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Life insurance bene�ts1

Jan Dhaene

1Based on Chapter 4 in �Actuarial Mathematics for Life Contingent Risks�
by David C.M. Dickson, Mary R. Hardy and Howard R. Waters, Cambridge
University Press, 2020 (third edition).
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4.1 Summary

Life Insurance contracts:

Whole life insurance.
Term insurance.
(Pure) endowment insurance.

Actuarial valuation of life insurance bene�ts:

The actuarial value (or EPV) of a life insurance bene�t cash
�ow.
Actuarial notation.
Continuous valuation via Tx .
Discrete valuation via Kx or K

(m)
x .
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4.2 Introduction

In previous chapters:

Models for future lifetimes.

In coming chapters:

Valuating payments contingent on death or survival of
policyholder or pension plan member,
by combining time value of money and survival models.

Continuous time model:

Death bene�ts paid at moment of death.
Annuity bene�ts of e 1 per year paid in in�nitesimal units
of e dt in each interval (t, t + dt).

Discrete time model:

Death bene�t paid at end of period.
Annuity bene�ts paid at beginning or end of period.

3 / 61



4.2 Introduction

"The foundation of life insurance is the recognition of the value of
a human life and the possibility of indemni�cation for the loss of
that value", C.F.C. Oviatt (1905).
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4.2 Introduction
Why buying life insurance?
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4.3 Assumptions

Technical basis = a set of assumptions used for performing
life insurance or pension calculations.

Technical basis in this chapter (used in the examples):

The Standard Ultimate Survival Model:

µx = 0.00022+ 2.7� 10�6 � 1.124x

A constant interest.
These are (pedagogically) convenient assumptions.

Conventions:

Time 0 = now.
Time unit is 1 year.
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4.3 Assumptions
Some notions of �nancial algebra

i = annual rate of interest.
i (p) = nominal interest (compounded p times per year): 

1+
i (p)

p

!p
= 1+ i

δ = force of interest:

δ = ln (1+ i)

v = yearly discount factor:

v =
1

1+ i
= e�δ

d = discount rate per year:

d = 1� v = i v = 1� e�δ

d (p) = nominal discount rate (compounded p times per year):

d (p) = p
�
1� v

1
p

�
= i (p) v1/p
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4.3 Assumptions

Cash �ow notations

The cash �ow with payment c at time t is denoted by

(c , t)

The cash �ow (αc , t) is often denoted by

α (c , t)

In previous notations, c and t may be deterministic or
random.
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4.4 Valuation of insurance bene�ts
4.4.1 Whole life insurance: the continuous case

Consider a life insurance underwritten on (x) at time 0, with
a payment of 1 at Tx .
Bene�t cash �ow:

(1,Tx )
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4.4 Valuation of insurance bene�ts
4.4.1 Whole life insurance: the continuous case

Consider a life insurance underwritten on (x) at time 0, with
a payment of 1 at Tx .

Bene�t cash �ow:
(1,Tx )

Present value:
Z = vTx = e�δTx

Actuarial value (or EPV):

Ax
not.
= E

�
e�δTx

�
=
R ∞
0 e

�δt
tpx µx+t dt (4.1)
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4.4 Valuation of insurance bene�ts
4.4.1 Whole life insurance: the continuous case

Ax =
R ∞
0 e

�δs
spx µx+s ds
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4.4 Valuation of insurance bene�ts
4.4.1 Whole life insurance: the continuous case

Cdf of Z = e�δTx :

P [Z � y ] = u(y )px

with

u(y) = � ln (y)
δ

Whole life insurance with payment of S at Tx :

Cash �ow:
(S ,Tx )

Actuarial value:
E
h
S e�δTx

i
= S Ax
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4.4 Valuation of insurance bene�ts
4.4.1 Whole life insurance: the continuous case

16 / 61



4.4 Valuation of insurance bene�ts
4.4.2 Whole life insurance: the annual case

Consider a life insurance underwritten on (x) at time 0, with
a payment of 1 at Kx + 1.

Bene�t cash �ow:
(1,Kx + 1)

Present value:
Z = vKx+1

Actuarial value:

Ax
not.
= E[vKx+1] = ∑∞

k=0 v
k+1

k jqx (4.4)
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4.4 Valuation of insurance bene�ts
4.4.2 Whole life insurance: the annual case

Ax = ∑∞
k=0 v

k+1
k jqx
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4.4 Valuation of insurance bene�ts
4.4.2 Whole life insurance: the annual case

Single premium:

Ax = ∑∞
k=0 v

k+1
k jqx

Who got there �rst?

William Morgan (1779).
Richard Price (1783).
Francis Bailey (1810).
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4.4 Valuation of insurance bene�ts
Some history

Early forms of life insurance existed in Ancient Rome, where
�burial clubs�covered cost of members�funeral expenses and
assisted survivors �nancially.

Until 17th century, life insurance was often considered as
�pro�ting from one�s death�:

Opposition from the Church.
Illegal in many places.

Modern life insurance policies were �rst established in the
early 18th century.
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4.4 Valuation of insurance bene�ts
Some history

Amicable Society for a Perpetual Assurance O¢ ce:

Founded in London, 1706.
First company o¤ering life insurance.

Society for Equittable Assurances on Lives and Survivorship:

Also known as �Equittable Life�, founded in London, 1762.
World�s oldest mutual life insurer.
Chief Executive O¢ cer: Edward Rowe Mores, credited with
being the �rst person to use the professional title actuary in
relation to insurance.
In 1775, William Morgan was appointed as actuary. As he
carried out the �rst actuarial valuation of liabilities in 1776, he
is often considered as the �rst �real�actuary.
�Equittable Life�closed its doors to new business in 2000, due
to huge unhedged biting guarantees (GAR�s).
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4.4 Valuation of insurance bene�ts
Some history

Edward Rowe Mores (1731-1778) William Morgan (1750-1833)
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4.4 Valuation of insurance bene�ts
4.4.3 Whole life insurance: the 1/m-thly case

The �oor function:

brc = largest integer smaller than or equal to r .

The 1/m-thly curtate future lifetime of (x):

K (m)x
not.
= 1

m bmTx c (4.7)

K (m)x = future lifetime of (x) in years, rounded down to the
lower 1/m-thly of the year.

The pdf of K (m)x : For k = 0, 1, 2, . . .,

P

�
K (m)x =

k
m

�
= P

�
k
m
� Tx <

k + 1
m

�
= k

m j
1
m
qx

= k
m
px � k+1

m
px
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4.4 Valuation of insurance bene�ts
4.4.3 Whole life insurance: the 1/m-thly case

Consider a life insurance underwritten on (x) at time 0, with

a payment of 1 at K (m)x + 1
m .

Bene�t cash �ow: �
1,K (m)x +

1
m

�
Present value:

Z = vK
(m)
x + 1

m

Actuarial value:

A(m)x
not.
= E[vK

(m)
x + 1

m ] = ∑∞
k=0 v

k+1
m k

m j
1
m
qx
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4.4 Valuation of insurance bene�ts
4.4.3 Whole life insurance: the 1/m-thly case

A(m)x = ∑∞
k=0 v

k+1
m k

m j
1
m
qx
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4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Highest age ω of life table:

ω is �rst age in life table such that lω = 0

Backward recursion for the annual case:
Starting value:

Aω�1 = v

Recursion: For x = ω� 2, ω� 3, . . . , x0,

Ax = vqx + vpxAx+1 (4.8)

Backward recursion for the 1/m-thly case:
Starting value:

A(m)
ω� 1

m
= v

1
m

Recursion: For x = ω� 2
m , ω� 3

m , . . . ,

A(m)x = v
1
m 1
m
qx + v

1
m 1
m
px A

(m)
x+ 1

m
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4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Example 4.1

Technical basis:

Standard Ultimate Survival model (see Section 4.3).
Interest rate = 5%.

Ultimate age: ω = 130.

Determine the values of Ax for x = 20, 21, . . . 100.
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4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Example 4.1
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4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Example 4.2

Technical basis:

Standard Ultimate Survival model (see Section 4.3).
Interest rate = 5%.

Ultimate age: ω = 130.

Determine the values of A(12)x for x starting at age 20, in step
of 1/12.
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4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Example 4.2

30 / 61



4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Example 4.3

For x = 20, 40, 60, 80 and 100, calculate the actuarial value of
the following cash �ows:

Continuous case:
100 000� (1,Tx )

Monthly case:

100 000�
�
1,K (12)x +

1
12

�
Annual case:

100 000� (1,Kx + 1)

Technical basis:

Standard Ultimate Survival model (see Section 4.3).
Interest rate = 5%.
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4.4 Valuation of insurance bene�ts
4.4.4 Recursions

Example 4.3
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4.4 Valuation of insurance bene�ts
4.4.5 Term insurance

Continuous case

Consider a term life insurance underwritten on (x) at time 0,
with a payment of 1 at Tx , provided Tx � n.
Bene�t cash �ow: �

1fTx�ng,Tx
�

Present value:
Z = e�δTx 1fTx�ng

Actuarial value:

A
1
x :n

not.
= E[Z ] =

R n
0 e

�δt
tpx µx+t dt (4.9)
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4.4 Valuation of insurance bene�ts
4.4.5 Term insurance

Annual case

Consider a term life insurance underwritten on (x) at time 0,
with a payment of 1 at Kx + 1, provided Kx + 1 � n.
Bene�t cash �ow: �

1fKx+1�ng, Kx + 1
�

Present value:
Z = vKx+1 1fKx+1�ng

Actuarial value:

A1x :n
not.
= E[Z ] = ∑n�1

k=0 v
k+1

k jqx (4.10)
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4.4 Valuation of insurance bene�ts
4.4.5 Term insurance

1/m-thly case

Consider a term life insurance underwritten on (x) at time 0,

with a payment of 1 at K (m)x + 1
m , provided K

(m)
x + 1

m � n.
Bene�t cash �ow:�

1n
K (m)x + 1

m�n
o, K (m)x +

1
m

�
Present value:

Z = vK
(m)
x + 1

m 1n
K (m)x + 1

m�n
o

Actuarial value:

A(m)1x :n
not.
= E[Z ] = ∑mn�1

k=0 v (k+1)/m k
m j

1
m
qx (4.11)
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4.4 Valuation of insurance bene�ts
4.4.5 Term insurance

Example 4.4

For x = 20, 40, 60 and 80, calculate the following actuarial
values:

Continuous case:
A
1
x :10

1/4-thly case:

A(4) 1
x :10

Annual case:
A1
x :10

Technical basis:

Standard Ultimate Survival model (see Section 4.3).
Interest rate = 5%.
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4.4 Valuation of insurance bene�ts
4.4.5 Term insurance

Example 4.4
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4.4 Valuation of insurance bene�ts
Samuel Huebner (1882 - 1964)

Professor at Wharton School of Business.
One of the �rst insurance economists.
Author of 7 books and many articles on life insurance.
The emperor of Japan awarded him an Order of the Sacred
Treasure.
In �The Economics of Life Insurance�(1927), he wrote:

Not to insure adequately through life insurance

is to gamble with the greatest economic risk confronting man.

If understood , the gamble is a particularly sel�sh one,

since the blow , in the event the gamble is lost,

falls upon an innocent household whose economic welfare

should have been the family head�s �rst consideration.
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4.4 Valuation of insurance bene�ts
Samuel Huebner (1882 - 1964)
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4.4 Valuation of insurance bene�ts
4.4.6 Pure endowment

Consider a pure endowment insurance underwritten on (x) at
time 0, with a payment of 1 at time n, provided Tx > n.

Bene�t cash �ow: �
1fTx>ng, n

�
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4.4 Valuation of insurance bene�ts
4.4.6 Pure endowment

Consider a pure endowment insurance underwritten on (x) at
time 0, with a payment of 1 at time n, provided Tx > n.

Bene�t cash �ow: �
1fTx>ng, n

�
Present value:

Z = vn 1fTx>ng

Actuarial value:

nEx
not.
= E[Z ] = vnnpx (4.13)

Alternate notation:
A 1
x :n
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4.4 Valuation of insurance bene�ts
4.4.7 Endowment insurance

Continuous case

Consider an endowment insurance underwritten on (x) at
time 0, with a payment of 1 at time Tx , provided Tx � n, and
a payment of 1 at time n, provided Tx > n.

Bene�t cash �ow:

(1,min (Tx , n)) =
�
1fTx�ng,Tx

�
+
�
1fTx>ng, n

�
Present value:

Z = vmin(Tx ,n)

Actuarial value:

Ax :n
not.
= E[Z ] = A

1
x :n+ nEx (4.17)
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4.4 Valuation of insurance bene�ts
4.4.7 Endowment insurance

Yearly case

Consider an endowment insurance underwritten on (x) at time
0, with a payment of 1 at time Kx + 1, provided Kx + 1 � n,
and a payment of 1 at time n, provided Kx + 1 > n.

Bene�t cash �ow:

(1,min (Kx + 1, n)) =
�
1fKx+1�ng, Kx + 1

�
+
�
1fKx+1>ng, n

�
Present value:

Z = vmin(Kx+1,n)

Actuarial value:

Ax :n
not.
= E[Z ] = A1x :n+ nEx (4.19)
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4.4 Valuation of insurance bene�ts
4.4.7 Endowment insurance

1/m-thly case
Consider an endowment insurance underwritten on (x) at

time 0, with a payment of 1 at time K (m)x + 1
m , provided

K (m)x + 1
m � n, and a payment of 1 at time n, provided

K (m)x + 1
m > n.

Bene�t cash �ow:�
1,min

�
K (m)x +

1
m
, n
��

Present value:

Z = v
min

�
K (m)x + 1

m , n
�

Actuarial value:

A(m)x :n
not.
= E[Z ] = A(m)1x :n+ nEx (4.20)
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4.4 Valuation of insurance bene�ts
4.4.7 Endowment insurance

Example 4.5

For x = 20, 40, 60 and 80, calculate the following actuarial
values:

Continuous case:
Ax :10

1/4-thly case:

A(4)
x :10

Annual case:
A
x :10

Technical basis:

Standard Ultimate Survival model (see Section 4.3).
Interest rate = 5%.
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4.4 Valuation of insurance bene�ts
4.4.7 Endowment insurance

Example 4.5
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4.4 Valuation of insurance bene�ts
4.4.8 Deferred insurance

Consider a deferred term insurance underwritten on (x) at
time 0, with a payment of 1 at Tx , provided u < Tx � u + n.
Bene�t cash �ow: �

1fu<Tx�u+ng,Tx
�

Price depends on x , u and n:
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4.4 Valuation of insurance bene�ts
4.4.8 Deferred insurance

Consider a deferred term insurance underwritten on (x) at
time 0, with a payment of 1 at Tx , provided u < Tx � u + n.
Bene�t cash �ow: �

1fu<Tx�u+ng,Tx
�

Present value:
Z = e�δTx 1fu<Tx�u+ng

Actuarial value:

ujA
1
x :n

not.
= E[Z ] =

R u+n
u e�δt

tpx µx+t dt (4.21)
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4.4 Valuation of insurance bene�ts
4.4.8 Deferred insurance

Deferred term insurance and actuarial discounting:

ujA
1
x :n = uEx � A

1
x+u :n (4.22)

Deferred vs. immediate insurance:

ujA
1
x :n = A

1
x :u+n � A

1
x :u (4.23)

Term insurance in terms of yearly insurances:

A
1
x :n =

n�1
∑
r=0

r jA
1
x :1 (4.24)
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4.4 Valuation of insurance bene�ts
4.4.8 Deferred insurance

Some more expressions

Deferred term insurance in terms of yearly insurances:

ujA
1
x :n =

u+n�1
∑
r=u

r jA
1
x :1

Whole life insurance in terms of yearly insurances:

Ax =
∞

∑
r=0

r jA
1
x :1

Term insurance in terms of whole life insurances:

A1x :n = Ax � njAx
= Ax � nEx � Ax+n (4.25)
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4.5 Relating the continuous, discrete and 1/m-thly cases

Suppose that there is only an integer life table available.

How to determine A(4)x and Ax?

The ratios A(4)x /Ax and Ax/Ax are quite stable:

Hereafter, we will derive approximate values for these ratios.
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4.5 Relating the continuous, discrete and 1/m-thly cases
4.5.1 Using the UDD assumption

The UDD assumption: (y is an integer and 0 � s < 1)
assumption:

sqy = s qy (3.7)

consequence:
qy = spy µy+s (3.11)

Continuous case:

Ax
UDD
= i

δAx (4.26)

1/m-thly case:

A(m)x
UDD
= i

i (m)
Ax (4.27)

Endowment insurance:

Ax :n
UDD
= i

δA
1
x :n+ nEx (4.28)
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4.5 Relating the continuous, discrete and 1/m-thly cases
4.5.2 Using the claims acceleration approach (read in book)
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4.6 Variable insurance bene�ts

Consider a life insurance underwritten on (x) at time 0, with
a payment of Tx at time Tx .

Bene�t cash �ow:
(Tx ,Tx )

Present value:
Z = Tx e�δTx

Actuarial value:

�
I A
�
x
not.
= E [Z ] =

R ∞
0 t e

�δt
tpx µx+t dt (4.32)
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4.6 Variable insurance bene�ts

Example 4.6

Consider a term insurance issued to (x) with bene�t cash �ow�
(Kx + 1)� 1fKx+1�ng, Kx + 1

�
Show that the EPV of this cash �ow, notation (IA)1x :n , is
given by

n�1
∑
k=0

v k+1 (k + 1)k j qx

Interprete the symbol (IA)x .
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4.6 Variable insurance bene�ts

Example 4.7

Consider an insurance issued to (x) with bene�t cash �ow�
Kx + 1, K

(4)
x +

1
4

�
Show that the EPV of this cash �ow, notation

�
IA(4)

�
x
, is

given by
∞

∑
k=0

(k + 1) k jA
(4)1
x :1
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4.6 Variable insurance bene�ts
Example 4.8

Consider a term insurance issued to (x) with bene�t cash �ow�
(1+ j)Kx � 1fKx+1�ng, Kx + 1

�
Show that the EPV of this cash �ow is given by

1
1+ j

A1x :n i �

where

i� =
1+ i
1+ j

� 1

and

A1x :n i � =
n�1
∑
k=0

�
1

1+ i�

�k+1
k jqx
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4.6 Variable insurance bene�ts

Example 4.9

Consider a term insurance issued to (x) with bene�t cash �ow�
(1+ j)Tx � 1fTx�ng, Tx

�
Show that the EPV of this cash �ow is given by A

1
x :n i �

where

i� =
1+ i
1+ j

� 1

and

A
1
x :n i � =

Z n
0

�
1

1+ i�

�t
tpxµx+tdt
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4.6 Variable insurance bene�ts
Term insurance linked to a mortgage loan

Suppose (x) borrows the amount D0 at time 0 at interest j .
This debt is repaid by repayments πk at times 1, 2, . . . , n.

Each πk is the sum of an interest payment and a reduction of
the principal.

Let Dk be the remaining debt at time k = 1, 2, . . . , n (before
payment of πk ).

Recursion:
Dk = (Dk�1 � πk�1) (1+ j)

Initial and terminal repayment conditions:

π0 = 0 and πn = Dn

Term insurance covering the remaining debt:

Single premium = ∑n�1
k=0 Dk+1 k jA

1
x :1
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4.7 Functions for select lives

In this chapter, we developed results in terms of lives subject
to ultimate mortality.

All of the above development equally applies to lives subject
to select mortality.

Example:

A[x ] =
Z ∞

0
e�δt

tp[x ] µ[x ]+tdt

Example:

A 1
[x ]+s :n =

n�1
∑
k=0

v k+1k jq[x ]+s

60 / 61



4.8 Notes and further reading
(read in book)
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