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Index options: a model-free approach

Dow Jones option prices and comonotonic upper bounds

Index Option Prices: 3/1/2012
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Stocks, the market index and options
» The usual set up:
(Q, F, (]:t)ogth 'IP)

» Current time is denoted by 0.
» The stock market:

X;(t) = price of (dividend paying) stock i at time t

»i=12...,n
>0§t<T
» X;(t) > 0 is known at time t.

» European-type call options on stock i:
» Expiration date: T.
» Strike price: K > 0.
> Pay-off at time T

(Xi(T) = K),

v

(x) = max(x,0).
Price at time O:

v

G K, T]



Stocks, the market index and options
» S(t) = weighted sum of stock prices:

S(t)=wm Xi(t)+ -+ w, Xy(t)

> w; = positive weight factors.

» European-type index call options:

v

Expiration date: T.
Strike price: K > 0.
Pay-off at time T:

v

v

(S(T) - K)+
» Price at time 0:
C[K, T]

» Problem to be solved:

» Suppose that for each stock i, we observe the prices
G [K,-j T] of stock options for different values of .

» What can we conclude about the price C [K, T] of the index
option with strike K?



Stocks, the market index and options

» Further assumptions about the market:

» The market is arbitrage-free.

» There exists an equivalent martingale measure Q such that the
current price of any traded contingent claim with pay-off A(T)
at time T is given by

e T EQ[A(T)]
» r = time-0 risk-free interest rate to expiration T.

» Stock option prices:

G K, T]=e T EQ[(X(T) = K),]
» Index option prices:
CIK. T]=e T ER[(S(T)-K),]

» Notational conventions:

Denote X;(T) and S(T) by X; and S, respectively.
Denote C; [K, T] and C[K, T] by C; [K] and C [K].
Ommit Q to denote expectations in the Q-world.

Fx. and Fgs are the cdf’s of X; and S in the Q-world.

v

v Vv VY
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Stocks, the market index and options

» The infinite market:

Assumption: For each i, C; [K] traded for any K >0

» The finite market:

Assumption : For each i, C;[K] only traded
for strikes K = Ki,O: Ki,l: ey Ki,m,-

» Model-free approach vs. model-based approach:

» Model-free: Prices C; [K] are observed in the market.
» Model-based: Prices C; [K] follow from an assumed Q.

~
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Convex order

» R.v.'s are assumed to have finite means.

» Convex order:
A r.v. X is said to precede a r.v. Y in convex order sense if

E[X]=FE[Y] and E[(X—K) | <E[(Y—-K),], forall K

» Notation: X < Y.

» Other characterization:

E[(X~K).]

<
IE[(K—X)Jr] ; , for all K

XSCXY<:>{

esllies|
=

|
o)
a



Convex order

E(x)




Inverse cdf's

» The usual choice:

Fxl(p) =inf{x € R| Fx(x) > p}

» Alternative choice:

F)?H(p) =sup{x € R| Fx(x) < p}

» The « - inverse in case p € (0,1):

Fx ' (p) = aFgl(p) + (1 —a)F ™ (p),  a€[0,1]

» For strictly increasing cdf's:

Fx "™ (p) = Fx'(p)

10
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Inverse cdf's

) R K (®) E(q)
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Comonotonicity

Definition and notations

>

>

U is a r.v. which is uniformly distributed on (0, 1).

Definition:

The random vector (Yl, Yo, ..., Yn) is comonotonic if
Y, Y- Y,) < (FoY(U), FoL (U Fol(U
( 1 210y n) - Yy ( )’ Y, ( ) """ Yn ( )

Notations:

S = mXi+-+w,X,
¢ = wmF(U)+- -+ waFx (V)

» The weights w; > 0.

12
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Comonotonicity

Properties of comonotonic sums

> a-inverses of S€:

—1(a) P) _ Z W,'F);l(lx)
i=1

> Stop-loss premiums of S¢ for K € (Fg.'(0), F(1)):

E[($°—K).] = é wiE [(Xi — K7)).,]

Ki = Fx ") (Fse(K))

1

n
ax € [0,1] is such that ) w;K = K
i=1

FSC(K):SUP{P Zwl p)<K}

13
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Comonotonicity

Comonotonicity and convex order

» Convex order relation:

n n
Z wi X <ex Z WiFXl(U
i=1 i=1

» Generalized convex order relation:

X < Yifori=1,... n:>ZW,X <cx2w,

l(U



The infinite market case

From option prices to risk neutral distributions

» Stock i:
X; = price of stock / at time T > 0, i=1,2,...,n

» The index:
S=wXi+- -+ wyX,

» The comonotonic index:

S =wmF (U)+ -+ wiFx ' (V)

15 /58



The infinite market

From option prices to risk neutral distributions

» Stock option prices:

ClKl=e T E[(X—K),]

» Index option prices:

CKl=eTE[(S-K),]

» From option prices C; to risk neutral distribution Fy;:

Fx,(x) =1+ e’ C![x+]

» From risk neutral distribution Fx, to option prices C;:

[ee]

G K] = e*fT/K (1— Fx.(x)) dx

16 /58



The infinite market

From option prices to risk neutral distributions

» The infinite market case:

Assumption: For any i, Cj[K] traded for all K > 0

v

Equivalent characterisation:

Assumption: For any i, Fx,(x) known for all x > 0

v

In the infinite market case, we know the cdf of S¢.

v

Knowledge of all prices C; [K] does not allow us to specify the
multivariate distribution Fx(x) of X = (X1, Xz, ..., Xn).

The put-call parity:

v

ClK|+e "K=P;[K]+e TE[X]



The infinite market
An upper bound for the index option price

» Goal: Determine an upper bound for the index option
price C [K] in terms of observed stock option prices.
Theorem:

CK] < e ME[(S°—K),] "= C°[K]
When K < Fg'1(0):

v

v

C[K] =C* [K] = i w; G [0] —e 'K

v

When K > Fol(1):
CIK|]=C°[K]=0
In the sequel, we always assume that

K € (Fs(0), Fs (1))

v

18
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The infinite market

An upper bound for the index option price

» Theorem: "C€ [K] is a l.c. of stock option prices."
n
Co[K] =) wi GK/]
i=1

> with

Ki = F ) (Fse(K))

> ay determined from
n
Y wiK =K
i=1

» and Fsc(K) from

n

Fsc(K) = sup{p €0,1]] ), W,F)?il(p) < K}
=1

1=

19/58



The infinite market

An upper bound for the index option price

» Theorem: "C€ [K] is the price of a static superhedging
strategy for the index option C [K]."

» Consider the following strategy:

> At time 0, for each stock i, buy w; stock options C; [K/].
> Hold these calls until they expire at time T.

» The pay-off of this strategy super-replicates the pay-off of the
index option C [K]:

i=1

n n
(2 w; Xi_K> <Y wi(Xi— K,
=

> The price of this strategy is given by the comonotonic index
option price C€ [K].

20 /¢



The infinite market
The cheapest super-replicating strategy

» Question: Can we improve the upper bound for C [K] by
looking for the price of a cheaper super-replicating strategy?

> A general class of investment strategies Z:

» At time 0, for each stock i/, calls C; [y] can be bought or sold
for any y > 0.

» Hold the taken positions until time T.

> We describe any such investment strategy by a vector of
functions v = (v1,v2,...,Vy), with

vi(y) = number of purchased calls on i with strike < y

» Assumption: Each function v; is a r.c. jump function with
vi(y) =0if y < 0 and with only a finite number of jumps
(upwards or downwards) on [0, ).



The infinite market
The cheapest super-replicating strategy

> Price of the investment strategy v € 7:

Price [v] = Z”%/:O G ly] dvi(y)

> Pay-off of the investment strategy v € 7 at time T:

n 400
Payeoff X = 15 [ (X =) duily)

—00
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The infinite market
The cheapest super-replicating strategy

» The investment strategy v*: Fori=1,2,..., n,
0 y < KF
£(y) = /
vi(y) { Wy > K
> with

K = Fy ) (Fse(K)

1

» and ay determined from
n
i=1
» The price of v*:
n
Price [v*] = Z w; G [K'] = C[K]
i=1

» The pay-off of v* :

Pay-off [v*, X] = Y w; (X; — K¥)

23 /58



The infinite market
The cheapest super-replicating strategy

» The class Ck:

Cx = {1/ €T (Z w; X; — K) < Pay-off [v, x| for all x}

» 'for all x’ means

"for all x with x; € Support [X;]’

» Any v € Ck is a super-replicating strategy:

P [(S—K), <Pay-off [v,X]] =1

24 /)¢



The infinite market
The cheapest super-replicating strategy

» Some elements of Ck :

» Consider the investment strategy v given by
_J 0 y<K;
V'(y>_{ wi ¥y =>K;

with .,
Z 4 K,' S K
i=1

» This investment strategy is an element of Cy.

> In particular, we find that

v* e Ck

25/58



The infinite market
The cheapest super-replicating strategy

» Theorem:

min Price [v] = Price [v*] = C° [K]

velk

» Important remark:

» Suppose that the index option C [K] is not traded in the
market.

> In case this option is sold over-the-counter, then C [K] is a
reasonable price:

> The seller can super-replicate the pay-off by buying v*.
> The buyer cannot find a cheaper super-replicating strategy.

26 /58



The infinite market
The least upper bound

» D, = the class of all n - dimensional cdf's F on the
non-negative orthant of R”.

The marginal cdf's of F € D, are denoted by F;,
i=1,2,...,n

The Fréchet class R,:

v

v

Ro={FeD,|Fi=Fx,i=1,..., n}

v

Equivalent characterization of R ,:

Ry = {F €D, | e*rTIEF, [(X,- —y)+] = G [y], forall i, y}

» A comonotonic element in R ,:

The cdf of (F.'(U), F ' (U), ..., Fx'(U)) belongs to R,

N
~



The infinite market
The least upperbound

» Theorem:

max e~ T Ef
FeR,

= C°[K]

(i W,'X,' — K)
i=1 +

» CC[K] is the lowest upper bound for the index option price
with pay-off (171 w;X; — K), in the class of all models
which are consistent with the observed stock option prices
Cily], foralli=1,2,..., nand y > 0.

» C€ K] is reached when (X1, Xy, ..., Xp) is comonotonic.

> Interpretation:

28 /¢



The infinite market

Computational aspects

» Suppose that for any stock i, the cdf Fy, is strictly increasing
on (F)?I_H(O), F)Z_l(l)) and continuous on R.

» The comonotonic index option price C¢ [K] is then given by

ZW, ; { FSC(K))}

» Fsc(K) is the unique solution of

EW, F5c )) = K

» Example: The Black & Scholes model.

29
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The finite market

Traded options and approximations - Stock options

» Traded calls for stock i, (i =1,2,...n):
GilKiol, G lKii]. ..., G [Kim,]
The chain of strikes:

0= Ki,O < K,‘yl < K,"2 < e K K,’vmi < F)?il (1)

v

» We assume that F)Z_l (1) is finite and known:

Fi (1) " Kjm1 < o0

i

v

Stock option prices:

GlKij)=eTE[(X—Kyj).,], Jj=01....m+1
For each i, define the function G; [K]:
GlKl=eTE[(X—K),.], for all K >0

v

30
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The finite market

Traded options and approximations - Walt Disney

13 -

11 -

Wal

t Disney Co: 23/01/2012
Time to maturity: 25 days « Call Prices
¢ PutPrices
Lo

31
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The finite market

Traded options and approximations - Index options

» Consider the traded index option with pay-off (S — K)_ at
time T.

» Index option price:

CKl=eTE[(S—K),]

> Goal:
Determine an upper bound for C [K]
in terms of the observed G [K; ;].

32/58



The finite market

Traded options and approximations - Finite vs. infinite market

» Upper bound for C [K]:

CIKI <Y w GIK]

» This bound can be calculated in the infinite market case:

Gi [K] known for all K >0

» This bound cannot be calculated in the finite market case:

Gi [K] only known for Kig, ..., Kim+1

33 /58



The finite market

Traded options and approximations - The 'artificial infinite market’

» Approximate the function C; [K] by the piecewise linear
function C; [K] which connects the (K, C; [K;i;]) and such
that
Ci[K]=CGI[K]ifK & (0, Kim+1)

» Properties of C; [K]:

» C;[K] is convex and decreasing.
» C;[K] is known for all K:

» For any K > 0, we have that C; [K] can be expressed as a
convex combination of known option prices C; [K; ].

> ?,‘ [K] > C,' [K] for all K.
» Apply the results of the infinite market to the functions
Ci[K].
> We end up with an upper bound for the index option price
which contains at most two traded strikes per stock.

34



The finite market

Traded options and approximations - The 'artificial infinite market’

A

ClK, ] ¢

Gl ]

CIK]

q/Kx.;u/

ClE;m]

e
Y

Ko Kij.i K;; Kiji1 Kim,

1] 2

3
=
3

C,‘[K,"j] forj=0,1,...,m + 1.
C: [K] (dashed line) vs. C, [K] (solid line).

>
>

35/58



The finite market

Traded options and approximatons - The artificial infinite market

> Lemma:
> If Ki,jSKSKi,j+1,j:011 ..... mj:

G [Kij] = G [Kij+1]
Kij+1 — Ki

CilKl =G [Kij] - ;

and

(K —Kij)

36
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The finite market

Traded options and approximations - The artificial infinite market

> Lemma:
> Let fX’. be the cdf of X; such that

e T Be, [(Xi—K),]=Ci[K] forall K

» The cdf Fx:
> If Ki,j <x< Kl"jJrl, j=0,1,..., m;:
_ K ] — C K
0< Fx.(X) = 1+e’T G [ "J+1} G [ I'J] <1
' Kij+1 — Ki

J

> Furthermore,
FX,‘ (X) =0 if x <0
FX,‘ (X) = 1 if x 2 K,"ml.Jrl

» Ordering relation:

37 /58



The finite market

Traded options and approximations - The artificial infinite market

A

Ey (K. )
E,(K.)
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The finite market

Traded options and approximations - The artificial infinite market

/o]
CIK]
P[K]
C;[Kzzl e
0 i ‘ >
I{z‘,O K;:,z Ki,z Kz,g i,m; Kifmr“’
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The finite market

Traded options and approximations - The artificial infinite market

» An expression for fxi(K,-J-), j=0,1,...,m

Fo (K I AL
X (Ki) = g /. R o

» Equivalence relations for j =0,1,..., m;:

=1+
Fx

i

(0) = Kij <= Kij < Fx'"(0) < Kiji

40 /58



The finite market

An upper bound for the index option price

. —C
» The comonotonic sum S :

3¢ = wiFx, (U)+ woFx, (U)+ -+ w,Fx (V)

. , =¢
» The ‘extreme’ outcomes of S :

FeiT(0) = L wiFx, " (0) and  Fi(1) = ), wikimia
» Theorem:

CK]<e ™ E [(SC — K)J " CC K]

41 /58



The finite market

An upper bound for the index option price

> In the sequel, we always assume that

K e (Fgﬁ(o), Fgcl(l))

» Theorem:

> with

n
Ki =, ) (Fge(K)) and a from ) wiKi = K
i=1

> Question: _
How to determine the C; [K] from the observed C; [K; ;]?



The finite market

An upper bound for the index option price
> The integers j; :
> Notation: K; _; = —1. Then

Fx,(Ki,—1) =0
> j; is defined as the unique j € {0,1,..., m; + 1} that satisfies
Fx (Kij-1) < Fsc(K) < Fx,(Ki )
> Notice that j; depends on K.
» The set Nk:

NK = {I € {]., ...,n} |fX,'(Ki,j,‘*1) < Fgc(K) < fxi(Ki.j/))}
» The set Ng:

Nk ={ie{1,2,....n} | Fse(K) = Fx.(Ki;)}

43 /¢



The finite market

An upper bound for the index option price

A
7 ’
""""""""""""""""""""""""""" —
rrrrrrrrrrrrrrrrrrrrrrrrrrr —
F5(K)g i :
,,,,,,,,,,,,,, .—0 :
Kij1 K Kiji1

» The cdf Fx,(x)
> i€ Nk

> K= Fx ) (Fee(K)) = Kij

i



The finite market

An upper bound for the index option price

A
1 B S—
——————————— e
F§C(K)1D - 3 >
Ki,y;-l Ki,y; Ki, J+1

» The cdf Fx.(x)
LIRS NK
—1
b K= F ) (Fae(K)) = ak Kijy + (1 — a)Kijan

i
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The finite market

An upper bound for the index option price

» Recall:

CIK < T [K] = L wi G 1K)

» Determining K = f)_(il(w) (Fs<(K)):

K — Kl’Ji if i € NK
L XK Ki,ji + (]_ _“K)Ki’jl.+1 if i € Ng

» Determining C; [K}]:

T [K*] _ o [K/Ji] ifi € NK
S ax G [Kf,ji] + (1 — aK)C,- [Ki.ji-i-l] ifi € Ng

46 /58



The finite market

An upper bound for the index option price

» Theorem: "C° [K] is the price of a static superhedging
strategy for the index option C [K]."

» Consider the following strategy:
> At time 0, for any i € N,
buy w; calls C; [Ki ]
> At time 0, for any i € NK,
buy ax w; calls G; [K; ]
buy (1 —ax)w; calls C; [Kjj41]
> Hold each of these calls until time T.

» The pay-off of this strategy super-replicates the pay-off of the
index option C [K].
» The price of this strategy is given by C_ [K].

47 /&



The finite market

The cheapest super-replicating strategy

v

Question: Can we improve the upper bound for C [K] by
looking for the price of a cheaper super-replicating strategy?

v

A general class of investment strategies Z:

» At time 0, for each /, vanilla calls C; [y] can be bought or sold
forany y € {K,-,O, Ki1. Kio, ..., Ki,m,}-
» Hold the taken positions until time T.

v

We describe any such investment strategy by a vector
v=(v1,Vv2,...,Vp), with

vi(y) = number of purchased calls on i with strike <y

v

Each v; : R — R is a r.c. jump function which can only have

jumps (upwards or downwards) at Ko, Ki1, Ki2, ... and Kjm,.

48



The finite market

The cheapest super-replicating strategy

» Price of the investment strategy v € Z:

Price [v] = é/t:o Gily] dvi(y)

> Pay-off of the investment strategy v € 7 at time T:

n +o0
Pay-off [v.X] =) [ (Xi=y)i duily)

—00
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The finite market

The cheapest super-replicating strategy
» The investment strategy v* :

» For any i € Nk:

0 : y<K;;
* = IJi
v (y> { wi oy > Ki,j,-

0 : y < Kiyji
vily) =4 axw; : K <y <Kijn
wp o y = Kiji+1

» Price [v*]:

= Y wG[Kijl+ ) wi{axGKij]+ (1—ak)G[Kij]}
i€Nk ieNk
C

= C [K]

50 /58



The finite market

The cheapest super-replicating strategy

>

The class Cy of super-replicating strategies:

Ck = {1/ cT | (Z W Xj — K) < Pay-off [v, x| for all x}
/ +

» 'for all x’ means

‘for all x with x; € [F}i“(o), K,-,,,,,.H} '

€ Ck.
Any v € Ck is a super-replicating strategy:

P [(S—K), < Payoff [v,X]] =1



The finite market

The cheapest super-replicating strategy

» A particular element of Cy :

» Consider the investment strategy v° defined by

° - 0 y < Kf,ji
Vi) = { wi y =K

with the K; ;. as defined above.

» This investment strategy is an element of Ck.
> It's price is given by

n
Price [yo] = Z w; C,' [Ki-ji]
i=1

52 /58



The finite market

The cheapest super-replicating strategy

» Theorem :

min Price [v] = Price [v*] = C [K]

velyg

» Important remark:

» Suppose that the index option C [K] is not traded in the
market.

> In case this option is sold over-the-counter, then C° K] is a
reasonable price:

> The seller can super-replicate the pay-off of C [K] by buying
v
> The buyer cannot find a cheaper super-replicating strategy.



The finite market
The least upper bound

» D, = the class of all n - dimensional cdf's F on the
non-negative orthant of R".

» The marginal cdf's of F € D, are denoted by F;,
i=1,2,...,n.

» The class R ,:

Ry = {F €D, | e TEf [(Xi — Kij).] = G [Kij] forall i, j}
» 'for all i, j' means

foralli=1,..., nandj=0,..., m;+1'

» Comonotonic elements in R ,:

The cdf of (f;ll(U),f;zl(U), .. ,an (U)) is an element of R,

54
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The finite market
The least upper bound

» Theorem:

= C°[K]

max e T Ef
FER,

(Zn: W,'X,' — K)
i=1 +

» C° [K] is the lowest upper bound for the index option price
C [K] in the class of all models which are consistent with the
observed stock option prices C;[Kj;].

» C° [K] is reached when
d —
(X, X, Xa) £ (Fx

> Interpretation:

HU).F (W) F (U)).



The finite market

Computational aspects

» How to evaluate the upper bound C [K] for C [K]
numerically?

» How to choose the maximal values Kj 5,417
» How to determine C; [0]?

— . =1
> How to express C_ [K] in terms of the Fx.?

» What in case of no option data for some stocks in the index?

56 /58
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