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Life annuities1

Jan Dhaene

1Based on Chapter 5 in íActuarial Mathematics for Life Contingent Risksí
by David C.M. Dickson, Mary R. Hardy and Howard R. Waters, Cambridge
University Press, 2020 (third edition).
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5.1 Summary

Life contingent annuities:

Whole life annuities vs. term annuities.
Annuities-due vs. immediate annuities.
Annuities payable yearly, 1/m-thly or continuously.

Actuarial valuation of life contingent annuities:

EPV of life annuity beneÖt cash áows.
Actuarial notation.
Continuous valuation via Tx .
Discrete valuation via Kx or K

(m)
x .
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5.2 Introduction

Life annuity: series of payments as long as a given person is
alive on the payment dates.

Payments:

at regular intervals,
(usually) of the same amount.

Used for calculating:

pension beneÖts,
premiums,
policy values.
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What is the relation between this graÖtti painting (Brussels,
January 2017) and life annuities?
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5.2 Introduction
íBy providing Önancial protection against the major 18th and 19th
century risk of dying too soon, life assurance became the biggest
Önancial industry..., providing Önancial protection against the new
risk of not dying soon enough may well become the next centuryís
major and most proÖtable Önancial industry.í
(Peter Drucker, The Economist, 1999)
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5.2 Introduction
Why buying a life annuity?
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5.2 Introduction
Life annuity sale
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5.2 Introduction
To buy or not to buy?
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5.2 Introduction
To buy or not to buy?
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5.3 Review of annuities-certain
Cash áow notations

The series of cash áows (ck , k) , k = m, . . . , n, is denoted by:

Ân
k=m (ck , k)

The continuous stream of payments ct dt in any inÖnitesimal
subinterval (t, t + dt) of (s, t), is denoted by:

R t
s (ctdt, t)

Convention:
n

Â
k=m

(ck , k) = (0, 0) if m > n and
Z t

s
(ctdt, t) = (0, 0) if s > t

In previous notations, m, n, ck , ct, s and t may be
deterministic or random.
Similar notations and conventions for series of cash áows with
1/m-thly payments.
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5.3 Review of annuities-certain
Annuity-due:

än = 1+ v + ...+ vn!1 =
1! vn

d
(5.1)

Annuity-immediate:

an = v + ...+ vn =
1! vn

i
Continuous annuity:

ān =
Z n

0
v tdt =

1! vn

d
(5.2)

Annuity-due with 1/m-thly payments:

ä(m)n =
1
m

"
1+ v

1
m + ...+ vn!

1
m

#
=
1! vn

d (m)
Annuity-immediate with 1/m-thly payments:

a(m)n =
1
m

"
v
1
m + ...+ vn!

1
m + vn

#
=
1! vn

i (m)
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5.4 Annual life annuities
5.4.1 Whole life annuity-due (1)

Consider an annuity underwritten to (x) at time 0. It pays 1
annually in advance as long as (x) is alive.
BeneÖt cash áow:

Kx

Â
k=0

(1, k)

A whole life annuity only ídiesí when the insured dies.
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5.4 Annual life annuities
5.4.1 Whole life annuity-due (1)

Consider an annuity underwritten to (x) at time 0. It pays 1
annually in advance as long as (x) is alive.

BeneÖt cash áow:
Kx

Â
k=0

(1, k)

Present value:

Y = 1+ v + ...+ vKx = äKx+1 =
1! vKx+1

d

Actuarial value:

äx
not.
= E [Y ] =

1!E[vKx+1]
d = 1!Ax

d (5.3)
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5.4 Annual life annuities
5.4.1 Whole life annuity-due (2)

BeneÖt cash áow:

Kx

Â
t=0
(1, t) =

•

Â
t=0

!
1fTx>tg, t

"

Present value:

Y =
•

Â
t=0
vt 1fTx>tg

Actuarial value:

äx = E [Y ] = Â•
t=0 v

t
tpx (5.5)
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5.4 Annual life annuities
5.4.1 Whole life annuity-due (2)
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5.4 Annual life annuities
5.4.1 Whole life annuity-due (3)

BeneÖt cash áow:
Kx

Â
k=0

(1, k)

Present value:
Y = äKx+1

Actuarial value:

äx = E [Y ] = Â•
k=0 äk+1 ! k jqx (5.6)
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5.4 Annual life annuities

Example 5.1

Show algebraically that

•

Â
k=0

äk+1 ! k jqx =
•

Â
k=0

vk kpx

Proof:

•

Â
k=0

äk+1 ! k jqx =
•

Â
k=0

 
k

Â
t=0
vt
!

! k jqx

=
•

Â
t=0
vt
 

•

Â
k=t

k jqx

!

=
•

Â
t=0
vt tpx
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5.4 Annual life annuities
5.4.2 Term annuity-due (1)

Consider an annuity underwritten to (x) at time 0. It pays 1
at times 0, 1, . . . , n! 1, provided (x) is alive.
BeneÖt cash áow:

min(Kx ,n!1)

Â
t=0

(1, t)

Present value:

Y = 1+ v + ...+ vmin(Kx ,n!1) = ämin(Kx+1,n) =
1! vmin(Kx+1,n)

d

Actuarial value:

äx :n
not.
= E [Y ] =

1!E[vmin(Kx+1,n)]
d =

1!Ax :n
d (5.7)
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5.4 Annual life annuities
5.4.2 Term annuity-due (2)

BeneÖt cash áow:

min(Kx ,n!1)

Â
t=0

(1, t) =
n!1

Â
t=0

!
1fTx>tg, t

"

Present value:

Y =
n!1

Â
t=0

vt 1fTx>tg

Actuarial value:

äx :n
not.
= E [Y ] = Ân!1

t=0 v
t
tpx (5.8)
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5.4 Annual life annuities
5.4.2 Term annuity-due (2)
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5.4 Annual life annuities
5.4.2 Term annuity-due (3)

BeneÖt cash áow:
min(Kx ,n!1)

Â
t=0

(1, t)

Present value:
Y = ä

min(Kx+1,n)

Actuarial value:

äx :n = E [Y ] = Ân!1
k=0 äk+1 " k jqx+ npx " än
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5.4 Annual life annuities
5.4.3 Immediate life annuities

Consider a whole life immediate annuity underwritten to
(x) at time 0. It pays 1 annually in arrear, as long as (x) is
alive.

BeneÖt cash áow:

Kx

Â
t=1
(1, t) =

•

Â
t=1

!
1fTx>tg, t

"

Present value:

Y # =
•

Â
t=1
vt 1fTx>tg

Actuarial value:

ax
not.
= E [Y #] = äx $ 1 (5.9)
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5.4 Annual life annuities
5.4.3 Immediate life annuities
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5.4 Annual life annuities
5.4.3 Immediate life annuities

Consider a n-year term immediate annuity underwritten to
(x) at time 0. It pays 1 at times 1, 2, . . . , n, provided (x) is
alive.
BeneÖt cash áow:

min(Kx ,n)

Â
t=1

(1, t) =
n

Â
t=1

!
1fTx>tg, t

"

Present value:

Y # =
n

Â
t=1
vt 1fTx>tg

Actuarial value:

ax :n
not.
= E [Y #] = Ân

t=1 v
t
tpx (5.11)

Relation:
ax :n = äx :n $ 1+ vn npx (5.12)
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5.4 Annual life annuities
5.4.4 Immediate life annuities
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5.4 Annual life annuities
Some history

äx = Â•
k=0 v

k
kpx

Johan de Witt (1671) Edmond Halley (1693).
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5.4 Annual life annuities
Some history

In second half of 17th century, states and cities often raised
money for public purposes by the sale of lifelong annuities to
their residents. This led to huge unfunded liabilities.
Johan de Witt (1625 - 1672):

First to use a (hypothetical) life table and interest rates to
determine the value of a life annuity:

Waardye van Lijfrenten naar Proportie van Los Renten (1671).

At that time, he was prime minister of the State of Holland.
In 1672, he and his brother were cruelly lynched by Orangists.
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5.4 Annual life annuities
Some history

Edmond Halley (1656 - 1742):
Was in 1690 asked by the Royal Society In London to estimate
the value of the liabilities related to lifelong annuities.
In 1693, he published an article in íPhylosophical Transactions
of the Royal Societyí, in which

he displayed one of the Örst reliable lifetables based on
demographic data,
and used these mortality rates and interest rates to determine
the value of a life annuity.

Assisted and motivated Isaac Newton to publish his famous
book íPrinciplesí.
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5.5 Annuities payable continuously
Whole life continuous annuity (1)

Consider an annuity underwritten to (x) at time 0. It pays
continuously at a rate of 1 per year as long as (x) is alive.
BeneÖt cash áow: Z Tx

0
(dt, t)

Present value:

Y =
Z Tx

0
v t dt = āTx =

1! vTx
d

(5.13)

Actuarial value:

ax
not.
= E [Y ] =

1!E[vTx ]
d = 1!Ax

d (5.14)

30 / 75



5.5 Annuities payable continuously
Whole life continuous annuity (2)

BeneÖt cash áow:

Z Tx

0
(dt, t) =

Z •

0

"
1fTx>tg dt, t

#

Present value:

Y =
Z •

0
e#dt 1fTx>tg dt

Actuarial value:

ax = E [Y ] =
R •
0 e

#dt
tpx dt (5.15)
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5.5 Annuities payable continuously
Whole life continuous annuity (2)
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5.5 Annuities payable continuously
Whole life continuous annuity (3)

BeneÖt cash áow: Z Tx

0
(dt, t)

Present value:

Y =
Z Tx

0
e!dt dt = āTx

Actuarial value:

ax = E [Y ] =
R •
0 āt tpx µx+t dt
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5.5 Annuities payable continuously
Term continuous annuity (1)

Consider an annuity underwritten to (x) at time 0. It pays
continuously at a rate of 1 per year, for a period of n years
and provided (x) is alive.
BeneÖt cash áow:

Z min(Tx , n)

0
(dt, t)

Present value:

Y =
Z min(Tx , n)

0
e!dt dt = a

min(Tx ,n)
=
1! vmin(Tx , n)

d

Actuarial value:

ax :n
not.
= E [Y ] =

1!E[vmin(Tx , n)]
d =

1!Ax :n
d (5.16)
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5.5 Annuities payable continuously
Term continuous annuity (2)

BeneÖt cash áow:

Z min(Tx , n)

0
(dt, t) =

Z n

0

"
1fTx>tg dt, t

#

Present value:

Y =
Z n

0
e#dt 1fTx>tg dt

Actuarial value:

ax :n = E [Y ] =
R n
0 e

#dt
tpx dt (5.17)
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5.5 Annuities payable continuously
Term continuous annuity (3)

BeneÖt cash áow:

Z min(Tx , n)

0
(dt, t)

Present value:

Y =
Z min(Tx , n)

0
e!dt dt = a

min(Tx ,n)

Actuarial value:

ax :n = E [Y ] =
R n
0 āt tpx µx+t dt + an" npx
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5.6 Annuities payable 1/m-thly
5.6.1 Introduction

Recall: Future lifetime of (x) in years, rounded down to the
lower 1/m-th of the year:

K (m)x =
1
m
bmTx c

Recall: Annuity-due with 1/m-thly payments:

ä(m)
(j+1)/m

=
1
m

j

Â
k=0

vk/m =
1# v

j+1
m

d (m)
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5.6 Annuities payable 1/m-thly
5.6.2 Whole life annuities payable 1/m-thly (1)

Consider an annuity underwritten to (x) at time 0. It pays an
amount of 1 per year, payable in advance m times per year,
throughout the lifetime of (x).
BeneÖt cash áow:

mK (m)x

Â
k=0

!
1
m
,
k
m

"

Present value:

Y =
1
m

mK (m)x

Â
k=0

vk/m = ä(m)
K (m)x +1/m

=
1! vK

(m)
x + 1

m

d (m)

Actuarial value:

ä(m)x
not.
= E [Y ] =

1!E

#
vK

(m)
x + 1

m

$

d (m)
= 1!A(m)x

d (m)
(5.18)
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5.6 Annuities payable 1/m-thly
5.6.2 Whole life annuities payable 1/m-thly (2)

Actuarial value:

ä(m)x = 1
m Â•

t=0 v
t/m

t
m
px (5.19)

Annuity-immediate vs. annuity-due:

a(m)x = ä(m)x !
1
m

(5.20)
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5.6 Annuities payable 1/m-thly
5.6.2 Whole life annuities payable 1/m-thly (2)
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5.6 Annuities payable 1/m-thly
5.6.2 Whole life annuities payable 1/m-thly: example

In 1965, at age 90, Jeanne Calment sold her apartment by a
life annuity sale.

The buyer, AndrÈ-FranÁois Ra§ray, was going to receive the
apartment at the death of the seller:

!
apartment, K (12)90 +

1
12

"

In return, Jeanne was going to receive a whole life annuity of
2500 fr. per month:

12K (12)90

Â
k=0

!
2500,

k
12

"

Jeann Calment died in 1997, aged 122.
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5.6 Annuities payable 1/m-thly
Term annuities payable 1/m-thly (1)

Consider an annuity underwritten to (x) at time 0, paying 1
per year, payable in advance m times per year, throughout the
lifetime of (x), limited to a maximum of n years.
BeneÖt cash áow:

min
!
mK (m)x , mn!1

"

Â
k=0

#
1
m
,
k
m

$

Present value:

Y = ä(m)
min(K (m)x +1/m,n)

=
1! vmin

!
K (m)x +1/m, n

"

d (m)

Actuarial value:

ä(m)x :n
not.
= E [Y ] =

1!E

"

v
min

#
K
(m)
x +1/m, n

$#

d (m)
=

1!A (m)
x :n

d (m)
(5.21)
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5.6 Annuities payable 1/m-thly
Term annuities payable 1/m-thly (2)

Actuarial value:

ä(m)x :n =
1
m Âmn!1

r=0 v r/m r
m
px (5.22)

Annuity-immediate vs. annuity-due:

a(m)x :n = ä
(m)
x :n !

1
m
(1! vn npx ) (5.23)
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5.6 Annuities payable 1/m-thly
Term annuities payable 1/m-thly (2)
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5.7 Comparison of annuities by payment frequency

Technical basis:
Standard Ultimate Survival Model and interest of 5%.
Ordering:

ax < a
(4)
x < ax < ä

(4)
x < äx

Reasons for this ordering:
Time value of money.
Payments only due upon survival.
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5.7 Comparison of annuities by payment frequency

Example 5.2

Calculate values of

ax :10 , a
(4)
x :10

, ä
x :10 , ä

(4)
x :10

and a(4)
x :10

for x = 20, 40, 60 and 80.

Technical basis:

Mortality: Standard Ultimate Survival Model.
Interest: 5%.
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5.7 Comparison of annuities by payment frequency

Example 5.2
Solution:
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Life annuities
Samuel Huebner (1882 - 1964)

íAnnuitants are long livers. Freedom from Önancial worry and
fear, and contentment with a double income, are conducive to
longevity. ... I am inclined to believe that annuities serve in
old age, much the same economic purpose that periodic
medical examinations do during the working years of life.í
íWhy exist on $600, assuming 3% interest on $20 000, and
then live in fear, when $1 600 may be obtained annually at age
65, through an annuity for all of life and minus all the fear?
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5.8 Deferred annuities

Consider an annuity underwritten to (x) at time 0, with
lifelong anual payments of 1 in advance, commencing at age
x + u (u is a non-negative integer).

BeneÖt cash áow:
Kx

Â
k=u

(1, k)

Actuarial value:

ujäx = äx " äx :u (5.25)

Relation via actuarial discounting:

ujäx = uEx äx+u (5.26)
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5.8 Deferred annuities
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5.8 Deferred annuities
Some more relations

Deferred term immediate annuity:

ujax :n = uEx " ax+u :n

Deferred annuity-due payable 1/m-thly:

ujä
(m)
x = uEx " ä

(m)
x+u (5.27)

Term annuity-due:

äx :n = äx # nEx " äx+n (5.28)

Term annuity-due payable 1/m-thly:

ä(m)x :n = ä
(m)
x # nEx " ä

(m)
x+n (5.29)

Term-annuity with continuous payments:

ax :n =
n#1

Â
u=0

ujax :1 (5.31)
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5.8 Deferred annuities

Example 5.3

Consider the following notations:

Y1 = PV r.v. of a u-year deferred whole life annuity-due,
Y2 = PV r.v. of a u-year term annuity-due,
Y3 = PV r.v. of a whole life annuity-due.

Show that
Y3 = Y1 + Y2

Assume annual payments.
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5.8 Deferred annuities
Increasing retirement age
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5.8 Deferred annuities
Increasing retirement age

Technical basis:
Mortality: Standard Ultimate Survival Model.
Interest: 3%.

Pension reform: pension age is increased from 65 to 67.
AV at age 65 of pension of 1 per year:

when pension starts at age 65:

ä65 = 16.440

when pension starts at age 67:

2jä65 = 14.474

Relative decrease of pension liability for (65):

2jä65 = 88%" ä65

In addition, (65) has to pay social security contributions
between ages 65 and 67.
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5.9 Guaranteed annuities
Consider an annuity-due of 1 per year annually to (x), which
is guaranteed for a period of n years.
BeneÖt cash áow:

n!1

Â
k=0

(1, k) +
Kx

Â
k=n

(1, k)

Present value:

Y = än +
Kx

Â
k=n

vk

Actuarial value:

äx :n
not.
= E [Y ] = än + nEx " äx+n (5.32)

Guaranteed annuity with monthly payments:

ä(12)
x :n

not.
= ä(12)n + nEx " ä

(12)
x+n
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5.9 Guaranteed annuities
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5.9 Guaranteed annuities

Example 5.4

A pension plan member is entitled to a pension with EPV
given by

12 000! ä(12)65

Alternatively, he can opt for a guaranteed annuity with EPV
given by

12 B ! ä(12)
65:10

Determine B, such that both EPVís are equal.

Technical basis:

Mortality: Standard Ultimate Survival Model.
Interest: 5%.
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5.10 Increasing annuities
5.10.1 Arithmetically increasing annuities

Consider an increasing annuity-due with a payment of t + 1 at
times t = 0, 1, 2, . . . provided (x) is alive at time t.
BeneÖt cash áow:

•

Â
t=0

!
(t + 1)! 1fTx>tg, t

"

Actuarial value:

(I ä)x
not.
= Â•

t=0 v
t (t + 1) tpx (5.33)
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5.10 Increasing annuities
5.10.1 Arithmetically increasing annuities
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5.10 Increasing annuities
5.10.1 Arithmetically increasing annuities

Consider an increasing annuity-due with a payment of t + 1 at
times t = 0, 1, 2, . . . , n! 1, provided (x) is alive at time t.
BeneÖt cash áow:

n!1

Â
t=0

!
(t + 1)" 1fTx>tg, t

"

Actuarial value:

(I ä)x :n
not.
= Ân!1

t=0 v
t (t + 1) tpx (5.34)
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5.10 Increasing annuities
5.10.1 Arithmetically increasing annuities

Consider a continuous annuity, with a total payment equal to
t in the t-th year, t = 1, 2, . . . , n, equally spread over the
year, provided (x) is alive.

BeneÖt cash áow:
Z n

0

"
bt + 1c # 1fTx>tg dt, t

#

Actuarial value:

(I a)x :n
not.
= Ân&1

m=0 (m+ 1) mjax :1
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5.10 Increasing annuities
5.10.1 Arithmetically increasing annuities

Consider a continuous annuity, with a payment of t dt in the
interval (t, t + dt), 0 < t < n, provided (x) is alive.

BeneÖt cash áow:
Z n

0

"
t ! 1fTx>tg dt, t

#

Actuarial value:

"
I a
#
x :n

not.
=
R n
0 t e

$dt
tpx dt (5.35)
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5.10 Increasing annuities
5.10.1 Arithmetically increasing annuities
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5.10 Increasing annuities
5.10.2 Geometrically increasing annuities

Example 5.5

Consider an annuity-due with annual payments where the
amount of the annuity is (1+ j)t at times
t = 0, 1, 2, . . . , n! 1, provided (x) is alive at that time.
BeneÖt cash áow:

n!1

Â
t=0

!
(1+ j)t " 1fTx>tg, t

"

Show that the EPV of this cash áow is given by:

Ân!1
t=0 (1+ j)

t " vt" tpx = äx :n i %

with

i% =
i ! j
1+ j
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5.10 Increasing annuities
5.10.2 Geometrically increasing annuities

Example 5.5
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5.11 Evaluating annuity functions
5.11.1 Recursions

Let w be the Örst integer age such that lw = 0. Then,

qw!1 = 1

Yearly annuity-due:
Initial value: äw!1 = 1.
Backward recursion: for x = w! 2, w! 3, . . . ,

äx = 1+ v px äx+1 (5.36)

1/m-thly annuity-due:

Initial value: ä(m)w!1/m =
1
m .

Backward recursion: for x = w! 2
m , w! 3

m , . . . ,

ä(m)x = 1
m + v

1/m
1/mpx ä

(m)
x+1/m (5.37)
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5.11 Evaluating annuity functions
5.11.2 Applying the UDD assumption

How to evaluate the EPV of 1/m-thly and continuous
annuities, given only the EPVs of yearly annuities?
Recall:

A(m)x
UDD
=

i
i (m)

Ax and Ax
UDD
=

i
d
Ax

and

äx =
1! Ax
d

, ä(m)x =
1! A(m)x

d (m)
, ax =

1! Ax
d

Lifelong annuity-due with 1/m-thly payments:

ä(m)x
UDD
= a (m) äx ! b (m)

with

a (m) =
i d

i (m) d (m)
and b (m) =

i ! i (m)

i (m) d (m)
(5.38)
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5.11 Evaluating annuity functions
5.11.2 Applying the UDD assumption

Limiting values:

d = lim
m!•

i (m) = lim
m!•

d (m)

Lifelong annuity with continuous payments:

ax
UDD
= i d

d2
äx " i"d

d2

Term annuity-due with 1/m-thly payments:

ä(m)x :n
UDD
= a (m) äx :n " b (m) (1" nEx ) (5.39)
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5.11 Evaluating annuity functions
5.11.2 Applying the UDD assumption

Approximations for a (m) and b (m):

a (m) ! 1 and b (m) !
m" 1
2m

Approximation for 1/m-thly annuity:

ä(m)x :n ! äx :n "
m"1
2m (1" nEx ) (5.40)

Approximation for continuous annuity:

a(m)x :n ! äx :n "
1
2 (1" nEx )
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5.11 Evaluating annuity functions
5.11.3 Woolhouseís formula (read in book)
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5.12 Numerical illustrations
Technical basis:

Mortality: Standard Ultimate Survival Model.
Interest: i = 0.1

Exact: ä(12)
x :10

UDD: ä(12)
x :10

UDD
= a (12) ä

x :10
! b (12) (1! 10Ex )

W2: ä(12)
x :10

" ä
x :10

! 11
24 (1! 10Ex )
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5.12 Numerical illustrations
Technical basis:

Mortality: Standard Ultimate Survival Model.
Interest: i = 0.05

Exact: ä(2)
x :25

UDD: ä(2)
x :25

UDD
= a (2) ä

x :25
! b (2) (1! 25Ex )

W2: ä(2)
x :25

" ä
x :25

! 1
4 (1! 25Ex )
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5.13 Functions for select lives
Throughout this chapter we assumed an ultimate survival
model.

Results can easily be adapted to the case of a select survival
model.

Continuous life annuities and endowment assurances:
Life annuity:

a [x ]+k :n =
Z n

0
e!dt

t p[x ]+k dt

Endowment insurance:

A [x ]+k :n =
Z n

0
e!dt

t p[x ]+k µ[x ]+k+t + nE[x ]+k

Relation:

a [x ]+k :n =
1! A [x ]+k :n

d
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5.13 Functions for select lives

Yearly and 1/m!thly annuities:

ä [x ]+k =
•

Â
t=0
vt tp[x ]+k and ä(m)

[x ]+k =
1
m

•

Â
t=0
vt/m t

m
p[x ]+k

Approximations:

ä(m)
[x ]+k

UDD
= a (m) ä [x ]+k ! b (m) " ä [x ]+k !

m! 1
2m

Example 5.6:
Technical basis:

Mortality: Standard Select Survival Model.
Interest: i = 0.05.

Assumption: q131 = 1
Question: Produce a table showing values of ä [x ], ä [x ]+1 and
äx+2 for x = 20, 21, . . . , 80.

74 / 75



5.14 Notes and further reading
(read in book)
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