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Abstract

This paper studies the quantile risk-sharing rule introduced in Denuit, Dhaene & Robert
(2022). This rule is not actuarially fair, but instead satisfies another type of fairness, which
is comparable with “solvency fairness” in classical centralized insurance. New properties are
investigated and an axiomatic theory is developed for the quantile risk-sharing rule, which
allows for a deeper understanding of its proper use. The axiomatic characterization of the
quantile risk-sharing rule is based on aggregate and comonotonicity-related properties of
risk-sharing rules.

Keywords: quantile risk-sharing rule, conditional mean risk-sharing rule, pooling, comono-
tonicity, P2P insurance.



1 Introduction

As pointed out by Borch (1968), economic agents are primarily concerned with their sol-
vency, or survival probabilities. This is in line with the standard approach in insurance
risk management which consists in controlling the probability that the aggregate net loss
amount (i.e., aggregate claim amount minus net premium income) be less than some specified
threshold (corresponding to the assets held by the insurance company). Fixing this proba-
bility leads to the classical Value-at-Risk approach. Insurance regulators typically require a
uniform survival probability (99.5% under Solvency 2) to all market players to ensure fair
competition. This implies that regulators guarantee to all policyholders the same chance
to be indemnified for their claims. This approach can thus be seen as fairness in terms of
solvency.

Also in a decentralized risk sharing context (as opposed to classical centralized insurance),
there may be a need for a way to share losses among market participants so that each
entity has always the same “ex-ante” survival probability as the other participants once the
individual losses have been observed ex-post. The amount of contribution to be paid ex-post
by a participant can be seen as a capital requirement (to be satisfied only ex-post), given the
realization of the aggregate losses. Formally, letX1, X2, ..., Xn denote insurance loss amounts,
modeled as non-negative random variables with 1-to-1 distribution functions FXi

over (0,∞)
and a possible positive probability mass P[Xi = 0] at 0. The latter is often negligible when
participants are insurance companies. Let SX =

∑n
i=1Xi be the aggregate loss. When

realized losses x1, x2, . . . , xn are observed, they can be turned into probability levels pi via
the equation xi = F−1Xi

(pi). This means that participant i staying alone, without engaging in
any risk-sharing activities with other participants, would have remained solvent provided his
or her available assets were (at least) equal to the Value-at-Risk at level pi. The randomness
of individual losses causes differences in the solvency levels pi. The idea of joining the pool
according to the quantile risk-sharing rule is to replace the possibly different p1, . . . , pn by a
unique and uniform probability level ps corresponding to the realized aggregate loss s. The
unique solution is to ask participant i to contribute the amount F−1Xi

(ps) where ps satisfies

n∑
i=1

F−1Xi
(pi) =

n∑
i=1

F−1Xi
(ps) = s.

This defines the quantile risk-sharing rule, allocating the ex-post contribution F−1Xi
(ps) to

participant i. Quantile risk sharing achieves a kind of fairness which is comparable with fair-
ness in terms of solvency in classical centralized insurance: allocating the amount F−1Xi

(ps)
of losses to participant i ex-post ensures that they would all have reached the same prob-
ability that losses exceed contributions if they set an ex-ante solvency capital equal to this
contribution. Such uniformity is considered as a reasonable requirement from the regula-
tory perspective. The key argument in the study of the quantile risk-sharing rule is that∑n

i=1 F
−1
Xi

(·) defining the common probability level ps is the quantile function of the sum of
the comonotonic modification of the random vector (X1, X2, ..., Xn), which leads to many of
the important properties of this rule.

This quantile risk-sharing rule has been introduced in Denuit, Dhaene & Robert (2022)
where several of its properties have been investigated. This rule is a comonotonic risk-sharing
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rule in the sense that the contributions are non-decreasing functions of total losses SX , which
is a desirable property since it ensures that the interests of all participants are aligned, in
the sense that they all have an interest in keeping their losses as small as possible. This
paper further investigates this risk-sharing rule.

Embrechts, Liu & Wang (2018) and Wang and Wei (2020) characterized Pareto-optimal
risk-sharing rules, where the Pareto-optimality is expressed in terms of a sum of quantile-
based risk measures applied to the individual losses in the pool. The approach in the present
paper is different as we investigate some properties that the quantile risk-sharing rule may
or may not possess, and we determine the axioms underlying this risk-sharing rule.

The axiomatic theory developed in this paper compares with Jiao, Kou, Liu & Wang
(2022) who pioneered the theory on axiomatic characterization of certain classes of “anonymized”
risk-sharing rules, i.e. risk-sharing rules that do not require any information on the pref-
erences of the agents, a risk exchange market, or subjective decisions of a central planner.
They proved that four axioms characterize the conditional mean risk-sharing rule introduced
by Denuit and Dhaene (2012). In this paper, we consider three axioms and prove that these
axioms characterize the quantile risk-sharing rule.

The remainder of the paper is organized as follows. Section 2 introduces notation and
recalls basic concepts including allocations and risk-sharing rules. Section 3 defines the
quantile risk-sharing rule. Several of its properties are considered in Section 4. Section 5
proposes an axiomatic theory for the quantile risk-sharing rule. Technical material about
supports of distribution functions is provided in the appendix.

2 Allocations and risk-sharing rules

2.1 Notation

All random variables considered in this paper are defined on a common probability space
(Ω,G,P). The latter is assumed to contain the random variable U which is uniformly dis-
tributed over the unit interval (0, 1). (In-)equalities between random variables are supposed
to hold almost surely. Similarly, (in-)equalities between random vectors hold almost surely
and component-wise. A random variable will always be denoted by an upper-case letter (e.g.
Xi), while its realization (observed ex post) will be denoted by the corresponding lower-
case letter (e.g. xi). A random vector will be denoted by a bold upper-case letter, e.g.
X = (X1, X2, . . . , Xn), while its realization (observed ex post) is denoted by the correspond-

ing bold lower-case small letters, e.g. x = (x1, x2, . . . , xn). In this paper, “
d
=” stands for

“equality in distribution”.

2.2 Allocations

Let χ be an appropriate set of random variables on the probability space (Ω,G,P) under
consideration. We interpret χ as the collection of risks (losses) under interest. For particular
situations, the set χ could be defined as the set Lq of all random variables X with E [|X|q] <
∞, for an appropriate choice of q ∈ [0,∞), with E[·] being the expectation under P. Another
possible choice for χ is the set of all (essentially) bounded random variables L∞.
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Also, for any q considered above, the set Lq+ of all non-negative elements of Lq might be
an appropriate choice. More general, χ can be chosen as a convex cone of random variables
on the probability space (Ω,G,P), which means that for any X, Y ∈ χ and any scalars a > 0
and b > 0, one has that aX + bY ∈ χ. In this paper, we assume that χ = Lq+ or χ = Lq for
some q in [0,∞], appropriate for the situation at hand.

Consider n economic agents, numbered i = 1, 2, . . . , n. Let time 0 be “now”. Each agent
i faces a loss Xi ∈ χ at time 1. Without insurance or pooling, each individual agent bears
his or her own loss, i.e. at time 1, agent i suffers loss xi, which is the realization of Xi.

The n-dimensional random vector of the losses X is called the (initial) loss vector. The
joint distribution function of the loss vector X is denoted by FX . The marginal distribution
functions of the individual losses are denoted by FX1 , FX2 , . . . , FXn , respectively. As in the
introduction, the aggregate loss faced by the n agents with loss vector X is denoted by

SX =
n∑
i=1

Xi.

Hereafter, we will often call X the pool and each agent a participant in the pool.

Definition 2.1. For any random vector X ∈ χn with aggregate loss SX , the set An(SX) is
defined by:

An(SX) =

{
(Y1, Y2, . . . , Yn) ∈ χn

∣∣∣ n∑
i=1

Yi = SX

}
.

The elements of An(SX) are called the n-dimensional allocations of SX in χn. Notice
that the initial loss vector X is an element of An(SX), and that for any Y ∈ An(SX), one
has that An(SY ) = An(SX).

2.3 Risk sharing

Risk sharing in a pool X ∈ χn is a two-stage process. In the ex-ante step (at time 0),
the losses Xi in the pool are re-allocated by transforming X into another random vector
H = (H1, H2, . . . , Hn) ∈ An(SX) called the contribution vector. Participants thus exchange
their individual risks Xi to the contributions Hi when they join the pool. As H ∈ An(SX),
risk-sharing is self-financing in the sense that the identity

n∑
i=1

Hi =
n∑
i=1

Xi (2.1)

holds true. This self-financing condition (2.1) in risk-sharing is often called the full allocation
condition. In the ex-post step (at time 1), any participant receives the realization xi of his
initial loss Xi from the pool and pays the realization of Hi to the pool. This leads to the
following definition.

Definition 2.2. A risk-sharing rule is a mapping H : χn → χn associating to each pool
X ∈ χn a contribution vector H satisfying H ∈ An(SX).
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In order to be able to determine the contribution Hi for each participant i at time 1, one
needs different types of information. The first type of information is of a deterministic nature
and is available at time 0, such as certain parameters (e.g. expectations of the Xi) or certain
distribution functions (e.g. the possibly unequal distribution functions FXi

of the Xi, or the
joint distribution function FX of X). A second type of information, which is only available
at time 1, is the outcome (realization) of certain random variables and random vectors (e.g.
the outcome of SX , the outcome of X and eventually also the outcome of other random
variables). Hereafter, we assume that the deterministic information is “correct fairness” in
the sense that the assumed expectations distributions, etc. are the “solvency right” ones.
At time 1, the realization of the contribution vector H is a deterministic vector, as the
realization of any random source is assumed to be observable at time 1.

At time 0, the contribution vector H is a random vector, as it depends on X, and
eventually also on other sources of randomness. This means that knowing the realization of
X may not be enough to know the realization of H . In other words, in general we do not
assume that for any X ∈ χn, there exists a (measurable) function h : Rn → Rn such that
H = h (X). Introducing the notation σ (X) for the σ-algebra generated by X, this means
that H is not necessarily σ (X)-measurable. The next example illustrates this fact.

Example 2.3. At time 1, we flip a coin. The random variable Z equals 0 in case of heads
and 1 in case of tails. Consider the risk-sharing rule H : χ2 → χ2, where for any pool
X = (X1, X2), the contribution vector is determined by

H =


(
X1 +X2, 0

)
if Z = 0,(

0, X1 +X2

)
if Z = 1.

Obviously, the knowledge of the realization of the loss vector X is not sufficient to determine
the realization of the contribution vector H. In other words, H is not σ (X)-measurable.

The risk-sharing rule H considered in Example 2.3 is not “internal” in the sense that
it requires information coming from outside the pool X (the result of the coin toss). In
practice, participants may let the risk-sharing rule depend on some external event, related
to the financial market or to the occurrence of a catastrophe, for instance. In this paper,
we focus on internal rules, which are precisely defined next. Let F (χn) be the set of all
n-dimensional distribution functions of elements in χn.

Definition 2.4. A risk-sharing rule H : χn → χn is said to be internal if there exists a
function h : Rn × F (χn) → Rn such that the contribution vector H for any pool X ∈ χn
with distribution function FX can be expressed as

H = h (X;FX) . (2.2)

Henceforth, all risk-sharing rules considered in this paper are assumed to be internal, that
is, to possess the representation (2.2), unless explicitly stated otherwise. Moreover, h will
be called the “internal function” of the internal risk-sharing rule H .

Under a rule which can be expressed in the form (2.2), one has that the realization of
H is known once the realization of X is revealed at time 1. In other words, H can be
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expressed as a function of X and hence is σ (X)-measurable. Furthermore, the argument
FX in h (X;FX) indicates that the realization of the contribution vector H does not only
depend on the realization of X, but may also depend on the distribution function of X
(which is assumed to be known at time 0).

Example 2.5. An example of an internal rule is the risk-sharing rule where each participant
i contributes his or her own loss, i.e. H = X. In this case, the internal function h :
Rn ×F (χn)→ Rn in (2.2) is given by h (x;FX) = x. This rule is referred to as the stand-
alone risk sharing rule in Denuit, Dhaene & Robert (2022), and the identity risk-sharing
rule in Jiao, Kou, Liu & Wang (2022).

Example 2.6. Another example of an internal rule is the risk-sharing rule H : χ2 → χ2

defined by

H =


(X1, X2) , if FX = min{FX1 , FX2}(

X1+X2

2
, X1+X2

2

)
, otherwise.

Notice that FX = min{FX1 , FX2} means that X1 and X2 are perfectly dependent (comono-
tonic) in the sense that X1 and X2 are non-decreasing functions of the same random variable
(see next section for more information). In this case, H takes into account that risk can-
not be diversified so that each participant remains with his or her own loss, as in Example
2.5. In all other cases, participants share equally the total loss of the pool. The function
h : Rn ×F (χn)→ Rn in (2.2) is thus given by

h (x;FX) =


(x1, x2) , if FX = min{FX1 , FX2}(

x1+x2
2

, x1+x2
2

)
, otherwise,

It is important to note that a risk-sharing rule H under which the contribution vector H
is σ (X)-measurable for any X does not necessarily have a representation of the form (2.2)
because it might depend on other information. The next example illustrates this point.

Example 2.7. Suppose that X ∈ χn is a pool of health-related losses of the n participants,
who can be divided into m age categories (e.g. 18-35, 36-50, 51-65 and 65+) denoted by j =
1, 2, . . . ,m. The age category of participant i is denoted by AXi

. Consider the risk-sharing
rule H in which losses are uniformly shared within each age category. The contribution vector
H = (H1, . . . , Hn) is then given by

Hi =

∑n
i=1Xi1AXi

=j∑n
i=1 1AXi

=j

if AXi
= j; j = 1, . . . ,m; i = 1, . . . , n.

It is clear that although H is σ (X)-measurable, it is not internal because it has no repre-
sentation of the form (2.2). The contribution vector H depends not only on X but also on
the vector of the age categories of all participants (AX1 , . . . , AXn). This information can in
general not be captured by FX .

For instance, when n = 4, and the realization (100, 120, 130, 80) of X is observed, one still
cannot determine the corresponding contribution vector unless the vector of the age category
of the four participants is also known. If such vector is (2, 2, 1, 2), then

H =

(
100 + 120 + 80

3
,
100 + 120 + 80

3
, 130,

100 + 120 + 80

3

)
= (100, 100, 130, 100).
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Let us now define aggregate risk-sharing rules. Throughout this paper, for any given
x ∈ Rn, we denote by sx the sum of the n components of x.

Definition 2.8. A RS rule H : χn → χn is said to be aggregate if there exists a function
haggr : R × F (χn) → Rn such that the contribution vector H for any pool X ∈ χn can be
expressed as

H = haggr (SX , FX) . (2.3)

It is clear from the definition that an aggregate risk-sharing rule is internal with internal
function h satisfying

h (X;FX) = haggr (SX ;FX)

for any X ∈ χn.

Example 2.9. An example of an aggregate risk-sharing rule is the conditional mean risk-
sharing rule introduced in Denuit & Dhaene (2012). In this case, we have that

H =
(
E [X1 | SX ] , E [X2 | SX ] , . . . , E [Xn | SX ]

)
,

which implies that

haggr (s, FX) =
(
E [X1 | SX = s] , E [X2 | SX = s] , . . . , E [Xn | SX = s]

)
.

In case H is an aggregate risk-sharing rule, for any pool X, one has that the realization
of the contribution vector H is known once the realization of the aggregate claims SX is
known. In other words, H is σ (SX)-measurable. Notice however that a risk-sharing rule
H such that for any X, we have that H is σ (SX)-measurable, does not necessarily have a
representation of the form (2.3). Considering the health coverage pool described in Example
2.7, with only two participants, and suppose that the risk-sharing rule stipulates that for
two risks in the same age category participants adopt the uniform risk-sharing rule, while
for two risks in different age categories, they apply the conditional mean risk-sharing rule.
In this case, X is σ (SX)-measurable but does not have a presentation of the form (2.3).

3 The quantile risk-sharing rule

3.1 α-quantiles and comonotonicity

For any real-valued random variable X, the left-continuous quantile of order p ∈ [0, 1] is
defined by

F−1X (p) = inf{x ∈ R | FX(x) ≥ p},
while its right-continuous quantile of order p ∈ [0, 1] is defined by

F−1+X (p) = sup {x ∈ R | FX(x) ≤ p} .

In these definitions, we set inf{∅} = +∞ and sup{∅} = −∞, by convention. For any
α ∈ [0, 1], the α-quantile of order p is then defined by

F
−1(α)
X (p) =


F−1+X (0) if p = 0

α F−1X (p) + (1− α) F−1+X (p) if p ∈ (0, 1)
F−1X (1) if p = 1

.
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Notice that in this definition for the α-quantiles, we have that F
−1(α)
X (0) and F

−1(α)
X (1) are

both independent of the particular choice of α. They are chosen as the “smallest” and the
“largest” value of X, respectively.

The next result is central to the determination of the probability level defining quan-
tile risk sharing. Important there is that we make the convention that the interval of the
type

[
F−1+X (0), F−1X (1)

]
has to be considered as subset of R rather than as a subset of the

extended real line R ∪ {±∞}. For instance, if F−1+X (0) = −∞ and F−1X (1) = +∞, then[
F−1+X (0), F−1X (1)

]
= R but not [−∞,+∞]. Similarly, if F−1+X (0) = 0 and F−1X (1) = +∞,

then
[
F−1+X (0), F−1X (1)

]
= [0,+∞). This convention is made throughout this paper.

Proposition 3.1. For any random variable X and any x ∈
[
F−1+X (0) , F−1X (1)

]
, there exists

a (not necessary unique) αx ∈ [0, 1] such that

F
−1(αx)
X

(
FX(x)

)
= x. (3.1)

The proof of Proposition 3.1 is straightforward. Notice that in case (x, FX(x)) lies on
a strictly increasing part of FX , then any element of [0, 1] is a possible choice for αx. On
the other hand, when (x, FX(x)) lies on a flat part of FX , then αx is uniquely determined.
Further, if FX (x) = 0 or FX (x) = 1, then any element of [0, 1] is a possible choice for αx.

Example 3.2. Consider the random variable X1 with P[X1 = 0] = p1 = 1 − P[X1 = 1].
Then we have that

F−1X1

(
p
)

=


−∞ if p = 0

0 if 0 < p ≤ p1
1 if p1 < p ≤ 1

and

F−1+X1

(
p
)

=


0 if 0 ≤ p < p1
1 if p1 ≤ p < 1

+∞ if p = 1
.

For any α ∈ [0, 1], one has that

F
−1(α)
X1

(
p
)

=


0 if 0 ≤ p < p1

1− α if p = p1
1 if p1 < p ≤ 1

Finally, for any x ∈
[
F−1+X1

(0) , F−1X1
(1)
]

=
[
0, 1
]
, the solutions αx of (3.1) are given by

αx = 1− x if 0 ≤ x < 1, while αx ∈ [0, 1] in case x = 1.

Comonotonicity is an important dependency structure which is particularly relevant for
the study of the quantile risk-sharing rule. For completeness, we repeat its definition here-
after.

Definition 3.3. A random vector X is comonotonic if there exist non-decreasing functions
gi : R→ R such that

X =
(
g1(SX), . . . , gn(SX)

)
. (3.2)
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Equivalently, X is comonotonic if for the random variable U which is uniformly dis-
tributed over the unit interval [0, 1], one has that

X
d
=
(
F−1X1

(U), F−1X2
(U), . . . , F−1Xn

(U)
)
. (3.3)

Comonotonicity and its applications in insurance and finance have been studied in detail in
the actuarial literature, see e.g. Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a, 2002b),
Deelstra, Dhaene & Vanmaele (2010) and Linders, Dhaene & Schoutens (2015).

To any pool X, let us associate its “comonotonic counterpart”

Xc =
(
F−1X1

(U), F−1X2
(U), . . . , F−1Xn

(U)
)
, (3.4)

which is by our earlier convention about U , defined in the original probability space. We
introduce the notation ScX for the sum of the components of Xc. For any α ∈ [0, 1] and
p ∈ [0, 1], the following additivity property holds:

F
−1(α)
Sc
X

(p) =
n∑
i=1

F
−1(α)
Xi

(p) . (3.5)

In particular, we find that

F−1+Sc
X

(0) =
n∑
i=1

F−1+Xi
(0) and F−1Sc

X
(1) =

n∑
i=1

F−1Xi
(1) . (3.6)

In this paper, we say that a set C ⊆ Rn is a support of a random vector X if P[X ∈
C] = 1. One particular choice for the support of SX is given by

Support [SX ] =
{
F−1SX

(FSX
(s)) | s ∈

[
F−1+SX

(0), F−1SX
(1)
]}
. (3.7)

In particular, one choice of the support of ScX is

Support [ScX ] =
{
F−1Sc

X
(FSc

X
(s)) | s ∈

[
F−1+Sc

X
(0), F−1Sc

X
(1)
]}

. (3.8)

Notice that our definition of supports differs from the usual one, where the support of X is
the smallest closed set C such that P[X ∈ C] = 1. See Appendix A for a discussion on the
supports of SX and ScX defined respectively by (3.7)-(3.8).

3.2 Definition of the quantile risk-sharing rule

We can now define the quantile risk-sharing rule, which was described informally in the
introduction to this paper, in a rigorous way.

Definition 3.4. Under the quantile risk-sharing rule Hquant : χn → χn, the contribution
vector Hquant for a pool X ∈ χn is given by

Hquant = hquant (SX ;FX) , (3.9)

where hquant : R×F (χn)→ Rn is defined by

hquant (s;FX) =
(
F
−1(αs)
X1

(
FSc

X
(s)
)
, . . . , F

−1(αs)
Xn

(
FSc

X
(s)
))
, (3.10)

with αs following from
F
−1(αs)
Sc
X

(
FSc

X
(s)
)

= s. (3.11)
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For any given s ∈ R and X ∈ χn, the additivity property (3.5) combined with (3.11)
guarantees that

n∑
i=1

hquant
i (s;FX) = s whenever s ∈

[
F−1+Sc

X
(0), F−1Sc

X
(1)
]
, (3.12)

and hence Hquant satisfies the self-financing condition (2.1). Furthermore, Hquant is an aggre-
gate risk-sharing rule by definition. An important observation is that the quantile risk-sharing
rule does not require the knowledge of the dependency structure of the joint distribution
function FX of loss vector X. It suffices to know the marginal distribution functions FXi

of the individual losses Xi. This property will be formalized in the next section. Further-
more, it can be proven that all F

−1(αs)
Xi

(
FSc

X
(s)
)

are non-decreasing and Lipschitz continuous
functions in s, see Denuit, Dhaene & Robert (2022). This observation immediately implies
that the contribution vector Hquant is a comonotonic random vector, which means that the
quantile risk-sharing rule transforms pools into comonotonic contribution vectors.

For any given comonotonic random vector Xc, one particular choice of its support is

Support[Xc] = {
(
F−1X1

(
u
)
, . . . , F−1Xn

(
u
))

: 0 ≤ u ≤ 1}.

This support is not necessarily a connected curve in Rn but rather a series of ordered con-
nected curves in general; any horizontal segment of one of the marginal distribution functions
FXi

would lead to a discontinuity in Support[Xc]. If the endpoints of consecutive curves in
Support[Xc] are connected by straight lines, we obtain a comonotonic connected curve in
Rn. We will call this set the connected support of Xc and denote it by CSupport[Xc]. It
can be parameterized as follows:

CSupport[Xc] = {
(
F
−1(α)
X1

(
u
)
, . . . , F

−1(α)
Xn

(
u
))

: 0 ≤ u ≤ 1, 0 ≤ α ≤ 1}.

We make the convention here that both Support[Xc] and CSupport[Xc] have to be seen
as subsets of Rn. We refer to Dhaene et al. (2002a) for more discussion on the notion of
connected support.

Of course, one may choose to enlarge Support[Xc] to form a comonotonic connected
curve by connecting the endpoints in any other way as long as the curve after connection
is comonotonic. However, connecting the endpoints by straight lines is probably the most
natural and easiest way to do so, and there seems no theoretical reasons to justify other
ways.

Example 3.5. Consider the pool X = (X1, X2, X3) with individual losses Xi such that
P[Xi = 0] = pi = 1− P[Xi = 1]. Suppose that 0 < p1 < p2 < p3 < 1. The comonotonic sum
ScX is defined by ScX =

∑3
i=1 F

−1
Xi

(U). Taking into account the results in Example 3.2, we
find for any α ∈ [0, 1] that

F
−1(α)
Sc
X

(
p
)

=



0 if 0 ≤ p < p1
1− α if p = p1

1 if p1 < p < p2
2− α if p = p2

2 if p2 < p < p3
3− α if p = p3

3 if p3 < p ≤ 1

.

9



It follows then that ScX can be expressed as follows:

ScX = F−1Sc
X

(U) =


0 if 0 ≤ U ≤ p1
1 if p1 < U ≤ p2
2 if p2 < U ≤ p3
3 if p3 < U ≤ 1

.

This implies that the cdf of ScX is given by

FSc
X

(s) =


p1 if 0 ≤ s < 1
p2 if 1 ≤ s < 2
p3 if 2 ≤ s < 3
1 if s = 3

.

For any s ∈ [0, 3], the solutions αs ∈ [0, 1] of (3.11) are given by
αs = 1− s if 0 ≤ s < 1
αs = 2− s if 1 ≤ s < 2
αs = 3− s if 2 ≤ s < 3
αs ∈ [0, 1] if s = 3

.

From the results stated above, we find that the contribution Hquant
i for participant i = 1, 2, 3

in the pool X is given by

Hquant
i =

{
0 if SX < i
1 if SX ≥ i

.

This risk-sharing rule can be interpreted as follows. Suppose that pi is the no-claim probability
for participant i. At time 1, the pool pays 1 to any participant with a claim in previous period.
In case no claims are reported in the pool, not any participant has to contribute. In case of
1 claim, only the participant with the highest claim probability (i.e. participant 1) pays a
contribution of 1. In case of 2 claims, the two participants with highest claim probabilities
(i.e. participant 1 and 2) have to contribute an amount of 1. Finally, in case of 3 reported
claims, each participant contributes an amount of 1.

4 Properties of risk-sharing rules

Properties that risk-sharing rules may (or may not) satisfy have been studied in detail in
Denuit, Dhaene & Robert (2022), as well as in Jiao, Kou, Liu & Wang (2022), who also
provide axiomatic characterizations of the conditional mean risk-sharing rule. Hereafter, we
repeat the definitions of the “comonotonicity” property and the “stand-alone for comonotonic
pools” property of risk-sharing rules. We also introduce two new properties which we call
“dependence-free” and “law-invariance”.

Definition 4.1 (Comonotonicity property). A risk-sharing rule H : χn → χn is comonotonic
if there exists a function hcom : R×F (χn)→ Rn such that the contribution vector H of any
X ∈ χn can be expressed as

H = hcom (SX ;FX) =
(
hcom1 (SX ;FX) , . . . , hcomn (SX ;FX)

)
, (4.1)

where each hcomi , i = 1, 2, . . . , n, is non-decreasing in its first argument.

10



If H is comonotonic, then it is an aggregate risk-sharing rule, and for any pool X, one has
that the contribution vector H is a comonotonic random vector. Notice that the definition
here is more restrictive than the one in Denuit, Dhaene & Robert (2022), as here we also
require the risk-sharing rule H to be internal.

Example 4.2. The quantile risk-sharing rule Hquant : χn → χn is comonotonic. Indeed, by
(3.10) and (3.11), every component in the contribution vector hquant (X;FX) of any given
pool X is non-decreasing in SX , and hence the contribution vector is a comonotonic random
vector.

Next, we introduce the stand-alone property for comonotonic pools.

Definition 4.3. A risk-sharing rule H : χn → χn with internal function h : R×F (χn)→ Rn

is stand-alone for comonotonic pools if the contribution vector H of any comonotonic pool
Xc ∈ χn is given by

H = h(Xc, FXc) = Xc.

In a comonotonic pool X, for any realized loss amounts x1, . . . , xn, the corresponding
probability levels p1, . . . , pn that solve the equations xi = F−1Xi

(pi) would always be identical.
Therefore, it maybe reasonable to require that in such a pool each participant remains with
his or her own risk, as stated in the property of stand-alone for comonotonic pools.

Suppose that H : χn → χn is a risk-sharing rule with internal function h, then for any
comonotonic pool Xc, by definition, Xc = h (Xc;FXc), which is equivalent to

h (xc;FXc) = xc for any xc ∈ Support[Xc]. (4.2)

Now we introduce a slightly more general property, which we call the “generalized stand-
alone for comonotonic pools” property.

Definition 4.4. A risk-sharing rule H : χn → χn is generalized stand-alone for comonotonic
pools if it is stand-alone for comonotonic pools, with internal function h : Rn×F (χn)→ Rn

satisfying
h (xc;FXc) = xc for any xc ∈ CSupport[Xc] (4.3)

for any comonotonic pool Xc.

In case the risk-sharing rule is aggregate too, condition (4.3) reads as

h (sxc ;FXc) = xc for any xc ∈ CSupport[Xc].

The next result demonstrates that the quantile RS rule satisfies the ’generalized stand-alone
for comonotonic pools’ property.

Proposition 4.5. The quantile RS rule satisfies the “generalized stand-alone for comono-
tonic pools” property.

Proof. Consider a comonotonic pool Xc ∈ χn and let xc be a point in CSupport[Xc] with
sxc = s. By construction, both xc and hquant (sxc , FXc) lie in the intersection of the hyper-
plane {x ∈ Rn | sx = s} and CSupport[Xc]. As there can be no more than one point in such
intersection, we conclude that xc = hquant (sxc , FXc), and hence the stated result holds.
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Proposition 4.6. For any comonotonic random vector Xc, one has that

{sxc | xc ∈ CSupport[Xc]} =
[
F−1+SXc

(0), F−1SXc
(1)
]
.

Proof. From the definition of CSupport[Xc], one finds that

{sxc | xc ∈ CSupport[Xc]} = {
n∑
i=1

F
−1(α)
Xi

(
u
)
| 0 ≤ u ≤ 1, 0 ≤ α ≤ 1}.

Taking into account the additivity property (3.5) leads to

{sxc | xc ∈ CSupport[Xc]} = {F−1(α)Sc
X

(
u
)
| 0 ≤ u ≤ 1, 0 ≤ α ≤ 1}

=
[
F−1+SXc

(0), F−1SXc
(1)
]
,

which proves the stated result.

Let us now define the dependence-free property of a risk-sharing rule.

Definition 4.7 (Dependence-free property). The risk-sharing rule H : χn → χn is dependence-
free if there exists a function hdep−free : Rn × (F(χ))n → Rn such that for any pool X ∈ χn,
one has that the contribution vector H is given by

H = hdep−free (X;FX1 , . . . , FXn) .

From Definition 4.7, it follows that in order to determine the contribution vector H
under a dependence-free risk-sharing rule, we only need to know the outcome of X and
the marginal distribution functions of the individual losses Xi, but not the dependency
structure of X. Given the outcome x of X, the contribution vector remains the same,
regardless of what the dependence structure of X is. It is clear from the definition that
a dependence-free risk-sharing is internal, with internal function h satisfying h (X;FX) =
hdep−free (X;FX1 , . . . , FXn) for any X ∈ χn.

Example 4.8. The quantile risk-sharing rule Hquant is dependence-free because for any pool
X ∈ χn, the function hquant (sx;FX) is completely determined by sx and the marginal distri-
butions FX1 , . . . , FXn, and the knowledge of the dependence structure of X is not required.

In view of the fact that the quantile risk-sharing rule is dependence-free, we can also
write hquant(s;FX) as hquant(s;FX1 , . . . , FXn).

Remark 4.9 (Distribution-free property). Dependence-free risk-sharing rules do not use the
joint distribution function FX , only its marginals F1, . . . , Fn. Let us mention that some rules
do not use the joint distribution function at all so that they could be called distribution-
free. Formally, a risk-sharing rule is distribution-free if there exists a function h : Rn → Rn

such that the contribution vector H for any pool X is given by H = h(X). Examples of
distribution-free risk-sharing rules are the stand-alone and the uniform risk-sharing rules.

Finally, inspired by the property of law-invariance for risk measures, we introduce the
property of law-invariance for risk-sharing rules.

12



Definition 4.10. A risk-sharing rule H : χn → χn is law-invariant if the contribution

vectors for equally distributed pools X and Y , i.e. X
d
= Y are identically distributed.

Law-invariance seems to be a reasonable property, in the sense that if pools are “equal
in distribution”, then it reasonable to require that also their contribution vectors should be
“equal in distribution”.

Example 4.11. A straightforward example of a law-invariant risk-sharing rule is the uniform
risks-sharing rule under which the contribution vector H for any pool X is given by

H =
(
X̄n, . . . , X̄n

)
with X̄n =

X1 + . . .+Xn

n
.

Indeed, if X
d
= Y , then also (

X̄n, . . . , X̄n

) d
=
(
Ȳn, . . . , Ȳn

)
where Ȳn = Y1+...+Yn

n
.

Example 4.12. It is also easy to verify that the conditional mean risk-sharing rule is law-

invariant: If X
d
= Y , then(

E [X1 | SX ] , . . . ,E [Xn | SX ]
) d

=
(
E [Y1 | SY ] , . . . ,E [Yn | SY ]

)
.

These two examples are just particular cases of the following general statement.

Proposition 4.13. Any internal risk-sharing rule is law-invariant.

Proof. Consider the internal risk-sharing rule H : χn → χn defined with the help of the
function h : Rn×F (χn)→ Rn in (2.2). For any pool X the contribution vector is given by

H = h (X;FX). It follows then immediately that X
d
= Y implies h (X;FX)

d
= h (Y ;FY ).

Corollary 4.14. The quantile risk-sharing rule is law-invariant.

Proof. The proof follows immediately from Proposition 4.13 and the fact that the quantile
risk-sharing rule is an aggregate (and hence, also an internal) risk-sharing rule.

The following example gives a risk-sharing rule which is law-invariant but not internal.

Example 4.15. Consider the risk-sharing rule H : χ2 → χ2 introduced in Example 2.3.
Assume in addition that the random variable Z is independent of any random vector in χ2.
It is obvious that H is law-invariant, but not an internal risk-sharing rule.
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5 Axiomatic characterization of the quantile risk-sharing

rule

In this section, we give an axiomatic characterization of the quantile risk-sharing rule.

Theorem 5.1. A risk-sharing rule H : χn → χn is the quantile risk-sharing rule if, and only
if, it satisfies the following axioms:

Axiom 1 H is aggregate.

Axiom 2 H is dependence-free.

Axiom 3 H is generalized stand-alone for comonotonic pools.

Proof. As H satisfies Axioms 1 and 2, there exists a function haggr : R× (F(χ))n → Rn such
that the contribution vector of any pool X ∈ χn is given by haggr (SX ;FX1 , . . . , FXn). Let
Xc =

(
F−1X1

(U), F−1X2
(U), . . . , F−1Xn

(U)
)

be the comonotonic counterpart of X. From Axiom
3, we have that

haggr (sxc ;FX1 , . . . , FXn) = xc, for any xc ∈ CSupport [Xc] .

Since the quantile allocation rule is also dependence-free and generalized stand-alone for
comonotonic risks by Proposition 4.5, that is, hquant (sxc ;FX1 , . . . , FXn) = xc, we find that

haggr (sxc ;FX1 , . . . , FXn) = hquant (sxc ;FX1 , . . . , FXn) for any xc ∈ CSupport [Xc] .

From Proposition 4.6, we find that

haggr (s, FX1 ; . . . , FXn) = hquant (s;FX1 , . . . , FXn) , for any s ∈
[
F−1+SXc

(0), F−1SXc
(1)
]
.

As Support [SX ] ⊆
[
F−1+SXc

(0), F−1SXc
(1)
]

by (A.1), the above equation implies that

haggr (SX ;FX1 , . . . , FXn) = hquant (SX ;FX1 , . . . , FXn) , (5.1)

which proves the “⇐=” part of the theorem.

In Figure 1, we give a graphical interpretation of the proof of the characterization theorem
in the bivariate case. Consider the risk-sharing rule H : χ2 → χ2 which satisfies the 3 axioms
of the theorem and a pool X = (X1, X2) ∈ χ2. Let (Xc

1, X
c
2) be its comonotonic counterpart.

Suppose that the time-1 observable outcome of (X1, X2) is given by (x∗1, x
∗
2), with x∗1+x∗2 = s.

First, suppose that the marginal cdf’s FXi
are strictly increasing in x∗i , i = 1, 2. Taking

into account Axiom 1 (H is aggregate) we have that the contribution vector of the pool
(X1, X2) is given by h (x∗1 + x∗2;FX) for some function h : R × F (χ2) → R2. Let (xc1, x

c
2)

be the unique point on the intersection of the line x1 + x2 = s and Support[(Xc
1, X

c
2)]. We

know that (xc1, x
c
2) is given by (xc1, x

c
2) =

(
F−1X1

(FSc
X

(s) , F−1X2(FSc
X

(s)
)
. From Axiom 1 (H is

aggregate), we find that

h (x∗1 + x∗2;FX) = h (xc1 + xc2;FX) .
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Figure 1: Graphical interpretation of the quantile risk-sharing rule, bivariate case (part I).

From Axiom 2 (H is dependence-free), it follows that

h (xc1 + xc2;FX) = h (xc1 + xc2;FXc) .

Axiom 3 (H is generalized stand-alone for comonotonic pools) leads to

h (xc1 + xc2;FXc) = (xc1, x
c
2) .

Summarizing, when the realization of (X1, X2) equals (x∗1, x
∗
2), then we have that the real-

ization of the contribution vector is given by

h (x∗1 + x∗2;FX) =
(
F−1X1

(FSc
X

(s) , F−1X2
(FSc

X
(s)
)
.

Next, suppose that the the marginal cdf’s FXi
are not both strictly increasing in x∗i ,

i = 1, 2. In this case, the line x1 + x2 = s has no intersection with Support[(Xc
1, X

c
2)],

and we introduce the connected support of this comonotonic random vector. The graphical
interpretation of the characterization theorem in this case follows then in a similar way as
before, see Figure 2.

Let us now show that the three axioms in Theorem 5.1 are independent, which means
that none of them can be removed to characterize the quantile risk-sharing rule. In other
words, any combination of two of these axioms does not imply the remaining third axiom.

Proposition 5.2. Axioms 1-3 in Theorem 5.1 are independent.

Proof. For each of the three axioms, we have to provide an example of a risk-sharing rule
which is different from the quantile risk-sharing rule, and which does not satisfy this axiom,
while it satisfies the two other axioms.
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Figure 2: Graphical interpretation of the quantile risk-sharing rule, bivariate case (part II).

Axioms 2 and 3, but not Axiom 1: Consider the stand-alone risk-sharing rule Hsa :
χn → χn with contribution vector H = X for any pool X ∈ χn and with inter-
nal function h(x) = x for any x ∈ Rn, see Example 2.5. It is straightforward to prove
that Hsa is “dependence-free” and “generalized stand-alone for comonotonic pools”,
but does not satisfy the “aggregate” axiom.

Axioms 1 and 3, but not Axiom 2: Let us extend Example 2.6 to any dimension n and
define the risk-sharing rule H : χn → χn with contribution vector

H =


X, if X is comonotonic,(

X̄n, X̄n, . . . , X̄n

)
, otherwise,


and internal function satisfying h (x;FXc) = x for any x and any Xc.

Under this rule, participants are left with their own risk in any comonotonic pool (since
there is no diversification in that case) while total losses are distributed uniformly
among participants in all other cases. It is straightforward to prove that H is an
“aggregate” risk sharing rule and is “stand-alone for comonotonic pools”, but does not
satisfy the “dependence-free” axiom.

Axioms 1 and 2, but not Axiom 3: Referring to Example 4.11, the uniform risk-sharing
rule Huni : χn → χn is defined for any pool X ∈ χn by contribution vector

Huni =
(
X̄n, X̄n, . . . , X̄n

)
.

It is straightforward to prove that Huni satisfies the “aggregate” and “dependence-free”
axioms, but not the “generalized stand-alone for comonotonic pools” axiom.
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Appendix

A Comonotonicity and supports of distributions

Consider a pool X and its comonotonic counterpart Xc, which is defined in the original
probability space (see (3.4)). As before, ScX stands for the sum of the components of Xc.

The support of the aggregate claims SX of the pool X is defined by (3.7). Recall that
throughout the paper, we make the convention that the interval

[
F−1+SX

(0), F−1SX
(1)
]

has to

be replaced by
(
F−1+SX

(0), F−1SX
(1)
)

in case F−1+SX
(0) = −∞ and F−1SX

(1) = +∞. Similar

conventions are made in case only one of the endpoints of the interval
[
F−1+SX

(0), F−1SX
(1)
]

is
infinite. One can easily verify that

Support [SX ] ⊆
[
F−1+SX

(0), F−1SX
(1)
]
. (A.1)

The support of the aggregate claims ScX of the comonotonic pool Xc is defined by (3.8)
where we make a similar convention as before concerning the endpoints of the interval[
F−1+Sc

X
(0), F−1Sc

X
(1)
]
. In this case, we have that

Support [ScX ] ⊆
[
F−1+Sc

X
(0), F c

Sc
X

(1)
]
. (A.2)

Remark that the endpoints of the intervals
[
F−1+SX

(0), F−1SX
(1)
]

and
[
F−1+Sc

X
(0), F c

Sc
X

(1)
]

always

satisfy the following inequalities:

F−1+Sc
X

(0) ≤ F−1+SX
(0) ≤ F−1SX

(1) ≤ F−1Sc
X

(1). (A.3)

Example A.1. It is obvious that Support [ScX ] is not always a subset of Support [SX ]. A
simple example illustrating this fact is the bivariate random vector (X1, X2), with X1 = U
and X2 = 1− U . In this case, we have that SX = 1, and hence,

Support [SX ] = {1} ,

while taking into account that ScX
d
= 2U leads to

Support [ScX ] = [0, 2] .

A somewhat less obvious fact is that Support [SX ] is not always a subset of Support [ScX ].
In order to illustrate this statement, consider the mutually independent random variables X1

and X2, which are both uniformly distributed over [0, 1] ∪ [2, 3]. Then we have that

Support [SX ] = [0, 6] and Support [ScX ] = [0, 2] ∪ [4, 6] .

The following result gives conditions under which Support [SX ] ⊆ Support [ScX ]. Remark
that we will say that a distribution function FX is strictly increasing if it is strictly increasing
over the interval

[
F−1+X (0), F−1X (1)

]
.
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Proposition A.2. If FXi
is strictly increasing, i = 1, 2, . . . , n, then

Support [SX ] ⊆ Support [ScX ] =
[
F−1+Sc

X
(0), F−1Sc

X
(1)
]
.

Proof. If all FXi
are strictly increasing, then all F−1Xi

are continuous. Taking into account

the additivity property (3.5), this implies that F−1Sc
X

is continuous, and hence, FSc is strictly

increasing, which implies that Support [ScX ] =
[
F−1+Sc

X
(0), F−1Sc

X
(1)
]
. From (A.1), (A.2) and

(A.3), it follows then that

Support [SX ] ⊆
[
F−1+SX

(0), F−1SX
(1)
]
⊆
[
F−1+Sc

X
(0), F−1Sc

X
(1)
]

= Support [ScX ] .

This ends the proof.
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