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2.1 Summary

The future lifetime r.v.2

Probabilities of death and survival.

The force-of-mortality.

Basic actuarial notations.

The curtate future lifetime r.v.

2Nothing is certain in life except death and taxes - Benjamin Frankin.
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2.2 The future lifetime random variable
Status (x):

(x)
not.
= a life aged x , x � 0

Future lifetime of (x):
Tx

Assumption: Tx is a continuous r.v. on (0,+∞).

Age-at-death of (x):
x + Tx

Lifetime distribution of (x):

Fx (t) = P[Tx � t]

Survival function of (x):

Sx (t) = 1� Fx (t)
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2.2 The future lifetime random variable

"The �rst person to live for a thousand years is possibly
already alive and of those of us aged between 20-30, there will
certainly be some who reach 130 years old. This will have an
instantaneous and catastrophic e¤ect on the world
population". Richard Seymour.

About a century ago, the British monarch started sending
anniversary messages to "current citizens of [the monarch�s]
realms or UK Overseas Territories" who reached the age of
100. In 1917, King George V sent a total of 24 celebratory
messages to centenarians. By 1952 this had increased more
than 10-fold to 255, and in 2016, it has exploded to nearly
60-fold to 14500.
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2.2 The future lifetime random variable
Consider a person (x) with

Current future lifetime: Tx .
Future lifetime at birth: T0.
Future lifetime at age y � x , given survival until age y : Ty .

Assumption:
For any y � x and t � 0, we assume that

P[Ty � t] = P[T0 � y + t j T0 > y ] (2.1)

Interpretation: Starting from the cdf of T0, the only
additonal information used to determine survival probabilties
at age x and beyond is survival or not.

Corollary: For any t, u � 0, we have that

P[Tx+t � u] = P[Tx � t + u j Tx > t]
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2.2 The future lifetime random variable

Lifetime distributions Fx and F0:

Fx (t) =
F0(x + t)� F0(x)

S0(x)
(2.2)

Survival functions Sx and S0:

S0(x + t) = S0(x) Sx (t) (2.4)

Survival functions Sx+t and Sx :

Sx (t + u) = Sx (t) Sx+t (u) (2.5)
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2.2 The future lifetime random variable

Consider (x) with continuous future lifetime Tx .

Sx (t) is a survival function for (x) if and only if the
following conditions are satis�ed:

Condition 1:
Sx (0) = 1

Condition 2:
lim

t!+∞
Sx (t) = 0

Condition 3:

Sx (t) is a non-increasing continuous function of t
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2.2 The future lifetime random variable

For all survival functions Sx (t) in this course, we make the
following assumptions:

Assumption 1:

d
dt
Sx (t) exists for all t > 0

Assumption 2:
lim

t!+∞
t Sx (t) = 0

Assumption 3:
lim

t!+∞
t2 Sx (t) = 0

Assumptions 2 and 3 ensure that the mean and the variance
of the distribution of Tx exist.
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2.2 The future lifetime random variable

Example 2.1

Assume that

F0(t) = 1�
�
1� t

120

� 1
6

for 0 � t � 120

Calculate the probability that

a newborn survives beyond age 30,
a life aged 30 dies before age 50,
a life aged 40 survives beyond age 65.
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2.3 The force of mortality

Consider a person with survival function at birth P[T0 > t].

The force-of-mortality at age x :

µx
def.
= limh!0+

P[Tx�h]
h

Other expression for µx :

µx = lim
h!0+

P[T0 � x + h j T0 > x ]
h

(2.6)

Intuitive interpretation:

µx dx � P[T0 � x + dx j T0 > x ] (2.8)
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2.3 The force of mortality

µx in terms of S0:

µx = � 1
S0(x )

d
dx S0(x) (2.9)

The pdf of Tx :

fx (t) =
d
dt
Fx (t) = �

d
dt
Sx (t)

µx in terms of f0 and S0:

µx =
f0(x )
S0(x )
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2.3 The force of mortality

Suppose that x is �xed and t is variable.

Expression for µx+t :

µx+t =
fx (t)
Sx (t)

(2.10)

Intuitive interpretation:

µx+t dt � P[Tx � t + dt j Tx > t]

An expression for Sx (t):

Sx (t) = exp
�
�
Z t

0
µx+sds

�
(2.11)
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2.3 The force of mortality

Example 2.2

Suppose that

F0(x) = P[T0 � x ] = 1�
�
1� x

120

� 1
6

for 0 � t � 120

Derive an expression for µx .
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2.3 The force of mortality
2.3.1 Mortality laws

Gompertz�law of mortality:

µx = Bc
x , x > 0

where B and c are constants such that B > 0 and c > 1.

Makeham�s law of mortality:

µx = A+ Bc
x , x > 0

where A, B and c are constants such that A, B > 0 and
c > 1.

Both models often provide a good �t to mortality data over
certain age ranges, particularly from middle age to early old
age.
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2.3 The force of mortality
2.3.1 Mortality laws

Example 2.3
Gompertz�law of mortality.
Derive an expression for Sx (t).

Solution:

Sx (t) = exp
n
� B
ln c c

x (ct � 1)
o

Makeham�s law of mortality.
Derive an expression for Sx (t).

Solution:

Sx (t) = exp
n
�At � B

ln c c
x (ct � 1)

o
(2.12)

Remark: This expression is often written as

Sx (t) = st g c
x (c t�1)

with s = e�A and g = exp (�B/ ln c).
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2.3 The force of mortality
Benjamin Gompertz (1779 - 1865)

Chief actuary of Alliance Assurance Company, England.
Before Gompertz, demographers collected and compiled
mortality data, but never much considered a formal �law of
mortality�.
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2.3 The force of mortality
Benjamin Gompertz (1779 - 1865)

He published his law of mortality in: Gompertz, B. (1825),
Philosophical Transactions of the Royal Society of London 115:
513�585.
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2.3 The force of mortality
Benjamin Gompertz (1779 - 1865)

Gompertz�law performs a fairly good �t from middle age (35)
to old age (90).

For very old ages , it overestimates death rates.

It does not capture infant mortality and the accident hump.

He was a Jewish religious man:
"... Neither profane history nor modern experience could
contradict the possibility of the great age of the patriarchs of
the scripture..."
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2.3 The force of mortality
William Makeham (1826 - 1891)

Gompertz (1825):
"It is possible that death may be the consequence of two
generally co-existing causes. The one is chance, without
previous disposition to death or deterioration. The other is a
deterioration, or an increased inability to withstand
destruction..."

Makeham formalized and mathematized Gompertz�law of
mortality.

He published his law of mortality in Makeham, W.M. (1860).
"On the Law of Mortality and the Construction of Annuity
Tables". J. Inst. Actuaries and Assur. Mag. 8: 301�310.
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2.3 The force of mortality
William Makeham (1826 - 1891)
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2.3 The force of mortality

Example 2.4

Let
µx = Bc

x , x > 0

B = 0.0003 and c = 1.07

Calculate Sx (t) and fx (t) for x = 20, x = 50 and x = 80.
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2.3 The force of mortality

Example 2.4
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2.3 The force of mortality

Example 2.4
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2.4 Actuarial notation

The International Actuarial Association (IAA) was founded
in Brussels in 1895 , at the occasion of the 1st International
Congress of Actuaries (ICA).

At the 2nd ICA, which was held in London in 1898, standard
actuarial notation was unanimously adopted.
Actuarial notation is a shorthand method to allow actuaries to
record mathematical formulas that deal with interest and
mortality rates.
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2.4 Actuarial notation
Survival rates:

tpx
not.
= P[Tx > t] = Sx (t) (2.13)

Mortality rates:

tqx
not.
= P[Tx � t] = Fx (t) (2.14)

Deferred mortality rates:

ujtqx
not.
= P[u < Tx � u + t] = Sx (u)� Sx (u + t) (2.15)

Simpli�ed notations for 1 - year probabilities:

px
not.
= 1px

qx
not.
= 1qx

ujqx
not.
= uj1qx
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2.4 Actuarial notation
Relations between survival and death rates

Survival and mortality rate add to 1:

tpx + tqx = 1

Survival rates at di¤erent ages:

t+upx = tpx � upx+t (2.16)

Survival rates in terms of one-year survival rates:

npx = px � px+1 � . . .� px+n�1

Deferred mortality rates:

ujtqx = upx � u+tpx = upx � tqx+u
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2.4 Actuarial notation
Relations between forces-of-mortality and survival rates

Force-of-mortality at age x :

µx = lim
h!0+

hqx
h
= � 1

xp0

d
dx xp0 (2.17)

Force-of-mortality at age x + t:

µx+t = �
1

tpx

d
dt t
px (2.18)

Density function of Tx :

fx (t) = tpx µx+t (2.19)

Survival rate in terms of forces-of-mortality:

tpx = exp
�
�
Z t

0
µx+sds

�
(2.20)
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2.4 Actuarial notation
Death rates and forces-of-mortality:

tqx =
Z t

0
spx µx+sds (2.21)

Graphical interpretation:

Approximation:

qx � µx+ 1
2
, when qx is small
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2.5 Mean and standard deviation of remaining lifetime

Complete expectation of life:

e̊x
def.
= E[Tx ]

Evaluating e̊x :

e̊x =
R ∞
0 tpxdt (2.23)

Second moment of Tx :

E[T 2x ] = 2
Z ∞

0
t tpxdt (2.24)

Variance of Tx :

V [Tx ] := E[T 2x ]� (e̊x )2
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2.5 Mean and standard deviation of remaining lifetime

Example 2.6

Let

F0(x) = 1�
�
1� x

120

� 1
6
for 0 � x � 120

Calculate e̊x and V [Tx ] for x = 30 and for x = 80.
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2.5 Mean and standard deviation of remaining lifetime
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2.5 Mean and standard deviation of remaining lifetime

Term expectation of life:

e̊x :nj
def.
= E[min (Tx , n)]

Evaluating e̊x :nj:

e̊x :nj =
Z n

0
tpxdt
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2.6 Curtate future lifetime
2.6.1 Curtate future lifetime and curtate expectation of life

Curtate future lifetime:

Kx
def.
= bTx c

Probability function of Kx :

P [Kx = k ] = kpx qx+k , k = 0, 1, 2, . . .

Curtate expectation of life:

ex
not.
= E [Kx ]

Evaluating ex :

ex =
∞

∑
k=1

kpx (2.25)

Second moment of Kx :

E[K 2x ] = 2
∞

∑
k=1

kkpx � ex
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2.6 Curtate future lifetime
2.6.2 The complete and curtate expected future lifetimes

Numerical values:

Approximation for the complete future lifetime:

e̊x � ex +
1
2

(2.26)
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2.7 Notes and further reading

Other names for the force-of-mortality:

Survival analysis: Hazard rate.
Reliability theory: Failure rate.
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