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Index options: a model-free approach
Dow Jones option prices and comonotonic upper bounds
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Stocks, the market index and options
I The usual set up: �

Ω,F , (Ft )0�t�T ,P
�

I Current time is denoted by 0.
I The stock market:

Xi (t) = price of (dividend paying) stock i at time t

I i = 1, 2, . . . , n.
I 0 � t � T .
I Xi (t) � 0 is known at time t.

I European-type call options on stock i :
I Expiration date: T .
I Strike price: K � 0.
I Pay-o¤ at time T :

(Xi (T )�K )+
I (x)+ = max (x , 0).
I Price at time 0:

Ci [K ,T ]
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Stocks, the market index and options
I S(t) = weighted sum of stock prices:

S(t) = w1 X1(t) + � � �+ wn Xn(t)
I wi = positive weight factors.

I European-type index call options:
I Expiration date: T .
I Strike price: K � 0.
I Pay-o¤ at time T :

(S(T )�K )+
I Price at time 0:

C [K ,T ]

I Problem to be solved:
I Suppose that for each stock i , we observe the prices
Ci
�
Kij ,T

�
of stock options for di¤erent values of j .

I What can we conclude about the price C [K ,T ] of the index
option with strike K?
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Stocks, the market index and options
I Further assumptions about the market:

I The market is arbitrage-free.
I There exists an equivalent martingale measure Q such that the
current price of any traded contingent claim with pay-o¤ A(T )
at time T is given by

e�rT EQ [A(T )]

I r = time-0 risk-free interest rate to expiration T .
I Stock option prices:

Ci [K ,T ] = e�rT EQ
�
(Xi (T )�K )+

�
I Index option prices:

C [K ,T ] = e�rT EQ
�
(S(T )�K )+

�
I Notational conventions:

I Denote Xi (T ) and S(T ) by Xi and S , respectively.
I Denote Ci [K ,T ] and C [K ,T ] by Ci [K ] and C [K ].
I Ommit Q to denote expectations in the Q-world.
I FXi and FS are the cdf�s of Xi and S in the Q-world. 6 / 58



Stocks, the market index and options

I The in�nite market:

Assumption: For each i , Ci [K ] traded for any K � 0

I The �nite market:

Assumption : For each i , Ci [K ] only traded

for strikes K = Ki ,0,Ki ,1, . . . ,Ki ,mi

I Model-free approach vs. model-based approach:

I Model-free: Prices Ci [K ] are observed in the market.
I Model-based: Prices Ci [K ] follow from an assumed Q.
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Convex order

I R.v.�s are assumed to have �nite means.
I Convex order:
A r.v. X is said to precede a r.v. Y in convex order sense if

E [X ] = E [Y ] and E
�
(X �K )+

�
� E

�
(Y �K )+

�
, for all K

I Notation: X �cx Y .

I Other characterization:

X �cx Y ,
�

E
�
(X �K )+

�
� E

�
(Y �K )+

�
E
�
(K � X )+

�
� E

�
(K � Y )+

� , for all K
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Convex order
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Inverse cdf�s

I The usual choice:

F�1X (p) = inf fx 2 R j FX (x) � pg

I Alternative choice:

F�1+X (p) = sup fx 2 R j FX (x) � pg

I The α - inverse in case p 2 (0, 1):

F�1(α)X (p) = αF�1X (p) + (1� α)F�1+X (p), α 2 [0, 1]

I For strictly increasing cdf�s:

F�1(α)X (p) = F�1X (p)
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Inverse cdf�s
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Comonotonicity
De�nition and notations

I U is a r.v. which is uniformly distributed on (0, 1).
I De�nition:
The random vector (Y1,Y2, . . . ,Yn) is comonotonic if

(Y1,Y2, . . . ,Yn)
d
=
�
F�1Y1 (U),F

�1
Y2
(U), . . . ,F�1Yn (U)

�
I Notations:

S = w1X1 + � � �+ wnXn
Sc = w1F�1X1 (U) + � � �+ wnF

�1
Xn
(U)

I The weights wi � 0.
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Comonotonicity
Properties of comonotonic sums

I α-inverses of Sc :

F�1(α)S c (p) =
n

∑
i=1
wiF

�1(α)
Xi

(p)

I Stop-loss premiums of Sc for K 2
�
F�1+

Sc
(0),F�1

Sc
(1)
�
:

E
�
(Sc �K )+

�
=

n

∑
i=1
wiE

�
(Xi �K �i ))+

�
I

K �i = F
�1(αK )
Xi

(FS c (K ))
I

αK 2 [0, 1] is such that
n

∑
i=1

wiK
�
i = K

I

FSc (K ) = sup

(
p 2 [0, 1] j

n

∑
i=1

wiF
�1
Xi
(p) � K

)
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Comonotonicity
Comonotonicity and convex order

I Convex order relation:

n

∑
i=1
wiXi �cx

n

∑
i=1
wiF�1Xi (U)

I Generalized convex order relation:

Xi �cx Yi for i = 1, . . . , n)
n

∑
i=1
wiXi �cx

n

∑
i=1
wiF�1Yi (U)
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The in�nite market case
From option prices to risk neutral distributions

I Stock i :

Xi = price of stock i at time T � 0, i = 1, 2, . . . , n

I The index:
S = w1X1 + � � �+ wnXn

I The comonotonic index:

Sc = w1F�1X1 (U) + � � �+ wnF
�1
Xn
(U)
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The in�nite market
From option prices to risk neutral distributions

I Stock option prices:

Ci [K ] = e�rT E
�
(Xi �K )+

�
I Index option prices:

C [K ] = e�rT E
�
(S �K )+

�
I From option prices Ci to risk neutral distribution FXi :

FXi (x) = 1+ e
rT C 0i [x+]

I From risk neutral distribution FXi to option prices Ci :

Ci [K ] = e�rT
Z ∞

K
(1� FXi (x)) dx
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The in�nite market
From option prices to risk neutral distributions

I The in�nite market case:

Assumption: For any i , Ci [K ] traded for all K � 0

I Equivalent characterisation:

Assumption: For any i , FXi (x) known for all x � 0

I In the in�nite market case, we know the cdf of Sc .
I Knowledge of all prices Ci [K ] does not allow us to specify the
multivariate distribution FX (x) of X = (X1,X2, . . . ,Xn).

I The put-call parity:

Ci [K ] + e�rTK = Pi [K ] + e�rTE [Xi ]
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The in�nite market
An upper bound for the index option price

I Goal: Determine an upper bound for the index option
price C [K ] in terms of observed stock option prices.

I Theorem:

C [K ] � e�rTE
�
(Sc �K )+

� not.
= C c [K ]

I When K � F�1+S c (0):

C [K ] = C c [K ] =
n

∑
i=1
wi Ci [0]� e�rTK

I When K � F�1S c (1):

C [K ] = C c [K ] = 0

I In the sequel, we always assume that

K 2
�
F�1+S c (0),F�1S c (1)

�
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The in�nite market
An upper bound for the index option price

I Theorem: "C c [K ] is a l.c. of stock option prices."

C c [K ] =
n

∑
i=1
wi Ci [K �i ]

I with
K �i = F

�1(αK )
Xi

(FS c (K ))

I αK determined from

n

∑
i=1

wiK
�
i = K

I and FS c (K ) from

FS c (K ) = sup

(
p 2 [0, 1] j

n

∑
i=1

wiF
�1
Xi
(p) � K

)
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The in�nite market
An upper bound for the index option price

I Theorem: "C c [K ] is the price of a static superhedging
strategy for the index option C [K ]."

I Consider the following strategy:

I At time 0, for each stock i , buy wi stock options Ci [K �i ].
I Hold these calls until they expire at time T .

I The pay-o¤ of this strategy super-replicates the pay-o¤ of the
index option C [K ]: 

n

∑
i=1

wi Xi �K
!
+

�
n

∑
i=1

wi (Xi �K �i )+

I The price of this strategy is given by the comonotonic index
option price C c [K ].
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The in�nite market
The cheapest super-replicating strategy

I Question: Can we improve the upper bound for C [K ] by
looking for the price of a cheaper super-replicating strategy?

I A general class of investment strategies I :
I At time 0, for each stock i , calls Ci [y ] can be bought or sold
for any y � 0.

I Hold the taken positions until time T .
I We describe any such investment strategy by a vector of
functions ν � (ν1, ν2, . . . , νn), with

νi (y) = number of purchased calls on i with strike � y

I Assumption: Each function νi is a r.c. jump function with
νi (y) = 0 if y < 0 and with only a �nite number of jumps
(upwards or downwards) on [0,∞).
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The in�nite market
The cheapest super-replicating strategy

I Price of the investment strategy ν 2 I :

Price [ν] =
n

∑
i=1

Z +∞

�∞
Ci [y ] dνi (y)

I Pay-o¤ of the investment strategy ν 2 I at time T :

Pay-o¤ [ν,X ] =
n

∑
i=1

Z +∞

�∞
(Xi � y)+ dνi (y)

22 / 58



The in�nite market
The cheapest super-replicating strategy

I The investment strategy ν�: For i = 1, 2, . . . , n,

ν�i (y) =
�
0 y < K �i
wi y � K �i

I with
K �i = F

�1(αK )
Xi

(FS c (K ))

I and αK determined from
n

∑
i=1

wiK
�
i = K

I The price of ν�:

Price [ν�] =
n

∑
i=1
wi Ci [K �i ] = C

c [K ]

I The pay-o¤ of ν� :

Pay-o¤ [ν�,X ] =
n

∑
i=1
wi (Xi �K �i )+ 23 / 58



The in�nite market
The cheapest super-replicating strategy

I The class CK :

CK =
(

ν 2 I j
 

n

∑
i=1
wi xi �K

!
+

� Pay-o¤ [ν, x ] for all x

)

I �for all x�means

�for all x with xi 2 Support [Xi ] �

I Any ν 2 CK is a super-replicating strategy:

P
�
(S �K )+ � Pay-o¤ [ν,X ]

�
= 1
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The in�nite market
The cheapest super-replicating strategy

I Some elements of CK :
I Consider the investment strategy ν given by

νi (y) =
�
0, y < Ki
wi y � Ki

with
n

∑
i=1

wi Ki � K

I This investment strategy is an element of CK .
I In particular, we �nd that

ν� 2 CK
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The in�nite market
The cheapest super-replicating strategy

I Theorem:

min
ν2CK

Price [ν] = Price [ν�] = C c [K ]

I Important remark:

I Suppose that the index option C [K ] is not traded in the
market.

I In case this option is sold over-the-counter, then C c [K ] is a
reasonable price:

I The seller can super-replicate the pay-o¤ by buying ν�.
I The buyer cannot �nd a cheaper super-replicating strategy.

26 / 58



The in�nite market
The least upper bound

I Dn = the class of all n - dimensional cdf�s F on the
non-negative orthant of Rn.

I The marginal cdf�s of F 2 Dn are denoted by Fi ,
i = 1, 2, . . . , n.

I The Fréchet class Rn:

Rn = fF 2 Dn j Fi = FXi , i = 1, . . . , ng

I Equivalent characterization of Rn:

Rn =
n
F 2 Dn j e�rTEFi

�
(Xi � y)+

�
= Ci [y ] , for all i , y

o
I A comonotonic element in Rn:

The cdf of (F�1X1 (U),F
�1
X2
(U), . . . ,F�1Xn (U)) belongs to Rn
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The in�nite market
The least upperbound

I Theorem:

max
F2Rn

e�rTEF

" 
n

∑
i=1
wiXi �K

!
+

#
= C c [K ]

I Interpretation:

I C c [K ] is the lowest upper bound for the index option price
with pay-o¤ (∑ni=1 wiXi �K )+ in the class of all models
which are consistent with the observed stock option prices
Ci [y ], for all i = 1, 2, . . . , n and y � 0.

I C c [K ] is reached when (X1,X2, . . . ,Xn) is comonotonic.
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The in�nite market
Computational aspects

I Suppose that for any stock i , the cdf FXi is strictly increasing
on (F�1+Xi

(0),F�1Xi (1)) and continuous on R.
I The comonotonic index option price C c [K ] is then given by

C c [K ] =
n

∑
i=1
wi Ci

h
F�1Xi (FS c (K ))

i
I FS c (K ) is the unique solution of

n

∑
i=1
wiF�1Xi (FS c (K )) = K

I Example: The Black & Scholes model.
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The �nite market
Traded options and approximations - Stock options

I Traded calls for stock i , (i = 1, 2, . . . n):

Ci [Ki ,0] ,Ci [Ki ,1] , . . . ,Ci [Ki ,mi ]

I The chain of strikes:

0 = Ki ,0 < Ki ,1 < Ki ,2 < � � � < Ki ,mi < F�1Xi (1)

I We assume that F�1Xi (1) is �nite and known:

F�1Xi (1)
not.
= Ki ,mi+1 < ∞

I Stock option prices:

Ci [Ki ,j ] = e�rT E
�
(Xi �Ki ,j )+

�
, j = 0, 1, . . . ,mi + 1

I For each i , de�ne the function Ci [K ]:

Ci [K ] = e�rT E
�
(Xi �K )+

�
, for all K � 0

30 / 58



The �nite market
Traded options and approximations - Walt Disney
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The �nite market
Traded options and approximations - Index options

I Consider the traded index option with pay-o¤ (S �K )+ at
time T .

I Index option price:

C [K ] = e�rT E
�
(S �K )+

�
I Goal:
Determine an upper bound for C [K ]
in terms of the observed Ci [Ki ,j ].
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The �nite market
Traded options and approximations - Finite vs. in�nite market

I Upper bound for C [K ]:

C [K ] �
n

∑
i=1
wi Ci [K �i ]

I This bound can be calculated in the in�nite market case:

Ci [K ] known for all K � 0

I This bound cannot be calculated in the �nite market case:

Ci [K ] only known for Ki ,0, . . . ,Ki ,mi+1
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The �nite market
Traded options and approximations - The �arti�cial in�nite market�

I Approximate the function Ci [K ] by the piecewise linear
function C i [K ] which connects the (Ki ,j ,Ci [Ki ,j ]) and such
that
C i [K ] = Ci [K ] if K /2 (0,Ki ,mi+1).

I Properties of C i [K ]:

I C i [K ] is convex and decreasing.
I C i [K ] is known for all K :

I For any K � 0, we have that C i [K ] can be expressed as a
convex combination of known option prices Ci

�
Ki ,j
�
.

I C i [K ] � Ci [K ] for all K .
I Apply the results of the in�nite market to the functions
C i [K ].

I We end up with an upper bound for the index option price
which contains at most two traded strikes per stock.
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The �nite market
Traded options and approximations - The �arti�cial in�nite market�

I Ci [Ki ,j ] for j = 0, 1, . . . ,mi + 1.
I Ci [K ] (dashed line) vs. C i [K ] (solid line).
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The �nite market
Traded options and approximatons - The arti�cial in�nite market

I Lemma:
I If Ki ,j � K � Ki ,j+1, j = 0, 1, . . . ,mi :

C i [K ] = Ci
�
Ki ,j
�
�
Ci
�
Ki ,j
�
� Ci

�
Ki ,j+1

�
Ki ,j+1 �Ki ,j

�
K �Ki ,j

�
I Furthermore,

C i [K ] = Ci [0]� e�rTK if K � 0

and
C i [K ] = 0 if K � Ki ,mi+1
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The �nite market
Traded options and approximations - The arti�cial in�nite market

I Lemma:
I Let FXi be the cdf of Xi such that

e�rT EF Xi

�
(Xi �K )+

�
= C i [K ] for all K

I The cdf FXi :
I If Ki ,j � x < Ki ,j+1, j = 0, 1, . . . ,mi :

0 � FXi (x) = 1+ e rT
Ci
�
Ki ,j+1

�
� Ci

�
Ki ,j
�

Ki ,j+1 �Ki ,j
< 1

I Furthermore,

FXi (x) = 0 if x < 0

FXi (x) = 1 if x � Ki ,mi+1

I Ordering relation:

Xi
d
= F�1Xi (U) �cx F

�1
Xi (U)
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The �nite market
Traded options and approximations - The arti�cial in�nite market

F
�1+
Xi (0) = Ki ,2 and F

�1
Xi (1) = Ki ,mi+1
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The �nite market
Traded options and approximations - The arti�cial in�nite market

F
�1+
Xi (0) = Ki ,2 and F

�1
Xi (1) = Ki ,mi+1
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The �nite market
Traded options and approximations - The arti�cial in�nite market

I An expression for FXi (Ki ,j ), j = 0, 1, . . . ,mi :

FXi (Ki ,j ) =
1

Ki ,j+1 �Ki ,j

Z Ki ,j+1

Ki ,j
FXi (x) dx

I Equivalence relations for j = 0, 1, . . . ,mi :

F
�1+
Xi (0) = Ki ,j () Ki ,j � F�1+Xi

(0) < Ki ,j+1
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The �nite market
An upper bound for the index option price

I The comonotonic sum S
c
:

S̄c = w1F
�1
X1 (U) + w2F

�1
X2 (U) + � � �+ wnF

�1
Xn (U)

I The �extreme�outcomes of S
c
:

F�1+
S
c (0) =

n

∑
i=1
wiF

�1+
Xi (0) and F�1

S
c (1) =

n

∑
i=1
wiKi ,mi+1

I Theorem:

C [K ] � e�rT E

��
S
c �K

�
+

�
not.
= C

c
[K ]
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The �nite market
An upper bound for the index option price

I In the sequel, we always assume that

K 2
�
F�1+
S
c (0),F�1

S
c (1)

�
I Theorem:

C
c
[K ] =

n

∑
i=1
wi C i [K �i ]

I with

K �i = F
�1(αK )
Xi

�
FS c (K )

�
and αK from

n

∑
i=1

wiK
�
i = K

I Question:
How to determine the C i [K �i ] from the observed Ci [Ki ,j ]?
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The �nite market
An upper bound for the index option price

I The integers ji :
I Notation: Ki ,�1 = �1. Then

FXi (Ki ,�1) = 0

I ji is de�ned as the unique j 2 f0, 1, . . . ,mi + 1g that satis�es

FXi (Ki ,j�1) < FS̄ c (K ) � FXi (Ki ,j )
I Notice that ji depends on K .

I The set NK :

NK =
n
i 2 f1, . . . , ng j FXi (Ki ,ji�1) < FS̄ c (K ) < FXi (Ki ,ji ))

o
I The set NK :

NK =
�
i 2 f1, 2, . . . , ng j FS̄ c (K ) = FXi (Ki ,ji )
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The �nite market
An upper bound for the index option price

I The cdf FXi (x)
I i 2 NK
I K �i = F

�1(αK )
Xi

�
FS c (K )

�
= Ki ,ji

44 / 58



The �nite market
An upper bound for the index option price

I The cdf FXi (x)
I i 2 NK
I K �i = F

�1(αK )
Xi

�
FS c (K )

�
= αK Ki ,ji + (1� αK )Ki ,ji+1
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The �nite market
An upper bound for the index option price

I Recall:

C [K ] � C c [K ] =
n

∑
i=1
wi C i [K �i ]

I Determining K �i = F
�1(αK )
Xi

�
FS c (K )

�
:

K �i =
�
Ki ,ji if i 2 NK
αK Ki ,ji + (1� αK )Ki ,ji+1 if i 2 NK

I Determining C i [K �i ]:

C i [K �i ] =
�
Ci [Ki ,ji ] if i 2 NK
αK Ci [Ki ,ji ] + (1� αK )Ci [Ki ,ji+1] if i 2 NK
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The �nite market
An upper bound for the index option price

I Theorem: "C c [K ] is the price of a static superhedging
strategy for the index option C [K ]."

I Consider the following strategy:

I At time 0, for any i 2 NK ,

buy wi calls Ci
�
Ki ,ji

�
I At time 0, for any i 2 NK ,

buy αK wi calls Ci
�
Ki ,ji

�
buy (1� αK )wi calls Ci

�
Ki ,ji+1

�
I Hold each of these calls until time T .

I The pay-o¤ of this strategy super-replicates the pay-o¤ of the
index option C [K ].

I The price of this strategy is given by C
c
[K ].
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The �nite market
The cheapest super-replicating strategy

I Question: Can we improve the upper bound for C [K ] by
looking for the price of a cheaper super-replicating strategy?

I A general class of investment strategies I :
I At time 0, for each i , vanilla calls Ci [y ] can be bought or sold
for any y 2

�
Ki ,0,Ki ,1,Ki ,2, . . . ,Ki ,mi

	
.

I Hold the taken positions until time T .

I We describe any such investment strategy by a vector
ν � (ν1, ν2, . . . , νn), with

νi (y) = number of purchased calls on i with strike � y

I Each νi : R ! R is a r.c. jump function which can only have
jumps (upwards or downwards) at Ki ,0,Ki ,1,Ki ,2, . . . and Ki ,mi .
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The �nite market
The cheapest super-replicating strategy

I Price of the investment strategy ν 2 I :

Price [ν] =
n

∑
i=1

Z +∞

�∞
Ci [y ] dνi (y)

I Pay-o¤ of the investment strategy ν 2 I at time T :

Pay-o¤ [ν,X ] =
n

∑
i=1

Z +∞

�∞
(Xi � y)+ dνi (y)
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The �nite market
The cheapest super-replicating strategy

I The investment strategy ν� :
I For any i 2 NK :

ν�i (y) =
�

0 : y < Ki ,ji
wi : y � Ki ,ji

I For any i 2 NK :

ν�i (y) =

8<: 0 : y < Ki ,ji
αK wi : Ki ,ji � y < Ki ,ji+1
wi : y � Ki ,ji+1

I Price [ν�] :

= ∑
i2NK

wiCi [Ki ,ji ] + ∑
i2NK

wi fαKCi [Ki ,ji ] + (1� αK )Ci [Ki ,ji+1]g

= C
c
[K ]
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The �nite market
The cheapest super-replicating strategy

I The class CK of super-replicating strategies:

CK =
(

ν 2 I j
 

n

∑
i=1
wi xi �K

!
+

� Pay-o¤ [ν, x ] for all x

)

I �for all x�means

�for all x with xi 2
h
F
�1+
Xi (0),Ki ,mi+1

i
�

I ν� 2 CK .
I Any ν 2 CK is a super-replicating strategy:

P
�
(S �K )+ � Pay-o¤ [ν,X ]

�
= 1
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The �nite market
The cheapest super-replicating strategy

I A particular element of CK :
I Consider the investment strategy ν� de�ned by

ν�i (y) =
�

0 y < Ki ,ji
wi y � Ki ,ji

with the Ki ,ji as de�ned above.
I This investment strategy is an element of CK .
I It�s price is given by

Price [ν�] =
n

∑
i=1

wi Ci
�
Ki ,ji

�
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The �nite market
The cheapest super-replicating strategy

I Theorem :

min
ν2CK

Price [ν] = Price [ν�] = C
c
[K ]

I Important remark:

I Suppose that the index option C [K ] is not traded in the
market.

I In case this option is sold over-the-counter, then C
c
[K ] is a

reasonable price:

I The seller can super-replicate the pay-o¤ of C [K ] by buying
ν�.

I The buyer cannot �nd a cheaper super-replicating strategy.
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The �nite market
The least upper bound

I Dn = the class of all n - dimensional cdf�s F on the
non-negative orthant of Rn.

I The marginal cdf�s of F 2 Dn are denoted by Fi ,
i = 1, 2, . . . , n.

I The class Rn:

Rn =
n
F 2 Dn j e�rTEFi

�
(Xi �Ki ,j )+

�
= Ci [Ki ,j ] for all i , j

o
I �for all i , j�means

�for all i = 1, . . . , n and j = 0, . . . ,mi + 1�

I Comonotonic elements in Rn:

The cdf of
�
F
�1
X1 (U),F

�1
X2 (U), . . . ,F�1Xn (U)

�
is an element of Rn
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The �nite market
The least upper bound

I Theorem:

max
F2Rn

e�rT EF

" 
n

∑
i=1
wiXi �K

!
+

#
= C

c
[K ]

I Interpretation:

I C
c
[K ] is the lowest upper bound for the index option price

C [K ] in the class of all models which are consistent with the
observed stock option prices Ci [Kij ].

I C
c
[K ] is reached when

(X1,X2, . . . ,Xn)
d
=
�
F
�1
X1 (U),F

�1
X2 (U), . . . ,F�1Xn (U)

�
.
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The �nite market
Computational aspects

I How to evaluate the upper bound C
c
[K ] for C [K ]

numerically?
I How to choose the maximal values Ki ,mi+1?
I How to determine Ci [0]?

I How to express C
c
[K ] in terms of the F

�1
Xi ?

I What in case of no option data for some stocks in the index?
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