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A general class of fair dynamic valuations, which are model-consistent (mark-to-model), market-
consistent (mark-to-market) and time-consistent, was introduced by Barigou et al. (2019) in a
multi-period setting. In this paper, we generalize the convex hedging approach proposed in Dhaene
et al. (2017) to a multi-period framework and investigate the realization of fair dynamic valuations via
a convex hedge-based (CHB) approach. We show that the classes of fair dynamic valuations and CHB
dynamic valuations are equivalent. Moreover, we show how to implement the CHB dynamic valuations
based on two specific classes of convex hedging techniques, i.e. the quadratic and exponential convex

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Recent solvency regulations for the insurance industry, such as
the Swiss Solvency Test and Solvency II, have required insurance
companies to apply a fair valuation of liabilities. To consider and
be consistent with the information provided by financial markets,
any replicable (hedgeable) part of a claim must be valuated at the
price of its replicating (hedging) portfolio. The remaining part is
then valuated by an appropriate risk margin (e.g., based on cost-
of-capital arguments). As the hedgeable part of a claim is usually
not uniquely determined, different feasible hedging or valuation
approaches are possible.

Barigou et al. (2019) proposed the fair dynamic valuation
approach in a multi-period setting, which is model-consistent
(mark-to-model for claims independent of financial market evo-
lutions), market-consistent (mark-to-market for hedgeable parts
of claims) and time-consistent. This approach is implemented
through a backward iteration scheme of hedge-based valuations,
and thus it largely relies on the adopted hedging technique.

In this study, we investigate the fair dynamic valuation of in-
surance liabilities using the convex hedging approach in a multi-
period setting. Our study makes three major contributions to
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the body of research on this topic. First, we extend the frame-
work of fair dynamic valuation by linking the concept of conven-
tional actuarial and financial valuation to the model- and market-
consistency. This integration makes the fair dynamic valuation
framework become full-fledged.

Second, we build a theory of convex dynamic valuation by
extending the single-period convex hedging technique proposed
by Dhaene et al. (2017) and the fair dynamic valuation framework
of Barigou et al. (2019). We propose convex hedge-based (CHB)
dynamic valuation based on convex hedging. The convex hedging
technique determines the hedging strategy such that the claim
and value of hedging portfolio are ‘close to each other’ within
the goal of minimizing the P-expectation of the given convex
function u(x). We prove that the class of CHB dynamic valuation
is equivalent to the class of fair dynamic valuation and can be
characterized in terms of a CHB dynamic hedger.

Last, we illustrate that the proposed CHB dynamic valuation
approach is a practical tool for obtaining fair dynamic valuation of
liabilities. The major advantage of the convex hedging technique
lies in that it transforms the determination of an appropriate
hedging technique into the selection of a proper suitable con-
vex function. The choice of the convex function u(x) determines
how deviations between the liability and the hedging portfolio
outcome, x, are punished. One particular convex function is the
quadratic function u(x) = x2, in which case the hedging is
the well-known mean-variance (MV) hedging. In this study, we
illustrate some practical classes of convex functions, including
MV and exponential hedging. Furthermore, we apply several CHB
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dynamic valuations to valuate variable annuities, an interesting
example of a hybrid liability with both financial and actuarial
risk, as an illustration. The numerical results show that our CHB
dynamic valuation is a practical technique.

This study is related to the extensive literature on market-
consistent, actuarial, and time-consistent valuations. Market-
consistency requires that the value of any purely hedgeable
part of a financial payoff should be equal to the amount neces-
sary to hedge it, see e.g. Malamud et al. (2008), Tsanakas et al.
(2013), Wiithrich et al. (2013), Pelsser and Stadje (2014), Delong
et al. (2019a,b) and Dhaene et al. (2017). An actuarial valuation
is typically based on the real-world measure P, and it involves
a subjective actuarial judgment on the choice of the model.!
Moreover, time-consistency binds valuations at different time
points in a consistent way along a time-horizon. Time-consistent
valuations have been largely studied and we refer to Acciaio and
Penner (2011) for an overview.

The remainder of this paper is structured as follows. In
Section 2, we define the general framework of fair dynamic
valuation. In Section 3, we introduce the equivalence between
the classes of fair dynamic valuations and the CHB dynamic
valuations. In Section 4, we present some practical examples
of convex dynamic hedging: mean-variance and exponential
hedging. Section 5 concludes the paper.

2. General framework of fair dynamic valuation

In this section, we revisit the general framework of fair dy-
namic valuation introduced in Barigou et al. (2019). Though the
related concepts are well developed and investigated, this section
contributes by enriching the fair dynamic valuation framework.
After introducing the combined financial-actuarial setting in Sec-
tion 2.1 and basic concepts in Section 2.2, we supplement the con-
cept of actuarial and financial t-valuation, and further integrate
them into the fair dynamic valuation framework in Section 2.3.
Finally, the fair dynamic valuations and hedgers are revisited in
Section 2.4.

2.1. Combined financial-actuarial setting

Following Barigou et al. (2019), we consider a setting consist-
ing of financial and actuarial risks, modeled by the probability
space (§2, G, P), where P is the physical probability measure. We
consider a discrete time setting with the set of time points given
by n = {0,1,...,T}, with the current time being 0 and the
maturity of liability being T. The finite and discrete time filtration
is G = {Gt}ic,, where o-algebra G, t € n, represents the general
information available up to and including time t.2

We assume that there are n 4+ 1 non-dividend assets traded
in a liquid, transparent and arbitrage-free financial market.?
We describe the price processes of the traded assets by the
(n + 1)-dimensional stochastic process Y = {Y(t)};,. The vec-
tor Y(t), t € n, represents the time—t prices of all tradable
assets, that is, Y(t) = (YO(t), Y(t), ..., Y"(¢)). The price
process Y is adapted to the filtration G, which means that Y(t) is

T See e.g. Kaas et al. (2008) for non-life insurance and Norberg (2014) for life
insurance.

2 All the random variables (r.v.s) and stochastic processes are defined on
this filtered probability space and the equality between r.v.s is understood in
the P—almost sure sense. Furthermore, we assume that the second moments of
all r.v.s exist under P.

3 For a detailed mathematical introduction, see Dhaene et al. (2017)
and Barigou and Dhaene (2019), Barigou et al. (2019).
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G.-measurable, forany t =0, 1, ..., T In particular, the asset 0
is a zero-coupon bond paying an amount of 1 at maturity T. Its
price at time t, denoted by B(t, T), is given by
yO(¢) = B(t, T) = E [e—fr' "st] . foranyt=0,1,...,T—1.
We will call the insurance liabilities due at time t as t-
claims, which are G;-measurable r.v.s.” Furthermore, the set of all
t-claims defined on (£2, G, G) is denoted by C;. In this paper, we
consider pricing T-claims, i.e. insurance liabilities due at time T.
Hereafter, a T-claim is generally denoted by S(T), or simply S if
no confusion would arise.

2.2. Basic concepts

First, we introduce the concept of trading strategy. A time—t
trading strategy (also called a time—t dynamic portfolio), t €
{0,..., T —1},is an (n + 1)-dimensional predictable process 6, =
{0:(7)}reie... 1y With respect to the filtration G. Its predictability
requirement means that

0:(t) is G;,_1 — measurable, foranyr=t+1,...,T.

We introduce the notations 6,(t) = (950)(1), Gt“)(r) e 95”)(r)>

for the components of #,(7), the quantity 95')(r) is the number of
units invested in asset i in time period t, specifically in the time
interval (z — 1, 7].°

A time—rt trading strategy 6.(t) is only set up at time t till
T 4+ 1, and then the portfolio is rebalanced to implement 0,(t +
1). The G,_;-measurability requirement means that the portfolio
composition 6,(t) for the time period 7 follows from the general
information available up to and including time z — 1. A time—t
trading strategy 0, is said to be self-financing if

0:(1)-Y(r) =0,(r+1)-Y(7), forany r =t+1,...,T—1. (1)

That is, no capital is injected or withdrawn at any rebalancing
moment T =t + 1,...,T — 1. The set of self-financing time—t
trading strategies is ®;. Taking into account (1), the time—T value
of any self-financing time—t strategy 6; € ©; can be expressed
as

T
0«(T)-Y(T)=0:(t + 1) Y(t) + Z 0:(7) - AY (1), (2)
T=t+1

with AY (t) = Y (r) — Y (r — 1). In this formula, 6,(t) - AY (1)
is the change in the market value of the investment portfolio in
the time period t, i.e. between time t — 1 (just after rebalancing)
and time t (just before rebalancing).

A simple example of a self-financing time—t trading strategy
is the static trading strategy B, consisting of buying at time t
one unit of the zero-coupon bond B(t, T), which pays 1 at T, and
holding it until maturity T. Another special self-financing time—t
trading strategy 0, corresponds to a null investment, i.e. 0;(t) =
0,0,...,0)forallt=t+1,...,T.

4 The filtration G may simply coincide with the filtration generated by the
price process Y. However, we consider a more general setting, where G is not
only related to the price history of traded assets, but may also contain additional
information such as that related to non-tradable claims or the survival index of
a particular population.

5 Barigou et al. (2019) provided a discussion and examples on the
measurability of insurance liabilities with incoming information over time.

6 The investment stays constant during the time interval (r — 1, r] until its
next rebalancing at time u. We refer to Barigou et al. (2019) for more detailed
introduction of strategy rebalancing setting. Here, the g,_;-measurability re-
quirement means that the portfolio composition 6;(t) for the time period t
follows from the general information available up to and including time v — 1.
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Table 1
t-valuations and t-hedgers, t =0,1,2,...,T — 1.
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t-valuation py

t-hedger 6,

Definition

translation invariant.
o [0] = 0.
ot [S+al=

Normalization

Translation invariance

ot [S1+ B(t, T)a, for any S €

Mapping p; : Cr — C; is a
t-valuation if it is normalized and

Mapping 6, : ¢t — O, is a
t-hedger if it is normalized
and translation invariant.
0:0 =0,

0540 =05+ ap,, forany S €
¢r and a € ¢; payable at T.

cr and a € ¢, payable at T.

In addition, we revisit two important building blocks of fair
dynamic valuation, t-valuation and t-hedger. A t-valuation p¢
(t-hedger ;) assigns to each T-claim a G;-measurable random
variable p; [S] (a self-financing time—t trading strategy 6; s € ©;)
that represents the value (hedging strategy) of the T-claim S at
time t, given the available information at time t. The value p; [S]
is a t-claim, which is a deterministic value (random variable) at
(before) time t, and ;s is called a t-hedge for S with a value
0: s(t) - Y(t) at time .

Table 1 summarizes the definitions of t-valuation and
t-hedger.

Now, we revisit the notions of dynamic valuation and dynamic
hedger introduced in Barigou et al. (2019).

Definition 1 (Dynamic Valuation). A dynamic valuation is a se-
quence (pr)tT;O] where for each t = 0,1,...,T — 1, p; is a

t-valuation.

Definition 2 (Dynamic Hedger). A dynamic hedger is a sequence
(6:)]Z, where foreacht =0,1,...,T — 1, 8, is a t-hedger.

2.3. Fair t-valuations

In this section, we enrich the fair dynamic valuation approach
by integrating the long-standing actuarial and financial valua-
tion principle into the framework of fair t-valuation. The ap-
proaches used to valuate contingent claims under in the insur-
ance and finance contexts are different. The conventional way of
setting insurance premium consists of expected loss built on the
Law of Large Numbers and some necessary loadings, see for in-
stance Gerber (1979), Bowers (1986), and Biihlmann et al. (1996).
In this sense, the conventional insurance premium is under the
physical measure P. However, the core of valuation in the finance
context is no-arbitrage. This widely acknowledged principle of
financial valuation implies that claims should be valuated under
a risk-neutral equivalent martingale measure (EMM) Q. In the
following, we denote the expectation conditional on G; by ]E]f and
EZ, respectively.

First, we define the class of actuarial t-valuation, which gener-
alizes insurance premium principles in the traditional insurance
context.

Definition 3 (Actuarial t-valuation). An actuarial t-valuation A; [S]
is a t-valuation p; : Cr — Cg, such that

A [S]=B(t, T)- (Ef [S] + RM; [S]),  foranyS € Cr, (3)

where the mapping RM; : Cr — (; is P-law invariant and
P-independent of time—t and future asset prices Y =
{Y(*heepr,...1y-

The mark-to-model condition (3) requires that the mechanism
of actuarial t-valuation should be independent of the information
from the financial market since time t under the P measure.
It is a generalization of various insurance methods in practice,

e.g. the variance principle and the standard deviation principle.’
One particular example of actuarial t-valuation is the standard
deviation principle,

Ac[S]=B(t, T)- (Ef [S]+ oo/ [S]),
with o [S] := \/Var?[S | G/] and « > 0.

Second, let us step from the actuarial valuation method to
the financial valuation method, and introduce the financial t-

valuation. Its financial valuation condition (4) shows that claims
should be valuated under a risk-neutral EMM Q.

Definition 4 (Financial t-valuation). A financial t-valuation
F¢ [S] is a t-valuation p; : Ct — C, such that

Fe[S]=B(t, T)- EZ[S],
where Q is an EMM.

forany S € Cr, (4)

At time t, based on the extent to which insurance claims
can be hedged by tradable assets, Barigou et al. (2019) de-
fine two special types of T-claims: t-orthogonal T-claims and
t-hedgeable T-claims (see Table 2). Hereafter, we denote the
set of all t-orthogonal T-claims by ©%, and the set of all time-
t hedgeable T-claims by #%. It is intuitive that the suitable
t-valuations applied to the class of t-orthogonal T-claim S+ and
t-hedgeable T-claim S" should be actuarial t-valuation and finan-
cial t-valuation, respectively. T-claims are often neither
t-orthogonal nor t-hedgeable, but are correlated with the market
price of tradable assets. This most common type of T-claim,
t-hybrid T-claim, is partially hedgeable by tradable assets.

Some recent regulations, such as the Swiss Solvency Test and
Solvency II, have realized the importance of the financial risk
embedded in hybrid insurance claims and adopted the so-called
market-consistent valuation. Dhaene et al. (2017) and Barigou
et al. (2019) proposed fair t-valuation, which merges both
model-consistency and market-consistency (see Fig. 1). Model-
consistency is a property of t-valuation concerning valuating
orthogonal claims.® Model-consistent t-valuation ‘identifies’ the
orthogonal claims, and applies actuarial t-valuation, which is
completely ‘independent’ of the financial market. In addition,
market-consistency ‘identifies’ the hedgeable parts of any claims,
stating that the valuation of any hedgeable parts should be
based on the market price.? Market-consistent t-valuation is
‘independent’ of actuarial models, but depends on the informa-
tion of financial market. Table 3 summarizes the mathemati-
cal definitions of model-consistent, market-consistent and fair
t-valuations. Therefore, we can see that the fair t-valuation ap-
proach meets all the requirements in Table 2.

7 See e.g. Bowers (1986), Kaas et al. (2008) and Norberg (2014).

8 To avoid concept misunderstandings, we remark that the model-consistent
condition in our paper is introduced as ‘actuarial condition’ in Barigou et al.
(2019). Thus, the actuarial t-valuation by (3) in our paper is a subclass of that
in Barigou et al. (2019).

9 Some identical or similar conditions can be found in the literature (Kupper
et al., 2008; Malamud et al., 2008; Artzner and Eisele, 2010; Pelsser and Stadje,
2014).



Z. Chen, B. Chen, ]. Dhaene et al.

Table 2
T-claims: types and proper t-valuations, t =0,1,2,...,T — 1.
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Definition

Proper t-valuation

A T-claim which is P-independent of
the stochastic process

Yei1 = {Y(7)}reqe41,.. 1) Notation:

St LYy

A T-claim which can be replicated by
a time—t self-financing strategy

0, € O :S"=0,(T)-Y(T).

A T-claim which is neither
t-hedgeable nor t-orthogonal.

t-orthogonal T-claim S+

t-hedgeable T-claim S"

t-hybrid T-claim

Actuarial t-valuation.

Financial t- valuation.

Fair t-valuation.

Table 3

Model-consistent, market-consistent and fair t-valuations and t-hedgers, t =0,1,2,..., T — 1.

t-valuation p;

t-hedger 6,

p¢ is @ model-consistent t-valuation if
there exists an actuarial t-valuation
A such that p; [S*] =

A [$t], for any St € Of.

Model-consistency

Market-consistency pr is a market-consistent t-valuation if

o [5 +5h] — pelS] +E2 [e‘frT rsdssn}

6, is a model-consistent
t-hedger if there exists a
model-consistent t-valuation p¢

L
such that 6, 1 = %ﬂr,
for any S+ € of.

6, is a market-consistent
t-hedger if 0, s, on = 0; 5 + 0, sn,

for any S € ¢y and S" € #}.

for any S € ¢y and S" € H}.

Fairness p¢ is a fair t-valuation if it is both 6, is a fair t-hedger if it is both
model- and market-consistent. model- and market-consistent.
¢ valuag;, odel-cong;
ganie 1 Wallog WM "’t’aw
%,
2.
-valuagj el-cong;, 2,
-\5\2““ g V{\od ns'sfea’ %ra

&,
&
>4
g
o

2
>

Fair t-valuations

(a) Fair t—valuation.

Suopyenye™ "

Fair dynamic valuations

(b) Fair dynamic valuation.

Fig. 1. Classes of t-valuation and dynamic valuation.

Though the approach of fair t- and dynamic valuation is de-
veloped, we contribute a missing piece to the framework: the
link between conventional actuarial (financial) t-valuation and
model-consistent (market-consistent) t-valuation. As shown in
Fig. 1, the classes of actuarial and financial t-valuations are exclu-
sive to each other. The two important subclasses of t-valuations,
model-consistent and market-consistent t-valuations, extend the
classes of actuarial and financial t-valuations into broader ones,
respectively. In this sense, actuarial and financial t-valuations
are particular types of model-consistent and market-consistent
t-valuations. We revisit the classes of model-consistent, market-
consistent and fair t-hedgers in Table 3.

2.4. Fair dynamic valuations

In this section, we revisit the concept and conclusion of fair
dynamic valuation in Barigou et al. (2019), which incorporates
time-consistency. Time-consistency is a concept that couples dif-
ferent static t- valuations, which means that the same time—t
value is assigned to a T-claim regardless of whether it is calcu-
lated in one step or two steps backward in time. The definition

of time-consistent valuation in Table 4 is often named the ‘re-
cursiveness’ or ‘tower property’ definition.!? The definition of
time-consistent dynamic hedger is introduced similarly on the
basis of time-consistent dynamic valuation.

First, we introduce an equation that appears in the definition
of time-consistent valuation and is often used in the remainder
of the paper. For a t-valuation for T-claims S, consider a trading
strategy that invests o, [S] at time t in the zero-coupon bond
B(t,T), fort =0,1,...,T — 1. Obviously, the initial investment
at time t of this trading strategy is p; [S], and its time—T value p;
satisfies that

o [S]
B(t, T)

pe[S]= (5)

10 gee e.g. Cheridito and Kupper (2011), Acciaio and Penner (2011) and Follmer
and Schied (2011) for the discrete time case, and see Frittelli and Gianin (2004),
Delbaen et al. (2010), Pelsser and Stadje (2014) and Feinstein and Rudloff (2015)
for the continuous case. In addition, there are some weaker notions of time-
consistency in the literature, see e.g. Roorda et al. (2005) and Kriele and Wolf
(2014).
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Table 4
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Model-consistent, market-consistent, time-consistent and fair dynamic valuations and hedgers.

Dynamic valuation (p¢ )L_Ol

Dynamic hedger (6; )L‘U]

Model-consistency -1

Market-consistency -1

Time-consistency

Fairness 1

time-consistent.

(pe)Zo 1s a model-consistent dynamic
valuation if any p; is a
model-consistent t-valuation.

(p)Zo 1s a market-consistent dynamic
valuation if any p; is a
market-consistent t-valuation.

(0e)iZ, is a time-consistent dynamic
valuation if po, p1, ...,
connected in the following way:
0t [S1 = pe [Pes1[S]]. for any

Secrandt=0,1,..

pr—1 are

L T=2

(pe)o 1s a fair dynamic valuation if
it is model-, market- and

(8:)/Z, is a model-consistent

dynamic hedger if any 0, is a
model-consistent t-hedger.

(8.)/=, is a market-consistent

dynamic hedger if any 6, is a
market-consistent t-hedger.

(8:)17, is a time-consistent

dynamic hedger if

60,601, ..., 6r_, are connected
in the following way:

05 = 05,15, for any
Secrandt=0,1,...,T—2.
(8:)iZy is a fair dynamic hedger
if it is model-, market- and
time-consistent.

The time—T value of the t-valuation p,[S] works to compare
t-valuations at different times.

Fig. 1 shows that fair dynamic valuation (hedger) merges
the properties of model-consistent, market-consistent and time-
consistent valuations (hedgers). Model-consistent and market-
consistent dynamic valuations (hedgers) are natural general-
izations of model-consistent and market-consistent t-valuations
(hedgers). Similarly, model-consistent and market-consistent dy-
namic hedgers are also natural generalizations of those of
t-hedgers.

Merging the notions of model-consistent, market-consistent
and time-consistent dynamic properties leads to the concept of
fair dynamic valuation (hedger). Table 4 summarizes some of the
important properties of fair dynamic valuations and hedgers.

3. Fair dynamic valuation via convex hedging

—_

(e}

Barigou et al. (2019) proved that a dynamic valuation (,ot)[T
T

e

is fair if and only if there exists a fair dynamic hedger (p,),_,
such that

pe[S] = m,s(t + 1) Y(1),

In this section, we propose a general convex hedge-based (CHB)
dynamic valuation approach. We prove that the class of CHB
valuations is equivalent to the class of fair dynamic valuations.

for any S € Cr.

3.1. Convex t-hedger and valuation

To begin with, we extend the convex hedger of Dhaene et al.
(2017) under a single-period framework to our multi-period set-
ting.

Definition 5 (Convex t-hedger). Consider a strictly convex non-
negative function u with u(0) = 0. The t-hedger 6} determined
via

05 = arg min B/ [u (u,(T)- ¥(T)=S)],  foranyS$ ecr,

Re€Ot
(6)
is called a convex t-hedger (with convex function u).

As we assume that the time—T value of any time—t trading
strategy is square-integrable, a solution to the optimization prob-
lem (6) exists, see for instance Cerny and Kallsen (2009). The
convex t-hedger attaches the hedge ;' s to any claim S, such that
the time—T value of the claim and hedging portfolio are ‘close to
each other’ in the sense that the P-expectation of the u-value of

their difference is minimized. The choice of the convex function
u determines how severe deviations are punished.

In the following theorem, we show that any convex t-hedger
is a fair t-hedger.

Theorem 1. Convex t-hedger 0} is a fair t-hedger with the under-
lying model-consistent t-valuation p{ [S*] given by

Pt [S7] = Ble. T)-[E/(ST)+argminE [u (s — EX(5™) = 57)]1,

(7)
for any S+ € Or.

Proof. Consider the t-hedger 0} defined in (6). We have to prove
that 0} satisfies the market- and model-consistent conditions in
the definition of a fair t-hedge.

(a) For any t-hedgeable claim S" e #%, which can be replicated
by a time—t self-financing strategy 8, € ©; such that S" =
0; sn - Y(T), we have that

0 s on = arg umin Ey [u ((#e(T) — 0, 50(T)) - Y(T) = S)]

(€O

= 0, n + arg min Ef [u (u(T) - Y(T) = S)]
n

€6y
u
= 0&5’7 + 0[,55

which means that the market-consistency condition is satisfied.
(b) Consider any t-orthogonal T-claim S+ € O%. Notice that

Prcl : P Prcl 1 : P €1
EF(S )—O—argrsré}l{llE[ [u(s —EF(ST)—sY)] = arg min £ [u(s—sh)].
Taking into account the independence of S and Y as well as

Jensen’s inequality, we find that for any trading strategy u € ©,
a convex function u(x) satisfies

Ef [u (io(T) - Y(T) = S*) | S*] = u (wo(T) - EF [Y(T)] = S*).

Taking expectations on both sides leads to

B [u (o (T) - Y(T) = $%)] 2 BY [u (mo(T) - Ef [Y(T)] = 57)]
> B [u(p[s7] - sH)]

which holds for any p, € ®;. Notice that p; [S*] can be rewritten
as

o [S1= (pc[S*].0.....0) - Y(T),

with the relation between p; [S*] and p; [S] indicated in (5). As
(o [S*].0,...,0) is an element of @, we find that

e[St
?,si =0 [ ]':Br (8)
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It is easy to verify that p; is a model-consistent valuation satis-
fying

ot [S*] =B(t, T)- [E(S*) + arg min E* [u (s — Ef(S*) — sH)]1.

for any St e or.

Thus, we can conclude that the model-consistency condition is
also satisfied. ®

Definition 6 (Convex Hedge-Based t-hedger). A t-hedger 6, : Cr —
®; defined by

008 =0} s+ m[S — 0} 5(T) -
foranySecrandt =0,1,...,

Y(T)] B;,
T -2, (9)

with underlying convex t-hedger #; and model-consistent
t-valuation 7, is called a convex hedge-based t-hedger (CHB
t-hedger).

A CHB t-hedger 05”3 is determined by its underlying convex t-
hedger 6 first, augmented by a model-consistent t-hedger 7, - B,
which invests in the zero-coupon bonds. Due to the fact that the
convex t-hedger ! is fair, we find that any CHB t-hedger 6 is
a fair t-hedger.

Corollary 1. Any CHB t-hedger is a fair t-hedger.

Proof. Consider the CHB t-hedger 8" given in (9). In order
to show that 6 is fair, we have to verify whether it is both
market-consistent and model-consistent.

(i) Let S € ¢r and S" € #t with 6, € O, such that S" =
0, sn(T)- Y(T). We have that

U u
tsesh = Ors +0psns

taking into account this additivity relation, we find that
Gfl;ish - ot ,S4-sh +m[S + Sh - ?5+5h(T) -Y(T)] ﬂt
=60{5+0p5n + ]S +S" — 0 5(T)- Y(T) = 0, 5n(T) - Y(T)1B,
= oltls + e[S — 0?‘5('1“) -Y(T)]1 B, + or,sh

0CHB + 0{ sh
Hence, 6" is market-consistent.

(ii) Let St € Or. From (8), we know that 0t L= pt[tST)]ﬂt
Taking into account the translation-invariance of 7; leads to
otc,lﬁ = 0[.9 + nt[sl ISL(T) Y(T)] .Br

_p[[Sl]ﬁ +7T[SL ’Ot[SL]ﬂ
BTt B(t, T)
=Tt [Sl] B:.

Given that m; is a model-consistent t-valuation, we find that 0?"3

is model-consistent. Therefore, any CHB t-hedger OfHB is both
market-consistent and model-consistent, and hence, fair. =

Next, we define convex hedge-based t-valuations.
Definition 7 (Convex Hedge-Based t-valuation). The t-valuation
Pt :CT—)Ct,t=0,],...,T—],definedby
pe[S] =67 5(t +1)- Y(t) + 7 [S — 6 5(T) - Y(T)], (10)

with underlying convex t-hedger 6 and model-consistent
t-valuation m, is called a convex hedge-based t-valuation (CHB
t-valuation).

In the following theorem we show that the classes of fair
t-valuations and CHB t-valuations are equivalent.
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Theorem 2. A mapping p; : Ctr — C,,t =0,1,...,T—1,is a CHB
t-valuation if and only if it is a fair t-valuation.

Proof. (a) Consider the CHB t-valuation p,; defined in (10). The
CHB t-valuation p; can be represented as the time t value of the

following CHB t-hedger %

pe[S]= (0 5(t + 1) + 70 [S — 0, s(T) -
=000 (t+1)- ().

In order to show that p; is fair, we have to verify whether p; is
both market-consistent and model-consistent.
(i) Let S € ¢r and S" € #% with 8, € O, such that S" =

Y(T))B,)- Y(¢)

0. sn(T) - Y(T). By Corollary 1, we find that
pe[S+S"T =018 (e + 1) ¥(0)

= (053°(t + 1)+ 8, st + 1)) - Y(t)
= p¢ [S]+ 0, on(t + 1) - Y(0).

Hence, p; is market-consistent.
(i) Let S* € Or. By Corollary 1, we know that

o [ST] =00 (e + 1) Y(D)

= (m[si] B.)-Y(t)
= m[St].

Given that 7; is a model-consistent t-valuation, we find that p; is
model-consistent.

(b) Consider a fair t-valuation p;. Let 0t s - Y(T) be the time—T
value of a t-convex hedge of the T-claim S, e. g determined via
the underlying quadratic function u(x) = x2. By the market-
consistency property, we immediately find that

pe1S] = pe [045(T) - Y(T) + (S — 64 4(T) - Y(T))]
=0/ (t+1)-Y(t)+ pc [S — 0 (T) - Y(T)].

Given that p; is fair, it is also model-consistent. Hence, we can
conclude that the fair t-valuation p; is a CHB t-valuation.

Thus, for any convex t-hedger 6%, the CHB t-valuation is
fairr, ®

3.2. Convex dynamic hedger and valuation

In the previous section, we introduced the convex t-hedgers
and valuations. In this section, we interpret the time-consistency
property under the framework of convex hedge-based dynamic
hedgers and valuations.

Definition 8 (Convex Hedge-Based Dynamic Hedger). The dynamic
hedger (6,);_, where for each t = 0,1,...,T — 1, 6, is a CHB
t-hedger and connected in the following way:

Ocs = 05,151 foranySecCrandt=0,1,...,T -2, (11)

with (t+41)-valuation p¢41 [S] = 0¢+1.5-Y(t+1), is called a convex
hedge-based dynamic hedger (CHB dynamic hedger).

After having introduced the concept of CHB dynamic hedger,
we now define convex hedge-based dynamic valuation (CHB dy-
namic valuation).

Definition 9 (Convex Hedge-Based Dynamic Valuation). The dy-
namic valuation (o), ‘01 where all p; are CHB t-valuations and

connected in the following way:

foranySecrandt=0,1,...,T — 2,
(12)

pe[S] = pr [7)}+1 (S]],
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is called a convex hedge-based dynamic valuation (CHB dynamic
valuation).

In the following theorem, we prove that a fair dynamic valu-
ation can be characterized in terms of a CHB dynamic hedger.

Theorem 3. A dynamic valuation (p; )L‘Ol is a fair dynamic valua-

tion if and only if there exists a CHB dynamic hedger (ut)f;(} such

that

foranySecrandt=0,1,...,T—1.
(13)

pe [S] = m, s(E+1)-Y(t)

Proof. (a) Suppose that (o )/, is a fair dynamic valuation. First,
by Theorem 2, we know that fair t-valuation pr_; is a CHB
t-valuation. That is, there exist a convex t-hedger #;_; and a
model-consistent t-valuation sr_; such that

or—1[S] = 07_; (T)-Y(T—1)+m7_1[S—07_; ;(T)-Y(T)],  for any S € Cy.

Second, we construct a dynamic hedger (p, [T=—01 which is model-
consistent, market-consistent and time-consistent based on con-
vex t-hedger 0. Let us set

Rr_1s = 0#-1,5 + 7 [5 - 9?-1,5(” : Y(T)] Br_1-
Obviously, p_; is a fair (T — 1)-hedger and
pr-1[S]= pr_y s(T)- Y(T — 1),
Then, by definition the (T — 2)-valuation pr_; [S] is
pra[Proa (S =04y 5 5T = 1) Y(T = 2)
+ w208 = 0755 1s)(T) - Y(T)],
=(07_,5(T—1)
+ 72 [S = 07, 5(T) - Y(T)] Br_y) - Y(T — 2)
= pr_s(T —1)-Y(T —2),

for any S € Cr.

where pur_, is a CHB (T —2)-hedger. Hence, pr_; [S] is equivalent
to the (T —2)- value of hedger p;_,. Starting from a CHB t-hedger
Jtr_1, we construct the time-consistent adaptation

foranySecCrandt=0,1,...,T — 2.

Iteratively, we can show this CHB dynamic hedger (u[,s)f;(} sat-

isfies p; [S] = p, 5(t 4+ 1) - Y (1)

(b) Consider the CHB dynamic hedger (u,t)tT:_O1 defined in (11).
From Theorem 2, we know that forany t = 0,1,...,T — 1, the
CHB t-valuation p; = 65 - Y(t) is both model-consistent and
market-consistent, and hence, fair. Moreover, from the fact that
()2, is time-consistent, we have

o [S] = pes(6+1) - Y(2)
= ﬂr,;tﬂm(t +1)-Y(t)
= p¢ [Pt [S1].

Mes = Bt 5qs)

Thus, (p¢)Z, is a fair dynamic valuation, which ends the
proof. W

Theorem 2 shows that the class of fair t-valuations is equiv-
alent to the class of CHB t-valuations. In the following theorem,
we extend this equivalence to dynamic valuations and show that
any fair dynamic valuation can be expressed as a CHB dynamic
valuation.

Theorem 4. A dynamic valuation (pt)[T;ol is a CHB dynamic valua-
tion if and only if it is a fair dynamic valuation.

Proof. (a) Consider the CHB dynamic valuation (,ot)[T‘Ol defined

in Eq. (12). From Theorem 2, we know that any CHB t-valuation p;
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is both market-consistent and model-consistent. Moreover, from
the definition of CHB dynamic valuation in Eq. (12), (o), satis-
fies the time-consistent condition. Thus, ( p[)tT:_o] is a fair dynamic
valuation.

(b) Consider a fair dynamic valuation (o), .Fort =0, 1, ...,
T — 1, any t-valuation p; is a fair t-valuation, and hence, a CHB
t-valuation by Theorem 2. Given that (p,);_, is fair, it is also
time-consistent. That is, all t-valuations involved are connected
as:

ot [S1= pt [0e41[S]l, foranySecrandt=0,1,...,T —2.

Thus, we can conclude that (p)_,

valuation. W

is a CHB dynamic

In Theorem 4 we have proven the equivalence between the
classes of CHB dynamic valuations and fair dynamic valuations.
This result is a generalization of Theorem 3 in Barigou and Dhaene
(2019) as the mean-variance hedging is a special case of convex
hedging. The equivalences provided by Theorems 3 and 4 lead to
the conclusion that a CHB dynamic valuation can be characterized
in terms of a CHB dynamic hedger. That is, any dynamic valuation
(,of)ttol is a CHB dynamic valuation if and only if there exists a
CHB dynamic hedger ( ;Lt)th_Ol such that

pr[S]=me (6 +1)-Y(t), foranySecrandt=0,1,...,T—1.

To sum up, under the convex hedging approach, determining
the time—t fair value of a T-claim S departs from splitting this
claim into the value of its convex hedge and remaining claim:

S=0{s(T)-Y(T)+ (S—0;(T)- ¥Y(T)).

The trading strategy 6 ; hedges the claim S under a certain con-
vex function optimization goal. The fair t-valuation of S is then
the sum of the financial market price of the hedge 6} ; and the
model-consistent value of the remaining claim S—6; ((T)-Y(T). In
the time horizon, the general procedure to determine the fair dy-
namic valuation of a T-claim S via the convex hedging approach
is based on the following backward iterations scheme,!!

1. (T — 1)-valuation pr_q[S] is determined by combining a
convex hedge portfolio and remaining non-hedged risk
priced via a model-consistent (T — 1)-valuation mrr_1.

2. At any time t, the t-valuation p; [S] is determined itera-
tiVely by Pt [S] = Pt [ﬁ[+] [5”, fort = 0,1,...,T — 2,
which requires the convex hedge and model-consistent risk
margin.

4. Convex dynamic hedging: Some practical examples

In this section, we illustrate some practical convex dynamic
hedging techniques. As introduced in Section 3, the convex dy-
namic valuation approach largely relies on the choice of specific
convex function. In Section 4.1, we introduce two applicable
classes of convex functions and corresponding convex hedgers:
mean-variance and exponential convex hedgers. In Section 4.2,
we investigate some properties of loss averse exponential
t-hedger, an applicable hedging technique first proposed in this
work. In Section 4.3, we use these two classes of convex hedgers
to conduct CHB dynamic valuations.

11 The backward iteration scheme for obtaining fair dynamic valuations was
also introduced in Barigou et al. (2019). However, in this paper we specifically
adopt the convex hedging technique.
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4.1. Mean-variance and exponential hedging

In this section, we introduce two specific classes of convex
hedging: mean-variance (MV) and exponential hedging. The un-
derlying convex function of MV hedging is the quadratic function,
while that of exponential hedging become exponential functions.
Both types of functions ‘punish’ the closer hedge deviations rel-
atively less than the farther ones, in order to obtain the best
hedging.

4.1.1. (Loss averse) MV t-hedger

MV hedging is a technique of approximating, with minimal
mean squared error, a given payoff by the final value of a trad-
ing strategy. MV hedging is widely used because of its simplic-
ity and nice properties, see e.g. Thomson (2005) and Dahl and
Mgller (2006). The minimization function of the MV hedging is
the quadratic function, without differentiating the loss and gain
deviations. The definition of MV t-hedger is as follows:

Definition 10 (Mean-Variance t-hedger). The convex t-hedger
determined via

. 2
6"/ = arg min Ef I:([Lt(T) Y(T)=S) ] ,
H€O;
foranySecCrandt=0,1,...,T —1,
is called the mean-variance (MV) t-hedger.

We define the deviation between the outcomes of the hedging
portfolio and insurance claim at time T,

xs = u,(T)- Y(T) = S.

Thus, x5 is a random variable to be observed at time T. The xs < 0
cases represent losses of insurers, and the opposite xs > 0 cases
indicate gains. Notice that MV t-hedger indifferently punishes the
gains and losses.

Loss aversion is an important concept in decision theory and
prospect theory, referring to that for decision makers a loss of
a certain amount leads to losing more satisfaction than the sat-
isfaction from a gain of the equivalent amount (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992). Chen et al. (2020)
propose the following definition of loss averse mean-variance
(LAMV) hedging.

Definition 11 (Loss Averse Mean-Variance t-hedger). The convex
t-hedger determined via

07" = arg min Ef [u (n,(T)- Y(T) - S)],
M €Ot
foranySecCrandt=0,1,...,T — 1, with

2
_ X5 x>0
U(XS)—{)\xg x<0"

is called a loss averse mean-variance (LAMV) t-hedger.

x> 1, (14)

The LAMV t-hedger is more sensitive to losses than to gains.
It punishes losses more than gains. The LAMV’s loss aversion
coefficient A indicates the degree of aversion toward negative
deviations. Chen et al. (2020) investigate the properties of LAMV
hedging and its application in fair dynamic valuation.

4.1.2. (Loss averse) exponential t-hedger

Exponential functions also fall into the category of convex
functions. In this subsection, we define the exponential convex
hedger with an underlying exponential function.

Insurance: Mathematics and Economics 98 (2021) 1-13

Definition 12 (Exponential t-hedger). The convex t-hedger deter-
mined via
8; s = arg min Ey [u (,(T)- Y(T)—5)],

BBt
foranySecCrandt=0,1,...,T — 1, with

u(xs) = exp(a|xs|) — 1,  for any xs,

is called an exponential t-hedger.

As |xs| represents the absolute value of a deviation and the
convex function is exponentially increasing, thus a higher « indi-
cates that larger deviations are relatively more severely punished.
Hereafter, we call this effect of « the tails aversion coefficient.

Note that the exponential t-hedger is different from the ex-
ponential hedging technique employed in studies on the expo-
nential utility indifference valuation and hedging strategies, see
for instance Musiela and Zariphopoulou (2004) and Mania et al.
(2005). The major difference lies in that positive and negative
deviations, xs and —xs for xs > 0, are punished equivalently by
the exponential t-hedger though these two approaches punish
all deviations. However, the exponential utility indifference ap-
proach punishes one side relatively less than the other as it favors
gains.

Now, we compare the MV t-hedger with the exponential t-
hedger. Both t-hedgers are symmetric in the sense that positive
and negative deviations, xs and —xs, are punished equivalently if
the absolute values of deviation are equal. However, they differ in
their attitudes toward small and large deviations. Consider ¢ > 0
such that

exp(alc]) — 1= c?,

then we know that

exp(alxs|) — 1 < x2, for |xs| <c,

exp(a|xs|) — 1 > x2, for |xs| > c.

This comparison indicates that the exponential t-hedger punishes
large deviations |xs| > ¢ more severely than MV t-hedger. While,
the exponential t-hedger punishes the small deviations |xs| < ¢
less severely than MV t-hedger. This is because the growth of
exponential functions is much larger that of quadratic ones. For
instance, consider the following deviations: 2xs > xs > 0, we
have

exp(2axs) — 1

(%)
exp(axs) — 1 N

2
X5

~ explaxs] and

4. (15)

Eq. (15) implies that the growth rate of the exponential
t-hedger’s punishment could be much higher than that of MV
t-hedger’s when the scale of deviation xs is large.

Therefore, hereafter we adopt «, the tails aversion coefficient,
to measure exponential t-hedger’s aversion toward large devia-
tions. Here, we call large deviations, both positive and negative
ones, the tails.

Definition 13 (Loss Averse Exponential t-hedger). The convex t-
hedger determined via

075 = argﬂmin Ey [u (i (T)- Y(T)=5)].

€O
foranySecrandt=0,1,...,T — 1, with

exp(alxs|) — 1
exp(y|xs|) — 1

xs >0

Xs<0,y2a>0, (16)

u(xs) = {

is called a loss-averse exponential (LAE) t-hedger.
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4.2. Some properties of LAE t-hedger

Chen et al. (2020) proposed the P-symmetric property for
t-hedgers. P-symmetric t-hedger hedges ‘symmetrically’ toward
any liability S € Cr (payout cashflows) and a corresponding asset
—S (income cashflows).

Definition 14. A t-hedger 0; is P-symmetric if

0,5 = —6;_s, foranyclaimS$ e Cr.

Chen et al. (2020) also showed that LAMV t-hedger is
P-symmetric if and only if A = 1. Since y > « > 0, we define
the LAE’s loss aversion as A = g XL represents the degree that
loss (xs < 0) deviations are relatively more severely punished
than gains (xs > 0). The following proposition proves that the
LAE t-hedger OﬁAE is P-symmetric if and only if Af = 1.

Proposition 1. The LAE t-hedger HfAE is P-symmetric if and only
if g = 1.

Proof. For any S € Cr, the first order conditions for LAE t-hedger
to minimize Ef [u (S — p - Y(T))] are

Ey { expla(u(T) - Y(T) — S)1 - alyueryvimyss)
— exp[y(S — w(T) - Y(T)I - yLiuryvy=s)} - Y(T) =0,

fori=0,1,...,n. As the asset 0 is risk-free with Y(O(T) = 1, we
have
E; [exp(e|Xs]) - atliug >0 — exp(¥ |Xs]) - ¥Ixs<0)] = 0. (17)

(1) On the one hand, when A = 1, namely @« = y, Eq. (17)
becomes

Ey [exp(e|xs|) - alixe=05 — exp(at|Xs|) - atljxg<01] = 0. (18)

where xs = 6 - Y(T) —S. Denote x_s = 65 - Y(T) — (—S), then
for —S Eq. (17) becomes

Ey [exp(er|x_s|) - Iix_s>0; — exp(e|X_s|) - [;x_s<0}] = O. (19)

From Eq. (18), we know that 0f’f‘fs = —0';}5 is a feasible solution
of Eq. (19), as in this case I(XSZO} = 1{x_5<0} and I{X5<0} = I{X_SZO}'
Due to the convexity of u(x), thus we have 6*; = —6;/, for any
S ecCr.

(2) On the other hand, if Gf’f‘fs = —05‘55 for any S € Cr, Eq. (17)
for 0 and ;%5 are given by

Ey [exp(e|xs|) - x>0 — €Xp(y |Xs]) - ¥l jxg<0}] = O, (20)
Ef [exp(a|x_s|) - otlix_s>0) — exp(y [X—s]) - ¥Ijx_s<0j] = O. (21)
As x_s = —xs, summing Eqgs. (20) and (21) leads to
Elf[exp(a|x5|) -a —exp(ylxs])-y1=0, forany S € Cr. (22)

Thus, as y > «a > 0, Eq. (22) clearly implies that « = y and then
=1 1

The following corollary shows that LAE t-hedger differentiates
the gain and loss deviations.

Corollary 2. For any S € Cr, the LAE t-hedger 8;'s satisfies
Eq [exp(a|xs])| xs > 0] - Prixs > 0} > E;[exp(a|xs|)| xs < 0]-Prixs < 0}.

(23)

Proof. For the LAE t-hedger with y > o > 0, we have
0 < E/[exp(a|xs|) - alixs>0) — exp(e|Xs|) - eljus <0}
= o - {E{[exp(alxs|) - Ixs=0] — E; [exp(a|Xs|) - Iieg <0y 1}
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lixs>0)
Pr{xs > 0}]
I{Xs <0}
Pr{xs < 0}
which proves equation (23). ®

= o - (E/[exp(alxs|) -

- Prixs > 0} — exp[(a|xs]) - 1-Prixs < 0}},

It is clear that both sides of Eq. (23) are equal if A = 1, and the
left side is greater than the right side if Ay > 1. Compared with
Ap = 1, a higher proportion of the 6§ deviation punishment
comes from gains (xs > 0) than losses (xs < 0) when A >
1. Chen et al. (2020) discussed the effect of loss aversion on

deviations when using the LAMV hedging technique.
4.3. Quadratic and exponential dynamic valuations

After having introduced the specific convex t-hedgers, we now
define their corresponding CHB t-valuations: MV hedge-based
(MVHB), LAMV hedge-based (LAMVHB), exponential hedge-based
(EHB), LAE hedge-based (LAEHB) t- valuations, as well as dynamic
valuations.

Definition 15 (MVHB, LAMVHB, EHB, LAEHB t- and Dynamic Val-
uation).Consider a convex t-valuation p; : Cr — C, t =
0,1,...,T — 1, defined by

pelS] =0 s(t+1)-Y(t)+7[S—0; s(T)-Y(T)],

where 0; is a convex t-hedger and =z; is a model-consistent
t-valuation; and a dynamic valuation (,o[)tT:_o1 where all p; are

connected in the following way:

for any S € Cr,

p:[S1= pe[Pe41[S]1],  foranySecrandt=0,1,..., T —2.

e p; is an MVHB t-valuation if 6, is an MV t-hedger; and
(pt){Z, is an MVHB dynamic valuation if any p, is an MVHB
t-valuation.

e p¢ is an LAMVHB t-valuation if 6, is an LAMV t-hedger;
and (p¢)], is an LAMVHB dynamic valuation if any p is an
LAMVHB t-valuation.

e p is an EHB t-valuation if #; is an exponential t-hedger;
and (p[)tT:_O] is an EHB dynamic valuation if any p; is an EHB
t-valuation.

e p¢ is an LAEHB t-valuation if 6, is an LAE t-hedger; and
(,Ot)z-:_()] is an LAEHB dynamic valuation if any p; is an LAEHB
t-valuation.

The above-defined t- and dynamic valuations require the
choice of model-consistent t-valuation ;. In this study, we con-
sider the widely-used cost-of-capital approach, which is also
adopted by the Solvency II regulation. The cost-of-capital risk
margin is the following model-consistent t-valuation:

e[Sl =e™" [Ef [S]+ icoc - VaR?j [S]] ,

where VaRﬁ is the Value-at-Risk measure and i, = 0.06.

From Theorem 4 we know that the MVHB, LAMVHB, EHB
and LAEHB dynamic valuations are all particular CHB dynamic
valuations; hence, they are also fair dynamic valuations.

Corollary 3. Any MVHB dynamic valuation (p}'#¥)[—, LAMVHB
dynamic valuation (p/MVHE) EHB)T—1

t—o» EHB dynamic valuation (p;"")._,,
and LAEHB dynamic valuation (,otLAEHB )T_]
tion.

—o IS a fair dynamic valua-

4.4. Numerical illustration

In this section, we provide a simple numerical illustration
which determines convex dynamic valuation of a portfolio of vari-
able annuity contracts. The purpose of our numerical illustration
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is to show how the convex dynamic valuation approach can be
implemented to valuate equity-linked liabilities in practice, rather
than to select the most appropriate convex hedging or to analyze
the implications for pricing variable annuities.

Our numerical example has some similarities with the one
in Barigou et al. (2019) and Chen et al. (2020). Barigou et al.
(2019) investigated a simple equity-linked life-insurance contract
and Chen et al. (2020) illustrated a ratchet guaranteed benefit
payoff. We benefit from these two studies by adopting their
simulation setting and calculation technique.

It is important to remind of the distinction of our illustra-
tion. We implement and compare the EHB and LAEHB dynamic
valuations that are first proposed in this work. Since the MVHB
dynamic valuation in Barigou et al. (2019) and LAMVHB dynamic
valuation in Chen et al. (2020) are particular types of convex
dynamic valuation, we also include them in our simulation.

4.4.1. Application to a portfolio of variable annuity contracts

We consider pricing variable annuity contracts with GMAB
and GMDB riders. The GMAB rider guarantees the minimum
amount received by the annuitant after the accumulation pe-
riod, protecting the annuity value from market fluctuations; the
GMDB rider protects against the risk of early death during the
accumulation phase. For simplicity, we assume that there are
only a risk-free asset Y(©(t) with a constant rate r and a risky
asset YIU(¢), t = 0,1,...,T, in the financial market. Thus,
we have B(t,T) = e~ "=, The specific simulation setting and
calibration of the financial market and mortality process follow
those of Barigou et al. (2019) and Chen et al. (2020). For more
details, we refer to the Appendix.

Specifically, we consider a variable annuity payoff with the
following payoff riders at time T used in Bacinello et al. (2011),!2

1. GMAB rider: the insured who survives to maturity receives
at T

G* = max(Y)(T), eT):
2. GMDB rider: the insured who died at t; < T receives at T
G” = max(Y(g;), e™i) - T,

If we denote the survival indicator of the insured by Z(T), which
equals 1 if the insured survives and 0 otherwise, thus the variable
annuity payoff can be written as

Payoff = Z(T) - G* + (1 — Z(T)) - G. (24)

We consider pricing a portfolio of I 1000 variable annuity
contracts with GMAB and GMDB riders at time 0 with a maturity
of T = 10 years.

4.4.2. Valuation results

In this section, we use the four classes of CHB dynamic val-
uations introduced above to determine the fair dynamic value
of the time—T variable annuity liability S and provide a nu-
merical analysis. In our simulation, the CHB dynamic valuations
of this liability are calculated on the basis of 10000 simulated
scenarios. The calculation of the CHB t-hedgers and valuations
is approximated using the Least Squares Monte Carlo (LSMC)

12 The GMDB is normally paid upon the death of the insured, see Bacinello
et al. (2011). To adjust this into our setting in which the liability is only payable
at maturity time T, we assume the GMDB liability is invested in the risk-free
asset from the death of policyholder until maturity.
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approach.'? The specific LSMC procedure and formula are given
in the Appendix.

Fig. 2 presents the expected MVHB and LAMVHB dynamic
valuations of the 10 000 simulated paths at different time points,
and Fig. 3 shows that of EHB and LAEHB dynamic valuations. The
overall relation between dynamic valuation and time t is jointly
shaped by two trends: (1) it increases with t due to the upward
trend of the risky asset; (2) it decreases with t as the risk margin
value of remaining risk diminishes over time. In general, we
observe a steady increase in these fair dynamic valuations, except
a slightly decreasing trend in the LAMVHB dynamic valuation
with A = 3.

Effect of loss aversion. We first examine the effect of loss
aversion embedded in the hedging technique of the LAMVHB and
LAEHB dynamic valuations. Consistent with our expectations, the
results show that a larger loss aversion coefficient A or Ag leads
to higher hedging costs and valuation outcomes. This is because
it costs more to construct a portfolio to avoid losses. Our result
is in line with those of Chen et al. (2020) who proposed LAMVHB
and investigated its properties. Moreover, Fig. 3 displays a similar
conclusion that LAEHB dynamic value (with @ = 0.10 and A = 2)
is larger than EHB value (with @ = 0.10 and A = 1).

Effect of tails aversion. Next, we study the effect of tails
aversion on the EHB dynamic valuation. Fig. 3 compares the EHB
dynamic valuations with « = 0.01 and ¢ = 0.10. We find that
the coefficient « increases the EHB dynamic value, suggesting
that it is more costly to reach a relatively close hedging of large
deviations. Compared with loss aversion, the cost of tails aversion
is higher in our example. As a higher tails aversion reduces the
large deviations and thus results in less remaining risk, the higher
EHB valuation with « = 0.10 further indicates that the tails
aversion « leads to a higher hedging cost. Similar to the loss
aversion of the hedging technique proposed in Chen et al. (2020),
the tails aversion of the EHB valuation might be another feasible
method to control the prudence of fair dynamic valuation.

Our numerical results demonstrate that the CHB dynamic val-
uation approach is feasible and practical. We also contribute to
the literature and illustrate one particular class of convex hedging
techniques: (loss averse) exponential hedging.

5. Concluding remarks

It is challenging to determine the fair valuation of insurance
liabilities in a multi-period framework, which is often a com-
bination of hedgeable and unhedgeable risks. A fair dynamic
valuation framework was proposed in Barigou et al. (2019) which
merges model-consistent, market-consistent and time-consistent
considerations. To implement the fair dynamic valuation, it is
vital to determine the appropriate hedging technique.

In this study, we defined the concepts of actuarial and financial
t-valuations, and then integrated them into the fair dynamic val-
uation framework. In addition, we investigated the fair dynamic
valuation of insurance liabilities via the convex hedging approach
in a multi-period dynamic investment setting. We proposed CHB
dynamic valuations that extend the convex hedging and valuation
of Dhaene et al. (2017) into a dynamic setting. We also showed
that the class of fair dynamic valuations is equivalent to the class
of CHB dynamic valuations.

13 s regression-based method was proposed by Carriere (1996)
and Longstaff and Schwartz (2001) for the valuation of American-type options,
and also employed by Barigou and Dhaene (2019) and Chen et al. (2020) to

implement the fair dynamic hedging and valuation of insurance claims.

14 we refer to Chen et al. (2020) for a discussion on the prudence of fair
dynamic valuation.
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Moreover, the convex hedging approach allows the choice of
appropriate convex functions to obtain a fair dynamic valuation.
We illustrated how to implement CHB dynamic valuations with
two particular classes of convex hedging technique: MV and
exponential hedging. A simple numerical illustration of pricing
variable annuity liabilities further showed that our CHB dynamic
valuation provides a practical method for obtaining fair dynamic
value of insurance liabilities.
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Appendix A. Simulation setting of financial market and mor-
tality process

We briefly introduce the numerical simulation setting of the
financial market and mortality process. In our simulation, we
generate 10000 scenarios of Y((t) and N(t) fort =1, ..., T.

First, to simplify the illustration, we assume that the stock

follows a geometric Brownian motion:
dYD(t) = YOt (udt + odZy(t)), (25)

with the parameters u,o > 0. The benefit payoff equals the
maximum of the mean of the stock value from times 1 to T and
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a guaranteed amount K. Thus, the insurer faces liability S at time
T:

S = N(T) x max (Y)(T), K),

where N(t),t = 0,1,...,T is a mortality process counting the
number of survivals among an initial population of I, insured of
age x. Following Barigou et al. (2019) and Chen et al. (2020),
the adopted parameters for the financial market are r = 0.02,
u=0.07,0 =0.3.

Second, the mortality intensity is assumed to be stochastic and
it follows the dynamics under the P measure given by

dr(t) = Chg(t)dt + £dZo(L),

with ¢, & > 0. Zy(t) is a standard Brownian motion independent
of Zy(t) in Eq. (25). The survival function is then defined by

X+t
Sx(t) =P (Ty > t) = exp (—/ Ax(s)ds) ,

where Ty is the remaining lifetime of an individual aged x at
time 0. Moreover, the deaths of individuals are assumed to be
independent events, conditional on the knowledge of population
mortality.

Furthermore, we denote N(t) as the number of survived in-
sured at the end of year t, D(t) as the number of deaths in year
t. Then, the dynamics of the number of active contracts can be
described as a nested binomial process as follows: N(t + 1) =

N(t) — D(t + 1) with D(t + 1)|N(t), qxse ~ Bin(N(t), qx+¢). Here,
Gx++ TEpresents the one-year death probability:

t+1
Qe =P (T < t + 1T, >r)_1—%, fort=0,...,T—1.

In the simulation, we adopt the parameter setting of Luciano et al.
(2017) and set A,(0) = 0.0087, c = 0.0750, & = 0.000597, which
correspond to 55-aged male in the UK.

Appendix B. LSMC simulation procedure

We introduce the simulation procedure of implementing of
LSMC approach to obtain the CHB t-hedgers and valuations. The
key idea of LSMC is to regress the conditional expectations on
the cross-sectional information of the underlying risk drivers, as
this can substantially reduce computation intensity in dynamic
optimizations. For more detailed explanation, we refer to Barigou
et al. (2019) and Chen et al. (2020) which have adopted the LSMC
simulation procedure for fair dynamic valuation.

First, for any path i, i = 1,2,...,10000, at any time t =
0,1,...,T—1,anumber of 10 000 candidate scenarios of N.(t+1)
and YV(t+1) are generated on the basis of N(t) and Y)(t). How-
ever, only one scenario is randomly chosen to be the simulated
(N(t + 1), YOU(t)) in path i (unobservable at t). Second, at any
time t of path i, the t-hedgers and valuations are based on the
10 000 candidate scenarios. At time t of each path, the conditional
expectations are regressed over the risk drivers at time t+ 1 using
a second-order least squares regression:

Ef [pes [STIN(E + 1), YOt + 1))]
~ Bo + BIN(E+ DYt + 1)+ By (N(E + DYV + 1),

for all scenarios (N.(t + 1), Yc(”(t + 1)). After having Bo, B
and B,, we can obtain the estimated pf,, [S] for all candidate
scenarios. Here, the choice of the type and number of basis func-
tions follows that of Barigou et al. (2019) and Chen et al. (2020).
For a discussion of the basis functions and their implications on

15 gee Milevsky et al. (2006) for similar assumptions.
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robustness and convergence, see Areal et al. (2008), Moreno and
Navas (2003), and Stentoft (2012).

On this basis, we apply the CHB t-hedgers and valuations. The
hedge is obtained by finding the optimal strategy minimizing the
convex punishment function. For instance, the MVHB t-hedger is
obtained with an MV o(ptlmlzatlon using these 10000 candidate
scenarios (N.(t + 1), and estimated p{_ , [S]. Finally,
the expected dynamlc valuatlons of this liability are the expected
values of these 10000 simulated scenarios.
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