

Index options

A model-free approach

Jan Dhaene

KU Leuven, Belgium

Index options: a model-free approach

Main references

- ▶ **Static super-replicating strategies for a class of exotic options.**
X. Chen, G. Deelstra, J. Dhaene & M. Vanmaele (2008).
Insurance: Mathematics and Economics, 42(3), 1067-1085.
- ▶ **Index options: a model-free approach.**
D. Linders, J. Dhaene, H. Hounnon, M. Vanmaele (2016).
Research Report AFI-1265, FBE, KU Leuven.
- ▶ **The Herd Behavior Index: a new measure for the implied degree of co-movement in financial markets.**
J. Dhaene, D. Linders, W. Schoutens & D. Vyncke (2012).
Insurance: Mathematics and Economics, 50(3), 357-370.

Index options: a model-free approach

Dow Jones option prices and comonotonic upper bounds

Stocks, the market index and options

- ▶ The usual set up:

$$(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})$$

- ▶ Current time is denoted by 0.
- ▶ The stock market:

$X_i(t)$ = price of (dividend paying) stock i at time t

- ▶ $i = 1, 2, \dots, n$.
- ▶ $0 \leq t \leq T$.
- ▶ $X_i(t) \geq 0$ is known at time t .
- ▶ European-type call options on stock i :

- ▶ Expiration date: T .
- ▶ Strike price: $K \geq 0$.
- ▶ **Pay-off** at time T :

$$(X_i(T) - K)_+$$

- ▶ $(x)_+ = \max(x, 0)$.
- ▶ **Price** at time 0:

$$C_i [K, T]$$

Stocks, the market index and options

- ▶ $S(t)$ = weighted sum of stock prices:

$$S(t) = w_1 X_1(t) + \cdots + w_n X_n(t)$$

- ▶ w_i = positive weight factors.

- ▶ European-type index call options:

- ▶ Expiration date: T .
- ▶ Strike price: $K \geq 0$.
- ▶ **Pay-off** at time T :

$$(S(T) - K)_+$$

- ▶ **Price** at time 0:

$$C [K, T]$$

- ▶ Problem to be solved:

- ▶ Suppose that for each stock i , we observe the prices $C_i [K_{ij}, T]$ of stock options for different values of j .
- ▶ What can we conclude about the price $C [K, T]$ of the index option with strike K ?

Stocks, the market index and options

- ▶ Further assumptions about the market:
 - ▶ The market is arbitrage-free.
 - ▶ There exists an equivalent martingale measure \mathbb{Q} such that the current price of any traded contingent claim with pay-off $A(T)$ at time T is given by

$$e^{-rT} \mathbb{E}^{\mathbb{Q}} [A(T)]$$

- ▶ Stock option prices:
- ▶ Index option prices:

$$C_i [K, T] = e^{-rT} \mathbb{E}^{\mathbb{Q}} [(X_i(T) - K)_+]$$

- ▶ Notational conventions:

$$C [K, T] = e^{-rT} \mathbb{E}^{\mathbb{Q}} [(\mathbb{S}(T) - K)_+]$$

- ▶ Denote $X_i(T)$ and $\mathbb{S}(T)$ by X_i and S , respectively.
- ▶ Denote $C_i [K, T]$ and $C [K, T]$ by $C_i [K]$ and $C [K]$.
- ▶ Omit \mathbb{Q} to denote expectations in the \mathbb{Q} -world.
- ▶ F_{X_i} and F_S are the cdf's of X_i and S in the \mathbb{Q} -world.

Stocks, the market index and options

- ▶ The infinite market:

Assumption: For each i , $C_i [K]$ traded for any $K \geq 0$

- ▶ The finite market:

Assumption : For each i , $C_i [K]$ only traded
for strikes $K = K_{i,0}, K_{i,1}, \dots, K_{i,m_i}$

- ▶ Model-free approach vs. model-based approach:

- ▶ Model-free: Prices $C_i [K]$ are observed in the market.
- ▶ Model-based: Prices $C_i [K]$ follow from an assumed Q .

Convex order

- ▶ R.v.'s are assumed to have finite means.

- ▶ **Convex order:**

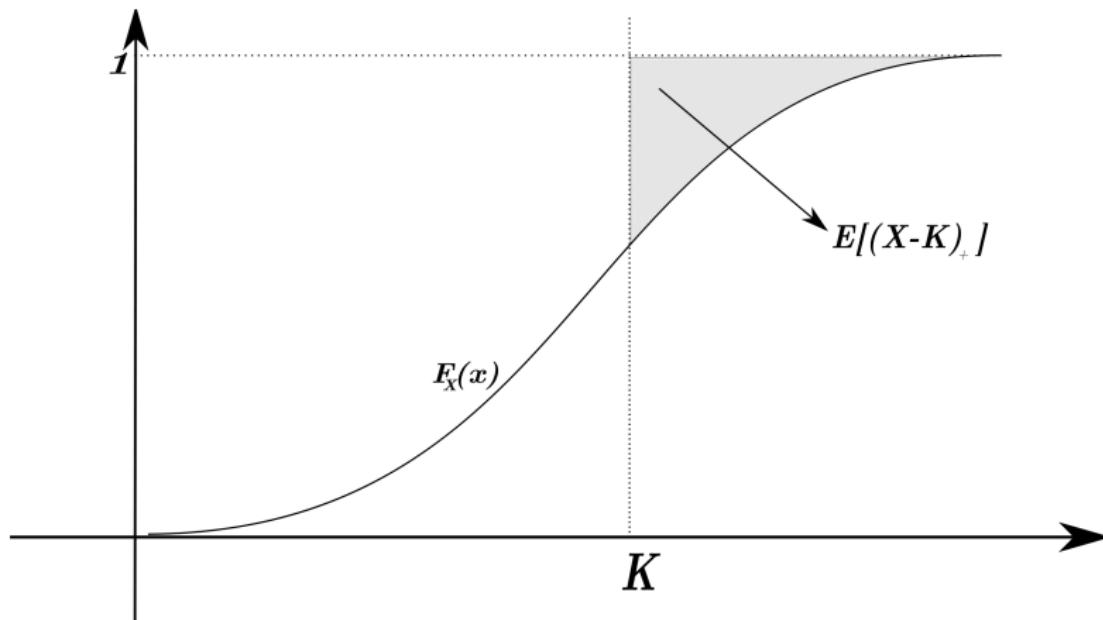
A r.v. X is said to precede a r.v. Y in *convex order* sense if

$$\mathbb{E}[X] = \mathbb{E}[Y] \text{ and } \mathbb{E}[(X - K)_+] \leq \mathbb{E}[(Y - K)_+] \text{, for all } K$$

- ▶ Notation: $X \leq_{\text{cx}} Y$.
- ▶ Other characterization:

$$X \leq_{\text{cx}} Y \Leftrightarrow \begin{cases} \mathbb{E}[(X - K)_+] \leq \mathbb{E}[(Y - K)_+] \\ \mathbb{E}[(K - X)_+] \leq \mathbb{E}[(K - Y)_+] \end{cases} \text{, for all } K$$

Convex order



Inverse cdf's

- ▶ The usual choice:

$$F_X^{-1}(p) = \inf \{x \in \mathbb{R} \mid F_X(x) \geq p\}$$

- ▶ Alternative choice:

$$F_X^{-1+}(p) = \sup \{x \in \mathbb{R} \mid F_X(x) \leq p\}$$

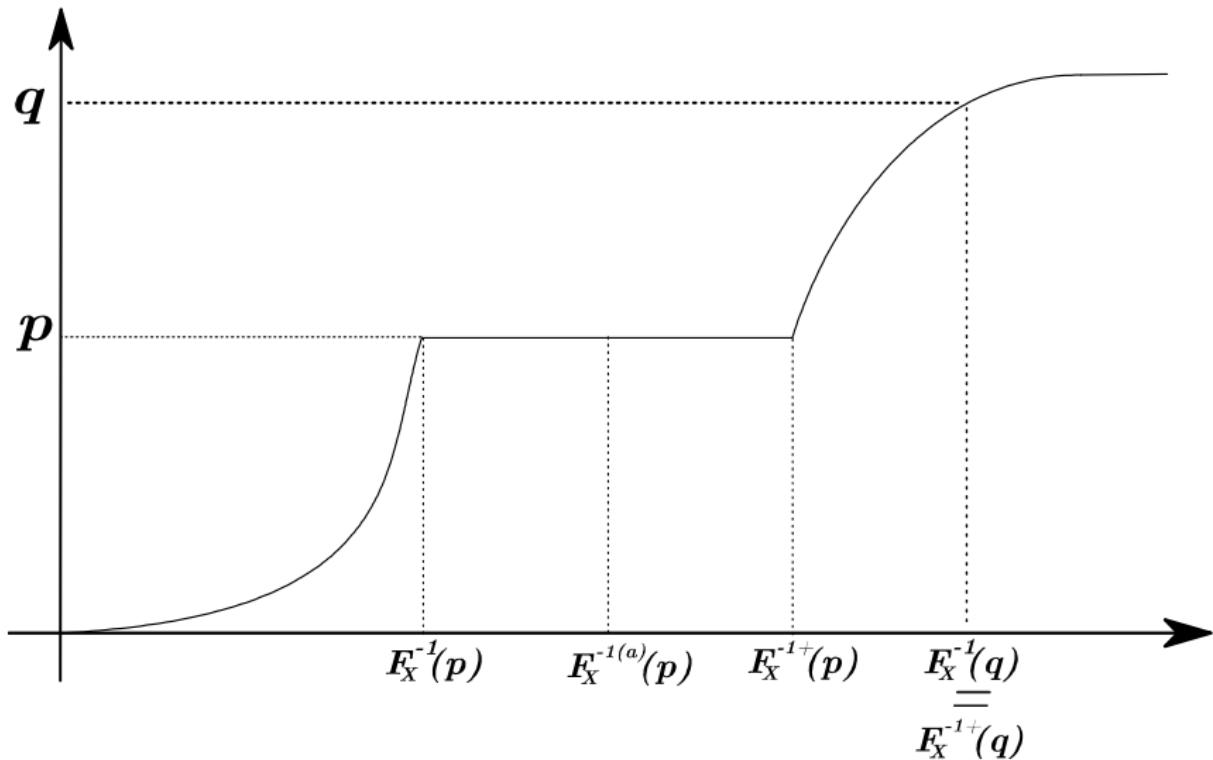
- ▶ The α - inverse in case $p \in (0, 1)$:

$$F_X^{-1(\alpha)}(p) = \alpha F_X^{-1}(p) + (1 - \alpha) F_X^{-1+}(p), \quad \alpha \in [0, 1]$$

- ▶ For strictly increasing cdf's:

$$F_X^{-1(\alpha)}(p) = F_X^{-1}(p)$$

Inverse cdf's



Comonotonicity

Definition and notations

- ▶ U is a r.v. which is uniformly distributed on $(0, 1)$.

- ▶ Definition:

The random vector (Y_1, Y_2, \dots, Y_n) is *comonotonic* if

$$(Y_1, Y_2, \dots, Y_n) \stackrel{d}{=} \left(F_{Y_1}^{-1}(U), F_{Y_2}^{-1}(U), \dots, F_{Y_n}^{-1}(U) \right)$$

- ▶ Notations:

$$S = w_1 X_1 + \dots + w_n X_n$$

$$S^c = w_1 F_{X_1}^{-1}(U) + \dots + w_n F_{X_n}^{-1}(U)$$

- ▶ The weights $w_i \geq 0$.

Comonotonicity

Properties of comonotonic sums

- ▶ α -inverses of S^c :

$$F_{S^c}^{-1(\alpha)}(p) = \sum_{i=1}^n w_i F_{X_i}^{-1(\alpha)}(p)$$

- ▶ Stop-loss premiums of S^c for $K \in (F_{S^c}^{-1+}(0), F_{S^c}^{-1}(1))$:

$$\mathbb{E} [(S^c - K)_+] = \sum_{i=1}^n w_i \mathbb{E} [(X_i - K_i^*))_+]$$

$$K_i^* = F_{X_i}^{-1(\alpha_K)}(F_{S^c}(K))$$

$$\alpha_K \in [0, 1] \text{ is such that } \sum_{i=1}^n w_i K_i^* = K$$

$$F_{S^c}(K) = \sup \left\{ p \in [0, 1] \mid \sum_{i=1}^n w_i F_{X_i}^{-1}(p) \leq K \right\}$$

Comonotonicity

Comonotonicity and convex order

- ▶ Convex order relation:

$$\sum_{i=1}^n w_i X_i \leq_{\text{cx}} \sum_{i=1}^n w_i F_{X_i}^{-1}(U)$$

- ▶ Generalized convex order relation:

$$X_i \leq_{\text{cx}} Y_i \text{ for } i = 1, \dots, n \Rightarrow \sum_{i=1}^n w_i X_i \leq_{\text{cx}} \sum_{i=1}^n w_i F_{Y_i}^{-1}(U)$$

The infinite market case

From option prices to risk neutral distributions

- ▶ Stock i :

X_i = price of stock i at time $T \geq 0$, $i = 1, 2, \dots, n$

- ▶ The index:

$$S = w_1 X_1 + \dots + w_n X_n$$

- ▶ The comonotonic index:

$$S^c = w_1 F_{X_1}^{-1}(U) + \dots + w_n F_{X_n}^{-1}(U)$$

The infinite market

From option prices to risk neutral distributions

- ▶ Stock option prices:

$$C_i [K] = e^{-rT} \mathbb{E} [(X_i - K)_+]$$

- ▶ Index option prices:

$$C [K] = e^{-rT} \mathbb{E} [(S - K)_+]$$

- ▶ From option prices C_i to risk neutral distribution F_{X_i} :

$$F_{X_i}(x) = 1 + e^{rT} C'_i[x+]$$

- ▶ From risk neutral distribution F_{X_i} to option prices C_i :

$$C_i [K] = e^{-rT} \int_K^{\infty} (1 - F_{X_i}(x)) \ dx$$

The infinite market

From option prices to risk neutral distributions

- ▶ **The infinite market case:**

Assumption: For any i , $C_i [K]$ traded for all $K \geq 0$

- ▶ **Equivalent characterisation:**

Assumption: For any i , $F_{X_i}(x)$ known for all $x \geq 0$

- ▶ In the infinite market case, we know the cdf of S^c .
- ▶ Knowledge of all prices $C_i [K]$ does not allow us to specify the multivariate distribution $F_{\underline{X}}(\underline{x})$ of $\underline{X} = (X_1, X_2, \dots, X_n)$.
- ▶ The put-call parity:

$$C_i [K] + e^{-rT} K = P_i [K] + e^{-rT} \mathbb{E} [X_i]$$

The infinite market

An upper bound for the index option price

- ▶ Goal: Determine an upper bound for the index option price $C [K]$ in terms of observed stock option prices.
- ▶ Theorem:

$$C [K] \leq e^{-rT} \mathbb{E} [(S^c - K)_+] \stackrel{\text{not.}}{=} C^c [K]$$

- ▶ When $K \leq F_{S^c}^{-1+}(0)$:

$$C [K] = C^c [K] = \sum_{i=1}^n w_i C_i [0] - e^{-rT} K$$

- ▶ When $K \geq F_{S^c}^{-1}(1)$:

$$C [K] = C^c [K] = 0$$

- ▶ In the sequel, we always assume that

$$K \in (F_{S^c}^{-1+}(0), F_{S^c}^{-1}(1))$$

The infinite market

An upper bound for the index option price

- **Theorem:** " $C^c [K]$ is a l.c. of stock option prices."

$$C^c [K] = \sum_{i=1}^n w_i C_i [K_i^*]$$

- with

$$K_i^* = F_{X_i}^{-1}(\alpha_K) (F_{S^c}(K))$$

- α_K determined from

$$\sum_{i=1}^n w_i K_i^* = K$$

- and $F_{S^c}(K)$ from

$$F_{S^c}(K) = \sup \left\{ p \in [0, 1] \mid \sum_{i=1}^n w_i F_{X_i}^{-1}(p) \leq K \right\}$$

The infinite market

An upper bound for the index option price

- ▶ **Theorem:** " $C^c [K]$ is the price of a static superhedging strategy for the index option $C [K]$."
 - ▶ Consider the following strategy:
 - ▶ At time 0, for each stock i , buy w_i stock options $C_i [K_i^*]$.
 - ▶ Hold these calls until they expire at time T .
 - ▶ The pay-off of this strategy super-replicates the pay-off of the index option $C [K]$:

$$\left(\sum_{i=1}^n w_i X_i - K \right)_+ \leq \sum_{i=1}^n w_i (X_i - K_i^*)_+$$

- ▶ The price of this strategy is given by the comonotonic index option price $C^c [K]$.

The infinite market

The cheapest super-replicating strategy

- ▶ Question: Can we improve the upper bound for $C[K]$ by looking for the price of a cheaper super-replicating strategy?
- ▶ A general class of investment strategies \mathcal{I} :
 - ▶ At time 0, for each stock i , calls $C_i[y]$ can be bought or sold for any $y \geq 0$.
 - ▶ Hold the taken positions until time T .
 - ▶ We describe any such investment strategy by a vector of functions $\underline{\nu} \equiv (\nu_1, \nu_2, \dots, \nu_n)$, with

$$\nu_i(y) = \text{number of purchased calls on } i \text{ with strike } \leq y$$

- ▶ Assumption: Each function ν_i is a r.c. jump function with $\underline{\nu_i}(y) = 0$ if $y < 0$ and with only a finite number of jumps (upwards or downwards) on $[0, \infty)$.

The infinite market

The cheapest super-replicating strategy

- ▶ Price of the investment strategy $\underline{\nu} \in \mathcal{I}$:

$$\text{Price } [\underline{\nu}] = \sum_{i=1}^n \int_{-\infty}^{+\infty} C_i [y] \, d\nu_i(y)$$

- ▶ Pay-off of the investment strategy $\underline{\nu} \in \mathcal{I}$ at time T :

$$\text{Pay-off } [\underline{\nu}, \underline{X}] = \sum_{i=1}^n \int_{-\infty}^{+\infty} (X_i - y)_+ \, d\nu_i(y)$$

The infinite market

The cheapest super-replicating strategy

- ▶ The investment strategy $\underline{\nu}^*$: For $i = 1, 2, \dots, n$,

$$\nu_i^*(y) = \begin{cases} 0 & y < K_i^* \\ w_i & y \geq K_i^* \end{cases}$$

- ▶ with

$$K_i^* = F_{X_i}^{-1}(\alpha_K) (F_{S^c}(K))$$

- ▶ and α_K determined from

$$\sum_{i=1}^n w_i K_i^* = K$$

- ▶ The price of $\underline{\nu}^*$:

$$\text{Price } [\underline{\nu}^*] = \sum_{i=1}^n w_i C_i [K_i^*] = C^c [K]$$

- ▶ The pay-off of $\underline{\nu}^*$:

$$\text{Pay-off } [\underline{\nu}^*, \underline{X}] = \sum_{i=1}^n w_i (X_i - K_i^*)_+$$

The infinite market

The cheapest super-replicating strategy

- ▶ The class \mathcal{C}_K :

$$\mathcal{C}_K = \left\{ \underline{\nu} \in \mathcal{I} \mid \left(\sum_{i=1}^n w_i x_i - K \right)_+ \leq \text{Pay-off } [\underline{\nu}, \underline{x}] \text{ for all } \underline{x} \right\}$$

- ▶ 'for all \underline{x} ' means

'for all \underline{x} with $x_i \in \text{Support } [X_i]$ '

- ▶ Any $\underline{\nu} \in \mathcal{C}_K$ is a super-replicating strategy:

$$\mathbb{P} [(S - K)_+ \leq \text{Pay-off } [\underline{\nu}, \underline{X}]] = 1$$

The infinite market

The cheapest super-replicating strategy

- ▶ Some elements of \mathcal{C}_K :

- ▶ Consider the investment strategy \underline{v} given by

$$v_i(y) = \begin{cases} 0, & y < K_i \\ w_i & y \geq K_i \end{cases}$$

with

$$\sum_{i=1}^n w_i K_i \leq K$$

- ▶ This investment strategy is an element of \mathcal{C}_K .
 - ▶ In particular, we find that

$$\underline{v}^* \in \mathcal{C}_K$$

The infinite market

The cheapest super-replicating strategy

► **Theorem:**

$$\min_{\underline{v} \in \mathcal{C}_K} \text{Price } [\underline{v}] = \text{Price } [\underline{v}^*] = C^c [K]$$

► **Important remark:**

- ▶ Suppose that the index option $C [K]$ is not traded in the market.
- ▶ In case this option is sold over-the-counter, then $C^c [K]$ is a reasonable price:
 - ▶ The seller can super-replicate the pay-off by buying \underline{v}^* .
 - ▶ The buyer cannot find a cheaper super-replicating strategy.

The infinite market

The least upper bound

- ▶ \mathcal{D}_n = the class of all n - dimensional cdf's F on the non-negative orthant of \mathbb{R}^n .
- ▶ The marginal cdf's of $F \in \mathcal{D}_n$ are denoted by F_i , $i = 1, 2, \dots, n$.
- ▶ The Fréchet class \mathcal{R}_n :

$$\mathcal{R}_n = \{F \in \mathcal{D}_n \mid F_i = F_{X_i}, i = 1, \dots, n\}$$

- ▶ Equivalent characterization of \mathcal{R}_n :

$$\mathcal{R}_n = \left\{ F \in \mathcal{D}_n \mid e^{-rT} \mathbb{E}_{F_i} [(X_i - y)_+] = C_i[y], \text{ for all } i, y \right\}$$

- ▶ A comonotonic element in \mathcal{R}_n :

The cdf of $(F_{X_1}^{-1}(U), F_{X_2}^{-1}(U), \dots, F_{X_n}^{-1}(U))$ belongs to \mathcal{R}_n

The infinite market

The least upperbound

► **Theorem:**

$$\max_{F \in \mathcal{R}_n} e^{-rT} \mathbb{E}_F \left[\left(\sum_{i=1}^n w_i X_i - K \right)_+ \right] = C^c [K]$$

► **Interpretation:**

- $C^c [K]$ is the lowest upper bound for the index option price with pay-off $(\sum_{i=1}^n w_i X_i - K)_+$ in the class of all models which are consistent with the observed stock option prices $C_i[y]$, for all $i = 1, 2, \dots, n$ and $y \geq 0$.
- $C^c [K]$ is reached when (X_1, X_2, \dots, X_n) is comonotonic.

The infinite market

Computational aspects

- ▶ Suppose that for any stock i , the cdf F_{X_i} is strictly increasing on $(F_{X_i}^{-1}(0), F_{X_i}^{-1}(1))$ and continuous on \mathbb{R} .
- ▶ The comonotonic index option price $C^c [K]$ is then given by

$$C^c [K] = \sum_{i=1}^n w_i C_i \left[F_{X_i}^{-1} (F_{S^c}(K)) \right]$$

- ▶ $F_{S^c}(K)$ is the unique solution of

$$\sum_{i=1}^n w_i F_{X_i}^{-1} (F_{S^c}(K)) = K$$

- ▶ Example: The Black & Scholes model.

The finite market

Traded options and approximations - Stock options

- ▶ Traded calls for stock i , ($i = 1, 2, \dots, n$):

$$C_i [K_{i,0}], C_i [K_{i,1}], \dots, C_i [K_{i,m_i}]$$

- ▶ The chain of strikes:

$$0 = K_{i,0} < K_{i,1} < K_{i,2} < \dots < K_{i,m_i} < F_{X_i}^{-1} (1)$$

- ▶ We assume that $F_{X_i}^{-1} (1)$ is finite and known:

$$F_{X_i}^{-1} (1) \stackrel{\text{not.}}{=} K_{i,m_i+1} < \infty$$

- ▶ Stock option prices:

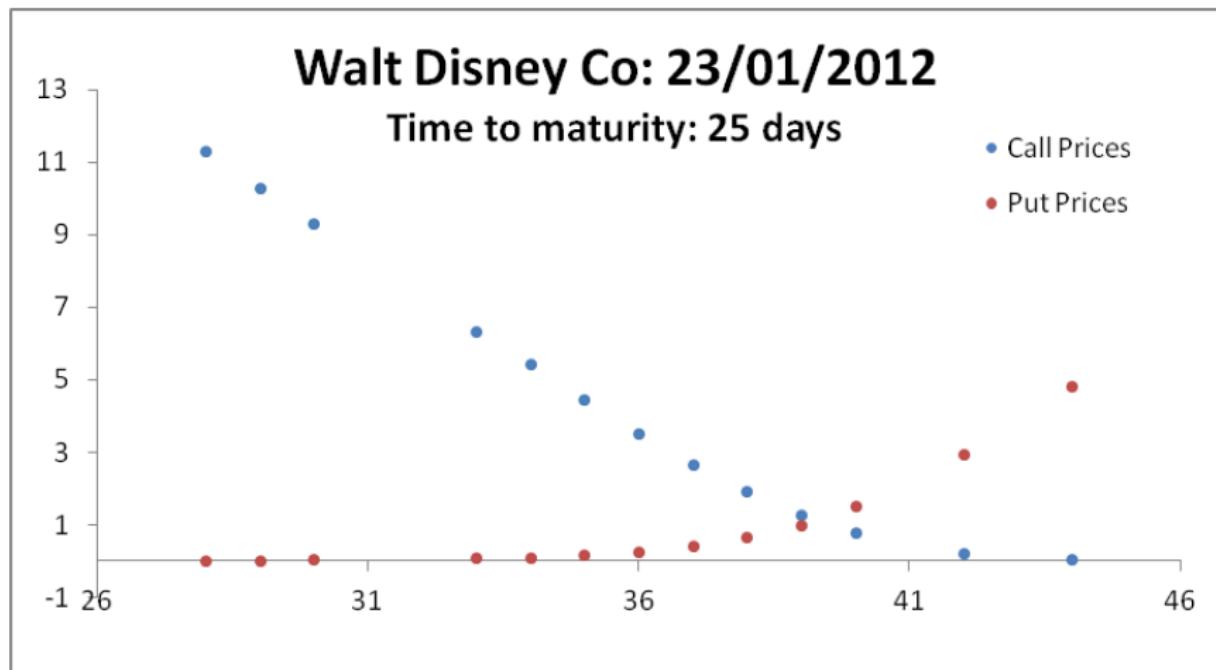
$$C_i [K_{i,j}] = e^{-rT} \mathbb{E} [(X_i - K_{i,j})_+] , \quad j = 0, 1, \dots, m_i + 1$$

- ▶ For each i , define the function $C_i [K]$:

$$C_i [K] = e^{-rT} \mathbb{E} [(X_i - K)_+] , \quad \text{for all } K \geq 0$$

The finite market

Traded options and approximations - Walt Disney



The finite market

Traded options and approximations - Index options

- ▶ Consider the traded index option with pay-off $(S - K)_+$ at time T .
- ▶ Index option price:

$$C[K] = e^{-rT} \mathbb{E} [(S - K)_+]$$

- ▶ Goal:
Determine an upper bound for $C[K]$
in terms of the observed $C_i[K_{i,j}]$.

The finite market

Traded options and approximations - Finite vs. infinite market

- ▶ Upper bound for $C [K]$:

$$C [K] \leq \sum_{i=1}^n w_i \ C_i [K_i^*]$$

- ▶ This bound can be calculated in the infinite market case:

$C_i [K]$ known for all $K \geq 0$

- ▶ This bound cannot be calculated in the finite market case:

$C_i [K]$ only known for $K_{i,0}, \dots, K_{i,m_i+1}$

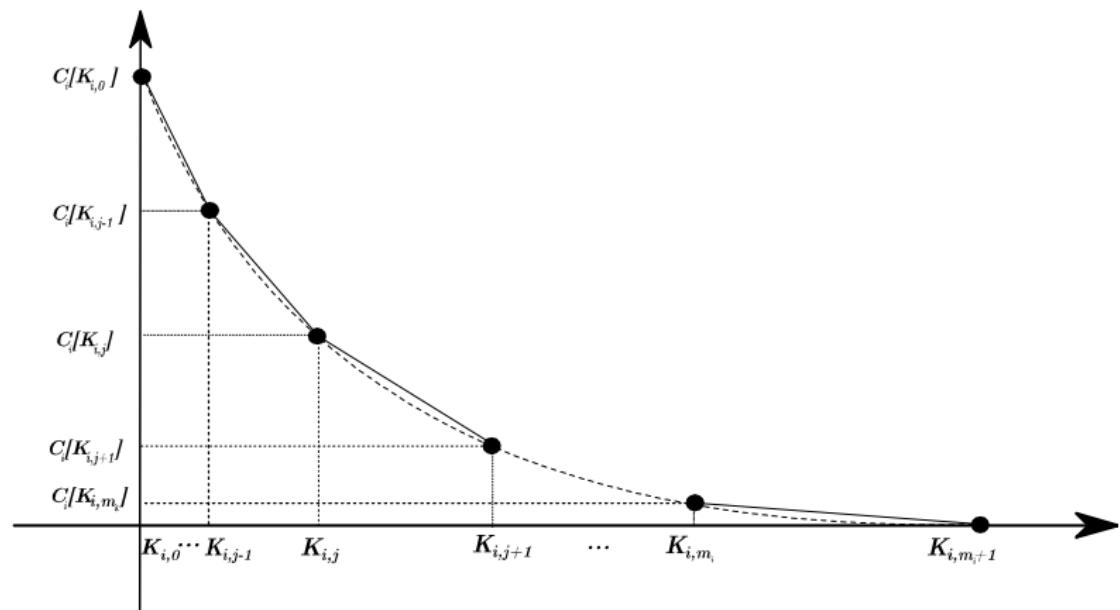
The finite market

Traded options and approximations - The 'artificial infinite market'

- ▶ Approximate the function $C_i [K]$ by the piecewise linear function $\bar{C}_i [K]$ which connects the $(K_{i,j}, C_i [K_{i,j}])$ and such that
$$\bar{C}_i [K] = C_i [K] \text{ if } K \notin (0, K_{i,m_i+1}).$$
- ▶ Properties of $\bar{C}_i [K]$:
 - ▶ $\bar{C}_i [K]$ is convex and decreasing.
 - ▶ $\bar{C}_i [K]$ is known for all K :
 - ▶ For any $K \geq 0$, we have that $\bar{C}_i [K]$ can be expressed as a convex combination of known option prices $C_i [K_{i,j}]$.
 - ▶ $\bar{C}_i [K] \geq C_i [K]$ for all K .
- ▶ Apply the results of the infinite market to the functions $\bar{C}_i [K]$.
- ▶ We end up with an upper bound for the index option price which contains at most two traded strikes per stock.

The finite market

Traded options and approximations - The 'artificial infinite market'



- ▶ $C_i [K_{i,j}]$ for $j = 0, 1, \dots, m_i + 1$.
- ▶ $C_i [K]$ (dashed line) vs. $\bar{C}_i [K]$ (solid line).

The finite market

Traded options and approximations - The artificial infinite market

► **Lemma:**

- If $K_{i,j} \leq K \leq K_{i,j+1}$, $j = 0, 1, \dots, m_i$:

$$\bar{C}_i [K] = C_i [K_{i,j}] - \frac{C_i [K_{i,j}] - C_i [K_{i,j+1}]}{K_{i,j+1} - K_{i,j}} (K - K_{i,j})$$

- Furthermore,

$$\bar{C}_i [K] = C_i [0] - e^{-rT} K \quad \text{if } K \leq 0$$

and

$$\bar{C}_i [K] = 0 \quad \text{if } K \geq K_{i,m_i+1}$$

The finite market

Traded options and approximations - The artificial infinite market

► Lemma:

- Let \bar{F}_{X_i} be the cdf of X_i such that

$$e^{-rT} \mathbb{E}_{\bar{F}_{X_i}} [(X_i - K)_+] = \bar{C}_i [K] \text{ for all } K$$

- The cdf \bar{F}_{X_i} :

- If $K_{i,j} \leq x < K_{i,j+1}$, $j = 0, 1, \dots, m_i$:

$$0 \leq \bar{F}_{X_i}(x) = 1 + e^{rT} \frac{C_i [K_{i,j+1}] - C_i [K_{i,j}]}{K_{i,j+1} - K_{i,j}} < 1$$

- Furthermore,

$$\bar{F}_{X_i}(x) = 0 \quad \text{if } x < 0$$

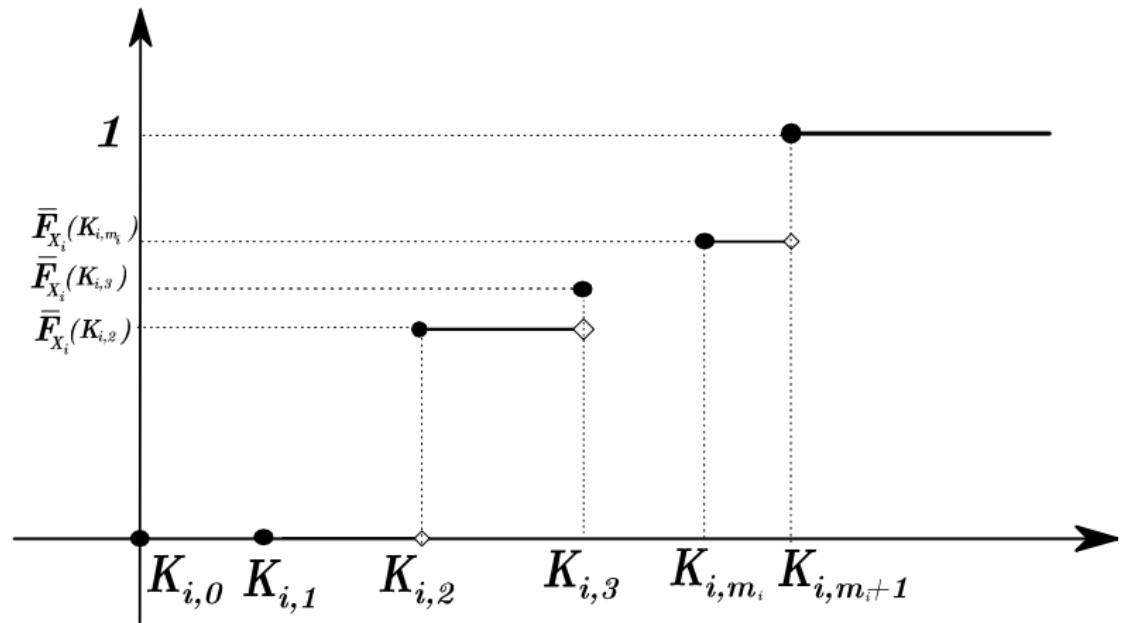
$$\bar{F}_{X_i}(x) = 1 \quad \text{if } x \geq K_{i,m_i+1}$$

► Ordering relation:

$$X_i \stackrel{d}{=} F_{X_i}^{-1}(U) \leq_{cx} \bar{F}_{X_i}^{-1}(U)$$

The finite market

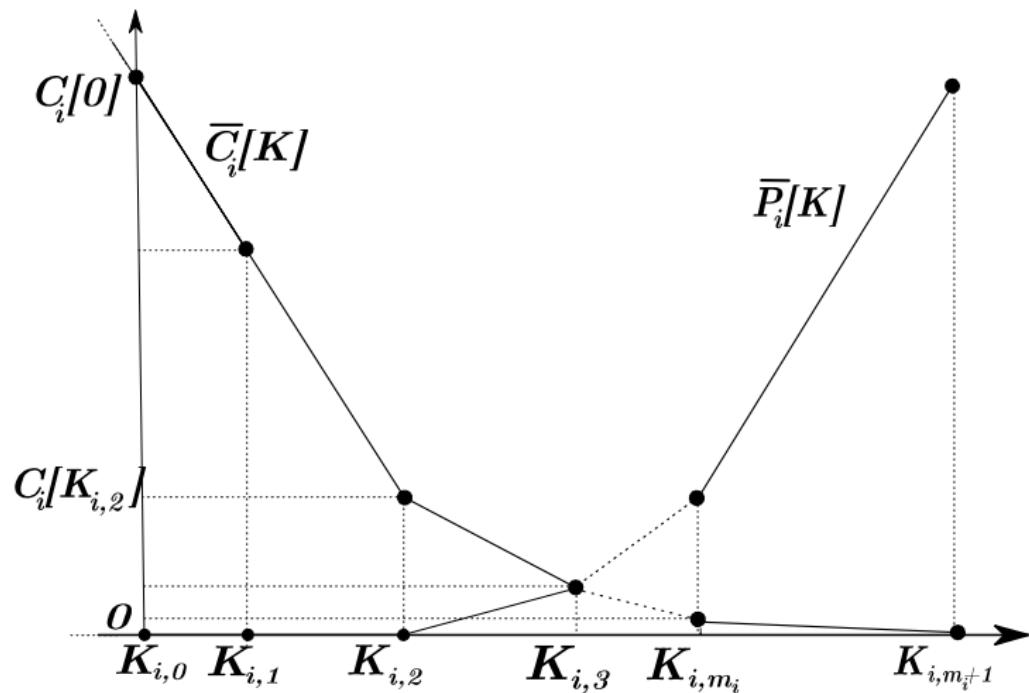
Traded options and approximations - The artificial infinite market



$$\bar{F}_{X_i}^{-1+}(0) = K_{i,2} \quad \text{and} \quad \bar{F}_{X_i}^{-1}(1) = K_{i,m_i+1}$$

The finite market

Traded options and approximations - The artificial infinite market



$$\bar{F}_{X_i}^{-1+}(0) = K_{i,2} \quad \text{and} \quad \bar{F}_{X_i}^{-1}(1) = K_{i,m_i+1}$$

The finite market

Traded options and approximations - The artificial infinite market

- ▶ An expression for $\bar{F}_{X_i}(K_{i,j})$, $j = 0, 1, \dots, m_i$:

$$\bar{F}_{X_i}(K_{i,j}) = \frac{1}{K_{i,j+1} - K_{i,j}} \int_{K_{i,j}}^{K_{i,j+1}} F_{X_i}(x) \, dx$$

- ▶ Equivalence relations for $j = 0, 1, \dots, m_i$:

$$\bar{F}_{X_i}^{-1+}(0) = K_{i,j} \iff K_{i,j} \leq F_{X_i}^{-1+}(0) < K_{i,j+1}$$

The finite market

An upper bound for the index option price

- ▶ The comonotonic sum \bar{S}^c :

$$\bar{S}^c = w_1 \bar{F}_{X_1}^{-1}(U) + w_2 \bar{F}_{X_2}^{-1}(U) + \cdots + w_n \bar{F}_{X_n}^{-1}(U)$$

- ▶ The 'extreme' outcomes of \bar{S}^c :

$$F_{\bar{S}^c}^{-1+}(0) = \sum_{i=1}^n w_i \bar{F}_{X_i}^{-1+}(0) \quad \text{and} \quad F_{\bar{S}^c}^{-1}(1) = \sum_{i=1}^n w_i K_{i, m_i+1}$$

- ▶ Theorem:

$$C[K] \leq e^{-rT} \mathbb{E} \left[(\bar{S}^c - K)_+ \right] \stackrel{\text{not.}}{=} \bar{C}^c[K]$$

The finite market

An upper bound for the index option price

- ▶ In the sequel, we always assume that

$$K \in \left(F_{\bar{S}^c}^{-1+}(0), F_{\bar{S}^c}^{-1}(1) \right)$$

- ▶ **Theorem:**

$$\bar{C}^c [K] = \sum_{i=1}^n w_i \bar{C}_i [K_i^*]$$

- ▶ with

$$K_i^* = \bar{F}_{X_i}^{-1(\alpha_K)} (F_{\bar{S}^c}(K)) \text{ and } \alpha_K \text{ from } \sum_{i=1}^n w_i K_i^* = K$$

- ▶ **Question:**

How to determine the $\bar{C}_i [K_i^*]$ from the observed $C_i [K_{i,j}]$?

The finite market

An upper bound for the index option price

- ▶ The integers j_i :

- ▶ Notation: $K_{i,-1} = -1$. Then

$$\bar{F}_{X_i}(K_{i,-1}) = 0$$

- ▶ j_i is defined as the unique $j \in \{0, 1, \dots, m_i + 1\}$ that satisfies

$$\bar{F}_{X_i}(K_{i,j-1}) < F_{\bar{S}^c}(K) \leq \bar{F}_{X_i}(K_{i,j})$$

- ▶ Notice that j_i depends on K .

- ▶ The set N_K :

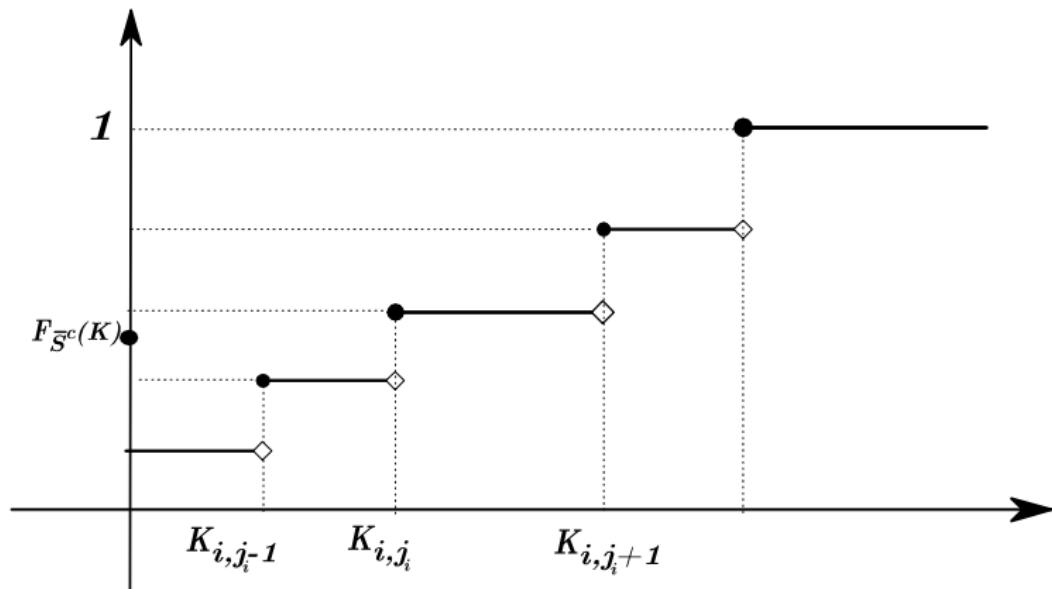
$$N_K = \left\{ i \in \{1, \dots, n\} \mid \bar{F}_{X_i}(K_{i,j_i-1}) < F_{\bar{S}^c}(K) < \bar{F}_{X_i}(K_{i,j_i}) \right\}$$

- ▶ The set \bar{N}_K :

$$\bar{N}_K = \left\{ i \in \{1, 2, \dots, n\} \mid F_{\bar{S}^c}(K) = \bar{F}_{X_i}(K_{i,j_i}) \right\}$$

The finite market

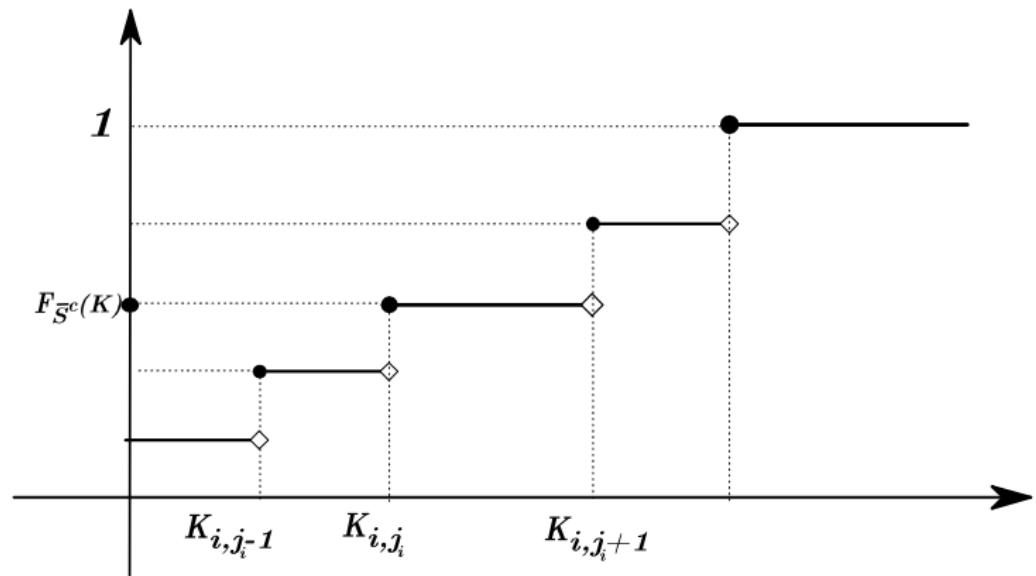
An upper bound for the index option price



- ▶ The cdf $\bar{F}_{X_i}(x)$
- ▶ $i \in N_K$
- ▶ $K_i^* = \bar{F}_{X_i}^{-1}(\alpha_K) (F_{\bar{S}^c}(K)) = K_{i,j_i}$

The finite market

An upper bound for the index option price



- ▶ The cdf $\bar{F}_{X_i}(x)$
- ▶ $i \in \bar{N}_K$
- ▶ $K_i^* = \bar{F}_{X_i}^{-1}(\alpha_K) (F_{\bar{S}^c}(K)) = \alpha_K K_{i,j_i} + (1 - \alpha_K) K_{i,j_i+1}$

The finite market

An upper bound for the index option price

- ▶ Recall:

$$C[K] \leq \bar{C}^c[K] = \sum_{i=1}^n w_i \bar{C}_i[K_i^*]$$

- ▶ Determining $K_i^* = \bar{F}_{X_i}^{-1}(\alpha_K) (F_{\bar{S}^c}(K))$:

$$K_i^* = \begin{cases} K_{i,j_i} & \text{if } i \in N_K \\ \alpha_K K_{i,j_i} + (1 - \alpha_K) K_{i,j_i+1} & \text{if } i \in \bar{N}_K \end{cases}$$

- ▶ Determining $\bar{C}_i[K_i^*]$:

$$\bar{C}_i[K_i^*] = \begin{cases} C_i[K_{i,j_i}] & \text{if } i \in N_K \\ \alpha_K C_i[K_{i,j_i}] + (1 - \alpha_K) C_i[K_{i,j_i+1}] & \text{if } i \in \bar{N}_K \end{cases}$$

The finite market

An upper bound for the index option price

- ▶ **Theorem:** " $\bar{C}^c [K]$ is the price of a static superhedging strategy for the index option $C [K]$."
 - ▶ Consider the following strategy:
 - ▶ At time 0, for any $i \in N_K$,
buy w_i calls $C_i [K_{i,j_i}]$
 - ▶ At time 0, for any $i \in \bar{N}_K$,
buy $\alpha_K w_i$ calls $C_i [K_{i,j_i}]$
buy $(1 - \alpha_K)w_i$ calls $C_i [K_{i,j_i+1}]$
 - ▶ Hold each of these calls until time T .
 - ▶ The pay-off of this strategy super-replicates the pay-off of the index option $C [K]$.
 - ▶ The price of this strategy is given by $\bar{C}^c [K]$.

The finite market

The cheapest super-replicating strategy

- ▶ Question: Can we improve the upper bound for $C[K]$ by looking for the price of a cheaper super-replicating strategy?
- ▶ A general class of investment strategies $\bar{\mathcal{I}}$:
 - ▶ At time 0, for each i , vanilla calls $C_i[y]$ can be bought or sold for any $y \in \{K_{i,0}, K_{i,1}, K_{i,2}, \dots, K_{i,m_i}\}$.
 - ▶ Hold the taken positions until time T .
- ▶ We describe any such investment strategy by a vector $\underline{\nu} \equiv (\nu_1, \nu_2, \dots, \nu_n)$, with

$$\nu_i(y) = \text{number of purchased calls on } i \text{ with strike } \leq y$$

- ▶ Each $\nu_i : \mathbb{R} \rightarrow \mathbb{R}$ is a r.c. jump function which can only have jumps (upwards or downwards) at $K_{i,0}, K_{i,1}, K_{i,2}, \dots$ and K_{i,m_i} .

The finite market

The cheapest super-replicating strategy

- ▶ Price of the investment strategy $\underline{\nu} \in \overline{\mathcal{I}}$:

$$\text{Price } [\underline{\nu}] = \sum_{i=1}^n \int_{-\infty}^{+\infty} C_i [y] \, d\nu_i(y)$$

- ▶ Pay-off of the investment strategy $\underline{\nu} \in \overline{\mathcal{I}}$ at time T :

$$\text{Pay-off } [\underline{\nu}, \underline{X}] = \sum_{i=1}^n \int_{-\infty}^{+\infty} (X_i - y)_+ \, d\nu_i(y)$$

The finite market

The cheapest super-replicating strategy

- ▶ The investment strategy \underline{v}^* :

- ▶ For any $i \in N_K$:

$$v_i^*(y) = \begin{cases} 0 & : y < K_{i,j_i} \\ w_i & : y \geq K_{i,j_i} \end{cases}$$

- ▶ For any $i \in \bar{N}_K$:

$$v_i^*(y) = \begin{cases} 0 & : y < K_{i,j_i} \\ \alpha_K w_i & : K_{i,j_i} \leq y < K_{i,j_i+1} \\ w_i & : y \geq K_{i,j_i+1} \end{cases}$$

- ▶ Price $[\underline{v}^*]$:

$$\begin{aligned} &= \sum_{i \in N_K} w_i C_i [K_{i,j_i}] + \sum_{i \in \bar{N}_K} w_i \{ \alpha_K C_i [K_{i,j_i}] + (1 - \alpha_K) C_i [K_{i,j_i+1}] \} \\ &= \bar{C}^c [K] \end{aligned}$$

The finite market

The cheapest super-replicating strategy

- ▶ The class $\bar{\mathcal{C}}_K$ of super-replicating strategies:

$$\bar{\mathcal{C}}_K = \left\{ \underline{\nu} \in \bar{\mathcal{I}} \mid \left(\sum_{i=1}^n w_i x_i - K \right)_+ \leq \text{Pay-off } [\underline{\nu}, \underline{x}] \text{ for all } \underline{x} \right\}$$

- ▶ 'for all \underline{x} ' means

'for all \underline{x} with $x_i \in [\bar{F}_{X_i}^{-1+}(0), K_{i,m_i+1}]$ '

- ▶ $\underline{\nu}^* \in \bar{\mathcal{C}}_K$.

- ▶ Any $\underline{\nu} \in \bar{\mathcal{C}}_K$ is a super-replicating strategy:

$$\mathbb{P} [(S - K)_+ \leq \text{Pay-off } [\underline{\nu}, \underline{X}]] = 1$$

The finite market

The cheapest super-replicating strategy

- ▶ A particular element of $\bar{\mathcal{C}}_K$:
 - ▶ Consider the investment strategy \underline{v}° defined by

$$\underline{v}_i^\circ(y) = \begin{cases} 0 & y < K_{i,j_i} \\ w_i & y \geq K_{i,j_i} \end{cases}$$

with the K_{i,j_i} as defined above.

- ▶ This investment strategy is an element of $\bar{\mathcal{C}}_K$.
- ▶ Its price is given by

$$\text{Price } [\underline{v}^\circ] = \sum_{i=1}^n w_i C_i [K_{i,j_i}]$$

The finite market

The cheapest super-replicating strategy

► **Theorem** :

$$\min_{\underline{v} \in \bar{\mathcal{C}}_K} \text{Price } [\underline{v}] = \text{Price } [\underline{v}^*] = \bar{C}^c [K]$$

► **Important remark:**

- Suppose that the index option $C [K]$ is not traded in the market.
- In case this option is sold over-the-counter, then $\bar{C}^c [K]$ is a reasonable price:
 - The seller can super-replicate the pay-off of $C [K]$ by buying \underline{v}^* .
 - The buyer cannot find a cheaper super-replicating strategy.

The finite market

The least upper bound

- ▶ \mathcal{D}_n = the class of all n - dimensional cdf's F on the non-negative orthant of \mathbb{R}^n .
- ▶ The marginal cdf's of $F \in \mathcal{D}_n$ are denoted by F_i , $i = 1, 2, \dots, n$.
- ▶ The class $\overline{\mathcal{R}}_n$:

$$\overline{\mathcal{R}}_n = \left\{ F \in \mathcal{D}_n \mid e^{-rT} \mathbb{E}_{F_i} \left[(X_i - K_{i,j})_+ \right] = C_i [K_{i,j}] \text{ for all } i, j \right\}$$

- ▶ 'for all i, j ' means

'for all $i = 1, \dots, n$ and $j = 0, \dots, m_i + 1$ '

- ▶ Comonotonic elements in $\overline{\mathcal{R}}_n$:

The cdf of $\left(\overline{F}_{X_1}^{-1}(U), \overline{F}_{X_2}^{-1}(U), \dots, \overline{F}_{X_n}^{-1}(U) \right)$ is an element of $\overline{\mathcal{R}}_n$

The finite market

The least upper bound

► Theorem:

$$\max_{F \in \bar{\mathcal{R}}_n} e^{-rT} \mathbb{E}_F \left[\left(\sum_{i=1}^n w_i X_i - K \right)_+ \right] = \bar{C}^c [K]$$

► Interpretation:

- $\bar{C}^c [K]$ is the lowest upper bound for the index option price $C [K]$ in the class of all models which are consistent with the observed stock option prices $C_i [K_{ij}]$.
- $\bar{C}^c [K]$ is reached when $(X_1, X_2, \dots, X_n) \stackrel{d}{=} (\bar{F}_{X_1}^{-1}(U), \bar{F}_{X_2}^{-1}(U), \dots, \bar{F}_{X_n}^{-1}(U))$.

The finite market

Computational aspects

- ▶ How to evaluate the upper bound $\bar{C}^c [K]$ for $C [K]$ numerically?
- ▶ How to choose the maximal values K_{i,m_i+1} ?
- ▶ How to determine $C_i [0]$?
- ▶ How to express $\bar{C}^c [K]$ in terms of the $\bar{F}_{X_i}^{-1}$?
- ▶ What in case of no option data for some stocks in the index?

References

- ▶ Albrecher, H., Dhaene, J., Goovaerts, M.J. and Schoutens, W. (2005). Static hedging of Asian options under Lévy models: the comonotonicity approach, *The Journal of Derivatives*, vol. 12(3), 63-72.
- ▶ Chen, X.; Deelstra, G., Dhaene, J.; Vanmaele, M. (2008). Static super-replicating strategies for a class of exotic options, *Insurance: Mathematics & Economics* 42(3), 1067-1085.
- ▶ Dhaene, J.; Denuit, M.; Goovaerts, M.; Kaas, R.; Vyncke, D. (2002a). The concept of comonotonicity in actuarial science and finance: theory, *Insurance: Mathematics & Economics* 34(1), 55-77.
- ▶ Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D. (2002b). The concept of comonotonicity in actuarial science and finance: applications. *Insurance: Mathematics & Economics*, vol. 31(2), 133-161.
- ▶ Dhaene, J., Linders, D., Schoutens, W. and Vyncke, D. (2012). The Herd Behavior Index: a new measure for the implied degree of co-movement in financial markets, *Insurance: Mathematics and Economics*, 50(3), 357-370.
- ▶ Hobson, D., Laurence, P. and Wang, T.H. (2005). Static-arbitrage upper bounds for the prices of basket options. *Quantitative Finance*, vol. 5(4), 329-342.
- ▶ Linders, D., Dhaene, J., Hounnon, H. and Vanmaele, M. (2012). Model-free upper bounds for index call and put options: a unified approach. Research Report, AFI, FEB, KU Leuven.

Contact

- ▶ jan.dhaene@kuleuven.be
- ▶ www.jandhaene.org
- ▶ **Actuarial Research Group, KU Leuven**
Naamsestraat 69, B-3000 Leuven, Belgium