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Abstract

This online supplementary material provides several numerical illustrations of
our main comparison results. For context, notation, and definitions we refer to the

paper.
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1 Numerical Examples

We provide some numerical examples to illustrate our main findings. Based on our results
developed in the paper, the choice of the d.f.’s and distortion functions of X and X’ can
be arbitrary since we only need the relation between w, and wu, /uz. Therefore, we do
not specify the explicit d.f.’s of X and X’ in most of our examples. We shall provide
illustrations of our main results both for positive and negative dependence structures,
which are represented by the Gumbel copula and the Farlie-Gumbel-Morgenstern (FGM)
copula, respectively.

Distortion co-risk measures

Figure 1: (a) Plot of CoDy ;[Y|X] on v € [0.1,4] for different values of 6. (b) Plot of CoD, ,[Y|X]
on u, € [0.7,0.99] for different values of 6. (c) Plot of CoD-risk measures on v € (0,1] under different
settings of d.f., threshold quantile, and dependence parameter.



1.1

The Gumbel Copula

The Gumbel copula is defined as

Co(u,v) = exp <— ((—logu)’ + (—1ogv)9)l/6> , 0>1.

It corresponds to the independence copula when 6 = 1, and to the comonotonic copula
when § = +oo. It can be inferred from Wei and Hu (2002) that Cy < Cy if 0 < €.
Besides, Cy is PDS for all § > 1. Interested readers are referred to Joe (1997) and Nelsen
(2007) for more discussions.

Example 1.1 (CoD-risk measures). Assume that Y has a standard normal d.f. and
ug = 0.95 for some chosen d.f. of X and distortion function g. Let h(p) = p? for v > 0.
Note that h(p) is decreasing in ~y for any p € [0, 1].

(a)

(b)

(¢)

For different values of the dependence parameter 6 = 1,1.5,2,2.5,4, we plot the
values of CoDg Y |X] for v > 0 in Figure 1(a). It is readily apparent that the
CoD-risk measure decreases as the distortion function of Y gets smaller (i.e., v
gets larger) for fived dependence parameter 6, and it increases when the positive
dependence gets stronger (i.e., 0 gets larger). This illustrates the result of Theorem

4.1,

For different values of the dependence parameter 0 = 1.5,2,2.5,3,4, we plot the
values of CoDy Y| X] as uy varies from 0.7 to 0.99 in Figure 1(b), from which we
observe that the CoD-risk measure increases as the threshold quantile ug gets larger
for fixed dependence parameter 0, and it increases when the positive dependence gets
stronger (i.e., 0 gets larger). Therefore, the theoretical finding in Theorem 4.4 (i) is
verified.

Consider Y ~ N(0,1) and Y' ~ N(0,2) such that Y <ix Y’ but Y £ Y. Assume
that 0, = 2, 0y = 4, u, = 0.8, and uy = 0.99. Figure 1(c) gives the plots of
CoD, n[Y]X], CoDy n[Y|X'], CoDy Y| X], and CoDy ,[Y'|X'] for different values
of v € (0,1], which implies that h(p) is increasing and concave on p € [0,1]. It
1s readily apparent that these four types of CoD-risk measures become smaller as ~y
increases, i.e., as the distortion function becomes smaller. Moreover, for any fixed
v € (0,1], we have

CODg7h[Y|X] S CODg/7h[Y|X/] S CODg/7h[Y,|X,],

CoD, ;Y| X] < CoD,,[Y'|X] < CoD, [V X7,

while CoDy 4 [Y|X'] and CoD, ,[Y'|X] cannot be compared. These observations val-
idate the results of Theorem 4.11(i).
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Figure 2: (a) Plot of ACoD,,,[Y|X] and ACoDgx[Y'|X'] on 6 > 1. (b) Plot of ACoD,,[V|X] on
7 > 0. (c) Plot of ACoD,,;[V'|X] and ACoDg/[Y'|X'] on ug € [0.6,0.99]. (d) Plot of ACoD? , [Y'[X'] —
ACng7h[Y|X ] for different values of the shape parameter as > a;.



The next example supports our comparison results for the distortion risk contribution
measures.

Example 1.2 (Distortion risk contribution measures). In this example, we assume that
the distortion functions applied to' Y and Y’ are of the form of a power function.

(a) Suppose that Y ~ T'(a1,b1) and Y' ~ T'(ag, be) with (a1,b1) = (0.3,1) and (az, by) =
(2,1). Thus, it holds that Y <asp Y'. Let uy, = 0.8 and h(p) = p°*, for p € [0,1].
Figure 2(a) displays the plots of ACoD, ,[Y'|X] and ACoD, ,[Y'|X'] on 0 > 1, from
which one can observe that ACoD, ,[Y|X]| < ACoDy,[Y'|X'] for any fized 6, and
both of them are increasing with respect to ‘<°. This supports the result of Theorem
5.2(i).

(b) Let Y ~1(0.2,1), u, = 0.9, and 0 = 2. It is clear that Y is DFR. The value of
ACoDy Y| X] is plotted in Figure 2(b) for different distortion functions applied to
Y. It is straightforward to observe that ACoD, ,[Y'|X] is decreasing with respect to
7, which verifies Theorem 5.5(i).

(c) Let h(p) = p™, W(p) = p»?, C with parameter 6, and C" with parameter Oy. Set
M =3 7%=2 0 =2 0=3Y ~T1(021), and Y ~ T'(2,1). Figure 2(c)
plots ACoDg,[Y|X] and ACoDyu [Y'|X'] on u, € [0.6,0.99]. We observe that
both ACoD, ,[Y|X] and ACoD, [Y'|X'] are increasing with respect to u,, and
ACoDy Y| X] < ACoDyp [Y'|X'] for any fived u,, which validates the result of
Theorem 5.8.

(d) Assume that ug = 0.9, uz = 0.8, h(p) = p*, 0 =2, Y ~I'(ay,1), and Y’ ~ T'(as, 1)
with ay > 0. The difference function between ACoDj ,[Y'|X'] and ACoDY ,[Y|X]
is plotted in Figure 2(d), which is always negative for all as > a; = 0.3. Thus, the
result of Theorem 5.9 is validated.

Next, we present an example to illustrate the condition in Theorem 5.13.

Example 1.3. Assume that h(p) =1 — (1 — p)" fory > 1. Let C be the Gumbel copula
with dependence parameter § > 1. It is easy to verify that h(p) is concave and h(p) = p”.
Observe that ) .
tv — Clug, t7)

1 —uy,

W(t) = h(A(h™'(t))) =

(a) Setu, =0.9 and v =1.1. Figure 3(a) plots U(t) ont € [0, 1] under different values
of 0 =1.2,1.8,2.5,3,5, which indicates the convezity of V(t).

(b) Setuy, =0.9 and 0 = 1.5. Figure 3(b) plots U(t) on t € [0, 1] under different values
of v =1.2,2,3,4,5, from which one can observe the convexity of ¥(t).
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Figure 3: (a) Plot of ¥(t) on t € [0,1] for different values of 6. (b) Plot of ¥(¢) on ¢ € [0, 1] for different
values of ~.
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Figure 4: Plot of ACoD, ;[Y|X] and ACoD, ,[Y'|X’] for u, € [0.6,0.99].



The following example illustrates Theorem 5.13.

Example 1.4. Assume that h(p) = 1 — (1 —p)?, 0 = 1.5, Y ~ W(1,2), and Y ~
W(1,1). Clearly, it holds that Y <oy Y’ but Y Laisp Y’ norY Faisp Y’ (see Example 24
in Sordo et al., 2018). As displayed in Figure 4, ACoDy,[Y|X] < ACoDy[Y'|X] for
ug € [0.6,0.99], which shows the effectiveness of Theorem 5.185.

Next, we present a numerical example to show the effectiveness of Theorem 6.1.

Example 1.5. Let C' be the Gumbel copula with dependence parameter 0 = 2. Assume
that g(t) = t*3, X ~ T(0.5,1), Y ~ T'(1.5,1), and h(p) = p"* for v > 0. It is easy to
verify that X <4 Y and X <, Y. Moreover, one can calculate that uff = 0.9714 >
u) = 0.9599. Figure 5(a) displays CoDy,[Y|X] and CoDgy,[X|Y] for v2 > 0, and Figure
5(b) plots ACoDy Y |X] and ACoD, [ X|Y] for vo > 0. Obviously, CoDy,[Y|X] >
CoD, 4 [X|Y] and ACoD,,[Y|X] > ACoD, ,[X|Y] for v > 0. Therefore, the results of
Theorem 6.1(1) and Theorem 6.1(v) are supported.
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Figure 5: (a) Plot of CoD,,[Y|X] and CoD, ,[X|Y] for 72 > 0. (b) Plot of ACoDy,;[Y|X] and
ACoDy [ X Y] for 2 > 0.

1.2 The Farlie-Gumbel-Morgenstern Copula
The Farlie-Gumbel-Morgenstern (FGM) copula is defined as
Co(u,v) =w[l+a(l—u)(1-v)], —-1<a<l.

If # = 0, then Cy reduces to the independence copula. Furthermore, C,,(u,v) is RRy [TPs]
for a € [-1,0) [« € [0,1]] and a3 < ay implies that C,, < C,,. For more details on its
properties, we refer to Joe (1997) and Nelsen (2007).

7



0.26 35

024} Ng

31 - - CODg_h[le]
—CoD,,[Y'1X']

022

JoD,,

014+

0.12r

e = —0.1

0.1 L I I L
0 0.2 04 0.6 038 1

o
”

ACoD,,[Y|X]

AR
:

- = ACoD,,[Y|X]
—ACoDy[Y'|X]

Distortion risk contribution measures

=
w

05 1 15 2 25 3 35 4 45 5
(c) (d)

Figure 6: (a) Plot of CoDy,[Y|X] for ug € [0,1). (b) Plot of ACoD, ;[Y|X] and ACoD, ,[Y’|X'] for
v > 1. (c) Plot of ACoD, ;,[Y|X] and ACoDy ,[Y’|X'] for v > 0. (d) Plot of ACoD, ,[Y|X] for v > 0.



The following examples show the effectiveness of Theorem 4.4(ii), Theorem 4.7(ii),
Theorem 5.3(ii), Theorem 5.5(ii), and Theorem 6.1 under the negative dependence char-
acterized by the FGM copula.
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re 7: (a) Plot of CoDy,[Y|X] and CoDy ,[X|Y] for 72 > 0. (b) Plot of ACoD,;[Y|X] and

ACODg7h[X|Y] for v > 0.

Example 1.6. (a) Set Y ~T(0.8,2) and h(p) = p® for p € [0,1]. Figure 6(a) displays

(b)

(¢)

(d)

CoDyn[Y|X] on uy € [0,1) for different values of the dependence parameter o =
—0.9,-0.7,-0.5,—-0.3, —=0.1. One readily observes that CoD, ;[Y|X] is decreasing
with respect to ug for any fized o, while it is increasing in o for any fived ugy. This
agrees with the result of Theorem 4./ (ii).

Set Y ~ I(0.8,2), Y ~ I'(1.8,2), u, = 0.95, a; = —0.9, and as = —0.3. Let
h(p) = p? for v > 1 and p € [0,1], which means that h is increasing and conver.
The wvalues of ACoD,,[Y|X] and ACoD, ,[Y'|X'] are plotted in Figure 6(b) for
v > 1, from which it is clear that ACoD,,[Y|X] < ACoDy,[Y'|X'] for v > 1.
Thus, the result of Theorem 4.7(ii) is validated.

Suppose that Y ~ I'(0.6,1), Y' ~ I'(1.2,1), u, = 0.95, uy = 0.9, a = —0.3, and
o = —0.9. It is plain that Y <gsp Y', ug > uy, and C' < C. As observed from
Figure 6(c), ACoDy Y |X] > ACoDy 4 [Y'|X'] for v > 0, which illustrates Theorem
5.3(i).

Set a = =038, Y ~ I'(0.8,2), and uy, = 0.95. Thus, Y is DFR. Let h(p) = p”
for v > 0. As shown in Figure 6(d), the value of ACoD, ,[Y'|X] is increasing with
respect to vy > 0, which validates the theoretical finding of Theorem 5.5(ii).



Finally, a numerical example is provided to show the effectiveness of Theorem 6.1
under the case of negative dependence.

Example 1.7. Let C be the FGM copula with dependence parameter o = —0.8. Assume
that g(p) = p°?, X ~T(0.8,1), Y ~ T(0.8,2), and h(p) = p"? for v, > 0. It is easy to
verify that X <, Y and thus X <y (aisp) Y since both X and Y are DFR. Moreover, one
can calculate that uy = u) = 0.9937. Figure 7(a) displays CoDy ;Y| X]| and CoDg,[X|Y]
for v2 > 0, and Figure 7(b) plots ACoDy Y |X] and ACoD,,[X|Y] for 42 > 0. Note
that CoD, ,[Y'|X] > CoD, n[X Y] while ACoDy Y |X] < ACoDy [ X|Y] for all v > 0,
and thus the results of Theorems 6.1(ii) and 6.1(iv) are validated.
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