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Abstract

In this paper, we introduce the rich classes of conditional distortion (CoD) risk
measures and distortion risk contribution (ΔCoD) measures as measures of systemic
risk and analyze their properties and representations. The classes unify, and signifi-
cantly extend, existing systemic risk measures such as the conditional Value-at-Risk,
conditional Expected Shortfall, and risk contribution measures in terms of the VaR
and ES. We provide sufficient conditions for two random vectors to be ordered by the
proposed CoD-risk measures and ΔCoD-measures. These conditions are expressed
using the conventional stochastic dominance, increasing convex/concave, dispersive,
and excess wealth orders for the marginals and canonical positive/negative stochas-
tic dependence notions.
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1 Introduction
Risk measures are commonly used as capital requirements, i.e., as real-valued mappings
from a class of financial positions determining the amount of risk capital to be held in
reserve. The purpose of this risk capital is to make the risk given by the financial position
taken by a financial institution, such as an insurance company or a bank, acceptable from
a microprudential regulatory perspective. Prominent examples of risk measures are the
Value-at-Risk (VaR) and the Expected Shortfall (ES).1 Indeed, with the international
adoption of financial regulatory frameworks, such as the Basel Capital Accords for banks
and European Solvency Regulation for insurers, VaR has become the predominant mea-
sure of risk for financial institutions. Since its first adoption in the nineties of the previous
century, an active area of research has analyzed the appealing and appalling properties of
VaR—and, later, ES—, and has developed new alternative theories of risk measurement.
These theories build on a rich literature in actuarial mathematics and decision theory and
have nowadays reached a high level of mathematical and economic sophistication.

Over the past decade-and-a-half we have witnessed a myriad of transmissions of adverse
economic events, at an international or even global scale. The interactions among risks
in the form of stochastic interdependences play a central role in quantitative risk anal-
ysis; see Denuit et al. (2005), Embrechts et al. (2005), Genest et al. (2009), Kaas et al.
(2009), Laeven (2009), Goovaerts et al. (2011), Asimit and Gerrard (2016) and the ref-
erences therein in the context of risk aggregation under VaR and ES. Since the 2008/09
global financial crisis, risk measures have increasingly been employed not just to provide
microprudential assessments of marginal risks or aggregate portfolio risks, but also to
evaluate forms of systemic risk: from a macroprudential perspective we are interested in
the systemic risk that a failure or loss of one entity spreads contagiously to other entities
or even to the entire financial system. Indeed, the complex system of financial institutions
in a competitive economy induces an undeniable presence of interconnectedness, in part
caused by dynamic feedback relations within our highly interconnected financial-economic
network.2 This interconnectedness can cause a collapse in part of the system as a result
of a contagious disruption due to the failure of a singular player. Thus, the potential
threat of the failure of a singular player can have a reverberating effect on the security
and stability of the system and the economy as a whole. In the literature, several papers
have proposed different conditional risk (co-risk) measures and risk contribution measures
to evaluate the systemic risks emerging from a group of financial institutions and the in-
teractions among them; see Gourieroux and Monfort (2013), Girardi and Ergün (2013),
Adrian and Brunnermeier (2016), Brownlees and Engle (2016), Acharya et al. (2017) and
the references therein.

As a simple measure of systemic risk, Adrian and Brunnermeier (2016) analyze the
1Expected Shortfall is also referred to as Tail Value-at-Risk (TVaR) and Average Value-at-Risk

(AVaR); see Definition 2.4 for the explicit definitions.
2See, e.g., Aït-Sahalia et al. (2015).
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conditional VaR (CoVaR). It is defined as the VaR of one specific financial institution,
conditional upon the occurrence of an event corresponding to a stress scenario to which an-
other financial institution is exposed. The prefix “Co” is meant to refer to “conditional” (or
“co-movement”) and emphasizes the systemic nature of this measure of risk. In a sense, Co-
VaR provides a measure of a spillover effect. In related literature, Mainik and Schaanning
(2014) introduce the conditional expected shortfall (CoES) and Acharya et al. (2017) pro-
pose the marginal expected shortfall (MES); see Definition 2.6. For a given choice of such
co-risk measures, the associated risk contribution measure evaluates how a stress sce-
nario for one component incrementally affects another component or the entire system.
Examples of risk contribution measures including ΔCoVaR and ΔCoES can be found in
Girardi and Ergün (2013), Mainik and Schaanning (2014), and Adrian and Brunnermeier
(2016); see also Definition 2.7. Using data on U.S. financial institutions over the period
2005-2014, Kleinow et al. (2017) compare several commonly used metrics of systemic risk,
including CoVaR and MES. They illustrate that the alternative measurement approaches
may induce very different assessments of systemic risk. In particular, they show that
different systemic risk measures may lead to contradicting evaluations of the riskiness of
different types of financial institutions. Hence, the “dependence consistency” of systemic
risk measures, their properties, and their representations require further analysis; see also
the discussion in Mainik and Schaanning (2014).

In the context of comparisons of these co-risk measures and risk contribution measures,
an interesting paper by Sordo et al. (2018) provides sufficient conditions to stochastically
order two random vectors in terms of their CoVaR, CoES, ΔCoVaR, and ΔCoES, where
the conditions are expressed using conventional stochastic orders for the marginals under
some assumptions of positive dependence. Furthermore, Fang and Li (2018) investigate
how the marginal distributions and the dependence structure affect the interactions among
paired risks under the above co-risk measures and risk contribution measures. From a
risk-theoretic perspective, the VaR and ES arise as special cases within the rich class
of distortion risk measures (Yaari, 1987; Denuit et al., 2005, 2006; Dhaene et al., 2006;
Goovaerts et al., 2010; Föllmer and Schied, 2011). Distortion risk measures satisfy sev-
eral appealing (in fact, characterizing) properties including monotonicity, comonotonic
additivity, and positive homogeneity. Besides, distortion risk measures are consistent
with the usual stochastic order (i.e., first-order stochastic dominance), and, for concave
distortion functions, with the increasing convex order (i.e., stop-loss order). Furthermore,
concave distortion risk measures occur naturally as building blocks of law-invariant convex
risk measures (see, e.g., Chapter 4 in Föllmer and Schied, 2011).

The aim of this paper is to introduce general and unified classes of conditional risk
measures and risk contribution measures by means of distortion functions. This gives rise
to conditional distortion (CoD) risk measures and distortion risk contribution (ΔCoD)
measures. We analyze the properties and present representations of these new, rich classes
of systemic risk measures, and provide a systematic treatment of their marginal and de-
pendence consistency, hence reveal worst (best) case scenarios. In particular, we establish
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sufficient conditions for ordering two bivariate random vectors by the proposed systemic
risk measures in terms of the canonical stochastic orders (e.g., first-order stochastic dom-
inance, the increasing concave/convex order, the dispersive order, and the excess wealth
order) between the marginals, dependence structure, distortion functions, and threshold
quantiles. The interactions between paired risks are also investigated. Existing results in
Mainik and Schaanning (2014), Sordo et al. (2018), and Fang and Li (2018) are general-
ized and extended.

In a somewhat related strand of the literature, Hoffmann et al. (2016) axiomatically
introduce risk-consistent conditional systemic risk measures defined on multidimensional
risks. This class consists of those conditional systemic risk measures that can be decom-
posed into a state-wise conditional aggregation and a univariate conditional risk measure.
Their studies extend known results for unconditional risk measures on finite state spaces.
Besides, Biagini et al. (2019) specify a general methodological framework for systemic risk
measures via multidimensional acceptance sets and aggregation functions. Their approach
yields systemic risk measures that can be given the interpretation of the minimal amount
of cash that safeguards the aggregated system.

This paper is organized as follows. In Section 2, we recall some definitions and con-
cepts. In Section 3, we introduce conditional distortion (CoD) risk measures and distortion
risk contribution (ΔCoD) measures, and give some useful expressions employed in the se-
quel. Section 4 studies the comparison of two random vectors under CoD-risk measures,
and provides sufficient conditions for their ordering in terms of the usual stochastic order,
the increasing convex order, and the increasing concave order of marginals, under ap-
propriate assumptions on the dependence structure, distortion functions, and threshold
quantiles. In Section 5, we present sufficient conditions for comparison of the distortion
risk contribution measures in terms of the dispersive order and the excess wealth order of
marginals. Section 6 investigates the interactions between paired risks under our proposed
CoD-risk measures and ΔCoD-measures. Section 7 and an Online Appendix provide some
theoretical and numerical examples, respectively, to illustrate our main findings. Section
8 concludes the paper. All proofs are relegated to the Appendix.

2 Preliminaries
Let R+

0 = [0,+∞) and let N+ be the set of strictly positive natural numbers. Throughout
this paper, the term “increasing” is used for “non-decreasing” and “decreasing” is used for
“non-increasing”. We use the expression ‘X ∼ F ’ to denote that the random variable (r.v.)
has distribution function (d.f.) F , and use X to denote the random vector (X1, . . . , Xn).
Expectations and density functions are assumed to exist when they appear.
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2.1 Stochastic Ordering and Comparing Dependence

We denote by X and Y two r.v.’s with respective d.f.’s F and G, survival functions F
and G, and density functions f and g. Let F−1(p) = inf{x ∈ R | F (x) ≥ p} and
G−1(p) = inf{x ∈ R | G(x) ≥ p} be the generalized inverses of the d.f.’s F and G,
p ∈ [0, 1], respectively, where inf ∅ = +∞ by convention.

Definition 2.1 (Univariate stochastic orders). 3 X is said to be smaller than Y in the

(i) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x ∈ R;

(ii) hazard rate order (denoted by X ≤hr Y ) if G(x)/F (x) is increasing in x ∈ R;

(iii) usual stochastic order (denoted by X ≤st Y ) if F (x) ≤ G(x) for all x ∈ R;

(iv) increasing convex order (denoted by X ≤icx Y ) if E[φ(X)] ≤ E[φ(Y )] for any in-
creasing and convex function φ : R → R;

(v) increasing concave order (denoted by X ≤icv Y ) if E[φ(X)] ≤ E[φ(Y )] for any
increasing and concave function φ : R → R;

(vi) dispersive order (denoted by X ≤disp Y ) if F−1(v)−F−1(u) ≤ G−1(v)−G−1(u), for
all 0 < u ≤ v < 1;

(vii) excess wealth order (denoted by X ≤ew Y ) if
∫∞
F−1(u)

F (t)dt ≤ ∫∞
G−1(u)

G(t)dt, for all
u ∈ (0, 1).

For comprehensive discussions on these partial orders, we refer the reader to the mono-
graphs by Denuit et al. (2005), Marshall and Olkin (2007), and Shaked and Shanthikumar
(2007).

The following notions entail that, for a bivariate random vector (X, Y ), larger values
of one component are associated with larger values of the other, in some specific sense.

Definition 2.2 (Bivariate stochastic orders). 4

(i) The bivariate random vector (X, Y ) is said to be totally positive of order 2 [reverse
regular of order 2] (written as TP2 [RR2]) if [X|Y = y1] ≤lr [≥lr] [X|Y = y2], for
all y1 ≤ y2, and [Y |X = x1] ≤lr [≥lr] [Y |X = x2], for all x1 ≤ x2.

3As is well known, X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y =⇒ X ≤icx [icv] Y. Furthermore, the dispersive
order is stronger than (i.e., implies) the excess wealth order, and is a partial order used to compare the
variabilities among two probability distributions.

4The following implications (with slight abuse of notation) are well known: (X,Y ) is TP2 =⇒ X ↑SI
Y [Y ↑SI X ] =⇒ X ↑RTI Y [Y ↑RTI X ] =⇒ (X,Y ) is PQD, and (X,Y ) is RR2 =⇒ X ↑SD Y [Y ↑SD
X ] =⇒ X ↑RTD Y [Y ↑RTD X ] =⇒ (X,Y ) is NQD. It is also clear that if (X,Y ) is TP2 [RR2] then
it must be PDS [NDS]. Besides, (X,Y ) is TP2 [RR2] if and only if its copula C is TP2 [RR2] (see
Müller and Stoyan, 2002; Cai and Wei, 2012). For more detailed discussions, interested readers are re-
ferred to Barlow and Proschan (1975), Block et al. (1982), Joe (1997), and Denuit et al. (2005).
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(ii) X is said to be stochastically increasing [decreasing] in Y (written as X ↑SI [SD] Y )
if [X|Y = y1] ≤st [≥st][X|Y = y2], for all y1 ≤ y2.

(iii) The bivariate random vector (X, Y ) is said to be positively [negatively] dependent
through stochastic ordering (PDS [NDS]) if X ↑SI [SD] Y and Y ↑SI [SD] X.

(iv) X is said to be right tail increasing [decreasing] in Y (written as X ↑RTI [RTD] Y ) if
P(X > x|Y > y) is increasing in y ∈ R, for all x ∈ R.

(v) The bivariate random vector (X, Y ) is said to be positive [negative] quadrant depen-
dent (PQD [NQD]) if, for all (x, y) ∈ R

2, it holds that

P(X > x, Y > y) ≥ [≤]P(X > x)P(Y > y),

or equivalently,
P(X ≤ x, Y ≤ y) ≥ [≤]P(X ≤ x)P(Y ≤ y).

Next, for a bivariate random vector (X, Y ) with respective marginal d.f.’s F and G
and joint d.f. H , it is well known that H admits the decomposition

H(x, y) = C(F (x), G(y)), x, y ∈ R,

where C, referred to as the copula of H , is a bivariate d.f. on (0, 1)2 with uniform
marginals (Sklar, 1959). If both F and G are continuous, then C is uniquely determined
by C(u, v) = H(F−1(u), G−1(v)). We also denote by C the joint tail function for two
uniform r.v.’s U, V ∼ U(0, 1) whose joint d.f. is the copula C, that is,

C(u, v) = P(U > u, V > v) = 1− u− v + C(u, v), (u, v) ∈ (0, 1)2.

The joint tail function C should not be confused with the survival copula of U and V ,
which is defined as

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (u, v) ∈ (0, 1)2.

The survival copula Ĉ couples the joint survival function to its univariate margins (survival
functions) in a manner completely analogous to how a copula links the joint d.f. to its
margins. Clearly, C(u, v) = Ĉ(1− u, 1− v).

We also recall the definition of concordance order (c.f. Definition 2.8.1 in Nelsen,
2007).

Definition 2.3. Given two copulas C and C ′, C is said to be smaller than C ′ in concor-
dance order (denoted by C ≺ C ′) if C(u, v) ≤ C ′(u, v), for all (u, v) ∈ (0, 1)2.

Concordance order is also referred to as correlation order or positive quadrant dependence
(PQD) order (see Dhaene and Goovaerts, 1996, 1997; Nelsen, 2007). It is a partial order
as not every pair of copulas is concordance-comparable. Besides, the canonical scale-free
dependence measures given by Kendall’s tau and Spearman’s rho are well known to be
increasing with respect to the concordance order.
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2.2 Distortion Risk Measures

We state the following definition:

Definition 2.4. For a r.v. X with d.f. F , the VaR and ES at confidence level α ∈ (0, 1)
are defined as

VaRα[X] = F−1(α), and ESα[X] =
1

1− α

∫ 1

α

VaRp[X]dp,

provided the integral exists.

VaR and ES occur as special cases of distortion risk measures (Yaari, 1987; Denuit et al.,
2005, 2006; Dhaene et al., 2006; Goovaerts et al., 2010; Föllmer and Schied, 2011). In
full generality, a distortion function g : [0, 1] 
→ [0, 1] is an increasing function such that
g(0) = 0 and g(1) = 1. The set of all distortion functions is henceforth denoted by G. A
distortion risk measure is then defined as follows.

Definition 2.5. For a distortion function g ∈ G and a r.v. X with d.f. F , the distortion
risk measure Dg is defined as

Dg[X] = −
∫ 0

−∞
[1− g(F (t))]dt +

∫ +∞

0

g(F (t))dt,

provided the integrals exist.

As is well known, a distortion risk measure is coherent, i.e., monotonic, translation
invariant, positively homogeneous, and subadditive (see e.g., Föllmer and Schied, 2011;
Laeven and Stadje, 2013) if and only if its distortion function is concave. The two promi-
nent examples of distortion risk measures given by VaRα and ESα correspond to the dis-
tortion functions g(p) = 1(1−α,1](p) and g(p) = min{1, p

1−α
}, for α ∈ (0, 1), respectively.

Obviously, the former distortion function is not continuous but only left-continuous, while
the latter distortion function is continuous and concave but not differentiable everywhere.
Besides, the incomplete beta function (Wang, 1995; Wirch and Hardy, 2001), the Wang
distortion or rather Esscher-Girsanov transform (Goovaerts and Laeven, 2008), and the
lookback distortion (Hürlimann, 2004) are commonly used special cases of distortion func-
tions; see also Balbás et al. (2009). It is easily verified that for a r.v. X and any two
distortion functions g, g′ ∈ G, g ≤ g′ implies that Dg[X] ≤ Dg′[X].

Next, we introduce the notion of a dual distortion function. Consider a distortion
function g and define g : [0, 1] 
→ [0, 1] by g(p) = 1 − g(1 − p), for p ∈ [0, 1]. Obviously,
g is also a distortion function, called the dual distortion function of g. It is well known
that Dg[X] = −Dg[−X] (see Lemma 5 in Dhaene et al., 2012). Note that if g is left-
continuous, then g is right-continuous (c.f. Theorems 4 and 6 in (Dhaene et al., 2012)).
For a left-continuous distortion function g, the transformation of the tail function F of X
given by g(F (x)) = g ◦ F (x) defines a new tail function associated to a r.v. Xg. It is the
distorted counterpart of the r.v. X, induced by the distortion function g.
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2.3 Co-Risk Measures and Risk Contribution Measures

In recent years, conditional risk (co-risk) measures are increasingly employed as measures
of systemic risk. Prototypical examples of co-risk measures include the conditional Value-
at-Risk (CoVaR), the conditional Expected Shortfall (CoES), and the marginal Expected
Shortfall (MES). For a given co-risk measure, the corresponding risk contribution mea-
sure assesses the incremental effect of a stress scenario. Well-known examples of risk
contribution measures include ΔCoVaR and ΔCoES. See e.g., Girardi and Ergün (2013),
Mainik and Schaanning (2014), Adrian and Brunnermeier (2016), Acharya et al. (2017),
and Karimalis and Nomikos (2018) for further details.

We state the following definitions:

Definition 2.6. Let α, β ∈ (0, 1). Then,

CoVaRα,β[Y |X] = VaRβ[Y |X > VaRα[X ]],

CoESα,β[Y |X] =
1

1− β

∫ 1

β

CoVaRα,t[Y |X ]dt,

MESα[Y |X] = CoESα,0[Y |X] = E[Y |X > VaRα[X ]].

One easily verifies that, with continuous marginals, the CoES can be represented through
a conditional expectation of Y , in a manner similar to the familiar representation of ES:

CoESα,β[Y |X] = E[Y |X > VaRα[X], Y > CoVaRα,β[Y |X ]].

To measure the risk contribution of X to Y , one may compare CoVaRα,β[Y |X ], which
is the VaR of Y conditional upon X being in a stress scenario, to VaRβ[Y ], which eval-
uates Y unconditionally. Alternatively, one may replace the benchmark VaRβ[Y ] by the
conditional VaR of Y given that X exceeds its median (see Mainik and Schaanning, 2014;
Adrian and Brunnermeier, 2016). The same applies to CoES, mutatis mutandis.

Definition 2.7. Let α, β ∈ (0, 1). Then,

ΔCoVaRα,β[Y |X] = CoVaRα,β[Y |X ]− VaRβ[Y ],

ΔmedCoVaRα,β[Y |X] = CoVaRα,β[Y |X ]− CoVaR1/2,β [Y |X ],

ΔCoESα,β[Y |X] = CoESα,β[Y |X ]− ESβ[Y ],

ΔmedCoESα,β[Y |X] = CoESα,β[Y |X ]− CoES1/2,β[Y |X ].

3 Conditional Distortion Risk Measures and Distortion
Risk Contribution Measures

Consider a bivariate random vector (X, Y ) with marginal d.f.’s F,G and joint d.f. H . We
define the conditional distortion (CoD) risk measure as follows; CoVaR, CoES, and MES
occur as special cases.
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Definition 3.1 (Conditional distortion risk measures). For g, h ∈ G,

CoDg,h[Y |X] = Dh [Y |X > Dg[X ]]

= −
∫ 0

−∞
[1− h(F Y |X>Dg[X](y))]dy +

∫ +∞

0

h(F Y |X>Dg[X](y))dy,

where Dg[X ] is as in Definition 2.5.

Remark 3.2. (a) From Definition 3.1 it is apparent that CoD-risk measures evaluate
the risk associated with [Y |X > Dg[X ]], i.e., the risk Y subject to the conditioning
event where X is in the stress scenario given by X > Dg[X ]. Furthermore, g and h
are distortion functions imposed on the d.f.’s of X and [Y |X > Dg[X ]], respectively.

(b) One readily verifies that CoVaR and CoES (hence MES) occur as special cases in
the class of CoD-risk measures. Indeed, if g(p) = 1(1−α,1](p) and

(i) h(p) = 1(1−β,1](p), then CoDg,h[Y |X] = CoVaRα,β[Y |X ];

(ii) h(p) = min{1, p
1−β

}, then CoDg,h[Y |X ] = CoESα,β[Y |X ];

(iii) h(p) = p, then CoDg,h[Y |X ] = MESα[Y |X ].

Besides, two related types of conditional risk measures occur as follows: if g(p) =
min{1, p

1−α
} and

(iv) h(p) = 1(1−β,1](p), then CoDg,h[Y |X] = VaRβ[Y |X > ESα[X]];

(v) h(p) = min{1, p
1−β

}, then CoDg,h[Y |X ] = ESβ[Y |X > ESα[X]], which is con-
sidered in Equation (10) of Boyle and Kim (2012).

(c) The class of CoD-risk measures is rich and is in general not restricted to satisfy
(conditional) subadditivity. For example, if h(p) = 1(1−β,1](p), it reduces to a condi-
tional VaR, which is not subadditive in general. However, if h is concave then the
CoD-risk measure inherits the subadditivity property of Dh[·].

(d) Computing CoD-risk measures requires the conditional d.f. of Y conditioned upon
X > Dg[X]. Throughout we restrict attention to conditioning events of the form
X > Dg[X] instead of X = Dg[X], as the former are probabilistically and sta-
tistically better behaved; see also the discussion in Girardi and Ergün (2013) and
Mainik and Schaanning (2014).

To illustrate the generality of the class of CoD-risk measures, we present in Section 7
a collection of examples that goes well beyond the conditional risk measures considered
in the literature.

For a given CoD-risk measure, we define two types of associated distortion risk con-
tribution measures, ΔCoDg,h[Y |X] and Δg̃CoDg,h[Y |X ], as follows.
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Definition 3.3 (Distortion risk contribution measures). (i) Type-I: For g, h ∈ G,

ΔCoDg,h[Y |X ] = CoDg,h[Y |X ]− Dh[Y ],

where Dh[Y ] is as in Definition 2.5.

(ii) Type-II: For g, g̃, h ∈ G,

Δg̃CoDg,h[Y |X] = CoDg,h[Y |X ]− CoDg̃,h[Y |X ].

Remark 3.4. (a) The class of distortion risk contribution measures in Definition 3.3(i)
contains ΔCoVaR and ΔCoES as special cases. Indeed, if g(p) = 1(1−α,1](p) and

(i) h(p) = 1(1−β,1](p), then ΔCoDg,h[Y |X ] = ΔCoVaRα,β[Y |X ];
(ii) h(p) = min{1, p

1−β
}, then ΔCoDg,h[Y |X ] = ΔCoESα,β[Y |X ].

Furthermore, two related risk contribution measures (which seem to be new in the
literature) arise as follows: if g(p) = min{1, p

1−α
} and

(iii) h(p) = 1(1−β,1](p), then ΔCoDg,h[Y |X ] = VaRβ[Y |X > ESα[X ]]− VaRβ[Y ];
(iv) h(p) = min{1, p

1−β
}, then ΔCoDg,h[Y |X ] = ESβ[Y |X > ESα[X ]]− ESβ[Y ].

(b) Boyle and Kim (2012) consider the following risk contribution measure (see their
Equation (8)): ESβ[Y |X = ESα[X]]− ESβ [Y ], where the conditional event is [X =
ESα[X]] instead of [X > ESα[X]]. We restrict attention to conditioning events of
the form X > Dg[X]; cf. Remark 3.2(d).

(c) The class of distortion risk contribution measures in Definition 3.3(ii) contains
ΔmedCoVaR and ΔmedCoES as special cases. More explicitly, if g(p) = 1(1−α,1](p),
g̃(p) = 1(1/2,1](p), and

(i) h(p) = 1(1−β,1](p), then Δg̃CoDg,h[Y |X ] = ΔmedCoVaRα,β[Y |X ];
(ii) h(p) = min{1, p

1−β
}, then Δg̃CoDg,h[Y |X ] = ΔmedCoESα,β[Y |X ].

In the next theorems, we present some useful representations of our CoD-risk measures
and (two types of) distortion risk contribution measures introduced in Definitions 3.1 and
3.3. These representations will play a key role in proving the subsequent comparison
results.

Theorem 3.5. Let (U, V ) ∼ C where C is a copula of H. If F is continuous and strictly
increasing, and h is left-continuous, then

CoDg,h[Y |X] =

∫ 1

0

G−1(F−1
V |U>ug

(p))dh(p), (1)

where ug = F (Dg[X]), h(p) = 1 − h(1 − p) for p ∈ [0, 1], and FV |U>u(v) = v−C(u,v)
1−u

for
(u, v) ∈ (0, 1)2.
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Remark 3.6. Consider the setup of Theorem 3.5. Define the generalized upper inverses
G−1+(p) = sup{x ∈ R | G(x) ≤ p} and F−1+

V |U>ug
(p) = sup{x ∈ R | FV |U>ug(x) ≤ p}

with sup ∅ = −∞ by convention. Since the event {FY |X>Dg[X](y) ≤ p} is equivalent to
{FV |U>ug(G(y)) ≤ p}, we have F−1+

Y |X>Dg[X](p) = G−1+(F−1+
V |U>ug

(p)), for p ∈ (0, 1). If now,
under the setup of Theorem 3.5, h were right-continuous instead of left-continuous, then,
by applying Theorem 4 in Dhaene et al. (2012), expression (1) can be modified as

CoDg,h[Y |X] =

∫ 1

0

G−1+(F−1+
V |U>ug

(p))dh(p).

Note that FV |U>ug(v) = v−C(ug ,v)

1−ug
. If G is continuous and strictly increasing, and v −

C(u, v) is continuous and strictly increasing in v ∈ [0, 1] for any u ∈ (0, 1) (which im-
plies that FV |U>ug is continuous and strictly increasing), we have G−1+(p) = G−1(p) and
F−1+
V |U>ug

(p) = F−1
V |U>ug

(p), which implies that the distortion function h in Theorem 3.5
can be either left-continuous or right-continuous (given that F is continuous and strictly
increasing). Then, by applying Theorem 7 of Dhaene et al. (2012), h can be also assumed
to be any general distortion function, i.e., a convex combination of left-continuous and
right-continuous distortion functions.

Corollary 3.7. Under the setup of Theorem 3.5, if g(p) = 1(1−α,1](p) and

(i) h(p) = 1(1−β,1](p), then CoDg,h[Y |X ] = CoVaRα,β[Y |X ] = G−1(F−1
V |U>α(β));

(ii) h(p) = min{1, p
1−β

}, then CoDg,h[Y |X ] = CoESα,β[Y |X ] = 1
1−β

∫ 1

β
G−1(F−1

V |U>α(p))dp;
cf. Girardi and Ergün (2013) and Mainik and Schaanning (2014).

Based on Theorem 3.5, we obtain the following result, which gives representations for
the proposed two types of distortion risk contribution measures.

Theorem 3.8. Let (U, V ) ∼ C where C is a copula of H. If F is continuous and strictly
increasing, and h is left-continuous, then

ΔCoDg,h[Y |X] =

∫ 1

0

[
G−1(F−1

V |U>ug
(p))−G−1(p)

]
dh(p), (2)

Δg̃CoDg,h[Y |X] =

∫ 1

0

[
G−1(F−1

V |U>ug
(p))−G−1(F−1

V |U>ug̃
(p))

]
dh(p), (3)

where ug = F (Dg[X]), ug̃ = F (Dg̃[X]), h(p) = 1−h(1−p) for p ∈ [0, 1], and FV |U>u(v) =
v−C(u,v)

1−u
for (u, v) ∈ (0, 1)2.
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4 Stochastic Orders and CoD-Risk Measures
Let (X, Y ) and (X ′, Y ′) be two bivariate random vectors with marginals F,G and F ′, G′

and copula C and C ′, respectively. Henceforth, we always assume that F , F ′, G and G′

are continuous and strictly increasing and that the distortion functions for X, X ′, Y and
Y ′ are left-continuous, to avoid cumbersome subtle technical discussions; cf. Remark 3.6.

4.1 The Risks Y and Y ′ Have Equal Marginal Distributions

This subsection provides sufficient conditions for the CoD-risk measures of the bivariate
random vectors (X, Y ) and (X ′, Y ′) to be ordered, when Y and Y ′ have common d.f.’s, i.e.,
G = G′. Our next result states that, in this setting, the CoD-risk measure preserves the
ordering induced by “≺” between the copulas and by the distortion functions applied to
Y and Y ′, when assuming additionally that F = F ′. In other words, the result states that
more positive dependence together with a larger distortion function on the conditional
risk event leads to a larger CoD-risk measure.

Theorem 4.1. Suppose F = F ′ and G = G′. Then, C ≺ C ′ and h ≤ h′ imply that
CoDg,h[Y |X] ≤ CoDg,h′[Y ′|X ′].

The following result, which in contrast to Theorem 4.1 does not require F = F ′,
can easily be derived from (the proof of) Theorem 4.1 when g is the distortion function
associated with VaR.

Corollary 4.2. Suppose that G = G′ and g(p) = 1(1−α,1](p), for some α ∈ (0, 1). Then,
C ≺ C ′ and h ≤ h′ imply that CoDg,h[Y |X] ≤ CoDg,h′[Y ′|X ′].

Remark 4.3. (i) Due to the Fréchet-Hoeffding bounds, the worst (best) case depen-
dence scenario in Theorem 4.1 and Corollary 4.2 occurs under comonotonicity
(countermonotonicity). This stands in sharp contrast to worst VaR scenarios in
risk aggregation; see e.g., Embrechts et al. (2005) and Laeven (2009).

(ii) Theorem 4.1 and Corollary 4.2 do not hold as stated when X and X ′ adopt different
distortion functions, i.e., when CoDg,h′[Y ′|X ′] is replaced by CoDg′,h′[Y ′|X ′] with
g �= g′.

(iii) Under the additional assumption that h(p) = h′(p) = 1(1−β,1](p), the result of Corol-
lary 4.2 reduces to Theorem 3.4 of Mainik and Schaanning (2014).

To conclude this subsection, we investigate the effects of threshold quantiles of X and
X ′ and the dependence structure among (X, Y ) on the CoD-risk measures.

Theorem 4.4. Suppose that G = G′. Let ug = F (Dg[X]) and ug′ = F ′(Dg′ [X
′]). Then

CoDg,h[Y |X] ≤ CoDg′,h′[Y ′|X ′] if C ≺ C ′, h ≤ h′, and either one of the following two
conditions holds:
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(i) ug ≤ ug′ and Y ↑RTI X or Y ′ ↑RTI X
′ or both hold;

(ii) ug ≥ ug′ and Y ↑RTD X or Y ′ ↑RTD X
′ or both hold.

Theorem 4.4 states that, if X and Y are positively [negatively] dependent through
Y ↑RTI [RTD] X, then a larger distortion function employed for risk Y , more concordance
of the copula, together with a larger [smaller] threshold quantile adopted for risk X lead
to a larger CoD-risk measure.

Remark 4.5. (i) Suppose that h ≤ g and Y ↑RTD X. Then, in light of Theorem 4.4(ii),
we have CoDg,h[Y |X] ≤ CoDh,g[Y |X ]. This means that if Y is negatively dependent
of X through RTD, then a larger distortion function for Y and a smaller distortion
function for X lead to a larger value of the CoD-risk measure.

(ii) Let (X, Y ) and (X ′, Y ) be two bivariate random vectors with the same copula C.
Suppose that either (i) ug ≤ ug′ and Y ↑RTI X or Y ↑RTI X

′ or both hold, or (ii)
ug ≥ ug′ and Y ↑RTD X or Y ↑RTD X ′ or both hold. Then Theorem 4.4 implies
that CoDg,h[Y |X] ≤ CoDg′,h[Y |X ′] for all h ∈ G. This result states that X ′ is more
relevant for Y than X if Y is positively [negatively] dependent of X (and/or X ′)
through RTI [RTD] and the threshold quantile of X is smaller [larger] than that of
X ′, which is consistent with the systemic relevance order proposed in Dhaene et al.
(2020).

4.2 The Risks Y and Y ′ Have Different Marginal Distributions

We now provide sufficient conditions for the CoD-risk measures of the bivariate random
vectors (X, Y ) and (X ′, Y ′) to be ordered when Y and Y ′ are allowed to have different
d.f.’s.

Sordo and Ramos (2007) provides a useful characterization of the usual stochastic or-
der and the increasing convex order as follows. In a similar manner, we give an equivalent
characterization of the increasing concave order. All three serve as auxiliary results.

Lemma 4.6. Let X and Y be two r.v.’s with continuous and strictly increasing d.f.’s F
and G, respectively. Then, X ≤st [icx, icv] Y if and only if∫ 1

0

F−1(t)dφ(t) ≤
∫ 1

0

G−1(t)dφ(t),

for all increasing [increasing convex, increasing concave] φ : [0, 1] → [0, 1].

Employing Lemma 4.6, we obtain the following comparison result.

Theorem 4.7. Let F = F ′, C ≺ C ′, and h ≤ h′.
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(i) Suppose that X ↑SI Y or X ′ ↑SI Y ′ or both hold. Then, Y ≤st [icx] Y
′ implies that

CoDg,h[Y |X] ≤ CoDg,h′[Y ′|X ′] for any g ∈ G and increasing [increasing concave]
h, h′ ∈ G.

(ii) Suppose that X ↑SD Y or X ′ ↑SD Y ′ or both hold. Then, Y ≤icv Y
′ implies that

CoDg,h[Y |X] ≤ CoDg,h′[Y ′|X ′] for any g ∈ G and increasing convex h, h′ ∈ G.

Remark 4.8. Dhaene et al. (2020) defines the systemic contribution order in terms of the
increasing convex order. More explicitly, consider the market of losses Z, the correspond-
ing microprudential regulation R, and the aggregate residual loss level s ∈ R

+
0 . Individual

loss Zj is said to be “smaller in systemic contribution order” (denoted by Zj ≤(R,s)−con Zk)
than individual loss Zk under microprudential regulation R and aggregate loss level s, if[

(Zj − Rj)+ |
n∑

i=1

(Zi −Ri)+ > s

]
≤icx

[
(Zk − Rk)+ |

n∑
i=1

(Zi − Ri)+ > s

]
.

According to Theorem 4.7(i), if X = X ′ =
∑n

i=1 (Zi −Ri)+, Y = (Zj − Rj)+, Y ′ =
(Zk −Rk)+, C = C ′, h = h′, and

∑n
i=1 (Zi −Ri)+ ↑SI (Zj −Rj)+ or

∑n
i=1 (Zi − Ri)+ ↑SI

(Zk −Rk)+ or both hold, then (Zj − Rj)+ ≤icx (Zk − Rk)+ implies that

CoDg,h

[
(Zj − Rj)+

∣∣ n∑
i=1

(Zi − Ri)+

]
≤ CoDg,h

[
(Zk − Rk)+

∣∣ n∑
i=1

(Zi − Ri)+

]
,

for all concave h, which is consistent with the definition Zj ≤(R,s)−con Zk when taking
s = Dg[

∑n
i=1 (Zi − Ri)+].

The following result, in contrast to Theorem 4.7 not requiring F = F ′, can be derived
from (the proof of) Theorem 4.7 when g corresponds to the distortion function of VaR.

Corollary 4.9. Let g(p) = 1(1−α,1](p), C ≺ C ′, and h ≤ h′.

(i) Suppose that X ↑SI Y or X ′ ↑SI Y ′ or both hold. Then, Y ≤st [icx] Y
′ implies that

CoDg,h[Y |X] ≤ CoDg,h′[Y ′|X ′] for any increasing [increasing concave] h, h′ ∈ G.

(ii) Suppose that X ↑SD Y or X ′ ↑SD Y ′ or both hold. Then, Y ≤icv Y
′ implies that

CoDg,h[Y |X] ≤ CoDg,h′[Y ′|X ′] for any increasing convex h, h′ ∈ G.

Remark 4.10. In the special case that h(p) = h′(p) = min{1, p
1−β

}, the result of Corollary
4.9(i) reduces to Theorem 12 in Sordo et al. (2018).

The next result generalizes Theorem 4.7 to the case of different d.f.’s of X and X ′,
where we replace the condition ‘F = F ′’ by requiring that F (Dg[X]) ≤ F ′(Dg′ [X

′]).

Theorem 4.11. Let C ≺ C ′, h ≤ h′, and ug ≤ ug′, where ug = F (Dg[X]) and ug′ =
F ′(Dg′ [X

′]).
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(i) Suppose that (X, Y ) or (X ′, Y ′) or both are PDS. Then, Y ≤st [icx] Y
′ implies that

CoDg,h[Y |X] ≤ CoDg′,h′[Y ′|X ′] for any increasing [increasing concave] h, h′ ∈ G.

(ii) Suppose that (X, Y ) or (X ′, Y ′) or both are NDS. Then, Y ≤icv Y ′ implies that
CoDg,h[Y |X] ≤ CoDg′,h′[Y ′|X ′] for any increasing convex h, h′ ∈ G.

5 Stochastic Orders and Distortion Risk Contribution
Measures

Like in Section 4, we consider two bivariate random vectors (X, Y ) and (X ′, Y ′) with
marginals F,G and F ′, G′ and copula C and C ′, respectively. This section provides
sufficient conditions for their distortion risk contribution measures to be ordered.

5.1 Dispersive Order and Distortion Risk Contribution Measures

The following lemma, adapted from Sordo et al. (2018), is helpful to establish our re-
sults that follow, which link the dispersive order among the marginals and distortion risk
contribution measures.

Lemma 5.1. Let X and Y be two r.v.’s with continuous and strictly increasing d.f.’s F
and G, respectively. Let h be a convex distortion function and let g be another distortion
function such that h(p) ≥ g(p), for all p ∈ [0, 1]. Denote by Xh [Yg] the distorted r.v.’s
induced from X [Y ] by the distortion functions h [g]. If X ≤disp Y , then

(i) F−1
Xh

(p)− F−1(p) ≥ F−1
Yg

(p)−G−1(p), for p ∈ (0, 1);

(ii) F−1
Xh

(p)− F−1
Xg

(p) ≤ F−1
Yh

(p)− F−1
Yg

(p), for p ∈ (0, 1).

5.1.1 Type-I Distortion Risk Contribution Measures: ΔCoDg,h[Y |X ]

We first study sufficient conditions on the dependence structures of (X, Y ) and (X ′, Y ′)
and stochastic orderings between Y and Y ′ for comparing ΔCoDg,h[Y |X ] and ΔCoDg,h[Y

′|X ′].

Theorem 5.2. Suppose that F = F ′ and Y ≤disp Y
′.

(i) If C ≺ C ′, and X ↑SI Y or X ′ ↑SI Y ′ or both hold, then ΔCoDg,h[Y |X ] ≤
ΔCoDg,h[Y

′|X ′] for any g, h ∈ G.

(ii) If C � C ′, and X ↑SD Y or X ′ ↑SD Y ′ or both hold, then ΔCoDg,h[Y |X] ≥
ΔCoDg,h[Y

′|X ′] for any g, h ∈ G.

The next theorem generalizes Theorem 5.2 to the case where X and X ′ may have
different d.f.’s.
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Theorem 5.3. Let ug = F (Dg[X]) and ug′ = F ′(Dg′[X
′]). Suppose that Y ≤disp Y

′.

(i) If C is PDS, ug ≤ ug′, and C ≺ C ′, then ΔCoDg,h[Y |X ] ≤ ΔCoDg′,h[Y
′|X ′] for any

h ∈ G.

(ii) If C is NDS, ug ≥ ug′, and C � C ′, then ΔCoDg,h[Y |X ] ≥ ΔCoDg′,h[Y
′|X ′] for any

h ∈ G.

The following lemma is partially taken from Theorem 5 in Sordo et al. (2015) and
the proof for the case of a convex distortion function can be established using similar
arguments.

Lemma 5.4. Let X be a r.v. and let g be a concave [convex] distortion function. Then
X ≤hr [≥hr]Xg, where Xg is the distorted r.v. induced from X by applying the distortion
function g.

Recall that a (nonnegative) r.v. X has an increasing [decreasing] failure rate (IFR
[DFR]) if, and only if, its survival function F is log-concave [log-convex].

Theorem 5.5. Assume that Y is DFR. Then ΔCoDg,h[Y |X ] ≤ ΔCoDg,h′[Y |X ] for any
g ∈ G if either one of the following two conditions holds:

(i) X ↑SI Y and h ≤ h′;

(ii) X ↑SD Y and h ≥ h′.

Remark 5.6. If X ↑SI Y , Y is DFR, g(p) = 1(1−α,1](p), h(p) = min{1, p
1−β

}, and
h′(p) = min{1, p

1−β′} such that β ≤ β ′, then Theorem 5.5 reduces to the result of Theorem
17 in Sordo et al. (2018).

Upon combining Theorems 5.2 and 5.5, the following result can be obtained immedi-
ately. It generalizes the result of Corollary 19 in Sordo et al. (2018).

Corollary 5.7. Suppose that F = F ′, X ↑SI Y or X ′ ↑SI Y ′ or both hold, and Y or Y ′

or both are DFR. Then, Y ≤disp Y
′, C ≺ C ′, and h ≤ h′ imply that ΔCoDg,h[Y |X ] ≤

ΔCoDg,h′[Y ′|X ′] for any g ∈ G.

The following result generalizes the above result to the case of risks X and X ′ having
different d.f.’s.

Theorem 5.8. Let ug = F (Dg[X]) and ug′ = F ′(Dg′[X
′]). Suppose that (X, Y ) or (X ′, Y ′)

or both are PDS, and Y or Y ′ or both are DFR. Then, Y ≤disp Y
′, C ≺ C ′, ug ≤ ug′, and

h ≤ h′ imply that ΔCoDg,h[Y |X] ≤ ΔCoDg′,h′[Y ′|X ′] for any g ∈ G.
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5.1.2 Type-II Distortion Risk Contribution Measures: Δg̃CoDg,h[Y |X ]

In this subsection, we turn our attention to the distortion risk contribution measure
Δg̃CoDg,h[Y |X].

Theorem 5.9. Suppose that C = C ′, F = F ′ and ug ≥ ug̃, where ug = F (Dg[X])
and ug̃ = F (Dg̃[X]). Then, Y ≤disp Y ′ and C is PDS imply that Δg̃CoDg,h[Y |X ] ≤
Δg̃CoDg,h[Y

′|X ′] for any h ∈ G.

Remark 5.10. Theorem 5.9 contains Theorem 20 of Sordo et al. (2018) as a special case
when g̃(p) = 1(1/2,1](p), g(p) = 1(1−α,1](p), and h(p) = 1(1−β,1](p) with 1/2 ≤ α ≤ 1. It
is also worth noting that the condition that “C is TP2” used there can be weakened by
“C is PDS” as seen in Theorem 5.9. Besides, the condition ug ≥ ug̃ is equivalent to
Dg[X] ≥ Dg̃[X]. Therefore, a sufficient condition for this inequality is to require g ≥ g̃.

The next result provides some other sufficient conditions in terms of the negative
dependence structure of the copula.

Theorem 5.11. Suppose that C = C ′, F = F ′, ug = F (Dg[X]), and ug̃ = F (Dg̃[X]).
Then, Y ≤disp Y

′, C is NDS and ug ≤ ug̃ imply that Δg̃CoDg,h[Y |X] ≤ Δg̃CoDg,h[Y
′|X ′]

for any h ∈ G.

5.2 Excess Wealth Order and Distortion Risk Contribution Mea-
sures

For a r.v. X with d.f. F , Sordo (2008) establishes an equivalence characterization between
the excess wealth order and the class of risk measures of the form

Dφ1,φ2 [X] =

∫ 1

0

F−1(t)dφ1(t)−
∫ 1

0

F−1(t)dφ2(t),

where φ1 and φ2 are two distortion functions.

Lemma 5.12. (Sordo, 2008) Let X and Y be two r.v.’s with d.f.’s F and G, respectively.
Then, X ≤ew Y if and only if Dφ1,φ2[X] ≤ Dφ1,φ2[Y ] for all Dφ1,φ2 such that φ2(t) and
φ1φ

−1
2 (t) are convex on t ∈ [0, 1].

Theorem 5.13. Suppose that F = F ′, X ↑SI Y or X ′ ↑SI Y ′ or both hold, h(t) is concave,
and h(A(h−1(t))) is convex, where A(t) = 1− C(ug,t)

1−ug
. Then, Y ≤ew Y

′ and C ≺ C ′ imply
that ΔCoDg,h[Y |X] ≤ ΔCoDg,h[Y

′|X ′] for any g ∈ G.

It is interesting to study also sufficient conditions for the ordering of Δg̃CoDg,h[Y |X]
and Δg̃CoDg,h[Y

′|X ′] by using the excess wealth order among the marginals. This is left
as an open problem.
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6 Interaction between Paired Risks
Recently, Fang and Li (2018) studied how the marginal d.f.’s and the dependence struc-
ture affect the interactions among paired risks under the CoVaR, CoES, ΔCoVaR, and
ΔCoES measures. In this section, we shall establish some novel results for our CoD-risk
measures and distortion risk contribution measures, which generalize the corresponding
ones established in Fang and Li (2018).

Theorem 6.1. Assume that C(u, v) is symmetric, uXg = F (Dg[X ]), and uYg = G(Dg[Y ]).

(i) If X ≤st Y , uXg ≥ uYg , and Y ↑RTI X, we have CoDg,h[X|Y ] ≤ CoDg,h[Y |X ] for any
h ∈ G.

(ii) If X ≤st Y , uXg ≤ uYg , and Y ↑RTD X, we have CoDg,h[X|Y ] ≤ CoDg,h[Y |X ] for
any h ∈ G.

(iii) If X ≤icx Y , uXg ≥ uYg , and C is PDS, we have CoDg,h[X|Y ] ≤ CoDg,h[Y |X ] for
any concave h ∈ G.

(iv) If X ≤icv Y , uXg ≤ uYg , and C is NDS, we have CoDg,h[X|Y ] ≤ CoDg,h[Y |X ] for
any convex h ∈ G.

(v) If X ≤disp Y , uXg ≥ uYg , and C is PDS, we have ΔCoDg,h[X|Y ] ≤ ΔCoDg,h[Y |X]
for any h ∈ G.

(vi) If X ≤disp Y , uXg ≤ uYg , and C is NDS, we have ΔCoDg,h[X|Y ] ≥ ΔCoDg,h[Y |X]
for any h ∈ G.

The next result can be proved easily by using similar arguments as in the proof of
Theorem 5.13, and thus we omit the proof for brevity.

Theorem 6.2. Assume that C(u, v) is symmetric and uXg ≥ uYg . If X ≤ew Y , C(u, v)

is PDS, h is concave, and h(AX(h
−1(t))) is convex, where AX(t) = 1 − C(uX

g ,t)

1−uX
g

, then
ΔCoDg,h[X|Y ] ≤ ΔCoDg,h[Y

′|X ′] for any g ∈ G.

It would be of interest to obtain sufficient conditions for ordering co-risk measures and
risk contribution measures when the copula is asymmetric. This research question is left
as an open problem.

7 Examples
In this section, we present selected examples of the rich classes of conditional distortion
risk measures and distortion risk contribution measures introduced in this paper, to il-
lustrate their generality. In particular, we show that these classes naturally give rise to
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many interesting alternatives to CoVaR, CoES, and MES, simply by suitably choosing
the respective distortion functions. For numerical examples that illustrate and validate
our main comparison results, we refer to the Online Appendix provided as supplementary
material.

Example 7.1. (Dual-power function) Assume Y to be nonnegative and consider the dis-
tortion function h(p) = 1 − (1 − p)k, for k ∈ N

+ and p ∈ [0, 1]; see Eeckhoudt et al.
(2020) and Eeckhoudt and Laeven (2020) and the references therein. Let Ỹ g

i be indepen-
dent copies of the r.v. [Y |X > Dg[X]], for i = 1, . . . , k. According to Definition 3.1, we
then have

CoDg,h[Y |X] =

∫ +∞

0

h(F Y |X>Dg[X](y))dy =

∫ +∞

0

[1− F k
Y |X>Dg[X](y)]dy

= E[max{Ỹ g
1 , . . . , Ỹ

g
k }] = E

[
Ỹ g
k:k

]
,

where Ỹ g
k:k is the maximum order statistic of Ỹ g

1 , . . . , Ỹ
g
k . This means that the CoD-risk

measure can be represented as the expectation of the maximum order statistic computed
from a set of i.i.d. r.v.’s with d.f. FY |X>Dg[X]. Similarly, when h(p) = pk for k ∈ N

+ and
p ∈ [0, 1] (see Wang (1995)),

CoDg,h[Y |X] =

∫ +∞

0

F k
Ỹ g(y)dy = E

[
Ỹ g
1:k

]
,

where Ỹ g
1:k is the minimum order statistic of Ỹ g

1 , . . . , Ỹ
g
k .

Example 7.2. (Powers of dual-power functions) Consider the distortion function h(p) =(
1− (1− p)k

) 1
k , for k ∈ N

+ and p ∈ [0, 1]; see Cherny and Madan (2009). Under the
setting of Example 7.1, we have

CoDg,h[Y |X] =

∫ +∞

0

(
1− F k

Y |X>Dg[X](y)
) 1

k
dy =

∫ +∞

0

F
1
k

Ỹ g
k:k

(y)dy,

where F Ỹ g
k:k

is the survival function associated with the maximum order statistic Ỹ g
k:k aris-

ing from Ỹ g
1 , . . . , Ỹ

g
k defined in Example 7.1. Furthermore, F

1
k

Ỹ g
k:k

is the survival func-

tion associated with the r.v. Y g which is such that the minimum over independent
copies, min{Y g

1, . . . , Y
g
k}, has the same distribution as max{Ỹ g

1 , . . . , Ỹ
g
k }. Similarly, when

h(p) =
(
1− (1− p)

1
k

)k

for k ∈ N
+ and p ∈ [0, 1],

CoDg,h[Y |X] =

∫ +∞

0

(
1− F

1
k

Y |X>Dg[X](y)
)k

dy = E

[
min

{
Ŷ g
1 , . . . , Ŷ

g
k

}]
= E

[
Ŷ g
1:k

]
,

where Ŷ g
1:k is the minimum order statistic of i.i.d. r.v.’s Ŷ g

1 , . . . , Ŷ
g
k and the generic r.v.

Ŷ g is such that max{Ŷ g
1 , . . . , Ŷ

g
k } has the same distribution as Ỹ g.
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Example 7.3. (Absolute deviation function) The absolute deviation principle in Denneberg
(1990) corresponds to the following piecewise linear distortion function:

h(p) =

{
(1 + r)p, 0 ≤ p < 0.5,
r + (1− r)p, 0.5 ≤ p ≤ 1,

0 < r < 1. Then, for a nonnegative r.v. Y ,

CoDg,h[Y |X] =

∫
F

˜Y g (y)∈[0,0.5)
(1 + r)F Ỹ g(y)dy +

∫
F

˜Y g (y)∈[0.5,1]

[
r + (1− r)F Ỹ g(y)

]
dy

= (1 + r)E[Ỹ g] + rF−1

Ỹ g
(0.5)− 2r

∫
F

˜Y g (y)∈[0.5,1]
F Ỹ g(y)dy.

Example 7.4. (Gini) Assume Y to be nonnegative and consider h(p) = (1 + r)p− rp2,
for r ∈ [0, 1] and p ∈ [0, 1]; see Denneberg (1990) for its connection to the Gini coefficient.
One can verify that in this case,

CoDg,h[Y |X] = (1 + r)

∫ +∞

0

F Y |X>Dg[X](y)dy − r

∫ +∞

0

F 2
Y |X>Dg[X](y)dy

= (1 + r)E[Ỹ g]− rE[min{Ỹ g
1 , Ỹ

g
2 }]

= E[Ỹ g] + r
(
E[Ỹ g]− E[Ỹ g

1:2]
)
= E[Ỹ g] + r

(
E[Ỹ g

2:2]− E[Ỹ g]
)
,

where Ỹ g
1:2 and Ỹ g

2:2 are the minimum and maximum of the independent copies Ỹ g
1 and Ỹ g

2 ,
respectively.

Other examples occur when the distortion function h is taken to be the well-known
incomplete beta function (Wirch and Hardy (2001)), the lookback distortion (Hürlimann
(2004)) given by

h(p) = pr (1− r log(p)) , r ∈ (0, 1],

or the Esscher-Girsanov transform, which can be expressed as (Goovaerts and Laeven
(2008) and Labuschagne and Offwood (2010))

h(p) = Φ
(
Φ−1(p) + hv

)
, h ∈ R, v > 0,

with Φ the standard normal d.f.
The following example provides explicit expressions for the distortion risk contribution

measures of Definition 3.3, under the setup of Example 7.1.

Example 7.5. (i) Under the setup of Example 7.1, we have

ΔCoDg,h[Y |X ] = E[Ỹ g
k:k]− E [Yk:k] ,

where Yk:k is the maximum order statistic of Y1, . . . , Yk with Yi being independent
copies of Y , for i = 1, . . . , k.
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(ii) Similarly, under the setup of Example 7.1,

Δg̃CoDg,h[Y |X ] = E[Ỹ g
k:k]− E[Ỹ g̃

k:k],

where Ỹ g
k:k and Ỹ g̃

k:k are the maximum order statistics of Ỹ g
1 , . . . , Ỹ

g
k and Ỹ g̃

1 , . . . , Ỹ
g̃
k ,

respectively, and Ỹ g̃
i are independent copies of the r.v. [Y |X > Dg̃[X]], for i =

1, . . . , k.

Explicit expressions for the distortion risk contribution measures corresponding to
Examples 7.2–7.4 occur mutatis mutandis.

In the following three examples, we provide closed-form expressions of the representa-
tion in Theorem 3.5 under various distributional assumptions on the pair (X, Y ).

Example 7.6. (Bivariate normal distribution) Assume that (X, Y ) ∼ N(µ,Σ), where
µ = (μX , μY )

�, μX , μY ∈ R,

Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
,

σX , σY > 0, and ρ ∈ (−1, 1). Then, the copula of (X, Y ) is given by

Cρ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
e
− s21−2ρs1s2+s22

2(1−ρ2) ds1ds2, (4)

where Φ−1(·) is the inverse of the standard normal d.f. It can be calculated that

G−1
(
F−1
V |U>ug

(p)
)
= μY + σY Φ

−1
(
F−1
V |U>ug

(p)
)
,

where
FV |U>ug(v) =

v − Cρ(ug, v)

1− ug
and ug = F (Dg[X ]). (5)

Then, by applying Theorem 3.5, we obtain

CoDg,h[Y |X] = μY + σY

∫ 1

0

Φ−1
(
F−1
V |U>ug

(p)
)
dh(p). (6)

In particular, we have the following two special cases. Let g(p) = 1(1−α,1](p). If

(i) h(p) = 1(1−β,1](p), then (6) simplifies to

CoVaRα,β [Y |X] = μY + σYΦ
−1

(
F−1
V |U>α(β)

)
;

cf. Mainik and Schaanning (2014).
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(ii) h(p) = min{1, p
1−β

}, then (6) simplifies to

CoESα,β[Y |X] = μY +
σY

1− β

∫ 1

β

Φ−1
(
F−1
V |U>α(p)

)
dp.

Example 7.7. (Bivariate log-normal distribution) Assume that (logX, log Y ) ∼ N(µ,Σ),
where µ and Σ are as in Example 7.6. Then, the copula of (X, Y ) is given in (4).
Furthermore,

G−1
(
F−1
V |U>ug

(p)
)
= e

μY +σY Φ−1
(
F−1
V |U>ug

(p)
)
,

where FV |U>ug(v) and ug are as in (5). From Theorem 3.5,

CoDg,h[Y |X] =

∫ 1

0

e
μY +σY Φ−1

(
F−1
V |U>ug

(p)
)
dh(p). (7)

In particular, with g(p) = 1(1−α,1](p),

(i) if h(p) = 1(1−β,1](p), (7) yields CoVaRα,β[Y |X ] = e
μY +σY Φ−1

(
F−1
V |U>α

(β)
)
.

(ii) if h(p) = min{1, p
1−β

}, (7) yields CoESα,β[Y |X ] = 1
1−β

∫ 1

β
e
μY +σY Φ−1

(
F−1
V |U>α

(p)
)
dp.

Example 7.8. (Bivariate Student t distribution) Assume that (X, Y ) ∼ tν(0,Σ), where

Σ =

(
ρ 1
1 ρ

)
, ρ ∈ (−1, 1), and ν > 0 is the common degrees of freedom of the marginals.

Then, the copula of (X, Y ) is given by

Cρ,ν(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√
1− ρ2

{
1 +

s21 − 2ρs1s2 + s22
ν(1 − ρ2)

}− ν+2
2

ds1ds2,

where t−1
ν (·) is the inverse of Student t d.f. with ν degrees of freedom. When ν = 1 and

ν = 2, we can derive explicit formulas of CoD-risk measures, as follows:

(i) If ν = 1, then

CoDg,h[Y |X] =

∫ 1

0

tan

(
π

(
F−1
V |U>ug

(p)− 1

2

))
dh(p),

where FV |U>ug(v) =
v−Cρ,ν(ug ,v)

1−ug
.

(ii) If ν = 2, then

CoDg,h[Y |X] =

∫ 1

0

√
2
(
F−1
V |U>ug

(p)− 1
2

)
√
F−1
V |U>ug

(p)
(
1− F−1

V |U>ug
(p)

)dh(p).
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8 Conclusions
We have introduced the rich classes of conditional distortion (CoD) risk measures and
distortion risk contribution (ΔCoD) measures, which include, and significantly extend,
many of the existing measures proposed in the academic literature related to systemic
risk. We have analyzed their properties and representations. We have given sufficient
conditions for two random vectors to be ordered by the proposed measures, using the
conventional stochastic order, the increasing convex [concave] order, the dispersive order,
and the excess wealth order of marginals, under explicit assumptions of positive or negative
dependence, distortion functions, and threshold quantiles. Several examples have been
provided to illustrate our theoretical results.

This paper represents, of course, just the first step towards a systematic analysis of the
class of conditional distortion risk measures, and opens up a novel area of investigation.
Problems related to statistical inference, probabilistic analysis and evaluation, and refined
worst case analysis are currently open.

This work is the second in a triplet on systemic risk by the same authors. Dhaene et al.
(2020) introduces and investigates some new stochastic orders that can be applied in the
context of systemic risk evaluation, whereas the present article introduces conditional
distortion risk measures applicable in this context. In a future study, we will combine the
results of both papers to attribute systemic risk to the different participants in a given
market or economy with dependent risks.
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Appendix

A Proofs

A.1 Proof of Theorem 3.5

Proof. Since F is continuous and strictly increasing, (U, V ) ∼ C, and the marginals of C
are uniform, it follows that P(U > ug) = P(X > Dg[X]). Then, the d.f. of [Y |X > Dg[X]]
can be written as

FY |X>Dg[X](y) = P(Y ≤ y|X > Dg[X]) =
P(Y ≤ y,X > Dg[X])

P(X > Dg[X ])

=
P(Y ≤ y)− P(Y ≤ y,X ≤ Dg[X])

1− P(X ≤ Dg[X ])
=
G(y)− C(F (Dg[X]), G(y))

1− F (Dg[X ])

= FV |U>ug(G(y)),

which in turn implies that F−1
Y |X>Dg[X](p) = G−1(F−1

V |U>ug
(p)) by using the argument

that the event {FY |X>Dg[X](y) ≥ p} is equivalent to {FV |U>ug(G(y)) ≥ p}, for any
p ∈ (0, 1). Hence, by applying Fubini’s theorem and a change of variable (see Theo-
rem 6 in Dhaene et al., 2012) one can verify that

CoDg,h[Y |X] = −
∫ 0

−∞

[
1− h(1− FY |X>Dg[X](y))

]
dy +

∫ +∞

0

h(1− FY |X>Dg[X](y))dy

=

∫ 1

0

F−1
Y |X>Dg[X](1− p)dh(p) =

∫ 1

0

F−1
Y |X>Dg[X](p)dh(p)

=

∫ 1

0

G−1(F−1
V |U>ug

(p))dh(p).

Thus, the proof is established.

A.2 Proof of Theorem 4.1

Proof. Let (U, V ) ∼ C and (U ′, V ′) ∼ C ′. From Theorem 3.5, we have

CoDg,h[Y |X] =

∫ 1

0

G−1(F−1
V |U>ug

(p))dh(p), CoDg,h′[Y ′|X ′] =
∫ 1

0

G−1(F−1
V ′|U ′>ug

(p))dh′(p),

where h′(p) = 1− h′(1− p) for p ∈ [0, 1].
We first show that CoDg,h[Y |X] ≤ CoDg,h[Y

′|X ′]. Since h is increasing, this reduces
to showing that G−1(F−1

V |U>ug
(p)) ≤ G−1(F−1

V ′|U ′>ug
(p)), i.e., F−1

V |U>ug
(p) ≤ F−1

V ′|U ′>ug
(p) for
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p ∈ (0, 1). Thus, it suffices to show that FV |U>ug(t) ≥ FV ′|U ′>ug(t) for t ∈ (0, 1), that is,

t− C(ug, t)

1− ug
≥ t− C ′(ug, t)

1− ug
,

which is in fact guaranteed by the condition C ≺ C ′.
On the other hand, we can verify that h(0) = h′(0) = 0, h(1) = h′(1) = 1 and

h′(p) ≤ h(p) because of h(p) ≤ h′(p) for p ∈ [0, 1]. Then, by using integration by parts,
one has

CoDg,h[Y
′|X ′]− CoDg,h′[Y ′|X ′] =

∫ 1

0

G−1(F−1
V ′|U ′>ug

(p))d(h(p)− h′(p))

=

∫ 1

0

(h′(p)− h(p))dG−1(F−1
V ′|U ′>ug

(p)) ≤ 0,

which yields that CoDg,h[Y
′|X ′] ≤ CoDg,h′[Y ′|X ′]. Hence, the proof is established.

A.3 Proof of Theorem 4.4

Proof. We only give the proof of (i). The proof of (ii) can be established in a similar
manner. We assume that ug ≤ ug′ and Y ↑RTI X (the other two cases follow similarly).
Let U = F (X) and V = G(Y ). In light of Theorem 3.5, we have

CoDg,h[Y |X] =

∫ 1

0

G−1(F−1
V |U>ug

(p))dh(p).

By making use of a change of variable p = FV |U>ug(t), we obtain

CoDg,h[Y |X] =

∫ 1

0

G−1(t)dh
(
F−1
V |U>ug

(t)
)
=

∫ 1

0

G−1(t)dh

(
t− C(ug, t)

1− ug

)
=

∫ 1

0

G−1(t)dh(Aug(t)),

where Aug(t) = 1− C(ug,t)
1−ug

. Similarly, by letting U ′ = F ′(X ′) and V ′ = G′(Y ′), we have

CoDg′,h′[Y ′|X ′] =
∫ 1

0

G′−1(t)dh′(Aug′ (t)),

where Aug′ (t) = 1−C′(ug′ ,t)
1−ug′

. SinceG = G′, h′(Aug′ (0)) = h(Aug′ (0)) = 0, and h′(Aug′ (1)) =

h(Aug′ (1)) = 1, we have

CoDg′,h′[Y ′|X ′]− CoDg,h[Y |X] =

∫ 1

0

G−1(t)d
[
h′(Aug′ (t))− h(Aug(t))

]
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=

∫ 1

0

[
h(Aug(t))− h′(Aug′ (t))

]
dG−1(t). (8)

In order to show the nonnegativity of (8), it suffices to show that h(Aug(t)) ≥ h′(Aug′ (t)),
for all t ∈ [0, 1]. Since h ≤ h′, one has h(Aug(t)) ≥ h′(Aug(t)), for all t ∈ [0, 1]. Thus, it is
enough to show that h′(Aug(t)) ≥ h′(Aug′ (t)), for all t ∈ [0, 1], that is,

C ′(ug′, t)
1− ug′

≥ C(ug, t)

1− ug
. (9)

Taking into account that C ≺ C ′, we have that

C ′(ug′, t)
1− ug′

≥ C(ug′, t)

1− ug′
. (10)

Thus, by using (10), (9) can be established if we can show that

C(ug′, t)

1− ug′
≥ C(ug, t)

1− ug
. (11)

Since ug ≤ ug′ and Y ↑RTI X, it holds that

C(ug′, t)

1− ug′
= P(V > t|U > ug′) ≥ P(V > t|U > ug) =

C(ug, t)

1− ug
,

which proves (11) and thus the desired result is obtained.

A.4 Proof of Lemma 4.6

Proof. The proof for the usual stochastic order and the increasing convex order can be
found in Sordo and Ramos (2007). We only prove the characterization of the increasing
concave order.

Assume that X ≤icv Y . According to Theorem 4.A.1 in Shaked and Shanthikumar
(2007), we know that X ≤icv Y is equivalent to −X ≥icx −Y . Then, by using the
equivalent characterization of the increasing convex order, it follows that

−X ≥icx −Y ⇐⇒
∫ 1

0

F−1
−X(t)dφ(t) ≥

∫ 1

0

F−1
−Y (t)dφ(t),

for all increasing convex φ : [0, 1] → [0, 1]. Since F is continuous and strictly increasing,
we have ∫ 1

0

F−1
−X(t)dφ(t) = −

∫ 1

0

F−1(1− t)dφ(t),
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and similarly for −Y . Thus, we have

X ≤icv Y ⇐⇒ −X ≥icx −Y ⇐⇒
∫ 1

0

F−1(1− t)dφ(t) ≤
∫ 1

0

G−1(1− t)dφ(t),

that is

X ≤icv Y ⇐⇒
∫ 1

0

F−1(t)dψ(t) ≤
∫ 1

0

G−1(t)dψ(t),

where ψ(t) := 1− φ(1− t) is increasing and concave on [0, 1]. Hence, the proof is estab-
lished.

A.5 Proof of Theorem 4.7

Proof. We only give the proof for the increasing convex ordering between Y and Y ′.
The proofs for the usual stochastic ordering and the increasing concave ordering can be
obtained in a similar manner by using Lemma 4.6. Furthermore, we only consider the
case of X ↑SI Y since the proof can be carried out similarly for X ′ ↑SI Y ′.

Let U = F (X) and V = G(Y ). In light of Theorem 3.5, we have

CoDg,h[Y |X] =

∫ 1

0

G−1(F−1
V |U>ug

(p))dh(p).

By a change of variable p = FV |U>ug(t), we obtain

CoDg,h[Y |X ] =

∫ 1

0

G−1(t)dh(A(t)), (12)

where A(t) = 1 − C(ug,t)
1−ug

. Note that A(t) is increasing and convex in t ∈ [0, 1] since
dA(t)
dt

sgn
= −∂C(ug ,t)

∂t
= P(U > ug|V = t) is nonnegative and increasing in t ∈ [0, 1] because

X ↑SI Y . On the other hand, it is easy to verify that h is also increasing convex due to the
increasing concavity of h. Hence, we know h(A(t)) is increasing and convex in t ∈ [0, 1].
Similarly, by F = F ′ we can obtain

CoDg,h′[Y |X ] =

∫ 1

0

G′−1(t)dh′(B(t)),

where B(t) = 1− C′(ug ,t)
1−ug

. The desired result boils down to showing that∫ 1

0

G−1(t)dh(A(t)) ≤
∫ 1

0

G′−1(t)dh′(B(t)). (13)
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On the one hand, by using Lemma 4.6, Y ≤icx Y
′ implies that∫ 1

0

G−1(t)dh(A(t)) ≤
∫ 1

0

G′−1(t)dh(A(t)). (14)

On the other hand, C ≺ C ′ implies that A(t) ≥ B(t), and thus h(A(t)) ≥ h(B(t)) ≥
h′(B(t)) since h ≤ h′. Because h(A(0)) = h′(B(0)) = 0 and h(A(1)) = h′(B(1)) = 1, we
then have∫ 1

0

G′−1(t)d
[
h(A(t))− h′(B(t))

]
=

∫ 1

0

[
h′(B(t))− h(A(t))

]
dG′−1(t) ≤ 0,

which means that ∫ 1

0

G′−1(t)dh(A(t)) ≤
∫ 1

0

G′−1(t)dh′(B(t)). (15)

Upon combining (14) and (15), the desired result (13) is established.

A.6 Proof of Theorem 4.11

Proof. Note that if (X, Y ) is PDS [NDS], then X ↑SI [SD] Y and Y ↑SI [SD] X. The proof
is then easily obtained by combining the proof methods in Theorems 4.4 and 4.7.

A.7 Proof of Lemma 5.1

Proof. The proof can be obtained by using similar arguments as in Lemma 14 in Sordo et al.
(2018), and is thus omitted here for brevity.

A.8 Proof of Theorem 5.2

Proof. We only give the proof of (i) since the proof of (ii) is similar by applying Lemma
5.1(i). Suppose that X ↑SI Y . According to Theorem 3.8 and the proof of Theorem 3.5,
we have

ΔCoDg,h[Y |X] =

∫ 1

0

[
F−1
Yh

(p)−G−1(p)
]
dh(p),

ΔCoDg,h[Y
′|X ′] =

∫ 1

0

[
F−1
Y ′
h′
(p)−G′−1(p)

]
dh(p),
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where Yh = [Y |X > Dg[X]] and Y ′
h′ = [Y ′|X ′ > Dg[X]] are the distorted r.v.’s induced

from Y and Y ′ by the concave distortion functions

h(p) =
C(F (Dg[X]), 1− p)

1− F (Dg[X])
and h′(p) =

C ′(F (Dg[X]), 1− p)

1− F (Dg[X ])
, p ∈ [0, 1]. (16)

Since C ≺ C ′, it clearly holds that h(p) ≤ h′(p) for all p ∈ [0, 1]. From Y ≤disp Y
′ and

Lemma 14 in Sordo et al. (2018), we have

F−1
Yh

(p)−G−1(p) ≤ F−1
Y ′
h′
(p)−G′−1(p), for p ∈ (0, 1),

which yields the desired result since h(p) is increasing in p ∈ [0, 1].

A.9 Proof of Theorem 5.5

Proof. We only give the proof for (i) since the proof can be established in a similar manner
for (ii). According to Theorem 3.8 and the proof of Theorem 3.5, we have

ΔCoDg,h[Y |X] =

∫ 1

0

[
F−1
Y
ĥ
(p)−G−1(p)

]
dh(p),

where Yĥ = [Y |X > Dg[X]] is a distorted r.v. induced from Y by the concave distortion
function

ĥ(p) =
C(F (Dg[X]), 1− p)

1− F (Dg[X])
, p ∈ [0, 1].

Then, from Lemma 5.4, we have Y ≤hr Yĥ. Since Y is DFR, it follows that Y ≤disp Yĥ upon
invoking Theorem 3.B.20(a) of Shaked and Shanthikumar (2007). Therefore, it holds that

G−1(p2)−G−1(p1) ≤ F−1
Y
ĥ
(p2)− F−1

Y
ĥ
(p1), for 0 < p1 < p2 < 1,

which implies that F−1
Y
ĥ
(p)−G−1(p) is increasing in p ∈ (0, 1). Since h(0) = h′(0) = 0 and

h(1) = h′(1) = 1, we then have that

ΔCoDg,h[Y |X]−ΔCoDg,h′[Y |X] =

∫ 1

0

[
F−1
Y
ĥ
(p)−G−1(p)

]
d[h(p)− h′(p)]

=

∫ 1

0

[h′(p)− h(p)]d
[
F−1
Y
ĥ
(p)−G−1(p)

]
≤ 0,

which yields the desired result.
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A.10 Proof of Theorem 5.8

Proof. By using the proof method of Theorem 4.11, the result can be obtained from The-
orem 5.3.

A.11 Proof of Theorem 5.9

Proof. In light of Theorem 3.8 and F = F ′, one can observe that

Δg̃CoDg,h[Y |X] =

∫ 1

0

[
F−1
Y
ĥ1

(p)− F−1
Y
ĥ2

(p)
]
dh(p),

Δg̃CoDg,h[Y
′|X ′] =

∫ 1

0

[
F−1
Y ′
ĥ1

(p)− F−1
Y ′
ĥ2

(p)

]
dh(p),

where Yĥ1
= [Y |X > Dg[X]] and Yĥ2

= [Y |X > Dg̃[X]] are the distorted r.v.’s induced
from Y by the concave distortion function (this is due to the fact that C is PDS implies
that Y ↑SI X)

ĥ1(p) =
C(ug, 1− p)

1− ug
and ĥ2(p) =

C(ug̃, 1− p)

1− ug̃
, p ∈ [0, 1], (17)

and Y ′
ĥ1

= [Y ′|X ′ > Dg[X
′]] and Y ′

ĥ2
= [Y ′|X ′ > Dg̃[X

′]] are also the distorted r.v.’s
induced from Y ′ by (17).

On the other hand, the condition that C is PDS implies that V is right tail increasing
in U if (U, V ) ∼ C. Thus, we know

C(u, 1− p)

1− u
= P(V > 1− p|U > u)

is increasing in u ∈ [0, 1) for p ∈ [0, 1]. Therefore, it follows that ĥ1(p) ≥ ĥ2(p) for
p ∈ [0, 1] because of ug ≥ ug̃. Then, the desired result can be obtained from Lemma 14
in Sordo et al. (2018).

A.12 Proof of Theorem 5.11

Proof. Upon using Lemma 5.1(ii), the proof can be established in a similar manner to
that of Theorem 5.9 and is thus omitted here for brevity.
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A.13 Proof of Theorem 5.13

Proof. Assume that X ↑SI Y (the case X ′ ↑SI Y ′ can be dealt with analogously). Note
that

ΔCoDg,h[Y |X] =

∫ 1

0

G−1(t)dh(A(t))−
∫ 1

0

G−1(t)dh(t),

ΔCoDg,h[Y
′|X ′] =

∫ 1

0

G′−1(t)dh(B(t))−
∫ 1

0

G′−1(t)dh(t).

Since h(t) is concave and h(A(h−1(t))) is convex, it follows from Lemma 5.12 that

ΔCoDg,h[Y |X] ≤
∫ 1

0

G′−1(t)dh(A(t))−
∫ 1

0

G′−1(t)dh(t)

≤
∫ 1

0

G′−1(t)dh(B(t))−
∫ 1

0

G′−1(t)dh(t) = ΔCoDg,h′[Y ′|X ′],

where the last inequality is due to the fact that C ≺ C ′ implies
∫ 1

0
G′−1(t)dh(A(t)) ≤∫ 1

0
G′−1(t)dh(B(t)). Hence, the proof is established.

A.14 Proof of Theorem 6.1

Proof. Proof of (i) and (ii): By using (12), the desired result is equivalent to showing
that ∫ 1

0

F−1(t)dh(Ã(t)) ≤
∫ 1

0

G−1(t)dh(A(t)),

where A(t) = 1 − C(uX
g ,t)

1−uX
g

and Ã(t) = 1 − C(t,uY
g )

1−uY
g

. Since C(u, v) is symmetric, we have

Ã(t) = 1− C(uY
g ,t)

1−uY
g

. By using X ≤st Y , we have∫ 1

0

F−1(t)dh(Ã(t)) ≤
∫ 1

0

G−1(t)dh(Ã(t)).

On the other hand, in light of uXg ≥ [≤]uYg and Y ↑RTI [RTD] X, one can verify that
A(t) ≤ Ã(t). Thus, it holds that∫ 1

0

G−1(t)dh(Ã(t))−
∫ 1

0

G−1(t)dh(A(t)) =

∫ 1

0

[h(A(t))− h(Ã(t))]dG−1(t) ≤ 0.

Hence, the proof is completed.
Proof of (iii) and (iv): In light of the proof of (i) and (ii) and the proof of Theorem

4.7, it is easy to see that both Ã(t) and A(t) are increasing and convex due to C being
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PDS. Besides, A(t) ≤ Ã(t) due to uXg ≥ uYg and C being PDS. Thus, the concavity of
h implies that h(A(t)) and h(Ã(t)) are increasing and convex. Then, the proof of (iii) is
completed by using Lemma 4.6 and the second part of the proof of (i) and (ii). Result
(iv) can be proved in a similar manner and thus is omitted here.

Proof of (v) and (vi): The proof can be obtained by using that of (i) and (ii), Theorem
5.2, and Theorem 5.3.
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