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Abstract

This online supplementary material provides several numerical illustrations of
our main comparison results. For context, notation, and definitions we refer to the
paper.
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1 Numerical Examples
We provide some numerical examples to illustrate our main findings. Based on our results
developed in the paper, the choice of the d.f.’s and distortion functions of X and X ′ can
be arbitrary since we only need the relation between ug and ug′/ug̃. Therefore, we do
not specify the explicit d.f.’s of X and X ′ in most of our examples. We shall provide
illustrations of our main results both for positive and negative dependence structures,
which are represented by the Gumbel copula and the Farlie-Gumbel-Morgenstern (FGM)
copula, respectively.
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Figure 1: (a) Plot of CoDg,h[Y |X ] on γ ∈ [0.1, 4] for different values of θ. (b) Plot of CoDg,h[Y |X ]
on ug ∈ [0.7, 0.99] for different values of θ. (c) Plot of CoD-risk measures on γ ∈ (0, 1] under different
settings of d.f., threshold quantile, and dependence parameter.
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1.1 The Gumbel Copula

The Gumbel copula is defined as

Cθ(u, v) = exp
(
− (

(− log u)θ + (− log v)θ
)1/θ)

, θ ≥ 1.

It corresponds to the independence copula when θ = 1, and to the comonotonic copula
when θ = +∞. It can be inferred from Wei and Hu (2002) that Cθ ≺ Cθ′ if θ ≤ θ′.
Besides, Cθ is PDS for all θ ≥ 1. Interested readers are referred to Joe (1997) and Nelsen
(2007) for more discussions.

Example 1.1 (CoD-risk measures). Assume that Y has a standard normal d.f. and
ug = 0.95 for some chosen d.f. of X and distortion function g. Let h(p) = pγ for γ > 0.
Note that h(p) is decreasing in γ for any p ∈ [0, 1].

(a) For different values of the dependence parameter θ = 1, 1.5, 2, 2.5, 4, we plot the
values of CoDg,h[Y |X] for γ > 0 in Figure 1(a). It is readily apparent that the
CoD-risk measure decreases as the distortion function of Y gets smaller (i.e., γ
gets larger) for fixed dependence parameter θ, and it increases when the positive
dependence gets stronger (i.e., θ gets larger). This illustrates the result of Theorem
4.1.

(b) For different values of the dependence parameter θ = 1.5, 2, 2.5, 3, 4, we plot the
values of CoDg,h[Y |X] as ug varies from 0.7 to 0.99 in Figure 1(b), from which we
observe that the CoD-risk measure increases as the threshold quantile ug gets larger
for fixed dependence parameter θ, and it increases when the positive dependence gets
stronger (i.e., θ gets larger). Therefore, the theoretical finding in Theorem 4.4(i) is
verified.

(c) Consider Y ∼ N(0, 1) and Y ′ ∼ N(0, 2) such that Y ≤icx Y
′ but Y �st Y

′. Assume
that θ1 = 2, θ2 = 4, ug = 0.8, and ug′ = 0.99. Figure 1(c) gives the plots of
CoDg,h[Y |X], CoDg′,h[Y |X ′], CoDg,h[Y

′|X], and CoDg′,h[Y
′|X ′] for different values

of γ ∈ (0, 1], which implies that h(p) is increasing and concave on p ∈ [0, 1]. It
is readily apparent that these four types of CoD-risk measures become smaller as γ
increases, i.e., as the distortion function becomes smaller. Moreover, for any fixed
γ ∈ (0, 1], we have

CoDg,h[Y |X] ≤ CoDg′,h[Y |X ′] ≤ CoDg′,h[Y
′|X ′],

CoDg,h[Y |X] ≤ CoDg,h[Y
′|X ] ≤ CoDg′,h[Y

′|X ′],

while CoDg′,h[Y |X ′] and CoDg,h[Y
′|X] cannot be compared. These observations val-

idate the results of Theorem 4.11(i).
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Figure 2: (a) Plot of ΔCoDg,h[Y |X ] and ΔCoDg,h[Y
′|X ′] on θ ≥ 1. (b) Plot of ΔCoDg,h[Y |X ] on

γ > 0. (c) Plot of ΔCoDg,h[Y |X ] and ΔCoDg,h′ [Y ′|X ′] on ug ∈ [0.6, 0.99]. (d) Plot of ΔCoDg̃
g,h[Y

′|X ′]−
ΔCoDg̃

g,h[Y |X ] for different values of the shape parameter a2 ≥ a1.
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The next example supports our comparison results for the distortion risk contribution
measures.

Example 1.2 (Distortion risk contribution measures). In this example, we assume that
the distortion functions applied to Y and Y ′ are of the form of a power function.

(a) Suppose that Y ∼ Γ(a1, b1) and Y ′ ∼ Γ(a2, b2) with (a1, b1) = (0.3, 1) and (a2, b2) =
(2, 1). Thus, it holds that Y ≤disp Y ′. Let ug = 0.8 and h(p) = p0.4, for p ∈ [0, 1].
Figure 2(a) displays the plots of ΔCoDg,h[Y |X ] and ΔCoDg,h[Y

′|X ′] on θ ≥ 1, from
which one can observe that ΔCoDg,h[Y |X ] ≤ ΔCoDg,h[Y

′|X ′] for any fixed θ, and
both of them are increasing with respect to ‘≺’. This supports the result of Theorem
5.2(i).

(b) Let Y ∼ Γ(0.2, 1), ug = 0.9, and θ = 2. It is clear that Y is DFR. The value of
ΔCoDg,h[Y |X] is plotted in Figure 2(b) for different distortion functions applied to
Y . It is straightforward to observe that ΔCoDg,h[Y |X ] is decreasing with respect to
γ, which verifies Theorem 5.5(i).

(c) Let h(p) = pγ1, h′(p) = pγ2, C with parameter θ1 and C ′ with parameter θ2. Set
γ1 = 3, γ2 = 2, θ1 = 2, θ2 = 3, Y ∼ Γ(0.2, 1), and Y ′ ∼ Γ(2, 1). Figure 2(c)
plots ΔCoDg,h[Y |X] and ΔCoDg,h′[Y ′|X ′] on ug ∈ [0.6, 0.99]. We observe that
both ΔCoDg,h[Y |X] and ΔCoDg,h′[Y ′|X ′] are increasing with respect to ug, and
ΔCoDg,h[Y |X] ≤ ΔCoDg,h′[Y ′|X ′] for any fixed ug, which validates the result of
Theorem 5.8.

(d) Assume that ug = 0.9, ug̃ = 0.8, h(p) = p2, θ = 2, Y ∼ Γ(a1, 1), and Y ′ ∼ Γ(a2, 1)
with a2 > 0. The difference function between ΔCoDg̃

g,h[Y
′|X ′] and ΔCoDg̃

g,h[Y |X]
is plotted in Figure 2(d), which is always negative for all a2 ≥ a1 = 0.3. Thus, the
result of Theorem 5.9 is validated.

Next, we present an example to illustrate the condition in Theorem 5.13.

Example 1.3. Assume that h(p) = 1 − (1 − p)γ for γ > 1. Let C be the Gumbel copula
with dependence parameter θ > 1. It is easy to verify that h(p) is concave and h(p) = pγ.
Observe that

Ψ(t) := h(A(h−1(t))) =

[
t
1
γ − C(ug, t

1
γ )

1− ug

]γ

.

(a) Set ug = 0.9 and γ = 1.1. Figure 3(a) plots Ψ(t) on t ∈ [0, 1] under different values
of θ = 1.2, 1.8, 2.5, 3, 5, which indicates the convexity of Ψ(t).

(b) Set ug = 0.9 and θ = 1.5. Figure 3(b) plots Ψ(t) on t ∈ [0, 1] under different values
of γ = 1.2, 2, 3, 4, 5, from which one can observe the convexity of Ψ(t).
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Figure 3: (a) Plot of Ψ(t) on t ∈ [0, 1] for different values of θ. (b) Plot of Ψ(t) on t ∈ [0, 1] for different
values of γ.
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Figure 4: Plot of ΔCoDg,h[Y |X ] and ΔCoDg,h[Y
′|X ′] for ug ∈ [0.6, 0.99].
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The following example illustrates Theorem 5.13.

Example 1.4. Assume that h(p) = 1 − (1 − p)2, θ = 1.5, Y ∼ W (1, 2), and Y ∼
W (1, 1). Clearly, it holds that Y ≤ew Y ′ but Y �disp Y ′ nor Y �disp Y ′ (see Example 24
in Sordo et al., 2018). As displayed in Figure 4, ΔCoDg,h[Y |X ] ≤ ΔCoDg,h[Y

′|X ′] for
ug ∈ [0.6, 0.99], which shows the effectiveness of Theorem 5.13.

Next, we present a numerical example to show the effectiveness of Theorem 6.1.

Example 1.5. Let C be the Gumbel copula with dependence parameter θ = 2. Assume
that g(t) = t0.3, X ∼ Γ(0.5, 1), Y ∼ Γ(1.5, 1), and h(p) = pγ2 for γ2 > 0. It is easy to
verify that X ≤st Y and X ≤disp Y . Moreover, one can calculate that uX

g = 0.9714 >
uY
g = 0.9599. Figure 5(a) displays CoDg,h[Y |X ] and CoDg,h[X|Y ] for γ2 > 0, and Figure

5(b) plots ΔCoDg,h[Y |X] and ΔCoDg,h[X|Y ] for γ2 > 0. Obviously, CoDg,h[Y |X ] ≥
CoDg,h[X|Y ] and ΔCoDg,h[Y |X] ≥ ΔCoDg,h[X|Y ] for γ2 > 0. Therefore, the results of
Theorem 6.1(i) and Theorem 6.1(v) are supported.
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Figure 5: (a) Plot of CoDg,h[Y |X ] and CoDg,h[X |Y ] for γ2 > 0. (b) Plot of ΔCoDg,h[Y |X ] and
ΔCoDg,h[X |Y ] for γ2 > 0.

1.2 The Farlie-Gumbel-Morgenstern Copula

The Farlie-Gumbel-Morgenstern (FGM) copula is defined as

Cα(u, v) = uv [1 + α(1− u)(1− v)] , −1 ≤ α ≤ 1.

If θ = 0, then Cθ reduces to the independence copula. Furthermore, Cα(u, v) is RR2 [TP2]
for α ∈ [−1, 0) [α ∈ [0, 1]] and α1 ≤ α2 implies that Cα1 ≺ Cα2 . For more details on its
properties, we refer to Joe (1997) and Nelsen (2007).
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Figure 6: (a) Plot of CoDg,h[Y |X ] for ug ∈ [0, 1). (b) Plot of ΔCoDg,h[Y |X ] and ΔCoDg,h[Y
′|X ′] for

γ ≥ 1. (c) Plot of ΔCoDg,h[Y |X ] and ΔCoDg′,h[Y
′|X ′] for γ > 0. (d) Plot of ΔCoDg,h[Y |X ] for γ > 0.
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The following examples show the effectiveness of Theorem 4.4(ii), Theorem 4.7(ii),
Theorem 5.3(ii), Theorem 5.5(ii), and Theorem 6.1 under the negative dependence char-
acterized by the FGM copula.

γ2

1 2 3 4 5 6 7 8 9 10

D
is
to
rt
io
n
c
o
-r
is
k
m
e
a
su
re
s

0

1

2

3

4

5

6

7

8

CoDg,h[X|Y ]

CoDg,h[Y |X]

(a)

γ2
2 4 6 8 10 12 14

D
is
to
rt
io
n
ri
sk

c
o
n
tr
ib
u
ti
o
n
m
e
a
su
re
s

-2.5

-2

-1.5

-1

-0.5

0

ΔCoDg,h[X|Y ]

ΔCoDg,h[Y |X]

(b)

Figure 7: (a) Plot of CoDg,h[Y |X ] and CoDg,h[X |Y ] for γ2 > 0. (b) Plot of ΔCoDg,h[Y |X ] and
ΔCoDg,h[X |Y ] for γ2 > 0.

Example 1.6. (a) Set Y ∼ Γ(0.8, 2) and h(p) = p5 for p ∈ [0, 1]. Figure 6(a) displays
CoDg,h[Y |X] on ug ∈ [0, 1) for different values of the dependence parameter α =
−0.9,−0.7,−0.5,−0.3,−0.1. One readily observes that CoDg,h[Y |X ] is decreasing
with respect to ug for any fixed α, while it is increasing in α for any fixed ug. This
agrees with the result of Theorem 4.4(ii).

(b) Set Y ∼ Γ(0.8, 2), Y ′ ∼ Γ(1.8, 2), ug = 0.95, α1 = −0.9, and α2 = −0.3. Let
h(p) = pγ for γ ≥ 1 and p ∈ [0, 1], which means that h is increasing and convex.
The values of ΔCoDg,h[Y |X] and ΔCoDg,h[Y

′|X ′] are plotted in Figure 6(b) for
γ ≥ 1, from which it is clear that ΔCoDg,h[Y |X ] ≤ ΔCoDg,h[Y

′|X ′] for γ ≥ 1.
Thus, the result of Theorem 4.7(ii) is validated.

(c) Suppose that Y ∼ Γ(0.6, 1), Y ′ ∼ Γ(1.2, 1), ug = 0.95, ug′ = 0.9, α = −0.3, and
α′ = −0.9. It is plain that Y ≤disp Y ′, ug ≥ ug′, and C ′ ≺ C. As observed from
Figure 6(c), ΔCoDg,h[Y |X] ≥ ΔCoDg′,h[Y

′|X ′] for γ > 0, which illustrates Theorem
5.3(ii).

(d) Set α = −0.8, Y ∼ Γ(0.8, 2), and ug = 0.95. Thus, Y is DFR. Let h(p) = pγ

for γ > 0. As shown in Figure 6(d), the value of ΔCoDg,h[Y |X ] is increasing with
respect to γ > 0, which validates the theoretical finding of Theorem 5.5(ii).
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Finally, a numerical example is provided to show the effectiveness of Theorem 6.1
under the case of negative dependence.

Example 1.7. Let C be the FGM copula with dependence parameter α = −0.8. Assume
that g(p) = p0.2, X ∼ Γ(0.8, 1), Y ∼ Γ(0.8, 2), and h(p) = pγ2 for γ2 > 0. It is easy to
verify that X ≤hr Y and thus X ≤st [disp] Y since both X and Y are DFR. Moreover, one
can calculate that uX

g = uY
g = 0.9937. Figure 7(a) displays CoDg,h[Y |X ] and CoDg,h[X|Y ]

for γ2 > 0, and Figure 7(b) plots ΔCoDg,h[Y |X ] and ΔCoDg,h[X|Y ] for γ2 > 0. Note
that CoDg,h[Y |X] ≥ CoDg,h[X|Y ] while ΔCoDg,h[Y |X ] ≤ ΔCoDg,h[X|Y ] for all γ2 > 0,
and thus the results of Theorems 6.1(ii) and 6.1(iv) are validated.
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