valuation, requires that any t−orthogonal claim should be valuated by an
actuarial t−valuation At multiplied by the time-t zero-coupon bond price B(t, T ). Clearly,
the class of actuarial t−valuation is a special type of model-consistent t−valuation.
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The market-consistent condition extends the notion of cash invariance to all t−hedgeable
claims by postulating that any t−hedgeable claim should be valuated at the price of its
replicating t−hedge. Some identical or similar conditions can be found in the literature
(Kupper et al., 2008, Malamud et al., 2008, Artzner and Eisele, 2010, Pelsser and Stadje,
2014). A financial t−valuation is model-consistent, while a model-consistent t−valuation
is not necessary a financial one. The fair t−valuation merges the model- and market-
consistent properties.

The concept of time-consistency, which has been discussed extensively3, couples the
different static t−valuations. Time consistency means that the same time−t value is
assigned to a T−claim regardless of whether it is calculated in one step or in two steps
backwards in time. The fair dynamic valuation merges the properties of model-consistent,
market-consistent, and time-consistent valuations (Dhaene et al., 2017, Barigou et al.,
2019).

3 Fair dynamic valuation using LAC hedging

In this section, we introduce fair dynamic valuation using the LAC hedging approach.
We revisit convex hedging and valuation in Section 3.1 and propose the LAC hedging
technique in Section 3.2. We show that LAC hedge-based dynamic valuation is equivalent
to the class of fair dynamic valuation and provide some examples in Section 3.3.

3.1 Convex hedging and dynamic valuation

Dhaene et al. (2017) and Barigou et al. (2019) proved that fair (dynamic) valuation
is equivalent to hedge-based valuation in both single-period and multi-period settings.
Determining the fair t−value of a T−claim S at time t departs from splitting the claim
into its hedge and the remaining claim:

ρt [S] = θt,S(t+ 1) · Y (t) +RMt [S − θt,S(T ) · Y (T )], (5)

where θt,S is a fair t−hedge and RMt is a model-dependent valuation. Thus, the fair
dynamic valuation approach is hedge-based and it depends on the choice of hedging tech-
nique. Dhaene et al. (2017) and Chen et al. (2019) showed that the convex hedging
technique is suitable for obtaining the fair valuation of insurance liabilities.

A convex t−hedger attaches the hedge θu
S to any claim S ∈ CT such that the claim and

time-T value of the hedge are close in the sense that the P-expectation of the u-value of
their difference is minimized. The choice of the convex function u determines how severe
the deviations are punished.

3See, for example, Cheridito and Kupper (2011), Acciaio and Penner (2011), and Föllmer and Schied
(2011) for the discrete time case and Frittelli and Gianin (2004), Delbaen et al. (2010), Pelsser and Stadje
(2014), and Feinstein and Rudloff (2015) for the continuous time case.
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Definition 5 (t−hedger) A t−hedger is a function θt : CT → Θt that maps any T−claim
S to a self-financing time−t trading strategy θt,S ∈ Θt such that

• θt is normalized:
θt,0 = 0t,

where 0t is the self-financing time−t trading strategy corresponding to the null
investment at time t, namely 0t(u) = (0, 0, . . . , 0) for all u = t+ 1, . . . , T .

• θt is translation invariant:

θt,S+a = θt,S + aβt, for any S ∈ CT and a ∈ Ct payable at T ,

where βt is the static trading strategy that consists of buying one unit of the zero-
coupon bond B(t, T ) and holding it until maturity T .

Definition 6 (Convex t−hedger) Consider a strictly convex non-negative function u
with u(0) = 0. The t−hedger θut determined using

θu
t,S(t+ 1) = arg min

µt∈Θt

EP
t [u (µt(T ) · Y (T )− S)] , for any S ∈ CT , (6)

is called a convex t−hedger (with convex function u).

For any T -claim S, the self-financing trading strategy θu
t,S is called a convex t−hedge

for S. The value of the hedge θu
t,S of S at time u = t + 1, . . . , T , before rebalancing, is

given by θt,S(u) · Y (u), while after rebalancing, it is θu
t,S(u + 1) · Y (u). Hereafter, we

introduce the class of convex t−valuation based on the convex t−hedger.
Chen et al. (2019) introduced the CHB t−valuation (dynamic valuation) approach,

finding that it is equivalent to fair t−valuation (dynamic valuation). In the following
paragraph, we revisit the definition of CHB t− and dynamic valuation.

Definition 7 (CHB t− and dynamic valuation) Consider a t−valuation ρt : CT →
Ct, t = 0, 1, . . . , T − 1 and a dynamic valuation (ρt)

T−1
t=0 .

• ρt is a CHB t−valuation if there exists a convex t−hedger θu
t and a model-consistent

t−valuation πt such that

ρt [S] = θu
t,S(t+ 1) · Y (t) + πt[S − θu

t,S(T ) · Y (T )];

• (ρt)
T−1
t=0 is a CHB dynamic valuation if all ρt are CHB t−valuations and connected

in the following way:

ρt [S] = ρt [ρ̃t+1 [S]] , for any S ∈ CT and t = 0, 1, ..., T − 2.
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3.2 LAC hedging and dynamic valuations

The convex hedging approach is determined using its underlying convex function u(x).
The choice of convex function determines how severe positive and negative deviations
(gains and losses) are punished, and hence reflects actuaries’ attitude towards hedging
outcomes. In this study, we introduce the LAC hedging technique, which differentiates in
its attitude towards gains and losses.

Loss aversion, an important concept in decision theory and prospect theory, refers
to the fact that a loss of a certain amount leads to losing more satisfaction than the
satisfaction brought about from a gain of the equivalent amount. Loss aversion is captured
by the following prospect utility, as proposed by Tversky and Kahneman (1992):

u(x) =

{
xα,

−λ(−x)α,
x ≥ 0
x ≤ 0

. (7)

Hereafter, we consider a convex hedging technique whose underlying convex function is
in line with the loss averse utility form in (7). That is, the underlying convex function
displays a higher degree of sensitivity to losses than to gains. We next define the LAC
t−hedger.

Definition 8 (LAC t−hedger) A LAC t−hedger θLAC
t is a convex t−hedger determined

using

θLAC
t,S (t+ 1) = arg min

µt∈Θt

EP
t [u (S − µt(T ) · Y (T ))] , for any S ∈ CT ,

and its underlying convex function u(x) satisfies

u(x) =

{
g(x)

λ · g(−x)
x ⩾ 0
x < 0

, (8)

where λ > 1 and g(x) ⩾ 0 for any x ⩾ 0.

In the definition of u(x), the deviation x is a result of the hedging strategy choice in
the convex hedging technique in (6). x is a random variable to be observed at time T
and its sign is consistent with the deviation of the loss averse utility in (7). Specifically,
the x < 0 cases indicate the losses of insurers, whereas the x > 0 cases mean the gains.
Moreover, the loss aversion degree of a LAC t−hedger is measured by the loss aversion
coefficient λ.

As a LAC t−hedger’s sensitivity to marginal losses and gains is measured by u′(x), its
coefficient λ indicates the ratio of u(x)’s marginal loss sensitivity to its gain sensitivity.
We discuss the meaning of the loss aversion coefficient λ in the underlying convex function
u(x) in the form of equation (7), if we consider λ ≥ 0,

• The convex function u(x) ‘punishes’ positive deviations more than negative ones
when λ < 1;
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• The convex function u(x) ‘punishes’ negative deviations more than positive ones
when λ > 1;

• The convex function u(x) ‘punishes’ positive and negative deviations similarly when
λ = 1.

Since a claim S indicates a liability paying out cashflows, the claim −S is an asset
to the insurer that receives the opposite income cashflows. We introduce the notion of
the P−symmetric property to measure whether a hedger adopts differentiated assets and
liabilities.

Definition 9 A t−hedger θt is P−symmetric if

θt,S = −θt,−S, for any claim S ∈ CT .

A P−symmetric t−hedger determines the hedge strategy only depending on the claim’s
cashflow, regardless of it being a liability or an asset. In other words, a P−symmetric
t−hedger hedges ‘symmetrically’ towards a liability (payout cashflows) and an asset with
the opposite income cashflows. The following theorem proves that the P−symmetric
property is equivalent to that a t−hedger ‘punishes’ positive and negative deviations
similarly (λ = 1).

Theorem 1 The convex t−hedger determined using

θu
t,S(t+ 1) = arg min

µt∈Θt

EP
t [u (S − µt(T ) · Y (T ))] , for any S ∈ CT ,

with
u(x) =

{
g(x),

λ · g(x),
x ⩾ 0
x < 0

.

is P−symmetric if and only if λ = 1.

Proof: First, we define the following step function:

W (x) =

{
1,
λ,

if x ⩾ 0
if x < 0

.

Then, u (x) = W (x) · g(x) and

du (x)

dx
= W (x) · dg(x)

dx
.

The first-order conditions of EP
t [u (S − µ · Y (T ))] are

EP
t

[
W (x) · dg(x)

dx
Y (i)(T )

]
= 0, for i = 0, 1, .., n, (9)
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where x = µ · Y (T ) − S for any S ∈ CT . For the special case g(x) = x2, equation (9)
becomes

EP
t

[
W (S − µ(T ) · Y (T )) · (S − µ(T ) · Y (T )) Y (i)(T )

]
= 0, for i = 0, 1, .., n. (10)

(1) On the one hand, if λ = 1, the convex function u(x) satisfies

u (−x) + u (x) = 0, for any x ⩾ 0.

Thus, the convex hedger is P−symmetric, with θu
t,S = −θu

t,−S for any S ∈ CT .
(2) On the other hand, if a convex t−hedger θu

t is P−symmetric, we know θu
t,S = θu

t,−S

for any S ∈ CT . Hence, together with the first-order conditions of θu
t,S and θu

t,−S, we have

EP
t

[
W (S − θu

t,S(T ) · Y (T )) ·
(
S − θu

t,S(T ) · Y (T )
)
Y (i)(T )

]
= 0, for i = 0, 1, .., n, (11)

and

EP
t

[
W (−S + θu

t,S(T ) · Y (T )) ·
(
S − θu

t,S(T ) · Y (T )
)
Y (i)(T )

]
= 0, for i = 0, 1, .., n,

(12)
respectively. As equations (11) and (12) hold for any S ∈ CT and θu

t,S, the W (x) is an
even function with λ = 1.

On the basis of the LAC hedging technique, we introduce the LACHB t− and dynamic
valuation.

Definition 10 (LACHB t− and dynamic valuation) Consider a convex t−valuation
ρt : CT → Ct, t = 0, 1, . . . , T − 1 and a convex dynamic valuation (ρt)

T−1
t=0 .

• ρt is a LACHB t−valuation if there exists a LAC t−hedger θLAC
t and a model-

consistent t−valuation πt such that

ρt [S] = θLAC
t,S (t+ 1) · Y (t) + πt[S − θLAC

t,S (T ) · Y (T )], for any S ∈ CT .

• (ρt)
T−1
t=0 is a LACHB dynamic valuation if all ρt are LACHB t−valuations.

Chen et al. (2019) showed that the classes of CHB t−valuation (dynamic valuation)
and fair t−valuation (dynamic valuation) are equivalent. As LACHB t− valuations (dy-
namic valuations) are a particular class of CHB t−valuation (dynamic valuation), it is
straightforward to show that they are equivalent to the class of fair t−valuations (dynamic
valuations).

Corollary 1 Consider a t−valuation ρt and a dynamic valuation (ρt)
T−1
t=0 :

• ρt is a LACHB t−valuation if and only if it is a fair t−valuation.

• (ρt)
T−1
t=0 is a LACHB dynamic valuation if and only if it is a fair dynamic valuation.
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3.3 Examples: LAC t−hedgers

We end this section with some examples of LAC t−hedgers, whose underlying convex
function u(x) is in line with the form in equation (8).

Example 1 Consider a LAC t−hedger and its underlying convex function u(x) is

u(x) =

{
eα|x|,

λ · eα|x|,
x ⩾ 0
x < 0

, λ > 1,

where the function g(x) is an exponential function with α > 0.

Example 2 Consider a LAC t−hedger and a function g(x) = |x|p, p > 1. Then, its
underlying convex function u(x) equals

u(x) =

{
|x|p,

λ · |x|p,
x ⩾ 0
x < 0

, λ > 1. (13)

In the following example, we consider a special u(x) in the form of equation (13)
with p = 1, which is a non-strictly convex function, and hence it does not perfectly meet
the definition of a LAC t−hedger. This example is equivalent to the cost-of-capital risk
margin of Solvency II. The cost-of-capital principle is

RM [S] = icoc · V aRp[S], (14)

where icoc is the cost-of-capital rate and p is the Value-at-Risk percentile.

Example 3 Consider the non-strictly convex function g(x) = |x|; then,

u(x) =

{
|x|,

λ · |x|,
x ⩾ 0
x < 0

, λ =
p

1− p
.

It can be proven that B(t, T )·V aRp(S) is the solution to the following hedger that attaches
an investment in the zero-coupon bond to any claim S:

µt,S = B(t, T ) · argmin
α∈R

EP
t [u (α− S)] , for any S ∈ CT . (15)

The first-order condition is

0 = Pr(µt,S ≥ S)− λ · Pr(µt,S < S),

= (1 + λ) · Pr(µt,S ≥ S)− λ,

implying
Pr(µt,S ≥ S) =

λ

1 + λ
,

and thus,
µt,S = B(t, T ) · V aR λ

1+λ
(S).
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4 LAMV hedging

MV hedging, using the minimal mean squared error, approximates a given payoff using the
final value of a trading strategy, as shown by Thomson (2005), Dahl and Møller (2006),
and Barigou and Dhaene (2019). The convex function of MV hedging is the quadratic
function, and hence MV hedging is a special case of convex hedging. The definition of an
MV t−hedger is as follows:

Definition 11 (MV t−hedger) The convex t−hedger determined using

θMV
t,S (t+1) = arg min

µt∈Θt

EP
t

[
(µt(T ) · Y (T )− S)2

]
, for any S ∈ CT and t = 0, 1, ..., T −1,

(16)
is called an MV t−hedger.

We assume that the time−T value of any time−t trading strategy is square-integrable;
hence, a solution to the optimization problem in equation (16) always exists4. MV hedging
does not differentiate loss and gain deviations. Now, we introduce LAMV hedging, which
is more sensitive to losses than gains.

Definition 12 (LAMV t−hedger) The convex t−hedger determined using

θλ
t,S(t+ 1) = arg min

µt∈Θt

EP
t [u (S − µt(T ) · Y (T ))] , for any S ∈ CT , (17)

with
u(x) =

{
x2,

λ · x2,
x ⩾ 0
x < 0

, λ > 1, (18)

is called an LAMV t−hedger.

Unlike MV hedging, which has an explicit solution and reasonable properties, the
LAMV t−hedger lacks clear solutions. We follow the literature on asymmetric least
squares regression, such as Newey and Powell (1987), Yao and Tong (1996), and Wang
et al. (2011), to solve the LAMV t−hedger by approximation. Throughout the remainder
of this paper, we denote the LAMV t−hedger by θλ

t with λ > 1 if no misunderstanding
would result. However, in contexts that lack the λ > 1 constraint, we discuss the different
ranges of λ, namely λ > 1, λ = 1, and λ < 1.

4.1 LAMV versus MV hedging

After introducing the LAMV hedging technique, we investigate its hedging properties.
We start by comparing the P-expectation property between the LAMV t−hedger and
MV t−hedger.

4See, for instance, Černỳ and Kallsen (2009).
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Theorem 2 The convex t−hedger determined using

θλ
t,S(t+ 1) = arg min

µt∈Θt

EP
t [u (S − µt(T ) · Y (T ))] , for any S ∈ CT , (19)

with
u(x) =

{
x2,

λ · x2,
x ⩾ 0
x < 0

,

satisfies:
(1) If λ > 1,

EP
t [θ

λ
t,S(T ) · Y (T )] > EP

t [S];

(2) If λ = 1,
EP

t [θ
λ
t,S(T ) · Y (T )] = EP

t [S];

(3) If λ < 1,
EP

t [θ
λ
t,S(T ) · Y (T )] < EP

t [S].

Proof: For any S ∈ CT , the first-order condition of θλ
t,S is

EP
t {[(θλ

t,S(T )·Y (T )−S)·Iθλ
t,S(T )·Y (T )≥S+λ (θλ

t,S(T )·Y (T )−S)·Iθλ
t,S(T )·Y (T )<S] Y

(i)} = 0, for i = 0, 1, .., n,

where I{.} is an indicator function. Thus, for the asset Y (0), we have

EP
t [θ

λ
t,S(T ) · Y (T )− S] + (λ− 1) · EP[(θλ

t,S(T ) · Y (T )− S) · Iθλ
t,S(T )·Y (T )<S|] = 0. (20)

If λ > 1, we have
EP

t [θ
λ
t,S(T ) · Y (T )− S] > 0,

as
(λ− 1) · EP

t [(θ
λ
t,S(T ) · Y (T )− S) · Iθλ

t,S(T )·Y (T )<S|] < 0.

Thus, we have
EP

t [θ
λ
t,S(T ) · Y (T )] > EP[S].

The proofs of the λ = 1 and λ < 1 cases are similar and follow from equation (20).
It is straightforward to verify that the MV t−hedger θMV

t corresponds to the convex
t−hedger in equation (19) with λ = 1. Thus, the MV t−hedger has the P-expectation
property:

EP
t [S] = EP

t [θ
MV
t,S (T ) · Y (T )], for any S ∈ CT .

From Lemma 2, we know LAMV t−hedgers does not have the P-expectation property.
In addition to the P-expectation property, the MV t−hedger also has the following prop-
erties5:

θMV
t,α×S(T ) = α× θMV

t,S (T ), for any S ∈ CT and scalar α ≥ 0,

and
θMV
t,S1+S2

(T ) = θMV
t,S1

+ θMV
t,S2

(T ), for any S1 and S2 ∈ CT .
5See, for example, Schweizer (2010) and Barigou and Dhaene (2019).
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It is straightforward to verify that the LAMV t−hedger has the former positive homoge-
neous property:

θλ
t,α×S(T ) = α× θλ

t,S(T ), for any S ∈ CT and scalar α ≥ 0.

However, in general,
θλ
t,S1+S2

(T ) ̸= θLAMV
t,S1

+ θλ
t,S2

(T ).

Proposition 1 For any S ∈ CT , the convex t−hedger defined in equation (19) satisfies

EP
t [|θλ

t,S(T ) · Y (T )− S| · Iθλ
t,S ·Y (T )≥S] =

λ

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|], (21)

where λ is the loss aversion coefficient.

Proof: For any S ∈ CT , the first-order conditions of θλ
t,S are

EP
t {[(θλ

t,S(T ) ·Y (T )− S) · Iθλ
t,S ·Y (T )≥S + λ (θλ

t,S(T ) ·Y (T )− S) · Iθλ
t,S(T )·Y (T )<S] Y

(i)} = 0,

for i = 0, 1, ...n, where I{.} is an indicator function. For the asset Y (0), we have

(1 + λ) · EP
t [|θλ

t,S(T ) · Y (T )− S| · Iθλ
t,S(T )·Y (T )≥S]− λ · EP

t [|θλ
t,S(T ) · Y (T )− S|] = 0.

Subsequently, we have

EP
t [|θλ

t,S(T ) · Y (T )− S| · Iθλ
t,S(T )·Y (T )≥S]

EP
t [|θλ

t,S(T ) · Y (T )− S|]
=

λ

λ+ 1
.

Proposition 1 shows that the LAMV t−hedger determines the optimal hedging such
that the λ

λ+1
ratio of the mean absolute deviations come from the gain deviation cases.

For the MV t−hedger with λ = 1, the expected deviations that come from the gain
and loss scenarios are equal. Given that λ > 1 for the LAMV hedge, more expected
deviations come from gains than losses. Thus, the loss aversion coefficient λ “controls”
the percentage of absolute deviations coming from gains.

4.2 Gain and loss deviations

Moreover, in addition to the properties mentioned above, the loss aversion coefficient λ
makes the LAMV t−hedger θλ

t different from the MV t−hedger. The following proposition
shows that the MV t−hedger is P-symmetric, while the LAMV t−hedger is not.
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Proposition 2 The convex t−hedger determined in equation (19) satisfies:
(1) If λ > 1,

EP
t [(θ

λ
t,S(T ) + θλ

t,−S(T )) · Y (T )] > 0; (22)

(2) If λ = 1,
EP

t [(θ
λ
t,S(T ) + θλ

t,−S(T )) · Y (T )] = 0; (23)

(3) If λ < 1,
EP

t [(θ
λ
t,S(T ) + θλ

t,−S(T )) · Y (T )] < 0. (24)

Proof: For any S ∈ CT , the first-order condition of θλ
t,S with respect to the asset Y (0) is

derived in equation (20). This is equivalent to

EP
t [θ

λ
t,S(T ) · Y (T )− S] = (λ− 1) · EP

t [(S − θλ
t,S(T ) · Y (T )) · Iθλ

t,S ·Y (T )<S|] . (25)

From the proof of Proposition refprop2, for any S ∈ CT , we know

EP
t [(S − θλ

t,S(T ) · Y (T )) · Iθλ
t,S(T )·Y (T )<S|] =

1

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|]. (26)

Combining equations (25) and (26), we have

EP
t [θ

λ
t,S(T ) · Y (T )− S] =

λ− 1

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|], (27)

for any S ∈ CT . Then, for the claim −S, we have

EP
t [θ

λ
t,−S(T ) · Y (T )− (−S)] =

λ− 1

λ+ 1
EP

t [|θλ
t,−S(T ) · Y (T )− (−S)|].

Adding these two equations leads to

EP
t [(θ

λ
t,S(T ) · Y (T ) + θλ

t,−S(T )) · Y (T )]

= EP
t [(θ

λ
t,S(T ) · Y (T )− S + θλ

t,−S(T )) · Y (T ) + S]

= EP
t [θ

λ
t,S(T ) · Y (T )− S] + EP

t [θ
λ
t,−S(T ) · Y (T )− (−S)]

=
λ− 1

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− (−S)|+ |θλ

t,−S(T ) · Y (T )− (−S)|],

for any S ∈ CT . Since both |θλ
t,S(T ) · Y (T ) − (−S)| and |θλ

t,S(T ) · Y (T ) − (−S)| are
positive, the positiveness or negativeness depends on the value of λ. Thus, we can draw
the conclusions in equations (22), (23), and (24).

Proposition 1 implies that the MV t−hedger is P-symmetric. Since the convex t−hedger
θλ
t,S satisfies EP

t [(θ
λ
t,S + θλ

t,−S) · Y (T )] > 0 if λ > 1, it is easy to verify that the LAMV
t−hedger is not P-symmetric.
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Hereafter, we analyse the effects of the loss aversion coefficient λ in an LAMV t−hedger.
We start by decomposing the expected absolute value of an LAMV t−hedger’s deviation.
The expected absolute deviation EP

t [θ
λ
t,S · Y (T )− S|] can be decomposed into

EP
t [|θλ

t,S(T ) · Y (T )− S| · Iθλ
t,S(T )·Y (T )≥S] + EP

t [|θλ
t,S(T ) · Y (T )− S| · Iθλ

t,S(T )·Y (T )<S],

where I{.} is an indicator function. We adopt

EP
t,gain[|θλ

t,S(T ) · Y (T )− S|] = EP
t [|θλ

t,S(T ) · Y (T )− S| · Iθλ
t,S(T )·Y (T )≥S],

and
EP

t,loss[|θλ
t,S(T ) · Y (T )− S|] = EP

t [|θλ
t,S(T ) · Y (T )− S| · Iθλ

t,S(T )·Y (T )≥S],

to simplify the notation.

Proposition 3 For any S ∈ CT , the LAMV hedger θλ
t,S satisfies

EP
t [θ

λ
t,S(T ) · Y (T )]− EP

t [S] = EP
t,gain[|θλ

t,S(T ) · Y (T )− S|]− EP
t,loss[|θλ

t,S(T ) · Y (T )− S|].

Proof: For any S ∈ CT , the first-order conditions of θλ
t,S imply equation (27). From

Proposition 1, we know that

EP
t [(S − θλ

t,S(T ) · Y (T )) · Iθλ
t,S(T )·Y (T )≥S|] =

λ

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|],

and

EP
t [(S − θλ

t,S(T ) · Y (T )) · Iθλ
t,S(T )·Y (T )<S|] =

1

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|].

Then, we have

EP
t [θ

λ
t,S(T ) · Y (T )− S] =

λ− 1

λ+ 1
EP
t [|θλ

t,S(T ) · Y (T )− S|]

=
λ

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|]− 1

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|]

= EP
t [|θλ

t,S(T ) · Y (T )− S| · Iθλ
t,S(T )·Y (T )≥S]− EP

t [|θλ
t,S(T ) · Y (T )− S| · Iθλ

t,S(T )·Y (T )<S].

Proposition 3 reveals that the difference between the expectation of the LAMV hedging
portfolio EP

t [θ
λ
t,S · Y (T )] and the claim EP

t [S] equals that between the expected absolute
deviations from gains and losses. As expected, this difference increases with the loss
aversion coefficient λ.
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4.3 Super- and sub-replicating

Now, we introduce the super-replicating and sub-replicating cases as well as their λ con-
ditions.

Proposition 4 Consider the LAMV hedger θλ
t,S.

• θλ
t,S super-replicates any claim S ∈ CT : Pr{θλ

t,S(T ) · Y (T ) ≥ S} = 1 if and only if
λ → ∞;

• θλ
t,S sub-replicates any claim S ∈ CT : Pr{θλ

t,S(T ) · Y (T ) < S} = 1 if and only if
λ → 0.

Proof: From equation (27), we know that for any S ∈ CT , θλ
t,S satisfies

EP
t [θ

λ
t,S(T ) · Y (T )− S] =

λ− 1

λ+ 1
EP

t [|θλ
t,S(T ) · Y (T )− S|]. (28)

(a) For any claim S ∈ CT , if the LAMV hedger θλ
t,S(T ) · Y (T ) super-replicates, from

equation (28), we know
λ− 1

λ+ 1
→ 1,

and hence λ → ∞.
(a’) If λ → ∞, then λ−1

λ+1
→ 1, and we have

EP
t [θ

λ
t,S(T ) · Y (T )− S] = EP

t [|θLAMV
t,S (T ) · Y (T )− S|], for any S ∈ CT .

It is easy to find that θλ
t,S super-replicates any claim S ∈ CT .

(b) If the LAMV hedger θλ
t,S sub-replicates any claim S ∈ CT , from equation (28), we

have
λ− 1

λ+ 1
= −1,

which implies λ = 0.
(b’) If λ = 0, then we have λ−1

λ+1
→ 1 and

EP
t [θ

λ
t,S(T ) · Y (T )− S] = EP

t [|θλ
t,S(T ) · Y (T )− S|], for any S ∈ CT .

It is easy to find that θλ
t,S super-replicates any claim S.

It is intuitive that a larger λ increases the punishment for the loss scenarios and
drives the LAMV hedging strategy closer to the super-replicating case, and vice versa.
An LAMV hedger with a finite positive λ may super-replicate (or sub-replicate) some
S ∈ CT , while the λ condition in Proposition 4 corresponds to the case when an LAMV
hedger super-replicates (or sub-replicates) any claim S ∈ CT .
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5 Fair dynamic valuation using LAMV hedging

In this section, we define the class of LAMVHB valuations and provide a practical appli-
cation. In Section 5.1, we introduce the LAMVHB t− and dynamic valuation on the basis
of the LAMV t−hedger. In Sections 5.2 and 5.3, we introduce two numerical examples.
In these two examples, we implement the MVHB, LAMV, and LAMVHB dynamic valua-
tions of an equity-linked life insurance contract and a guaranteed minimum accumulation
benefit (GMAB) variable annuity, respectively.

5.1 LAMVHB dynamic valuation

After having introduced the class of LAMV hedgers and LACHB dynamic valuation in
the previous sections, we introduce the notion of dynamic valuation.

Definition 13 (LAMVHB t− and dynamic valuation) Consider a CHB t−valuation
ρt : CT → Ct, t = 0, 1, . . . , T − 1 and a CHB dynamic valuation (ρt)

T−1
t=0 ,

• ρt is an LAMVHB t−valuation if there exists an LAMV t−hedger θt and a model-
consistent t−valuation πt such that

ρt [S] = θλ
t,S(t+ 1) · Y (t) + πt[S − θλ

t,S(T ) · Y (T )], for any S ∈ CT . (29)

• (ρt)
T−1
t=0 is an LAMVHB dynamic valuation if all ρt are MVHB t−valuations.

The LAMVHB t−valuation (dynamic valuation) is a particular class of the LACHB
t−valuation (dynamic valuation). Hence, according to Corollary 1, we can prove that the
class of LAMVHB valuations is identical to the class of fair valuations.

Corollary 2 Consider a t−valuation ρt (dynamic valuation (ρt)
T−1
t=0 ). This is an LAMVHB

t−valuation (dynamic valuation) if and only if it is a fair t−valuation (dynamic valuation).

Hereafter, we show that MVHB t−valuation (dynamic valuation), a concept intro-
duced and investigated in previous studies (e.g. Barigou and Dhaene (2019)), as well as
LAMV t−valuation (dynamic valuation) are two particular classes of LAMVHB t−valuation
(dynamic valuation).

Definition 14 (MVHB and LAMV t− and dynamic valuation) Consider an LAMVHB
t−valuation ρt and an LAMVHB dynamic valuation (ρt)

T−1
t=0 determined in equation (29),

• ρt ((ρt)T−1
t=0 ) is an MVHB t−valuation (dynamic valuation) if the hedger θλ

t,S’s coef-
ficient λ = 1;
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• ρt ((ρt)T−1
t=0 ) is an LAMV t−valuation (dynamic valuation) if πt[S] = 0 for any

S ∈ CT .

Next, we show that any LAMV convex t−valuation (dynamic valuation) is an MVHB
t−valuation (dynamic valuation).

Corollary 3 Any LAMV t−valuation (dynamic valuation) is an MVHB t−valuation
(dynamic valuation).

Proof: Consider the LAMV t−hedger θλ
t . We prove that θλ

t satisfies the definition of an
MVHB t−valuation. For any claim S ∈ CT , we have

θλ
t,S(t+ 1) = arg min

µt∈Θt

EP
t [u (µt(T ) · Y (T )− S)]

= θMV
t,S (t+ 1) + arg min

µ′
t∈Θt

EP
t

[
u
(
(µ′

t(T ) + θMV
t,S (T )) · Y (t)− S

)]
]

= θMV
t,S (t+ 1) + θλ

t,S−θMV
t,S ·Y (t)(t+ 1).

Then, for any S ∈ CT , the LAMV t−valuation is
ρt [S] = θλ

t,S(t+ 1) · Y (t)

= θMV
t,S (t+ 1) · Y (t) + πt[S − θMV

t,S (T ) · Y (T )],

where πt[S] = θt,S(t+1)λ·Y (t). Subsequently, we prove that this πt[S] is model-consistent.
Consider any t−orthogonal T−claim S⊥ ∈ Ot

T . The function u(x) is a convex function.
Taking into account the independence of S⊥ and Y as well as Jensen’s inequality, we find
that for any trading strategy µt ∈ Θt, any convex function u(x) satisfies

EP
t

[
u
(
µt(T ) · Y (T )− S⊥) | S⊥] ≥ u

(
µt(T ) · EP

t [Y (T )]− S⊥) .
Taking the expectations on both sides leads to
EP

t

[
u
(
µt(T ) · Y (T )− S⊥)] ≥ EP

t

[
u
(
µt(T ) · EP

t [Y (T )]− S⊥)] ≥ EP
t

[
u
(
ρ̃t
[
S⊥]− S⊥)] ,

which holds for any µt ∈ Θt. Since ρ̃t
[
S⊥] can be rewritten as

ρ̃t [S] =
(
ρt
[
S⊥] , 0, . . . , 0) · Y (T ),

with the relation between ρt
[
S⊥] and ρ̃t [S] indicated in equation (4) for any S⊥ ∈ OT ,

we have
argmin

s∈R
EP

t

[
u
(
s− S⊥)] = EP

t (S
⊥) + argmin

s∈R
EP

t

[
u
(
s+ EP

t (S
⊥)− S⊥)] .

Then, it is straightforward to verify that πt[S] is a model-consistent valuation satisfying
πLAMV
t

[
S⊥] = B(t, T )·[EP

t (S
⊥)+argmin

s∈R
EP

t

[
u
(
s− (S⊥ − EP

t (S
⊥))

)]
], for any S⊥ ∈ OT .

Therefore, we can conclude that the LAMV t−valuation ρt [S] is an MVHB t−valuation
and that any LAMV dynamic valuation is an MVHB dynamic valuation.

Corollary 3 implies that any LAMV t−valuation (dynamic valuation) can be repre-
sented in the form of MVHB t−valuation (dynamic valuation). In other words, although
the LAMV valuation approach does not have an explicit component of the risk margin,
it implicitly accounts for the safety margin embedded in the hedging.
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5.2 Numerical example: Fair dynamic valuation of an equity-
linked liability

In this section, we implement the MVHB, LAMV, and LAMVHB dynamic valuations to
valuate an equity-linked life insurance contract. Consider a financial actuarial world in
which a zero-coupon bond and a stock are traded. The time-t price of the zero-coupon
bond and stock are B(t, T ) and Y (1)(t), respectively. The (t+1)−value Y (1)(t+1) equals
either Y (1)(t) · u or Y (1)(t) · d, where u > 1 and d < 1. For brevity, in this example, we
consider a constant interest rate r such that B(t, T ) = e−r(T−t) for t ≤ T . In this world,
we also observe a non-traded survival index I(T ) at time T , with its value being either 0
(if few people of a given population survive) or 1 (if many survive).

At any time t, t = 0, 1, .., T − 1, the set of future possible scenarios is
{(0, d) , (1, d) , (0, u) (1, u)} ,

where each element denotes a possible scenario. The first component of any couple corre-
sponds to a possible value of the survival index I at time T , and Y (1)(t+1) equals Y (1)(t)
multiplied by the second component value. pij, which stands for P [(i, j)] in the real-world
probability measure P is characterized by

p0d =
1

6
, p1d =

1

6
, p0u =

2

6
and p1u =

2

6
.

The time-T survival index value I(T ) and stock price Y (1)(t+1) are mutually independent
under the physical measure P at any time t, t = 0, 1, .., T − 1, implying that the survival
index is orthogonal. Further, we have EP [I(2)] = 1

2
.

We consider a non-traded hybrid claim payable at T = 2,

S = I(T )× 1

2
(Y (1)(1) + Y (1)(2)),

whose payoff is equity-linked. That is, the claim S pays survivors the average price of Y (1)

at t = 1 and 2. In the following sections, we implement and compare the MVHB, LAMV,
and LAMVHB dynamic valuations. The risk margins of the MVHB and LAMVHB valu-
ations are calculated using the standard deviation risk margin principle:

πt [X] = EP
t [X] + e−rδ · σP

t

[
X − EP

t [X]
]
, for any X ∈ C. (30)

5.2.1 MVHB dynamic valuation

First, we apply the MVHB dynamic valuation approach. At time 1, the MV hedge of S
is given by

θMV
1,S = arg min

µ1∈Θ1

EP [(µ1 · Y (T )− S)2
]

= EP [I(2)]×
(
Y (1)(1)

2
,
1

2

)
=

(
Y (1)(1)

4
,
1

4

)
.
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Then, the time-1 variance of the remaining risk is given by

S − θMV
1,S · Y (2) =

(
I(2)− EP

t [I(2)]
)
× 1

2
(Y (1)(1) + Y (1)(2)).

After some tedious calculations, we have the time-1 variance:

V arP
[
S − 1

4
Y (1)(1)− 1

4
Y (1)(2)

]
= [

1

4
Y (1)(1)]2 · [2

3
(1 + u)2 +

1

3
(1 + d)2].

Then, the MVHB value of S at time 1 is

ρMVHB
1 [S] =

1

4
Y (1)(1) · e−r +

1

4
Y (1)(1) + e−rδ

√
1

6
(1 + u)2 +

1

12
(1 + d)2 · Y (1)(1).

Thus, using the time consistency of MVHB dynamic valuation, we have

ρMVHB
0 [S] = ρ0

[
ρ̃MVHB
1 [S]

]
=

[
1 + e−r

4
+ e−rδ

√
1

6
(1 + u)2 +

1

12
(1 + d)2

]
· Y (1)(0). (31)

5.2.2 LAMVHB dynamic valuation

Next, we consider applying the LAMVHB dynamic valuation for this product claim. At
time 1, the hedge is given by

θλ
1,S =

λ

λ+ 1
× (

Y (1)(1)

2
,
1

2
),

determined by solving the optimization in equation (17). As λ > 1, we have λ
λ+1

> 1
2
.

Similarly, we calculate the following time-1 variance:

V arP
[
S − λ

λ+ 1
Y (1)(1)− λ

λ+ 1
Y (1)(2)

]
=

1

(λ+ 1)2
(
Y (1)(1)

2
)2 · [λ

2 + 1

2
· 2(1 + u)2 + (1 + d)2

3
− (1− λ)2

4
· (1 + 2u+ d

3
)2].

Then, considering the cost-of-capital risk margin, the time-1 LAMVHB value is

ρLAMVHB
1 [S] =

λ

λ+ 1
· 1 + e−r

2
· Y (1)(1)

+
e−rδ

2(λ+ 1)

√
λ2 + 1

2
· 2(1 + u)2 + (1 + d)2

3
− (1− λ)2

4
· (1 + 2u+ d

3
)2 · Y (1)(1).

Similarly, we have

ρLAMVHB
0 [S] =

λ

λ+ 1
· 1 + e−r

2
· Y (1)(0)

+
e−rδ

2(λ+ 1)

√
λ2 + 1

2
· 2(1 + u)2 + (1 + d)2

3
− (1− λ)2

4
· (1 + 2u+ d

3
)2 · Y (1)(0).
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5.2.3 LAMV dynamic valuation

Based on the LAMVHB dynamic valuations, the time-1 and time-0 values of the LAMV
dynamic valuations are

ρLAMV
1 [S] =

λ

λ+ 1
· 1 + e−r

2
· Y (1)(1)

and
ρLAMV
0 [S] =

λ

λ+ 1
· 1 + e−r

2
· Y (1)(0), (32)

respectively.
From Corollary 3, the LAMV t−valuation (dynamic valuation) can be represented in

the form of the MVHB t−valuation (dynamic valuation). Here, for t = 0 and 1, we have

ρLAMV
t [S] = θMV

t,S ·Y(t) + π̃t

[
S − θMV

t,S (T ) ·Y(T )
]

= θMV
t,S ·Y(t) +

λ− 1

2(λ+ 1)
· 1 + e−r

2
· Y (1)(t),

where the second term λ−1
2(λ+1)

· 1+e−r

2
· Y (t) is the safety margin for the remaining risk. As

λ > 1, we have

π̃t[S − θMV
t,S (T ) ·Y(T )] =

λ− 1

2(λ+ 1)
· 1 + e−r

2
· Y (1)(t) > 0.

Since both θλ
t,S and θMV

t,S are fair, the safety margin π̃t[S] = θλ
t,S · Y (t) − θMV

t,S · Y (t) is
model-consistent.

This example shows that the LAMV t−valuation (dynamic valuation) is an MVHB
t−valuation (dynamic valuation), with an implicit model-consistent risk margin deter-
mined using LAMV hedging. Moreover, from equations (31) and (32), we know that
there exists a λE such that ρMVHB

0 [S] = ρLAMV
0 [S] and ρMVHB

1 [S] = ρLAMV
1 [S], which is

λE =

1+e−r

4
+ e−rδ

√
1
6
(1 + u)2 + 1

12
(1 + d)2

1+e−r

4
− e−rδ

√
1
6
(1 + u)2 + 1

12
(1 + d)2

.

As λE is claim-dependent, this example shows that the LAC approach can realize the
safety margin of fair valuations.

If we adopt the MV hedge as the ‘best hedge’ (the benchmark hedge), the remaining
risk is the difference between the claim payoff and MV hedge outcome, S−θMV

S (T )·Y(T ).
On this basis, the safety margins of the MVHB and LAMV dynamic valuations are found
using the explicit risk margin and implicit ‘over-hedging’ embedded in the LAC hedging
technique, respectively. Moreover, the safety margin of the LAMVHB dynamic valuation
relies on both the explicit and the implicit approaches. Table 1 shows the safety margins
of these three dynamic valuations, highlighting that the safety margin of the LAMVHB
dynamic valuation is obtained using the risk margin as well as the LAC hedging technique.
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Table 2: Safety margins of the MVHB, LAMV, and LAMVHB dynamic valuations.
Valuation Safety Margin Technique

MVHB e−r
√

1
6
(1 + u)2 + 1

12
(1 + d)2 · Y (1)(0) Risk margin

LAMV λ−1
2(λ+1)

· 1+e−r

2
· Y (1)(0) LAMV hedging

LAMVHB e−r

2(λ+1)

√
λ2+1
2

· 2(1+u)2+(1+d)2

3
− (1−λ)2

4
· (1 + 2u+d

3
)2 · Y (1)(0) LAMV hedging + Risk margin

5.3 Numerical example: Fair dynamic valuation of a ratchet
GMAB liability

In this section, we implement the LAMVHB dynamic valuation to determine a fair dy-
namic valuation of a ratchet GMAB variable annuity. A GMAB variable annuity guaran-
tees the minimum amount received by the annuitant after the accumulation period, pro-
tecting the value of the annuity from market fluctuations. The guarantee of the ratchet
GMAB is linked to the value of a risky asset and it locks in the historical maximal value
before maturity.

5.3.1 Ratchet GMAB liability

In this example, we consider a typical ratchet GMAB annuity with a payoff

Payoff = I(T )×max(Y (1)(T ), G), with t ≤ T,

where the index I(T ) at time T equals 1 if the insured survives and 0 otherwise6. At time
T , the insured, if alive, is credited the greater of the stock value Y (1)(T ) and the ratchet
guarantee amount G = max(K, η ·maxti≤ T−1 Y

(1)(ti)). The guaranteed amount is given
by the higher of a fixed return guarantee K = erT and the η ratio of the highest histor-
ically recorded stock value before maturity T . Thus, the insurer’s portfolio of insurance
liabilities has the following form:

S = N(T )×max(Y (1)(T ), G), (33)

with N(t) a mortality process counting the number of survivals among an initial popula-
tion of lx policyholders of age x.

We assume that the financial market consists of a risk-free asset Y (0)(t) = ert and a
risky stock index Y (1)(t), t = 0, 1, ..., T . To simplify the illustration7, we assume that the
stock follows a geometric Brownian motion:

dY (1)(t) = Y (1)(t) (µdt+ σdW1(t)) , (34)
6Such a GMAB payoff is typical, as discussed, for instance, by Bacinello et al. (2011).
7The presented approach can be easily adapted to other stock dynamics such as stochastic volatility

and Lévy models.
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with the parameters µ, σ > 0. Moreover, the survival function is then defined by

Sx(t) := P (Tx > t) = exp

(
−
∫ x+t

x

λx(s)ds

)
,

where Tx is the remaining lifetime of an individual aged x at time 0. In addition, deaths of
individuals are assumed to be independent events conditional on knowing the population
mortality 8. Further, mortality intensity is assumed to be stochastic and it follows the
dynamics under P given by

dλx(t) = cλx(t)dt+ ξdW2(t), (35)

with c, ξ > 0 and W2(t) a standard Brownian motion, independent of W1(t). If we denote
D(t + 1) as the number of deaths in year t + 1, the dynamics of the number of active
contracts can be described as a nested binomial process as follows: N(t + 1) = N(t) −
D(t + 1) with D(t + 1)|N(t), qx+t ∼ Bin(N(t), qx+t) and the one-year death probability
qx+t for this age x population from year t to t+ 1.

After introducing the dynamics of N(t) and Y (1)(t), we assign the parameter setting
according to relevant studies. The benchmark parameters for the financial market are
r = 0.02, µ = 0.02, σ = 0.1, η = 0.8, and Y (1)(0) = 1. The mortality parameters (λx(0) =
0.0087, c = 0.0750, ξ = 0.000597) follow from Luciano et al. (2017) and correspond to male
individuals aged 55 at time 0 in the United Kingdom. We assume there are lx = 1000
initial contracts at time 0 with a maturity of T = 10 years. Then, we simulate 10000
sample paths for N(t) and Y (1)(t), for t = 1, . . . , T .

5.3.2 Valuation result

We implement the MVHB, LAMV, and LAMVHB dynamic valuations on the basis of the
simulated scenarios. The detailed simulation and calculation processes are described in
the appendix.

Figure 3 compares the evolution of the MVHB, LAMV, and LAMVHB dynamic val-
uations with a cost-of-capital risk margin in equation (14). Consistent with the Solvency
II regulation, we adopt icoc = 0.06 and p = 99.5%. The time-t valuation is the expected
value of all sample paths, EP [ρt [S]]. We observe an increasing trend of the dynamic val-
uations over time. Two adverse effects over time, namely the upward trend of the stock
and the decreasing value of the non-hedgeable risk margin, jointly shape this curve. In
this setting, the impact of the increasing stock value is clearly more pronounced.

Moreover, it is expected that the LAMVHB dynamic valuation (λ = 1.2, icoc = 0.06)
is higher than the MVHB (λ = 1.0, icoc = 0.06) and LAMV dynamic valuations (λ =
1.2, icoc = 0.00). In this parameter setting, the LAMV approach has the lowest valuation
outcome. The gap between the LAMVHB and LAMV dynamic valuations illustrates the
effect of the risk margin. Similarly, the gap between the LAMVHB and LAMV dynamic

8See Milevsky et al. (2006) for similar assumptions.
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valuations represents the effect of loss aversion (from λ = 1.0 to λ = 1.2) under LAMV
hedging.

Figure 4 compares the LAMVHB dynamic valuations at time 0 with different loss
averse coefficients λ (the horizon) and risk margins (different curves). Consistent with
our intuition, the LAMVHB dynamic valuation increases both with the loss aversion
coefficient λ and with the cost-of-capital rate icoc. On the one hand, the LAMV dynamic
valuation, a particular LAMVHB dynamic valuation with icoc = 0.00, represents the cost
of LAMV hedging without adding a risk margin. We observe an increasing trend of the
LAMV dynamic valuation with the loss aversion coefficient λ. This numerical result shows
that the expectation of the LAMV t−hedging portfolio θλ

t,S(T ) ·Y (T ) increases with the
loss aversion coefficient λ.

On the other hand, the increasing trend of the standard deviation risk margin (δ =
0.15) is faster than that of the cost-of-capital one (i = 0.06). This contrast can be
explained by that the LAMV hedger’s loss aversion reduces the loss deviations, whereas
it increases the overall deviations of the remaining risk. Thus, the standard deviation
risk margin, which also takes into account the gain deviations, may be unsuitable for
application to the ‘asymmetrical’ remaining risk. Instead, a risk margin that measures
one-side tail risk such as the cost-of-capital risk margin is a more reasonable choice.
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Figure 3: Expected MVHB, LAMV, and LAMVHB dynamic valuations of the GMAB
liability.
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Figure 4: Expected LAMVHB dynamic valuation of the GMAB liability with different
cost-of-capital rates.

6 Conclusions

Because regulatory directives are ambiguous about how to determine the hedgeable part
of a claim, the determination of the fair valuation for insurance liabilities, which are often
a combination of hedgeable and unhedgeable risks, is in general not uniquely determined
and rather depends on the choice of hedging technique. Since fair dynamic valuation
can be implemented using feasible hedging techniques such as convex hedging and MV
hedging, the safety margin of fair valuation can also be achieved by hedging in addition
to the conventional risk margin approach.

In this study, we investigated the fair dynamic valuation of insurance liabilities using
the LAC hedging technique in a multi-period setting. We proved that the classes of
LACHB and fair t−valuation (dynamic valuation) are equivalent. Moreover, we provided
a complete characterization of LAMV hedging and illustrated how LAMV hedging and
valuation can be implemented, thus showing that the LAC hedging approach, which
provides more conservative hedging, is practical for fair dynamic valuations.
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Appendix

A1. Simulation and calculation process of the MVHB, LAMV,
and LAMVHB t− hedgers

In this appendix, we introduce the simulation and calculation processes of the MVHB,
LAMV, and LAMVHB t− hedgers using a numerical illustration. The procedure is similar
to that of Barigou et al. (2019) and Chen et al. (2019).

First, we introduce the generation process of the 10000 simulated paths. For any path
i = 1, 2, ..., 10000, at any time t = 0, 1, ..., T − 1 a number of 10000 candidate scenarios of
Nc(t + 1) and Y

(1)
c (t + 1) are generated on the basis of N(t) and Y (1)(t). However, only

one scenario is randomly chosen as the simulated (N(t+ 1), Y (1)(t)) in path i.
Second, at any time t of path i, the t−hedgers and valuations are based on the 10000

candidate scenarios. At time t of each path, the conditional expected (t+ 1)−valuations
are regressed over the risk drivers at time t+1 using a second-order least squares regression:

EP
t

[
ρt+1 [S] |(N(t+ 1), Y (1)(t+ 1))

]
≈ β0+β1N(t+1)Y (1)(t+1)+β2

(
N(t+ 1)Y (1)(t+ 1)

)2
,

for all scenarios. Here, the choice of the type and number of basis functions is based
on an equilibrium between bias and complexity and the payoff structure. The choice of
basis functions and their robustness are discussed by Areal et al. (2008), Moreno and
Navas (2003), and Stentoft (2012). After having β0, β1, and β2, we can obtain the 10000

estimated ρct+1 [S] for all candidate scenarios (Nc(t+ 1), Y (1)
c (t+ 1)).

On this basis, we apply the LAMV t−hedgers. For any path i, the hedge at time t is
obtained by finding the optimal strategy minimizing the convex punishment function using
these 10000 candidate scenarios (Nc(t+1), Y (1)

c (t+1)) and estimated ρct+1 [S]. The MVHB
t−hedger is a particular LAMV t−hedger with λ = 1. Finally, the MVHB, LAMV, and
LAMVHB values are obtained based on the t−hedgers. The expected dynamic valuations
of this liability are the expected value of these 10000 simulated scenarios.
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