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Abstract

For an arbitrage-free market with a single underlying asset, we investigate con-
ditions under which the consecutive price levels are comonotonic. Furthermore, for
an arbitrage-free market with n assets we investigate the consequences of assuming
comonotonicity of the vector containing the price levels of each asset at a single
future date T . Although being of a theoretical nature, the results of this paper give
insight in the reachability of the comonotonic upper bounds for Asian options and
for basket options that can be found in Simon et al. (2000), Dhaene et al. (2002b),
Hobson et al. (2005) and Chen et al. (2008).

1 Introduction

Random variables (r.v.’s) are said to be comonotonic if they are all non-decreasing (or non-
increasing) functions of the same random source. As a result, comonotonicity describes a
situation where the r.v.’s are moving perfectly together. The concept of comonotonicity
has been investigated in detail in the actuarial and financial literature; see e.g. Dhaene
et al. (2002a,b), Deelstra et al. (2011). Assuming a comonotonic dependence structure
between asset prices has proven to be a useful tool to solve several financial applications
such as derivative pricing (Deelstra et al. (2004), Deelstra et al. (2008) and Linders &
Stassen (2016)) and dependence measurement; see e.g. Dhaene, Dony, Forys, Linders &
Schoutens (2012), Dhaene, Linders, Schoutens & Vyncke (2012), Dhaene et al. (2014) and
Linders et al. (2012), to name few.

In this paper, we first consider an arbitrage-free market consisting of a risk-free bank
account and a single risky asset. Today is time t = 0 and we consider the random price
levels S (t1) , S (t2) , . . . , S (tn) at the discrete set of times 0 < t1 < t2 < . . . < tn. We
derive conditions under which the real world as well as the risk-neutral distribution of
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the random vector (S (t1) , S (t2) , . . . , S (tn)) can be comonotonic. To be more precise,
we prove that for popular continuous models such as the Black & Scholes model, the
comonotonicity property is in contradiction with the no-arbitrage assumption. We also
provide examples of stock price models where the price vector (S (t1) , S (t2) , . . . , S (tn))
may be comonotonic, without contradicting the no-arbitrage assumption.

Consider the Asian option with strike K and maturity T whose pay-off at maturity
is equal to

(
1
n

∑n
i=1 S (ti)−K

)
+

. Knowledge about the dynamics of the price vector

(S (t1) , S (t2) , . . . , S (tn)) is required in order to price this Asian option. Suppose that also
vanilla options on the stock S with maturity ti, i = 1, 2, . . . , n are traded. Their prices
give information about the risk-neutral cdf’s of the S (ti). However, this information
is not sufficient to specify the risk-neutral cdf of (S (t1) , S (t2) , . . . , S (tn)). One may
search for an upper bound of the price of an Asian option in the class of models which
are consistent with the traded vanilla option prices; see e.g. Kerkhof et al. (2010) and
Barrieu & Scandolo (2013). In case comonotonicity of (S (t1) , S (t2) , . . . , S (tn)) does not
violate the no arbitrage assumption, this ‘worst case price’ can be derived using the prices
of traded vanilla options and then coincides with the comonotonic upper bound for the
Asian option price which was derived in Simon et al. (2000), Dhaene et al. (2002b) and
Albrecher et al. (2005). We show that for continuous stock price models such as the Black
& Scholes model and a variety of Lévy models, a comonotonic stock price vector is not
attainable. The comonotonic upper bound for the Asian option will be free of any model
risk, but not reachable.

Next, we consider an arbitrage-free market consisting of n traded (dividend or non–
dividend paying) assets and a risk-free bank account. The price of asset i at time T
is denoted by Si. We explore situations under which the price vector (S1, S2, . . . , Sn) is
comonotonic and arbitrage-free. In particular, we have a closer look at the multivariate
Black & Scholes model and give examples of comonotonic price vectors. In Simon et al.
(2000), Dhaene et al. (2002b) and Chen et al. (2008), the authors show that the situation
where the price vector (S1, S2, . . . , Sn) is comonotonic can be artificially created using
vanilla option data.

A basket option written on the stocks S1 (T ) , S2 (T ) , . . . , Sn (T ) with strike K, matu-
rity T has a pay-off at maturity equal to (

∑n
i=1wiSi (T )−K)+ , where all wi > 0. Pricing

the basket option requires knowledge about the marginal cdf’s and the dependence among
the components. Similar to the Asian option case, any misspecification of the dependence
structure leads to a wrongly priced basket option and one can try to reduce the model-
risk by determining the basket option price in a ‘worst case scenario’ among the class
of models which are consistent with the observed vanilla option prices. In this paper,
we show that in case of a basket option, this worst case scenario is always described by
comonotonicity of the stock price vector (S1 (T ) , S2 (T ) , . . . , Sn (T )). Furthermore, the
price of the basket option in this comonotonic scenario is always free of arbitrage and is
equal to an upper bound which is free of any model risk.

This paper is structured as follows. In Section 2 we briefly recapitulate the concept of
comonotonicity and some of its properties that we will need for proving our main results.
In Section 3 we describe the general financial market in which our results hold. In Section 4
we first present results concerning the comonotonicity of the asset prices of a single asset
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at different dates. We consider the concept of comonotonicity of the prices of different
assets at a single date in Section 5. Section 6 concludes the paper.

2 Comonotonic random variables

In the sequel, the vector (x1, ..., xn) will be denoted by x. For two vectors x and y the
notation x 6 y will be used for the componentwise order, which is defined by xi 6 yi for
all i = 1, ..., n. Equalities such as X = Y for the r.v.’s X and Y defined on the probability

space (Ω,F ,P) have to be interpreted as almost sure relationships. Finally, X
d
= Y means

that X and Y are equal in distribution.

Definition 1 A set A ⊆ Rn is said to be comonotonic if for any x and y in A, either
x 6 y or y 6 x holds.

Hereafter we restate the definition of the notion of comonotonicity of a random vector,
as presented in Kaas et al. (2000).

Definition 2 A random vector X is comonotonic if it has a comonotonic support.

The standard notation F−1
X will be used to denote the usual inverse of the cumulative

distribution function (cdf) FX of the r.v. X

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1], (1)

with inf ∅ = +∞ by convention.

In the following theorem, several characterizations of the comonotonicity of a random
vector are presented. For a proof, we refer to Denneberg (1997) or Dhaene et al. (2002a).

Theorem 3 A random vector X = (X1, X2, ..., Xn) is comonotonic if, and only if, one
of the following equivalent conditions holds:

(1) For all x = (x1, x2, ..., xn), we have that

FX(x) = min {FX1 (x1) , FX2 (x2) , ..., FXn (xn)} . (2)

(2) For U ∼ Uniform (0, 1), we have that

X
d
=
(
F−1
X1

(U), F−1
X2

(U), ..., F−1
Xn

(U)
)
. (3)

(3) There exists a r.v. Z and non-decreasing functions fi : R → R, i = 1, ..., n, such
that

X
d
= (f1(Z), f2(Z), ..., fn(Z)) . (4)

3



(4) There exist continuous and non-decreasing functions fi : R −→ R such that

f1(z) + f2(z) + ...+ fn(z) = z (5)

for any z ∈ R and
X = (f1(S), f2(S), ..., fn(S)) , (6)

with
S = X1 +X2 + ...+Xn. (7)

In Expression (6) and below we assume that the equality between the r.v.’s holds
P − a.s. We present some equivalent characterizations for a comonotonic random vector
of which at least one component has a continuous cdf. These characterizations will be
used to prove our main results. Without loss of generality, we will assume that the first
component of the random vector has a continuous cdf.

Theorem 4 Consider a random vector X = (X1, X2, .., Xn) and assume that X1 has a
continuous cdf. In this case, the following statements are equivalent:

(1) X is comonotonic.

(2) There exist non-decreasing functions fi, i = 2, 3, . . . , n, such that

X
d
= (X1, f2(X1), f3(X1), ..., fn(X1)).

(3) There exist non-decreasing functions fi, i = 2, 3, . . . , n, such that

X = (X1, f2(X1), f3(X1), ..., fn(X1)).

Proof. (1)⇒ (2) : As FX1 is continuous, we have that FX1(X1) is uniformly distributed
on the unit interval. Consequently, we also have that

F−1
Xi

(FX1(X1))
d
= Xi, i = 2, 3, . . . , n.

The comonotonic random vector
(
X1, F

−1
X2

(FX1(X1)) , F−1
X3

(FX1(X1)) , . . . , F−1
Xn

(FX1(X1))
)

has the same marginals as the comonotonic vector X. This implies that

X
d
=
(
X1, F

−1
X2

(FX1(X1)) , F−1
X3

(FX1(X1)) , . . . , F−1
Xn

(FX1(X1))
)
.

We find that X
d
= (X1, f2(X1)..., fn(X1)) with fi(x) = F−1

Xi
(FX1(x)) , x ∈ R.

(2)⇒ (1) : Trivial.
(2)⇔ (3) : The⇐ implication is straightforward. It remains to prove that (2) implies (3).

Therefore, assume that X
d
= (X1, f2(X1)..., fn(X1)). Then for any i = 2, 3, . . . , n, we find

that (X1, Xi)
d
= (X1, fi(X1)). Hence for any i = 2, 3, . . . , n, it holds that (fi (X1) , Xi)

d
=

(fi(X1), fi(X1)), which in turn implies that Xi = fi(X1).
We can conclude that X = (X1, f2(X1)..., fn(X1)).
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Theorem 4 is closely related to the concept of strict comonotonicity, defined in Chen
et al. (2015). The random vector X is strictly comonotonic if it has a support such
that for any elements x, y of this support with x 6= y, it must hold that x < y or
x > y. One can prove that in case all marginals have continuous cdf’s, comonotonicity
and strict comonotonicity are equivalent. From Theorem 4 we find that, in this situation,
comonotonicity of a random vector implies that the outcome of any random variable
determines all other outcomes.

Theorem 4 does not necessarily hold in case X1 has a discrete cdf. Indeed, consider
the random couple (X1, X2) and suppose that

Xj+1 = Xj Zj+1, j = 0, 1,

where X0 is a given real number and Z1 and Z2 are i.i.d. r.v.’s which can only take two
different values u > 0 and d > 0, with d < u and

P [Zj = u] = 1− P [Zj = d] = p,

for some 0 < p < 1. The couple (X1, X2) is comonotonic since it has the following
comonotonic support:{(

X0d,X0d
2
)
, (X0d,X0du) , (X0u,X0ud) ,

(
X0u,X0u

2
)}
.

As X1 has a two-point distribution, while X2 has a three-point distribution, it is impossible
to find a non-decreasing functions f such that X2 = f(X1). This means that the outcome
of X1 does not determine unambiguously the realization of X2.

3 The financial market

Consider the filtered probability space
(
Ω,F , (Ft)t∈I ,P

)
, where I is either [0, T ] or I =

{0, t1, t2, . . . , tN} with tN ≤ T , to describe a financial market consisting of n traded
stocks and a bank account. We assume that the filtered probability space satisfies the
usual ‘technical’ conditions of completeness and right-continuity. Moreover, F0 contains
all P-null sets of Ω and FT = F . Money can be deposited on or borrowed from the
bank at the continuously compounded interest intensity r ≥ 0, which is assumed to be
deterministic and constant over time.

Consider a particular stock and suppose that its current price is denoted by S(0) > 0,
which is assumed to be known. The price of this stock at future dates t > 0 is described
by the adapted stochastic process {S(t) | t ∈ I} which is defined on the above mentioned
filtered probability space. Our stock price model is very general and accommodates
discrete-time as well as continuous-time models for the stock price.

Assume for the moment that the stock price process is continuous, i.e. I = [0, T ]. The
stock is assumed to pay a continuous dividend yield ν, which is assumed to be deterministic
and constant over time. Denoting the stochastic value of the (non-discounted) dividends
paid in (0, t) by D (t), we have that

dD (t) = νS(t)dt. (8)
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The gains process {G(t) | 0 ≤ t ≤ T} is defined by

G(t) = S(t) +

∫ t

0

er(t−u)dD (u) , t > 0, (9)

with initial value G(0) = S(0). If {S (t) | t ≥ 0} has continuous paths, then the integral
in (9) is a path-wise Riemann integral, a.s.

Assume now a discrete-time stock price process, i.e. I = {t0, t1, t2, . . . , tN}, with t0 = 0
and tN = T . Moreover, we additionally assume an equidistant time grid, hence ∆t =
tj − tj−1 for all j = 1, 2, . . . , N . The annualized dividend rate is denoted by ν and
assumed to be constant, deterministic and paid out at the end of each period. Define:

∆D(tj) = D(tj)−D(tj−1), for j = 1, 2, . . . , N,

where D(t) denotes the value of dividends paid in the interval (0, t). Then:

∆D(tj) = νS(tj)∆t.

The gains process {G(t) | t ∈ I} is then defined as follows:

G(tj) = S(tj) +

j∑
k=1

er(tj−tk)∆D(tj),

with initial value G(0) = S(0).

Loosely speaking, the financial market is said to be arbitrage-free if there is no self-
financing trading strategy that does not require the injection of capital at initiation, while
it leads to a non-negative terminal gain with probability 1 and to a positive terminal gain
with a positive probability. The financial market is said to be complete if any contingent
claim admits a replicating strategy. A precise definition of these notions requires a careful
specification of the set of admissable investment strategies. For a detailed description of
these concepts, we refer e.g. to Karatzas & Shreve (1998).

Recall that a probability measure Q defined on
(
Ω,F , (Ft)0≤t≤T

)
is said to be an equiv-

alent martingale measure (or a risk-neutral measure) for the financial market described
above if Q is equivalent to P and any gains process, discounted at the risk-free rate, is a
martingale with respect to Q. In particular, under the risk-neutral measure Q we have
that

S(0) = e−rtE [G(t)]

= e−rtE [S(t)] + E
[∫ t

0

e−rudD (u)

]
. (10)

In this expression and also hereafter, expectations have to be interpreted as expectations
under the Q-measure. Furthermore, the notation FS(t) will be used to denote the cdf of
the stock price S (t) under Q.
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Remark 5 Consider the r.v.’s X and Y , and let Q be a probability measure, which is
equivalent to the underlying probability P. Then it holds:

X = Y P− a.s. if, and only if, X = Y Q− a.s.

From the First Fundamental Theorem of Asset Pricing we know that the no-arbitrage
condition is ‘essentially equivalent’ to the existence of an equivalent martingale measure
Q. For a detailed discussion of this fundamental theorem in mathematical finance, we
refer to Delbaen & Schachermayer (2008). Consider a traded contingent claim H which
has a pay-off of H (S (t)) at time t. If the risk-neutral pricing measure in the market
is given by Q, then the price of H (S (t)) at time s, where t ≥ s ≥ 0, is equal to the
conditional expected value of its discounted pay-off at time t:

Price of H (S (t)) at time s = e−r(t−s)E [H (S (t)) | Fs] , (11)

where the expectation is taken with respect to Q. Hereafter, we will assume that there
exists a risk-neutral measure Q, and hence that the market is free of arbitrage.

In the sequel of this paper, we always assume that the stock S pays no dividends in
[0, T ] . Our results remain valid in the more general context where some of the stocks are
paying dividends, provided the earned dividends are reinvested in the stock.

4 A market with a single non-dividend paying risky

asset

In this subsection, we consider the financial market defined in Section 3 and with a single
non-dividend paying risky asset, a stock let’s say. The current price of the stock is given
by S (0) and its price process is given by the stochastic process {S (t) | 0 ≤ t ≤ T}. We
assume that the market is arbitrage-free in the sense that prices of contingent claims are
determined via the discounted expected pay-off, where expectations are taken under some
equivalent martingale measure Q.

Assume that 0 ≤ t1 < t2 < . . . < tn ≤ T. Let us also assume that the risk-neutral
distributions of S (t1) , S (t2) , . . . , S (tn) are known1. A natural question which arises
now is whether an artificial market where the price vector (S (t1) , S (t2) , . . . , S (tn)) is
comonotonic is reachable, in the sense that it is arbitrage-free. Assuming that the marginal
pricing distributions are fixed, this question can be restated as follows: does there exist an
arbitrage-free market model, where the copula of (S (t1) , S (t2) , . . . , S (tn)) in the Q-world
is the comonotonic copula?

As the measure P and any equivalent martingale measure agree on sure events, almost
sure relationships in the P-world immediately translate in almost sure relationships in
the pricing world and vice versa. Taking into account Definition 2, we can conclude

1If option prices with maturities t1, t2, . . . can be observed, the marginal risk-neutral distributions can
be determined; see e.g. Breeden & Litzenberger (1978).
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that comonotonicity of (S (t1) , S (t2) , . . . , S (tn)) in the risk-neutral world is equivalent to
comonotonicity of this vector in the P-world; see e.g. Dhaene, Kukush, Luciano, Schoutens
& Stassen (2013).

In the following subsection, we derive conditions under which it is possible to have
a comonotonic vector (S (t1) , S (t2) , . . . , S (tn)) , without violating the no-arbitrage as-
sumption. We have a closer look at the Black & Scholes model in Example 12.

4.1 An arbitrage-free and comonotonic market

In order to be able to answer the question on reachability of the comonotonic market
situation, we first have to prove the following lemma.

Lemma 6 Consider the general arbitrage-free financial market with a single non-dividend
paying stock and with risk-neutral measure Q. In case there exists a functional relationship
between the stock prices S (s) and S (t) at respective dates s and t with s ≤ t, in the sense
that

S (t) = f(S (s)), (12)

for some, not necessarily known, function f , then this relationship must be linear:

S (t) = S (s) er(t−s). (13)

Proof. We know that for the non-dividend paying stock S, we have that

S(s) = e−r(t−s)E [S(t) | Fs] .

Taking into account the relation (12), this expression can be transformed into

S (s) = e−r(t−s)S (t) ,

which is equivalent to (13).

Relation (13) is a statement in the P-world. Because P and Q are equivalent measures,
it also holds in the Q world.

4.2 The continuous case

Lemma 6 allows us to characterize comonotonicity of the vector (S (t1) , S (t2) , . . . , S (tn))
of stock prices in an arbitrage-free market. Notice that S (t1) has a continuous cdf under
P if, and only if, it has a continuous cdf under Q.

Theorem 7 Consider the general arbitrage-free financial market with a single non-dividend-
paying stock and with risk-neutral measure Q. Assuming that FS(t1) is a continuous cdf,
the following statements are equivalent:
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(1)
(S (t1) , S (t2) , . . . , S (tn)) is comonotonic.

(2) For any couple (S (t1) , S (tj)), the following P-a.s. relationship holds:

S (tj) = S (t1) er(tj−t1), j = 1, 2, . . . , n. (14)

Proof. (1) Let us first assume that (S (t1) , S (t2) , . . . , S (tn)) is a comonotonic random
vector. As FS(t1) is continuous, it follows from Theorem 4 that there exist non-decreasing
functions fi, i = 2, 3, . . . , n, such that

(S (t1) , S (t2) , . . . , S (tn)) = (S (t1) , f2(S (t1))..., fn (S (t1))) .

The linear relationships (14) follow then from Lemma 6.

(2) The conditions (14) can be rewritten as

(S (t1) , S (t2) , . . . , S (tn)) =
(
S (t1) , S (t1) er(t2−t1), . . . , S (t1) er(tn−t1)

)
.

This implies that (S (t1) , S (t2) , . . . , S (tn)) is comonotonic.

In Chen et al. (2015), the authors prove that strict comonotonicity of the price vector
(S (t1) , S (t2) , . . . , S (tn)) is equivalent with (14), while Albrecher et al. (2008) prove The-
orem 7 for the case where all marginal cdf’s FS(ti), i = 1, 2, . . . , n are continuous. Notice
that Theorem 7 is directly applicable to many Lévy market models, as in most of these
models S(t1) has a continuous cdf.

An essential assumption in Theorem 7 is the existence of a risk-neutral pricing mea-
sure Q. Notice however, that the theorem remains to hold under the somewhat weaker
assumption that the market is arbitrage-free, provided we assume additionaly that the
risk-neutral pricing distributions FS(ti), i = 1, 2, . . . , n of the individual stocks are known.
This result follows from Remark ?? and the proof of Theorem 4.

Returning to the question that we considered in the beginning of this section, we can
conclude from Theorem 7 that in case the marginal risk-neutral distributions FS(ti), i =
1, 2, . . . , n, are given and FS(t1) is a continuous cdf, it will in general be impossible to find
an arbitrage-free market where the corresponding dependence structure is characterized
by the comonotonic copula, unless these marginals cdf’s are such that they fulfill the
conditions (14). In the following example we show that the equivalence of (1) and (2) in
Theorem 7 will not necessarily remain to hold in case S(t1) has a discrete cdf.

Example 8 Consider the well-known Cox-Ross-Rubinstein binomial model in the time
interval [0, 2]. In this model, there is a bank account with constant interest intensity r
and a non-dividend paying stock of which we observe the prices S (0) , S (1) and S (2) at
respective times t = 0, 1, 2. The stock price S (0) at time 0 is given. Moreover, the stock
price dynamics follow from

S (t+ 1) = S (t)× Z (t+ 1) , t = 0, 1,
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where Z (1) and Z (2) are i.i.d. r.v.’s which can only take positive values d and u, with
0 < d < u, such that

P [Z(t+ 1) = u] = 1− P [Z(t+ 1) = d] = p,

for some 0 < p < 1. The couple (S (1) , S (2)) is comonotonic since it has a comonotonic
support. A necessary and sufficient condition for this model to be arbitrage-free is that

d < er < u, (15)

or equivalently, that there exists an equivalent martingale measure Q; see e.g. Björk
(1998). The equivalent martingale measure is determined by

Q [Z(t+ 1) = u] = 1−Q [Z(t+ 1) = d] =
er − d
u− d

. (16)

Any choice of d, u and r fulfilling the condition (15) leads to a discrete arbitrage-free
market where (S(1), S(2)) is comonotonic, although the a.s. linear relationship (14) is
violated. ∇

4.3 A generalization

From Theorem 7 we find that with given marginals, a comonotonic and arbitrage-free
market is in general not attainable when FS(t1) is continuous. In this section we generalize
Theorem 7 by relaxing the assumption that the stock price S (t1) at time t1 has a contin-
uous cdf. We first introduce the notion of an isolated mass point of (the distribution of)
a random variable.

Definition 9 A r.v. X is said to have an isolated mass point x under the measure P if
P [X = x] > 0 and there exists an ε > 0 such that P [X ∈ (x− ε, x) ∪ (x, x+ ε)] = 0.

We say that the r.v. X has no isolated mass under the measure P if there are no
isolated mass points, i.e. if for each x ∈ R with P [X = x] > 0 and for every ε > 0, one
has that P [X ∈ (x− ε, x) ∪ (x, x+ ε)] > 0.

Notice that an isolated mass point of X under the measure P remains an isolated mass
point under an equivalent martingale measure, and vice versa. Also, X has no isolated
mass under P if, and only if, it has no isolated mass under any equivalent martingale
measure Q.

Theorem 10 Consider the arbitrage-free market with a single non-dividend paying stock.
Assume additionally that for any isolated mass point x of S(t1) and for any j = 2, 3 . . . , n,
we have that

P
[
S(t1) = x, S(tj) < xer(tj−t1)

]
× P

[
S(t1) = x, S(tj) > xer(tj−t1)

]
= 0. (17)

Then the following statements are equivalent:

10



(1)
(S(t1), S(t2), . . . , S(tn)) is comonotonic.

(2) For any j = 1, 2, . . . , n, it holds

S(tj) = S(t1)er(tj−t1). (18)

A proof of Theorem 10 can be found in the appendix. In Example 8, we showed
that in the Cox-Ross-Rubinstein binomial model in the time interval [0, 2], the vector
(S (t1) , S (t2)) is comonotonic, without violating the no-arbitrage condition. The set of
possible outcomes for S (t1) is given by {S (0) d, S (0)u} and each point in this set is an
isolated mass point. However, one can verify that condition (17) is not satisfied, implying
that (S (t1) , S (t2)) can be comonotonic without having the almost sure relationship (18).

Corollary 1 Consider the arbitrage-free market with a single non-dividend paying stock.
Assume additionally that S(t1) has no isolated mass. Then statements (1) and (2) from
Theorem 10 are equivalent.

As a special case from Corollary 1 we find that statements (1) and (2) from Theorem
10 are equivalent in case S(t1) has a continuous cdf, implying that Theorem 7 is a special
case of Theorem 10.

Example 11 (An arbitrage-free market with comonotonic modification) Let the
cdf FS(t1) be such that there exists an isolated mass point x of S(t1), and

p1 = P
[
S(t2) < xer(t2−t1)

]
> 0,

p2 = P
[
S(t2) > xer(t2−t1)

]
> 0.

Then one can construct an arbitrage-free market with comonotonic asset prices (S(t1), S(t2))
such that the almost sure relationship (18) does not hold. Indeed, we have that

q = 1− p1 − p2 = P
[
S(t2) = xer(t2−t1)

]
.

Let m = P [S(t1) = x], and define F1 and F2 as follows:

F1 (y) = P [S (t1) ≤ y | S(t1) ≤ x] ,

F2 (y) = P [S (t1) ≤ y | S(t1) ≥ x] .

The conditional cdf’s G1 and G2 are defined as

G1 (y) = P
[
S (t2) ≤ y | S(t2) < xer(t2−t1)

]
,

G2 (y) = P
[
S (t2) ≤ y | S(t2) > xer(t2−t1)

]
.

Then we construct the cdf of Z with

P
[
Z =

(
x, xer(t2−t1)

)]
= mq,

P
[
Z =

(
F−1

1 (U) , G−1
1 (U)

)]
= p1 (1−mq) ,

P
[
Z =

(
F−1

2 (U) , G−1
2 (U)

)]
= p2 (1−mq) .

11



The random vector Z has marginal distributions identical to the distributions of S(t1)
and S(t2), respectively. Furthermore, the market with comonotonic asset prices (Z1, Z2)
is arbitrage-free, due to the fact that the probabilities

P
[
Z <

(
x, xer(t2−t1)

)]
and P

[
Z >

(
x, xer(t2−t1)

)]
are positive. We also find that in this comonotonic and arbitrage-free market the almost
sure relationship (18) does not hold. Let Z = (Z(t1), Z(t2)). We set Z(t) = Z(t1)er(t−t1) if
0 ≤ t < t1, and Z(t) = Z(t2)er(t−t2) if t2 ≤ t ≤ T. We use the natural filtration generated
by the process Z(t), where P-null sets are added to each sigma-field of the filtration. Then
the constructed market is arbitrage- free, the random vector Z is comonotonic, and the
proportionality condition (18) does not hold for t1 and t2. ∇

In case the stock price process {S (t) | t ≥ 0} can be described by the exponential
function of a Lévy process with Brownian part, the cdf FS(t) is continuous for any t and,
consequently, comonotonicity of (S(t1), S(t2), . . . , S(tn)) is, in general, not attainable in
an arbitrage-free market. More details about the use of Lévy processes in finance can be
found in Schoutens (2003).

Example 12 (An arbitrage-free market without comonotonic modification)
Consider a financial market with a constant and deterministic risk-free interest r ≥ 0
and a single non-dividend paying stock. Suppose that the only information that is avail-
able about the random vector (S (t1) , S (t2) , . . . , S (tn)) is that its risk-neutral marginal
distributions follow from

ln
S(tj)

S(0)

Q−d
= N

((
r − 1

2
σ2

)
tj, σ

2tj

)
, j = 1, 2, . . . , n, (19)

with σ > 0. Here,
Q−d
= denotes an equality in distribution under the Q-measure. This

information about the market may be observed e.g. via traded European option prices.
This information is feasible in the sense that there exists an arbitrage-free market model
where the risk-neutral distributions of the S(tj) are given by (19). Indeed, consider the
Black & Scholes model where under P on has that

dS (t)

S (t)
= µdt+ σdB (t) , for t ≥ 0,

where µ ≥ 0 and {B (t) | t ≥ 0} is a standard Brownian motion defined on the filtered
probability space (Ω,F ,P). This probability space is equiped with the filtration (Ft)0≤t≤T
of F which records the ‘past behavior’ of the multivariate Brownian motion. This means
that for 0 ≤ t ≤ T, Ft denotes the σ-algebra generated by {B (s) | 0 ≤ s ≤ t}, which
we also denote by σ {B (s) | 0 ≤ s ≤ t}, completed by events of zero P-probability. It is
well-known that the Black & Scholes model is arbitrage free and complete. Under the
unique martingale measure Q, we have that

ln
S (t)

S (0)

Q−d
= N

((
r − 1

2
σ2

)
t, σ2t

)
.

12



This implies that the risk-neutral distribtutions of ln
S(tj)

S(0)
are indeed given by (19).

One can easily verify that in case the risk-neutral distributions FS(ti) follow from (19),
then for any j ≥ 2, it holds that

S(tj)
Q−d
6= S(t1) er(tj−t1), j = 2, . . . , n, (20)

where the notation
Q−d
6= is used to indicate that S(tj) and S(t1) er(tj−t1) have different risk-

neutral distributions. The inequalities (20) immediately imply that (14) does not hold.
From Theorem 7 we can conclude that in case the risk-neutral distributions of the stock
prices S(tj) follow from (19), then it is impossible to find an arbitrage-free market where
the vector (S (t1) , S (t2) , . . . , S (tn)) is comonotonic. ∇

5 A multiple asset market

In this section, we consider a financial market consisting of n stocks, labeled from 1 to
n, and a bank account. The individual stocks can be described as in Section 3. The
stocks may be dividend-paying or not. The prices of these stocks at a fixed future time
T are given by the r.v.’s Si (T ) , i = 1, 2, . . . , n. Furthermore, the market is assumed to
be arbitrage-free in the sense that prices are determined via some equivalent martingale
measure Q. In order to avoid unnecessary overloading of the notations, hereafter we will
omit the fixed time index T when no confusion is possible. Hence, the random vector
(S1(T ), S2(T ), . . . , Sn(T )) will be denoted as (S1, S2, . . . , Sn) if no confusion is possible.

Assume the only information available about the random behavior of the future prices
of the different assets at a fixed time T is the set of marginal risk-neutral pricing distri-
butions FSi

, i = 1, 2, . . . , n. The question arises whether this limited information always
allows for a market where the vector (S1, S2, . . . , Sn) is comonotonic. Notice that comono-
tonicity under P is equivalent to comonotonicity under the equivalent martingale measure.
The answer to our question is ‘yes’. Indeed, if we set

Si = F−1
Si

(U) , i = 1, 2, . . . , n,

where U ∼Uniform(0, 1) and

Si (0) = e−rTE [Si] , i = 1, 2, . . . , n,

then the market with discrete times t = 0, T and asset prices Si (t) , i = 1, 2, . . . , n is
comonotonic and has marginal cdf’s FSi

, i = 1, 2. A proof of this result is also given in
Theorem 3.1 of Hobson et al. (2005). A related result can also be found in Proposition
3.6 of Tavin (2012).

5.1 The multivariate Black & Scholes model

Consider the financial market described in the previous section and assume that the price
dynamics of stock i under P follow from

dSi(t)

Si(t)
P
= µidt+ σidBi(t), t ≥ 0 and i = 1, 2, . . . , n, (21)
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where µi ≥ 0 is the drift and σi > 0 the volatility of stock i. The parameters r, µi and
σi are assumed to be deterministic and constant over time. Furthermore, {B(t) | t ≥ 0}
is an n-dimensional correlated Brownian motion process defined on the probability space
(Ω,F ,P). This means that the stochastic processes {Bi(t) | t ≥ 0} are standard Brownian
motions and the dependence structure of {B(t) | t ≥ 0} is captured by

Cov [σiBi(t), σjBj(t+ s)] = σijt, for any t, s ≥ 0, (22)

with parameters σij, i, j = 1, 2, . . . , n, which are also assumed to be deterministic and
constant over time.

The probability space (Ω,F ,P) is equipped with the natural filtration (Ft)0≤t≤T of F ,
which records the ‘past behavior’ of the multivariate Brownian motion process. The set
Ft is the σ-algebra σ {B(s), s ≤ t} completed by events of zero probability. In the sequel,
we will refer to this model as the Multivariate Black & Scholes model.

Hereafter, the notation 1 is used for the n × 1 matrix with all entries equal to 1.
Furthermore, we denote the n× 1 matrix of the drifts by µ, while the n× n matrix with
entries σij is denoted by Σ. The range R (Σ) of Σ is defined by

R (Σ) =
{
y | y = Σ x for some n× 1−matrix x

}
. (23)

The Black & Scholes model (21) is not necessarily arbitrage-free. A precise definition of
the notions of arbitrage and completeness within the Black & Scholes model is considered
e.g. in Dhaene, Kukush & Linders (2013) and the references therein. Concerning the
absence of arbitrage in the Black & Scholes model (21), the following result holds.

Theorem 13 In the Black & Scholes model (21), the following statements are equivalent:
(1) The model is arbitrage-free.
(2) There exists an equivalent martingale measure.
(3) There exists a unique equivalent martingale measure.
(4) µ− r1 ∈ R (Σ).

When the Black & Scholes model (21) is arbitrage-free, the risk-neutral pricing dy-
namics of the stocks follows from

dSi(t)

Si(t)

Q
= rdt+ σidBi(t), i = 1, 2, . . . , n. (24)

In particular, we find that in the Q-world, ln Si(t)
Si(0)

follows a normal distribution with mean(
r − 1

2
σ2
i

)
t and standard deviation σi

√
t. Hence we have that

ln
Si(t)

Si(0)

Q−d
= N

((
ri −

1

2
σ2
i

)
t, σ2

i t

)
. (25)

As the matrix Σ is necessary positive semidefinite, we have that Σ is positive definite
if and only if R (Σ) = Rn. Combining this observation with Theorem 13, we find the
following corollary.

14



Corollary 2 A sufficient (but not necessary) condition for the Black & Scholes model
(21) to be arbitrage-free is that Σ is positive definite.

Hereafter, we consider some special cases of the Black & Scholes model (21). We will
say that the Black & Scholes market is comonotonic if the stock price vector (S1, S2, . . . , Sn)
is comonotonic.

Example 14 (a comonotonic B&S market which is not arbitrage-free) Consider
a two dimensional Black & Scholes model (21)

dSi(t)

Si(t)
P
= µidt+ σdB(t), i = 1, 2.

From expression (30) in Example 16, we find that this model can only be arbitrage-free if

µ1 = µ2.

Assume for the moment that µ1 > µ2 and S1 (0) = S2 (0) . Consider the strategy of buying
one unit of the first stock and sell one unit of the second stock. This position does not
require any capital input at time t = 0. However, because the first asset will grow with a
faster speed than the second one, we have that

S1 (t) > S2 (t) , for t > 0,

which means that the investor will make a sure profit, with an initial investment of 0.
Here, the B&S market is comonotonic, but not arbitrage free.

∇

Example 15 (an arbitrage-free B&S market which is not comonotonic) Consider
the following special case of the Black & Scholes model (21):

dSi(t)

Si(t)
P
= µidt+ σdBi(t), i = 1, 2, . . . , n, (26)

where Cov [Bi (1) , Bj (1)] < 1. Then, there are two separate Brownian motions driving
the market and hence this market is not comonotonic.
In this case we find that

σij = σ2Cov [Bi (1) , Bj (1)] .

Let us now assume that the matrix Σ is positive definite. From our considerations above,
we find that the model (26) is arbitrage-free and complete. Its risk-neutral pricing dy-
namics follows from

dSi(t)

Si(t)

Q
= rt+ σdBi(t), i = 1, 2, . . . , n. (27)

In particular, we find that

ln
Si(t)

Si(0)

Q−d
= N

((
r − 1

2
σ2

)
t, σ2t

)
. (28)

15



We can conclude that we have found an arbitrage-free B&S market, where the price vector
(S1, S2, . . . , Sn) is not comonotonic.

∇

Example 16 (arbitrage-free and comonotonic B&S market) Consider the follow-
ing special case of the Black & Scholes model (21):

dSi(t)

Si(t)
P
= µidt+ σidB(t), i = 1, 2, . . . , n, (29)

where the stochasticity of all stock prices is captured by a single standard Brownian
motion process {B(t) | t ≥ 0}. In this model, we have that for each time t, the price
vector (S1(t), ..., Sn(t)) is comonotonic because each Si(t) is an increasing function of the
same r.v. B (t). The process {B(t) | t ≥ 0} plays the role of a random index which
influences the behavior of stock prices in the market. In this case we find that

σij = σiσj.

The range of Σ is given by

R (Σ) =


(

n∑
j=1

σjxj

)
σ1

σ2
...
σn


∣∣∣∣∣∣∣∣∣x ∈ R

n

 .

.

Taking into account that
{(∑n

j=1 σjxj

)
| x ∈ Rn

}
= R, we can rewrite the previous

expression as

R (Σ) =

λ


σ1

σ2
...
σn


∣∣∣∣∣∣∣∣∣λ ∈ R

 .

From Theorem 13 we find that the Black & Scholes model (21) is arbitrage-free if, and
only if, there exists a common real number c such that

µi − r
σi

= c, i = 1, 2, . . . , n. (30)

The risk-neutral price dynamics of the model (29) follow from:

dSi(t)

Si(t)

Q
= rdt+ σidB(t), i = 1, 2, . . . , n. (31)

In particular, we find that

ln
Si(t)

Si(0)

Q−d
= N

((
r − 1

2
σ2
i

)
t, σ2

i t

)
. (32)
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We can conclude that under the condition (30), the B&S market is comonotonic and
arbitrage-free.

∇

Until here, we assumed that the risk-neutral pricing distributions of the individual
stocks are given. Let us now consider the situation where the real-world pricing distribu-
tions of the individual stocks are given. In the following example, we show that in this
case it is not always possible to find an arbitrage-free market with comonotonic price
vector (S1, S2, . . . , Sn).

Example 17 (comonotonic B&S market which is not arbitrage-free) Suppose that
the real-world distributions of the price at time T of the n assets follow from

ln
Si
Si(0)

P−d
= N

((
µi −

1

2
σ2

)
T, σ2T

)
, i = 1, 2, . . . , n, (33)

with
µ1 < µ2 < . . . < µn. (34)

Here, we write
P−d
= to denote an equality in distribution under the measure P. These

marginal distributions may be observed in the sense that they are equal to the real world
pricing distributions of the arbitrage-free Black & Scholes model that we considered in
Example 15.
In this case it is impossible to construct an arbitrage-free market model where the random
vector (S1, S2, . . . , Sn) is comonotonic. Indeed, in case this vector was comonotonic, we
would find that

(S1, S2, . . . , Sn)
P−d
=
(
S1 (0) e(µ1− 1

2
σ2)T+σ

√
TΦ−1(U), . . . , Sn (0) e(µn− 1

2
σ2)T+σ

√
TΦ−1(U)

)
,

(35)

which holds in the real world. An arbitrage opportunity arises by buying e.g. S1(0)
S2(0)

units
of the the second asset and selling one unit of the first asset at time 0, while closing this
position at time T .

∇

6 Conclusions

In this note we investigated the relationship between arbitrage-free markets and comono-
tonicity of traded asset prices. We first investigated the meaning of comonotonicity of the
prices (S(t1), ..., S(tn)) of a single asset at consecutive dates t1, t2, . . . , tn in an arbitrage-
free market with a single risky asset paying a continuous dividend yield ν and a risk-free
bank account with interest intensity r. We proved that the vector of subsequent prices
(S(t1), ..., S(tn)) is comonotonic only under the a.s. linear relationship

S(tj) = S(ti)e
(r−ν)(tj−ti), i, j = 1, 2, . . . , n,
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provided S (t1) has a continuous cdf, or more generally, provided the distribution of S (t1)
has no isolated mass.

Next, we considered an arbitrage-free financial market consisting of n traded assets
and a risk-free bank account. The prices of these assets at a fixed future time T are
given by the r.v.’s Si (T ) , i = 1, 2, . . . , n. We considered situations under which the
risk-neutral pricing distributions (or the real world distributions) of the Si (T ) are given
and investigated whether there exists an arbitrage-free model with the same marginal
distributions, under which the asset price vector (S1(T ), S2(T ), ..., Sn(T )) is comonotonic.
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Appendix: A.1. Proof of Theorem 10

Proof. We give a proof for the case where n = 2. The proof for the case n > 2 is straight-
forward.
The proof of (2) ⇒ (1) is trivial.
Let us now prove (1) ⇒ (2).
Assume that (18) does not hold. Let xi, i ≥ 1, be all the isolated mass points of the r.v.
S(t1). Note that the number of isolated mass points is at most countable. Let yj, j ≥ 1,
be all the other points where FS(t1) is discontinuous. We introduce the following notations:

Ω1
d = {ω ∈ Ω | S(t1)(ω) ∈ {xi, i ≥ 1}} ,

Ω2
d = {ω ∈ Ω | S(t1)(ω) ∈ {yj, j ≥ 1}} ,

Ωc = Ω�
(
Ω1
d ∪ Ω2

d

)
.

1. In a first step, we prove that

S(t2)(ω) = S(t1)(ω)er(t2−t1), for all ω ∈ Ωc, a.s. (A1)

Here we suppose that P [Ωc] > 0 (otherwise it is clear that (A1) holds true).
Define the restricted probability space (Ωc,F ∩ Ωc,P/P(Ωc)) and restricted r.v.’s

Sr(ti)(ω) = S(ti)(ω), ω ∈ Ωc, i = 1, 2,

Sr(0) = S(0).

20



Then Sr(t1) has a continuous cdf, the vector (Sr(t1), Sr(t2)) is still comonotonic, and
the market with a single risky stock Sr(t), t = 0, t1, t2, is still arbitrage-free. Then, by
Theorem 7, we have that

Sr(t2)(ω)
a.s.
= Sr(t1)(ω)er(t2−t1),

and (A1) follows.

2. Let us now additionally assume that there exists an i such that

P
[
S(t1) = xi, S(t2) > xie

r(t2−t1)
]
> 0. (A2)

Because xi is an isolated mass point of S(t1) and (17) holds with S = xi, we have that

P
[
S(t1) = xi, S(t2) < xie

r(t2−t1)
]

= 0. (A3)

Let us now consider the following strategy. At the moment t1 the investor observes S(t1).
If S(t1) 6= xi, he does nothing, if S(t1) = xi, he recognizes the situation (A2), (A3),
borrows the amount xi from the bank, immediately buys one unit of the stock and at
the moment t2 he sells it, returns his debt, and receives S(t2) − xie

r(t2−t1). Overall,
S(t2)− xier(t2−t1) ≥ 0, a.s., and P

[
S(t2)− xier(t2−t1)) > 0

]
> 0, and we have an arbitrage

strategy. This contradicts the condition that the market is arbitrage-free.

3. In a similar way, an arbitrage strategy can be constructed under the condition that
there exists an xi with P

[
S(t1) = xi, S(t2) < xie

r(t2−t1)
]
> 0.

4. Thus, from steps 2 and 3 we can conclude that

S(t2)(ω) = S(t1)(ω)er(t2−t1), for all ω ∈ Ω1
d, a.s. (A4)

5. Now, suppose that (A1) and (A4) hold and there exists j with

P
[
S(t1) = yj, S(t2) > yje

r(t2−t1)
]
> 0, (A5)

P
[
S(t1) = yj, S(t2) < yje

r(t2−t1)
]
> 0. (A6)

Then there exists an ε ∈ (0, yj) with

P
[
S(t1) = yj, S(t2) > (yj + ε)er(t2−t1)

]
> 0, (A7)

P
[
S(t1) = yj, S(t2) < (yj − ε)er(t2−t1)

]
> 0. (A8)

Because yj is not an isolated mass point of S(t1), we can assume that

P [S(t1) ∈ (yj, yj + ε)] > 0.

(We will exploit (A7), and in case P [S(t1) ∈ (yj − ε, yj)] > 0 we could exploit (A8)). Now,
(A7) and condition (1) of Theorem 10 imply that

P
[
S(t1) ∈ (yj, yj + ε), S(t2) > (yj + ε)er(t2−t1)

]
> 0,
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P
[
S(t1) ∈ (yj, yj + ε), S(t2) ≤ (yj + ε)er(t2−t1)

]
= 0.

Then due to (A1), there exists z ∈ (yj, yj + ε) which satisfies

P
[
S(t1) = z, S(t2) > zer(t2−t1)

]
> 0,

P
[
S(t1) = z, S(t2) < zer(t2−t1)

]
= 0.

These relations are similar to (A2) and (A3), and part 2 of the proof shows that we get
a contradiction.

6. For a fixed j, the case (A5) with P
[
S(t1) = yj, S(t2) < yje

r(t2−t1)
]

= 0 is impossible
due to the reasoning from part 2 of the proof. In a similar way the case (A6) with
P
[
S(t1) = yj, S(t2) > yje

r(t2−t1)
]

= 0 is impossible as well.

7. Suppose that (A1) and (A4) hold. Then parts 5 and 6 of the proof imply that
S(t2)(ω) = S(t1)(ω)er(t2−t1), for all ω ∈ Ω2

d, a.s. Finally, (A1), (A4) and the latter relation
imply (18) .
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