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Abstract

We consider n risks X7, Xo,...,X,, insured by a layer coverage with deductibles
and limits given by (di,11),. .., (dn,1,), respectively. We investigate the optimal allo-
cation of insurance layers from the viewpoint of the insurer. We derive lower and upper
bounds for the survival function of the smallest and largest claim amounts using the
first stochastic dominance order. We find that assigning a small deductible and a large
limit to large risks increases (decreases) stop-loss premiums of the largest (smallest)
claim amounts.

Keywords: Deductible, first stochastic dominance order, hazard rate order, policy
limit, stop-loss order.

1 Introduction

Let us introduce the risk X as a loss faced by a policyholder which is a non-negative random
variable. The insurance layer X (d,d + ] is defined by the pay-off

0, if0< X <d
X(d,d+1l]=¢ X—d, ifd<X <d+1
l, ifd+1l< X

where d and [ are pre-specified values called the deductible and policy limit, respectively,
while z; = max{z,0} and x A y = min{z, y}, see e.g. Wang (1996, 2000).
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It follows from the definition of the layer contract that the risk X (d,d+1] = (X —d);+ Al
is covered by the insurer and the remaining risk, X — X (d,d+1] = (X Ad) + (X — (d+1))+,
is self-insured by the policyholder. When d = 0, then it is equivalent to the policy limit
coverage, while if [ = oo, it is equivalent to the deductible coverage (cf. Klugman et al.,
2004).

The optimality conditions of an insurance layer contract have been studied in various

aspects in the literature. For example, Wang (1996) have introduced new premium princi-
ples by determining the premium for insurance layers. Goovaerts and Dhaene (1998) have
characterized Wang’s class of premium principles. Sung et al. (2011) have studied the
optimal insurance policy, in which insurers’ decision behavior was modeled by Kahneman
and Tverskys Cumulative Prospect Theory with convex probability distortions. They have
shown that, based on a fixed premium rate, an insurance layer could be an optimal insurance
policy. Cheung et al. (2012) have studied the optimal reinsurance policies with an Average
Value-at-Risk of the retained risk, under Wang’s premiums. They have shown that under
the budget constraints of the reinsurance premium, the optimal reinsurance design is an
insurance layer. Zhu et al. (2014) have studied reinsurance strategies for an insurer with
multiple business lines who buys reinsurance for each business line separately. They have
shown that the optimal strategy for the insurer is to purchase a two-layer insurance policy
for each business line, if the premium for each business line is allowed to vary by line, but
they all satisfy three relatively mild conditions: distribution invariance, risk loading and
preserving the convex order. On the other hand, the optimal reinsurance strategy for the
insurer will be a one-layer insurance contract for each business line, if the premium satisfies
additional mild conditions, which are met by the expected value principle, standard devia-
tion principle and Wang’s principle among many others. Some more studies on insurance
layers can be found in Cui et al. (2013), Cheung et al. (2014), Zheng and Cui (2014), Assa
(2015), Zhang and Liang (2016) and references therein.
Now, consider a situation where a policyholder is facing n risks X,..., X,, each of which
is insured under an insurance layer coverage. Suppose the amounts d and [ are the total
deductible and the total policy limit amounts corresponding to the n risks. The policyholder
wants to divide d and [ into n non-negative values dy, . ..,d, and [y, ..., [,, respectively, such
that > d; =dand ) I, =1l andfori =1,...,n,d; and l; are respectively the deductible
and the policy limit corresponding to the risk X;. Then (Xi(dy,d; + 1], ..., Xn(dn, dy + 1))
is the pay-off vector where for random variable Xy, Xy (u,u+v] = (X —u); Av. Let us set
d=(dy,...,d,) and l = (Iy,...,1,) and

Su(d, 1) ={(dr,.. . dn, 1y 1) | Y di=d,)> li=1,d; >0, I; > 0}.
i=1 =1

In view of these considerations, the covered amount by the insurer is given by > »  [(X; —
d;)+ A l;] and the retained risk is given by Y I [(X; Adi) + (X; — (I + di))+].

From the view point of the insurer, it is of interest to study the stochastic properties of
some important statistics of (Xi(dy,dy + 1], ..., X (dys, d, + 1,,]) if the parameters d and 1
are replaced by another set of parameters d* and I*, respectively, such that (d,1), (d",l*) €
sp(d,1). Using the notion of majorization and various kinds of stochastic orderings, the
statistic Y., [(X; — d;)+ A L], i.e., the total risk insured by the insurer, has been studied in



the particular cases when dy = ... =d, =0or [y = ... =1, = co by many researchers. See
e.g. Cheung (2007), Lu and Meng (2011), Hu and Wang (2014), Fathimanesh and Khaledi
(2015) and Fathimanesh et al. (2016) among others. Amiri et al. (2019) recently investigated
stochastic properties of the statistic > . [X; — (X; — d;)+ Al;] for the case when X7,..., X,
are i.i.d exponential risks.

This paper is devoted to the ordering properties of the largest and smallest claims in
the deductible and limit policies, and generally, in the layer coverage. The insurer is more
interested in the aggregate claim than in the largest individual claim. But maybe this
statement is a statement which holds after the distribution of the claims (or the d’s and
the I's are ’distributed’) is fixed. The maximum and minimum of the individual risks are
important and relevant in terms of portfolio composition. That is the stage where the insurer
decides what to insure and what not to insure (or even to reinsure). Hence, when different
clients come to the insurer with their full risk, the insurer has to decide what layer he/she
is willing to insure for the different clients. Then, the result of the paper gives an indication
where the insurer should allow the broadest insurance (in the sense of the smallest d and
largest [). Balakrishnan et al. (2018) and Zhang et al. (2019) have notified that the analysis
of the smallest and largest claims provides useful information for determining the premium.

Using the notions of stochastic orderings and majorization order, many researchers stud-
ied the stochastic properties of the smallest and the largest claims. Barmalzan and Payandeh
(2015) recently investigated the ordering properties of the smallest claim amounts from a
set of Weibull heterogeneous portfolios in the sense of the convex transform order and the
right spread order. Barmalzan et al. (2015) studied the stochastic comparison between the
smallest claim amounts from a portfolio risks in a general scale model, in the sense of the
usual stochastic and hazard rate orders and between the largest claim amounts in the sense of
the usual stochastic order. Barmalzan et al. (2016) discussed the likelihood ratio order and
dispersive order between the smallest claim amounts from two sets of independent heteroge-
neous Weibull claims. Balakrishnan et al. (2018) compared the largest claims from two sets
of independent or non-independent portfolio risks in the sense of the usual stochastic order.
They also established comparison results on the largest claim amounts in the sense of the
reversed hazard rate and hazard rate orders for two batches of heterogeneous independent
claims.

To the best of our knowledge, there is no research available in the literature concerning
the ordering properties of the largest and the smallest claims in the deductible and limit
policies, and generally, in the layer coverage. In this paper, we will try to fill this gap in the
literature.

Hereafter, we introduce some definitions which we will use later. Let X and Y be two
random variables with distribution functions F(.) and G(.), survival functions F(.) and G(.),
right endpoints of the supports ux and uy and left endpoints [x and ly, respectively.

Definition 1. X is said to be smaller than'Y" in the first stochastic dominance order (known
as the usual stochastic order and denoted by X <q Y), if and only if F(t) < G(t) for all
teR.

Definition 2. X is said to be smaller than Y in the hazard rate order (denoted by X <p, Y)

i % is increasing in t € (—oo, max{uy,uy}). FEquivalently, X <,. Y if F(y)G(z) <

F(2)G(y) for all z < y.



Definition 3. X is said to be smaller than Y in the reversed hazard rate order (denoted by
X<wY) if% is increasing int € (min{lx,ly },00). Equivalently, X <., Y if F(y)G(z) <
F(x)G(y) for all x < y.

Definition 4. X is said to be smaller than Y in the stop-loss order (denoted by X <4 Y)
if and only if E(X —d)y < E(Y —d)4 for alld € R.

It is known that the hazard rate order and the reversed hazard rate order imply the first
stochastic dominance order, which in turn, implies the stop-loss order. For more details
about stochastic orders, interested readers may refer to Miiller and Stoyan (2002), Denuit et
al. (2005) or Shaked and Shanthikumar (2007).

For any real vector x = (1,...,2,) € R", let 4y < ) < ... < 2(,) denote the
increasing arrangement of x1, ..., x,.

2 Main Results

Suppose that X, Xs,..., X, are independent non-negative random variables with distribu-
tion functions Fi, ..., F, respectively. It is easy to see that

1 t <0,

0 t>1,
where Fy(.) = 1 — Fj(.) is the survival function of X;, i = 1,...,n. Let 7 = (71,...,7)
and 7w = (my,...,m,) be two permutations of (1,...,n). Then, the survival function of

miny <;<,{Xi(d,, d,, + l,]} and the distribution function of max;<;<,{X;(dy,, d;, + ]}, for
all t > 0, are given by

P(lglzl%ln{Xl(dTw de’ + lﬂz]} > t) = HFXi(dri7dri+lwi](t)

n

— TIFud, + 010 <t <) 1)

and

1<i<n

P(max {Xi(dr,, dr, + 1]} <t) = HFXi(dTi,dTﬁzﬂ](t)
=1

n

= [t - Fild-, +)I(0 < t < 1,)],

i=1
respectively, where I(A) = 1 if A occurs and I(A) = 0 otherwise.
Theorem 5. Let X, X5...,X, be independent random risks such that X1 <., Xo <.p

oo <pn X Then, for two non-negative vectors (di,...,d,) and (l1,...,l,) and any permu-
tations w and T of (1,2,...,n), we have that
%gzas};{Xz(dna dn + lm]} st fg%ﬁ{Xz(d(nferl)a d(n71+1) + l(z)]}



Proof. We first prove the theorem for n = 2. For n > 2, the proof is given by induction.

For n = 2, assume without loss of generality that d; > dy and [; < [,. For the cases
T=(2,1), 7= (2,1) and 7 = (2,1), w = (1,2), from the assumption X; <,;, Xy, it is easy
to see that for all £ > 0,

[1—F(di+)I(t < 1)][1—Fao(dott)I(t < lp)] < [1=F1(do+t)I(t < I)][1—Fo(di+)I(t < I,)].

For the cases 7 = (1,2), w = (1,2) and 7 = (1,2), # = (2, 1), the proof is straightforward.
This completes the proof of the required result.

We now take the inductive step and assume that the result holds for n > 2 risks. We
show that the result holds for n + 1 risks, that is, for any permutations (7y,...,m,.+1) and
(T1y .oy Tng1) of (1,2,...,n+1),

nax {Xi(dn oy + L]} <o s (Xl isaysdinssa) + Lo}

1<i<n+1 1<i<n+1

Ifd;, ,, =duy,lxr,., = lnt+1), the result immediately follows from the induction hypothesis
and Theorem 1.A.3 in Shaked and Shanthikumar (2007). Suppose that d, = du) and
lﬂj = l(n+1), 1 < 7. Then

max {Xk(div di + lﬂ'k]}

1<k<n+1
= max { 1§I’£1§ai(+1{Xk(d7k, d,, + lﬂk]}, maX{Xi(d(l), d(l) + lm], Xj(d-,-j, de + l(n+1)]}}
ki,
<u max{ 1<r£1<a7i(+1{Xk(di, dry, + lr, ]}, max{ Xi(dy,, dr, + lx,], X;(d(1), d(1y + l(n+1)]}}
ki
= max { 1211?<Xn{Xk(di’ dry + U]}, Xi(dy,, dry + 17y,
ki,

maX{Xj (d(1)7 d(l) + l(n+1)]7 Xn+1(dTTL+1 ) dTn+1 + l7T7L+1]}}
<u max{ 1rg?<xn{Xk(di, dr, + 1]}, Xi(dy,, dry + 17,
ki j
max {X;(dr, 15 dryiy + by X1 (dy, dy + L]
= max { max{ mas {Xe(dy, dry + L]}, Xildry, oy + 1), Xyl oy + L1,
ki, j
Xny1(dqy, deyy + l(n+1)]}

<t ISI?SEEEH{XZ'(d(n—H—Q)a dn—it2) + 5]}

where the first and the second inequalities above follow from the result for n = 2 and
Theorem 1.A.3. in Shaked and Shanthikumar (2007) and the third inequality follows from
the induction hypothesis and again Theorem 1.A.3. in Shaked and Shanthikumar (2007).
For the case when ¢ > j, the proof is similar and is therefore omitted. Thus the proof is
completed. O

From the result of Theorem 5, we conclude that if the size of a risk is large and we assign
a smaller deductible and a larger policy limit to the risk, in other words, cover the larger
layer of larger risks, then the largest claim paid by the insurance company will be maximized.



This provides a convenient upper bound on the survival function of the largest claim amount
given as

n

P(max {Xi(dr,, dr, + 1]} > 1) H Fi(dgmirn) + It < 1)).

From the fact that <,; implies <; and Theorem 5, we have the following corollary which
enables us to find an upper bound to the stop-loss transform of the largest claim amount in
a portfolio.

Corollary 6. Under the conditions of Theorem 5, we have that
max { X;(dy,, dr, + ]} <q max {X( (n—i+1) Am—i+1) + L&) }-

1<i<n

Let H(.) be a premium calculatlon principle (risk measure) which preserves stop-loss
order. Then we can conclude from Corollary 6, that

H(max {Xi(dry, dr, + 1]}) < H(ax {Xi(duoicny, diniony + 1]}

1<i<
The next question may arise is whether assigning a smaller deductible and a larger policy
limit to the smaller risk provides a lower bound on the survival function of the largest claim
amount, that is

max { (X;(dw), diy + ln—isn)]} <st gﬁ%{(){i(dm, dr, + 15]}

1<i<n
The following example shows that this may not be true.

Example 7. We use the notation W (a, A) for the Weibull distribution with shape param-
eter v and scale parameter \. Suppose X1, X5 and X3 are independent Weibull random
variables with common shape parameter a = 0.5 and the scale parameters 4,7 and 10,
respectively. We know that X; <., X5 <., X3. In Figure 1, we plot the survival func-
tion of max)<;<,{Xi(dx,, dr, + I5,]} where (I1,1s,13) = (10,20, 30), (dy,ds,ds) = (3,6,9) and
(71,7, m3) and (71, T2, 73) are permutations of (1,2, 3). It is seen that the survival function of
max <;<3{ (Xi(d), du) + l3—it1)]} crosses that of max;<;<s{(X;(dx,, dx, + 5]} at some point.
Next, we turn our attention to comparing the largest claim amounts in two cases:(7)
d =...=d,=4d, (i) Iy = ... =1, = l'. First note that the distribution functions of
max; <<, {X;(d',d + ]} and max1<i<n{X-(dTi d,, +1U'}, for t > 0, are given by
(fgi);{X(d/ d/+l }<t HFX d'\d'+1x,] t

n

= [0 -Fud +t)I(t <))

=1

and
(E%i{X (dr,,d,, +1'} <t) = ﬁ Fx.(d., dr,+1(t)
= ﬁu — Fi(d,, + )I(t < 1],
respectively. h
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Figure 1: Survival functions of max;<;<,{(X;(dx,, dr, + [;,]}, in case X; ~ W(0.5,\;),1 =
1, 2, 3 and ()\1, )\2, )\3) = (4, 7, 10), (ll, lz, 13) = (10, 20, 30) and (dl, dg, dg) = (3, 6, 9)

Theorem 8. Let X1, X5 ..., X, be independent random risks and let (I1,...,l,) and (dy, ..., d,)
be two non-negative vectors. Then,

(i) for any permutation 7 of (1,...,n), if X1 <g Xo <g ... < X,, one has that

max {Xi(d', '+ l-iy]} oo (X' + 1]} <o max {X(d' @ + o)),

1<i<n
(ii) for any permutation T of (1,....,n), if X1 <pp Xo <pp ... <pn Xy, one has that

max {X;(dg), duy + ']} <a Ezagi{Xi(dﬁ, dr, + U} <g Eﬁ};{Xi(d(nfiH), din—iv+1) + U}

1<i<n

Proof. 1t is easy to see that the results of (i) and (ii) hold true for the case n = 2. Thus, the
proof is easily done by induction similar to that of Theorem 5. O

Theorem 8 enables us to find an upper and a lower bound for the distribution function
of the largest claim amount for two cases indeed,

(2)
P(max {X;(d,d + ]} < t) < P(max {X;(d,d +1;,]} < 1) < P(max {X:(d,d + ln_ss1)]} < 1)

1<i<n 1<i<n 1<i<n
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n

[t - Fu(d + )1t < 1)) < ﬁu F(d + It <1)] < ﬁ[l —Fid + It < lpis)]

=1 =1 =1
and (i7)
P(max {Xi(dn-i+1), dw-i+n) + ]} < 1) < P(max {Xi(dy,, dr, + U]} < 1) < P(max {Xi(da), do + U]} < 1)

0

11 = Fildpeicny + )1t < 1)) < JJ11 = Filds, + )I(t < )] < []11 = Fildgsy + )1t <1)]
i=1 i=1 i=1

The following corollary is a direct consequence of Theorem 8.
Corollary 9. Under the conditions of Theorem 8,

(i) if Xy <q Xo <g ... <g Xp, then for any permutation w of (1,...,n),

max {Xz(d/> d + l(n7i+1)]} <s g%ﬁ{Xz(d/a d + lm]} <sl g%ﬁ{Xz(dc d + l(l)]}a

1<i<n
(1) if X1 <,;n Xo <pn ... <pn X, then for any permutation T of (1,...,n),

max { X;(d), day + '} <a 1H<lz'a<}§z{Xi(dT“ dr, + 1} <a lfgii{Xi(d(n—Hl), An—iv1y + 1}

1<i<n

The following example numerically illustrates the results of Theorem 8.

Example 10. Suppose X7, Xy and X3 are independent Weibull random variables with the
common shape parameter a = 0.5 and the scale parameters \; < Ay < A3. In Figure 2, we
graph the survival function of max<;<3{X;(d’, d’' +1,]} where (I1,12,13) = (10,20,30), d =5
and (A1, A2, A3) = (4,7,10). The figure demonstrates the result of Theorem 8(i). In Figure
3, the survival function of max;<;<3{X;(d;,, d,, +1']} is graphed where (d;, ds, d3) = (2,6, 10),
I =30 and (A1, A9, A3) = (0.5,2,10). It is observed that the figure demonstrates the concept
of Theorem 8(i3).

In the following theorem we derive a lower and an upper bound for the survival function
of the smallest claim amount in a portfolio. First note that, from (1), it is clear that for any
permutation 7r,

) d .
Xi(dy, dy, + 1]} = Xi(d,,, d,, + 1]}
élllgnn{ i(dry dry + 1]} 1I£ilgnn{ i(dry, dry + L]}
This means that the permutation of the limits does not have effect on the magnitude of the
smallest claim.

Theorem 11. Let X, X,..., X, be independent random risks such that X1 <p, Xo <p,
oo <pr Xy Then, for two non-negative vectors (di,...,d,) and (l1,...,1,) and any permu-
tation T of (1,2,...,n), we have that

min { X;(d(n—it1), dn—it1) + 1]} <at 1I£lii<nn{Xi(dn, dr, + 1]} <a 1%i<rln{Xi(d(i), day + i}

1<i<n
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Figure 2: Survival functions of max;<;<3{X;(5,5 + l,]}, in case X; ~ W (0.5, \;),i = 1,2,3
and (/\1, /\2, /\3) = (4, 77 10), (ll, l2, lg) = (]_0, 20, 30)
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Figure 3: Survival functions of max;<;<3{X;(d,,, d,,+30]}, in case X; ~ W (0.5, \;),i = 1,2,3
and (/\1, /\2, /\3) = (05, 2, 10), (dl, dg, d3) = (2, 6, 10)



Proof. For the case n = 2, the assumption X; <p,. X, implies that for ¢t > 0,

Fi(de) + ) Fa(day + )1t <lny) < Fi(day + ) Fa(de) + It < ln)) (2)
which is the required result. Now, similar to the proof of Theorem 5, for n > 2, the required
result follows by induction. m

From Theorem 11, it follows that a lower and an upper bound for the survival function
of the smallest claim amount in a portfolio, for all ¢t > 0, are given by

1<i<n

P( min {Xi(d,,, d,, + 1]} > t) > H (din—isny + )1t < 1))
and

P( min {X;(d,,,d,, + ;]} > t) <

1<i<n

||z:

l)+t t< l(l)).

The following corollary is a direct consequence of Theorem 11, which enables us to com-
pare the smallest claim amounts in the sense of the stop-loss order.

Corollary 12. Under the conditions of Theorem 11, we have that

min {X;(dp—it1), dn—it1) + L]} <a 1I?¢i<nn{Xi(dT“ dr, + L]} <g 1%@H{Xi(d(i)a diy + U]}

1<i<n

The stop-loss preserving property, together with Corollary 12, then yields
H(min {X;(dn—it1), dn-i+1) + L]}) < H(min {X;(d-,, dr, + 1;]}) < H( min {X;(d), duy + L]}).

1<i<n 1<i<n 1<i<n

3 Conclusion

In this paper, we derived lower and upper bounds for survival functions of the smallest and
largest claim amounts in a portfolio of n risks which is insured under layer insurance policy.
The results of the paper are in line with intuition. This result is a mathematical description
of an intuitive fact that attaching the smaller d’s and larger I’s to the larger risks will lead
to the larger value for the maximal claim. Topics for future research are solving a similar
problem from the viewpoint of the policyholder. One also could investigate the stochastic
comparison for range of claims max;<;<,{Xi(d,,, dr, + lr,]} — miny<;<, {Xi(dy,, ds, + 11,]}.
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