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Abstract

The Value-at-Risk (VaR) of comonotonic sums can be decomposed into marginal VaR’s

at the same level. This additivity property allows to derive useful decompositions for other

risk measures. In particular, the Tail Value-at-Risk (TVaR) and the upper tail transform of

comonotonic sums can be written as the sum of their corresponding marginal risk measures.

The other extreme dependence situation, involving the sum of two arbitrary counter-

monotonic random variables, presents a certain number of challenges. One of them is that

it is not straightforward to express the VaR of a counter-monotonic sum in terms of the

VaR’s of the marginal components of the sum. This paper generalizes the results derived

in Chaoubi et al. (2020) by providing decomposition formulas for the VaR, TVaR and the

stop-loss transform of the sum of two arbitrary counter-monotonic random variables.

Keywords: Counter-monotonicity, extreme negative dependence, decomposition formulas,

Tail Value-at-Risk, stop-loss transform.
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1 Introduction

This paper provides decompositions for the Value-at-Risk (VaR), Tail Value-at-Risk (TVaR),
and the upper tail transform (or stop-loss premium), of the sum of two counter-monotonic ran-
dom variables with arbitrary marginal distributions. It is shown that the VaR can be expressed
in terms of marginal quantiles but at different levels. Further, it is shown that the TVaR and the
upper tail transform can be expressed in terms of linear combinations of the marginal risk mea-
sures, with additional terms required when the underlying random variables are discrete. The
uniqueness of the representation of the VaR and the TVaR in terms of marginal risk measures is
however not guaranteed in general.

The results of the present paper are useful in situations involving sums or differences of two
random variables. These situations underlie a broad range of practical actuarial and financial
problems. In an insurance context, asset and liability management requires the analysis of a
difference of two random variables. The liability side of the balance sheet is in major part
determined by actuarial risks, whereas the asset side, on the other hand, is a mirror image of the
insurer’s investment strategy (Wüthrich, 2020). Other situations include the evaluation of basket
and spread options, whose payoffs are expressed as stop-loss premiums of sums, or differences,
of random variables (Dhaene and Goovaerts, 1996, Carmona and Durrleman, 2003, Laurence
and Wang, 2008, 2009). The complex instruments from the emerging market of longevity and
mortality derivatives, such as longevity trend bonds or catastrophic mortality bonds, also involve
differences of random variables (Hunt and Blake, 2015, Chen et al., 2015a, Bahl and Sabanis,
2021), and so does the management of basis risk (Coughlan et al., 2011, Zhang et al., 2017).

Determining the distribution and risk measures for linear combinations of random variables re-
quires modeling their joint distribution. As pointed out in a number of earlier related studies
(see e.g. Kaas et al. (2000), Bernard and Vanduffel (2015), Bignozzi et al. (2015)), modeling
the individual risks, or marginal distributions, is often considered a standard task by actuaries
and risk managers, whereas a more challenging task consists in determining their dependence
structure. Indeed, an extensive statistical and quantitative toolbox is available to model sepa-
rately actuarial risks, such as future mortality dynamics or claim counts in non-life insurance,
and financial risks, such as future returns of an investment portfolio. However, the joint behav-
ior of actuarial and financial risks is hard to estimate, and it is not uncommon that the problem
is simplified by assuming an independence structure.

A reasonable risk management strategy consists in analyzing the most extreme situations for the
joint behavior of a random vector with given marginal distributions. For sums of two random
variables, these extreme situations are modeled by comonotonicity (i.e. extreme positive depen-
dence) and counter-monotonicity (i.e. extreme negative dependence). In the framework of con-
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vex ordering, comonotonicity corresponds to the worst-case scenario and counter-monotonicity
corresponds to the best-case scenario (Denuit et al., 2005, Shaked and Shanthikumar, 2007,
Cheung and Lo, 2014). Therefore, the TVaR and the upper tail transform of the random sum
will reach their maximal and minimal value in case the random variables are comonotonic and
counter-monotonic, respectively. Under the assumption of extreme dependence structures, the
TVaR and the upper tail transform can be used to assess the diversification benefit from com-
bining different risks or investment opportunities (Embrechts et al., 2009, 2013). Further, since
even the most hardened modelers are not exempt from model risk, it is prudent to use sharp
comonotonic and counter-monotonic bounds which are consistent with the available informa-
tion on the univariate distributions (Dhaene et al., 2000, Kaas et al., 2000). These bounds are
also informative on the extent of dependence model risk, which can be quantified using the de-
pendence uncertainty spread, i.e. the difference between the upper and lower bounds (Embrechts
et al., 2015, Bignozzi et al., 2015). In particular, the knowledge about the marginal distributions
does not unambiguously determine the value of a risk measure, since infinitely many values can
be obtained from the spectrum of all possible dependence structures. Hence, the dependence
uncertainty spread allows insurers and risk managers to evaluate their vulnerability to the choice
of a dependence structure1.

The decompositions of the TVaR and the stop-loss premium of comonotonic sums are standard
results in actuarial science (Meileison and Nádas, 1979, Dhaene et al., 2000, 2006, Hobson
et al., 2005, Chen et al., 2008). A key property underpinning these results is the additivity of
quantiles of comonotonic sums, which is itself due to the non-decreasing properties of quantiles
(Dhaene et al., 2002a, McNeil et al., 2015). Solving the corresponding problem involving ex-
treme negative dependence is more challenging. In the bivariate case2, which is of interest to the

1A substantial amount of research has been devoted to derive alternative analytical and numerical worst- and
best-case bounds. For the VaR, these bounds are necessary because comonotonic and counter-monotonic VaR’s
are not always worst- and best-case bounds. Some notable contributions in this direction are due to Mesfioui and
Quessy (2005), Wang et al. (2013), Embrechts et al. (2013), Bernard et al. (2017), and more recently Luxa and
Papapantoleon (2019). Approaches tailored for the TVaR or for distortion risk measures that incorporate additional
information can be found in Kaas et al. (2000), Puccetti (2013) and Bernard et al. (2014). Nevertheless, a trade-
off arises from this discussion. Including more information would indeed tighten the bounds, but it could also
add to the dependence model risk, because of the uncertainty that stems from that information. In contrast, the
comonotonic and counter-monotonic bounds provide more safety in the analysis of the dependence uncertainty
spread, at the cost of a wider interval.

2Characterizing extreme negative dependence for more than two random variables is still an active area of re-
search. One of the proposed notions is complete mixability, which minimizes the variance of sums of random
variables and coincides with counter-monotonicity in the bivariate case; see Gaffke and Rüschendorf (1981) for
the foundational principles and Wang and Wang (2011), Wang et al. (2013) and references therein for additional
results pertaining to VaR minimization. Dhaene and Denuit (1999) proposed mutual exclusivity, which leads to
convex lower bounds for some classes of multivariate distributions with given marginals. Cheung and Lo (2014)
provide details on the intrinsic relationship between pairwise counter-monotonicity and multivariate mutual ex-
clusivity. Other proposals for multivariate extreme negative dependence include Lee and Ahn (2014)’s d-counter-
monotonicity and Puccetti and Wang (2015)’s Σ-counter-monotonicity; see also Wang and Wang (2015, 2016).
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present paper, deriving explicit decomposition formulas for the VaR, TVaR, and stop-loss pre-
mium of the sum of counter-monotonic random variables with arbitrary marginal distributions
remains an open problem.

For the equivalent problem of comonotonic differences, Laurence and Wang (2009) derive a
decomposition for stop-loss premiums in the case of two continuous random variables, but they
do not provide closed-form expressions for the corresponding retentions. Chaoubi et al. (2020)
also restrict their analysis to continuous random variables with a specific choice of marginal
distributions, including symmetric or unimodal distributions. When the random variables follow
such marginal distributions, the function defined as the sum of quantiles of counter-monotonic
random variables have appealing properties. In particular, it is continuous, and either strictly
monotone or globally convex/concave. However, this paper shows that many situations involve
functions with complex shapes which are not covered in the existing literature. A typical case
is when one of the random variables is discrete (e.g. number of survivors) whereas the other is
continuous (e.g. investment fund value). Another one is when the marginal distributions have fat
tails or are skewed. In such situations, the existing decompositions are not valid. Hanbali and
Linders (2021) provide decompositions for the VaR of comonotonic differences under more
general assumptions using the concept of tail monotone functions, where the decomposition
holds for certain values of the quantile level. Their results can readily be applied to decompose
the TVaR as well, but only at confidence levels beyond some thresholds.

The present paper contributes to the body of literature devoted to the decomposition of risk
measures of sums of two random variables (Dhaene and Denuit, 1999, Cheung and Lo, 2013,
Cheung et al., 2017). The paper extends the work of Laurence and Wang (2009) and Chaoubi
et al. (2020) by deriving explicit decompositions of the VaR, TVaR and stop-loss premium of
counter-monotonic sums with general marginal distributions. Whereas the decomposition of
the VaR is a natural result that follows from the basic definitions, the decomposition of TVaR’s
and stop-loss premiums are more challenging. This is due to the fact that the sum of quantiles
of two counter-monotonic random variables may exhibit complex features, such as jumps (and
hence, does not fall in the framework considered in Laurence and Wang (2009) and Chaoubi
et al. (2020) with continuous random variables) or multiple inflection points (and hence, for
VaR and TVaR, violates Chaoubi et al. (2020)’s convex/concave assumptions).

A standard result in the literature is that the quantile of a random variable transformed by a
monotone function can be expressed as the quantile of the original function transformed using

Nevertheless, this fertile literature has scarcely addressed the decomposition of the TVaR and the stop-loss premi-
ums. A noteworthy result is due to Dhaene and Denuit (1999) who proved the additivity of stop-loss premiums
for sums of mutually exclusive risks under some conditions on the marginal distributions; see also Cheung and Lo
(2013) for other convex functionals of sums, as well as Cheung et al. (2017) for tail mutual exclusivity.
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that function (Dhaene et al., 2002a). For instance, for a continuous and non-decreasing function
g and a random variable X , it holds that F−1g(X)(p) = g

(
F−1X (p)

)
for all p ∈ (0, 1). The situation

where g is not monotone is problematic. Hanbali and Linders (2021) address the problem and
show that the equality F−1g(X)(p) = g

(
F−1X (p)

)
holds for specific values of p if the function g has

a monotone tail. The present paper adds to their insights by showing that if g is not monotone,
then that equality does not necessarily hold. Further, when it does hold, there does not always
exist a unique p? such that F−1g(X)(p) = g

(
F−1X (p?)

)
.

The remainder of the paper is organized as follows. Section 2 introduces the notations and
relevant definitions. A definition of the companion comonotonicity concept is also provided, as
well as the analogous results available in the literature. Section 3 contains a formal definition
of counter-monotonicity. The main problem of the paper is exposed, and some key elements
for the subsequent derivations are provided, together with some numerical examples. The main
results of the paper are derived in Sections 4, 5 and 6, dealing with the decompositions of the
VaR, TVaR and the stop-loss premium, respectively. Each section contains the main results,
followed by a discussion and numerical illustrations. Section 7 concludes the paper. In order to
ease the reading, all proofs are relegated to the appendix.

2 Preliminaries

2.1 Notations

All random variables are defined on a common probability space (Ω,F ,P). They can be dis-
crete, continuous, or a combination of the two. It is assumed that all random variables are such
that the risk measures introduced hereafter are finite.

The cumulative distribution function (cdf) of a random variable X is denoted by FX . The
left inverse of FX is denoted by F−1X , and is defined as F−1X (p) = inf {x ∈ R | FX(x) ≥ p}, for
p ∈ [0, 1] ,with inf ∅ = +∞ by convention. The Value-at-Risk (VaR) of a random variableX at
the level p ∈ [0, 1] is given by VaRp[X] = F−1X (p). The right inverse of FX is denoted by F−1+X ,
and is defined as F−1+X (p) = sup {x ∈ R | FX(x) ≤ p} , for p ∈ [0, 1] , with sup ∅ = −∞. If
FX is continuous and strictly increasing, the left and right inverses are equal. Otherwise, on
horizontal segments of FX , the inverses F−1X (p) and F−1+X (p) are different. In such cases, the
generalized α-inverse F−1(α)X , for any α ∈ [0, 1], is defined as follows:

F
−1(α)
X (p) = (1− α)F−1X (p) + αF−1+X (p) , p ∈ [0, 1] . (2.1)
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More details on generalized inverses can be found in Dhaene et al. (2002a) and Embrechts and
Hofert (2013), among others.

The Tail-Value-at-Risk (TVaR) at the level p ∈ [0, 1] of X is defined as follows:

TVaRp[X] =
1

1− p

∫ 1

p

F−1X (q)dq, (2.2)

and the Lower Tail-Value-at-Risk (LTVaR) at the level p ∈ [0, 1] of X is defined as follows:

LTVaRp[X] =
1

p

∫ p

0

F−1X (q)dq. (2.3)

The upper tail transform of the random variable X at the level x ∈ R, also called the stop-loss
premium with retention x, is denoted by πX(x), and is given by the following expected value:

πX(x) = E
[
(X − x)+

]
=

∫ +∞

x

(1− FX(y)) dy, (2.4)

where (x)+ = max{x, 0}. The lower tail transform of X at the level x ∈ R is denoted by
λX(x), and is given by the following expected value:

λX(x) = E
[
(x−X)+

]
=

∫ x

−∞
FX(y)dy. (2.5)

The upper and lower tail transforms πX(x) and λX(x) are linked through the following relation:

πX(x)− λX(x) = E[X]− x, (2.6)

which is referred to as the put-call parity in quantitative finance.

For any p ∈ (0, 1) and α ∈ [0, 1], the following relation establishes a link between the TVaR
and the upper tail transform:

TVaRp[X] = F
−1(α)
X (p) +

1

1− p
πX

(
F
−1(α)
X (p)

)
, (2.7)

which can be rearranged to obtained the link between the LTVaR and the lower tail transform:

LTVaRp[X] = F
−1(α)
X (p)− 1

p
λX

(
F
−1(α)
X (p)

)
. (2.8)

The proof of (2.7) can be found in e.g. Dhaene et al. (2006).

Consider the bivariate vector (X1, X2) and the sum S given by S = X1 + X2. The goal

6



is to derive decomposition formulas for the VaR, TVaR, and stop-loss premium of the sum
S, where the components of the vector (X1, X2) are counter-monotonic, i.e. extreme negative
dependence. In order to better understand the challenges when working with counter-monotonic
random variables, it is helpful to shortly revisit the analogous results for comonotonicity. This
is the focus of the remainder of this section.

2.2 Comonotonic sums

Definition 2.1 (Comonotonic modification) The comonotonic modification of a bivariate ran-

dom vector X is denoted by Xc = (Xc
1, X

c
2), and is given by:

Xc d
=
(
F−1X1

(U) , F−1X2
(U)
)
, (2.9)

where d
= stands for equality in distribution, and U is uniformly distributed over the unit interval.

Characterization (2.9) shows that the components of the comonotonic random vector Xc are
jointly driven by a single random source transformed by the non-decreasing functions F−1X1

and
F−1X2

. The marginals of the comonotonic modification remain, however, equal in distribution
to those of the original vector X . Comonotonicity was extensively discussed in Dhaene et al.
(2002a), and its applications in finance and actuarial science are numerous; see e.g.
Dhaene et al. (2002b), Dhaene et al. (2005), Denuit and Dhaene (2007), Deelstra et al. (2011),
Feng et al. (2015) and Hanbali and Linders (2019).

Let Su be the sum of the components ofXc. Then Su d
= F−1X1

(U)+F−1X2
(U). For any dependence

structure of the random vector (X1, X2), both the TVaR and the stop-loss premium of the sum
S = X1 +X2 are bounded from above by their comonotonic counterparts:

TVaRp[S] ≤ TVaRp[S
u], for all p ∈ [0, 1],

πS(x) ≤ πSu(x), for all x ∈ R.
(2.10)

The proofs of (2.10) can be found in Dhaene et al. (2000) and Kaas et al. (2000).

Quantiles are non-decreasing functions, and hence, the function f : u 7→ F−1X1
(u) + F−1X2

(u)

is also non-decreasing. It is well-known that the quantile of a random variable transformed by
a monotone function can be expressed as the quantile of the original random variable trans-
formed using that function (Dhaene et al., 2002a). Thus, combining Su d

= f(U) and the non-
decreasingess of f , the following decomposition of the Value-at-Risk holds:

VaRp [Su] = f(p) = VaRp [X1] + VaRp [X2] , for all p ∈ [0, 1].
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Note that this decomposition is also valid when Su is a sum of more than two random variables;
see e.g. Dhaene et al. (2002a). Taking into account (2.2), it holds that:

TVaRp [Su] = TVaRp [X1] + TVaRp [X2] , for all p ∈ [0, 1]. (2.11)

This decomposition is also not limited to the two-dimensional case; see Dhaene et al. (2006).

For any x ∈
(
F−1Su (0), F−1+Su (1)

)
, the comonotonic stop-loss premium πSu(x) admits the de-

composition πSu(x) = πX1(x1) + πX2(x2), where

xi = F
−1(αx)
Xi

(FSu(x)), (2.12)

for i = 1, 2, and αx follows from x1 + x2 = x.

The fact that the stop-loss premium of a comonotonic sum can be expressed as a sum of the
marginal stop-loss premiums is a long-established result (see Meileison and Nádas (1979)),
and is valid regardless of the number of components of the comonotonic sum Su. The explicit
expression (2.12) for the retentions xi was derived in Dhaene et al. (2000); see also Hobson
et al. (2005), Chen et al. (2008), Chen et al. (2015b) and Linders et al. (2012).

3 Counter-monotonic sums

3.1 Definition

Definition 3.1 (Counter-monotonic modification) The counter-monotonic modification of a

bivariate random vector X is denoted by Xcm = (Xcm
1 , Xcm

2 ), and is given by:

Xcm d
=
(
F−1X1

(U) , F−1X2
(1− U)

)
,

where d
= stands for equality in distribution, and U is uniformly distributed over the unit interval.

The counter-monotonic modification Xcm of a random vector X has the same marginal dis-
tributions as X , but the components of Xcm move perfectly in the opposite direction. Hence,
counter-monotonicity corresponds to extreme negative dependence structure.

Counter-monotonicity leads to a convex lower bound for a sum of dependent risks; see e.g.
Rüschendorf (1983), Dhaene and Denuit (1999) and Cheung and Lo (2014). Let Sl be the sum
of the components of the transformed vector Xcm, such that Sl = F−1X1

(U) + F−1X2
(1− U).
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Analogously to the inequalities in (2.10), for any dependence structure of the random vector
(X1, X2), both the TVaR and the stop-loss premium of the sum S = X1 +X2 are bounded from
below by their counter-monotonic counterparts:

TVaRp[S
l] ≤ TVaRp[S], for all p ∈ [0, 1],

πSl(x) ≤ πS(x), for all x ∈ R.

But the analogy with comonotonic sums breaks down at this point. In particular, the decom-
position of the VaR, TVaR and stop-loss premium of the counter-monotonic sum of arbitrary
random variables is still an open problem, to which the present paper is devoted.

In order to understand the challenge, recall the function f :

f(u) = F−1X1
(u) + F−1X2

(u), for u ∈ (0, 1), (3.1)

and consider the following function g:

g(u) = F−1X1
(u) + F−1X2

(1− u), for u ∈ (0, 1), (3.2)

with Su d
= f(U) and Sl d

= g(U). A crucial property underpinning the decompositions of risk
measures of comonotonic sums is that the function f is always non-decreasing. In contrast, the
function g is not necessarily monotone, which complicates the derivations.

For some classes of marginal distributions, the problem of determining decomposition formulas
is relatively simple, and the function g is often monotone under some easily identifiable con-
ditions. For instance, this is the case when log(Xi) − E [log(Xi)] for i = 1, 2 are symmetric
and identically distributed. Another example is when X1 and X2 are such that Xi

d
= ai + biWi,

for i = 1, 2, where the Wi’s are symmetric and identically distributed random variables, which
implies that the function g is always monotone, and the sign of its derivative depends upon the
sign of b1 − b2. Chaoubi et al. (2020) derive decompositions of the VaR and TVaR of counter-
monotonic sums in the case of non-decreasing functions g (Proposition 1), as well as in the
more challenging case of concave/convex functions g (Propositions 2 and 3). They also show
that the function g can be either non-decreasing or concave/convex for several combina-
tions of marginal distributions FX1 and FX2 .

3.2 The set Ex

In order to derive decomposition formulas for risk measures of counter-monotonic sums that
hold for general marginal distributions, a closer analysis has to be performed on the behavior of

9



the function g. A key component in the derivations is the set Ex introduced hereafter. Note that
throughout the paper, the setEx is associated with the function g, even though it is not explicitly
included in the notation.

Definition 3.2 For any x ∈
(
xmin, xmax

)
, with xmax = supu∈[0,1] g(u) and xmin = infu∈[0,1] g(u),

and j = 1, ..., Nx, the element ux,j ∈ (0, 1) belongs to Ex if and only if there exist aj, bj, cj ∈
[0, 1] with aj < cj such that one of the following conditions is satisfied:

1. g(u) < x for u ∈ (aj, bj), and g(u) = x for u ∈ (bj, ux,j), and g(u) > x for u ∈ (ux,j, cj).

2. g(u) > x for u ∈ (aj, bj), and g(u) = x for u ∈ (bj, ux,j), and g(u) < x for u ∈ (ux,j, cj).

Definition 3.2 states that for ux,j to be an element of Ex, the function g must cross the level x,
where the crossing occurs from below under Condition 1 and from above under Condition 2. If
g reaches x without crossing it, no elements would be counted in Ex. In case g equals x before
crossing it, then the element that belongs to Ex is the last one before the crossing occurs. Note
that bj = ux,j if the function is strictly increasing in the neighborhood of the crossing. In
such cases, there are no points u in (bj, ux,j), and in particular, the equality g(u) = x is not
required.

Figure 1 provides a general illustration of how the setEx is defined. For a given x ∈ (xmin, xmax),
the set Ex contains the elements ux,1, ux,2, ux,3, ux,4 and ux,5. For ux,1, ux,2 and ux,3, the func-
tion is locally continuous and strictly monotone. In particular, Condition 1 of Definition 3.2 is
satisfied for ux,1 and ux,3, where the level x is crossed from below, and Condition 2 is satisfied
for ux,2, where x is crossed from above. The function g is left-continuous and has a jump at
ux,4. Inequality g(ux,4+) < x < g(ux,4) holds, and Condition 2 is satisfied, where g(ux,4+)

is the right-limit of g in ux,4. Note that g(ux,4) 6= x. The points q1 and q2 in Figure 1 do not
belong to the set Ex. Although g(q1) = g(q2) = x, the function g does not cross x immedi-
ately after these points. The function g is flat on the interval [q2, ux,5], with g(u) = x for all
u ∈ [q2, ux,5]. However, only the point ux,5 from that interval belongs to the set Ex, since for
this point Condition 1 of Definition 3.2 is satisfied.

Note that Definition 3.2 requires the existence of three points aj, bj, cj ∈ [0, 1] with aj <

bj < cj . For all four points ux,1, ux,2, ux,3 and ux,4, the equality ux,j = bj holds because the
function g is strictly monotone at the level of the crossing. In contrast, the identification
of the point bj which is not necessarily equal to ux,j is required when the function g is
constant at the level of the crossing, as is the case of the point ux,5.

The set Ex is not empty for x ∈
(
xmin, xmax

)
, and is at most countably infinite (i.e. Nx can

be infinity), as long as Sl is not degenerate. The trivial case where Sl is degenerate is not
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g

0 1u

x

ux,1 ux,2 ux,3ux,4q1 q2 ux,5

Figure 1: Illustration of the function g and the set Ex, where Ex = {ux,1, ux,2, ux,3, ux,4, ux,5}, and q1 and q2
do not belong to Ex.

discussed here. If the function g is monotone, the set Ex contains a single element for any x ∈(
xmin, xmax

)
. In this case, Condition 1 corresponds to non-decreasingness whereas Condition

2 corresponds to non-increasingness. If g is either convex or concave, the set Ex contains at
most two elements, where these two elements are equidistant from the minimum of g when g
is symmetric; closed-form expressions of the elements of Ex in these cases can be found in
Propositions 2 and 3 of Chaoubi et al. (2020) for symmetric and either convex or concave g,
respectively, as well as Propositions 6 and 7 where the assumption of symmetry is relaxed.

A typical situation where the set Ex has multiple elements, and which motivates the present
study, is when one of the two random variables, say X1, is continuous (e.g. investment fund
value) and the other, say X2, is discrete (e.g. number of claims). The inverse F−1X1

is strictly
increasing whereas the inverse F−1X2

is non-decreasing. As a consequence, the function g in-
creases on the flat segments of F−1X2

, and has downward jumps due to the jumps of F−1X2
. The

situation where Ex has multiple elements can also arise when X1 and X2 are continuous but
exhibit skewness and excess kurtosis.

Figure 2 illustrates the function g with two examples. The top panel of Figure 2 displays the
function g whenX1 andX2 follow a Gamma distribution with shape parameters 4 and 3 respec-
tively, and scale parameter 1 in both cases. The combination of these two distributions results in
a concave and asymmetric function g. The horizontal line x corresponds to the quantile of the
counter-monotonic sum Sl at the level 0.95, which is equal to 8.94. Due to the concave shape
of g, the set E8.94 contains two elements. The asymmetry of g implies that the elements of E8.94

are not equidistant from the point where the minimum of g is attained.

The bottom panel of Figure 2 displays the case where X1 is assumed to follow a Gamma dis-
tribution with shape parameter 5 and scale parameter 1, and X2 is assumed to follow a Poisson
distribution with rate parameter 5. The shape of the function g is rather complex. Moreover, for
x = 9.85, which is the median of the counter-monotonic sum, the set E9.85 has 12 elements.
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Figure 2: Two examples of the function g. In the top panel, both X1 and X2 follow a Gamma distribution with
shape parameters 4 and 3, respectively, and scale parameter equal to 1 for both. In the bottom panel, X1 follows
a Gamma distribution with shape parameter 5 and scale parameter 1, and X2 follows a Poisson distribution with
rate parameter 5.

The remainder of the paper contains the main results. Namely, the decomposition of the VaR,
the TVaR, and the upper tail transform of the counter-monotonic sum are derived. The two
examples of the function g from Figure 2 are used to illustrate the results. In the sequel, the
notation ux,j and Nx is used to denote the elements and the number of elements of the set Ex
when this set is defined for any x. When x stands for the inverse F−1

Sl
(p), the notation up,j is

used instead of uF−1

Sl
(p),j for the elements of EF−1

Sl
(p), and the notation Np is used instead of

NF−1

Sl
(p),j . Similarly, uαp,j and Nα

p are used instead of u
F

−1(α)

Sl
(p),j

and N
F

−1(α)

Sl
(p),j

when x stands

for the generalized inverse F−1(α)
Sl

(p).
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4 Value-at-Risk of the counter-monotonic sum

4.1 Main results

The decomposition of the VaR is closely related to the definition of the set Ex. For p ∈ (0, 1),
let up,1 < up,2 < ... < up,Np be the Np elements of EF−1

Sl
(p). Recall that by definition, for any

j ∈ {1, ..., Np}, the function g crosses the level F−1
Sl

(p) at up,j . If g has a jump at up,j , then
g(up,j) 6= F−1

Sl
(p). If g is continuous at up,j , then g(up,j) = F−1

Sl
(p). Therefore:

VaRp[S
l] = VaRup,j [X1] + VaR1−up,j [X2], (4.1)

for any p ∈ (0, 1), where up,j is one of the Np elements of EF−1

Sl
(p) in which g does not jump.

If g is continuous at more than one element of the set EF−1

Sl
(p), then VaRp[S

l] admits multiple
decompositions, i.e. (4.1) holds for all elements up,j in which g does not jump. In fact, the
decomposition holds for all u ∈ (0, 1) such that g(u) = F−1

Sl
(p), and is not restricted to the

elements of the set EF−1

Sl
(p). The decomposition of VaR when g is not monotone is therefore not

necessarily unique.

If g is not continuous at a given element up,j of EF−1

Sl
(up,j)

, then the decomposition (4.1) does

not hold for that element, i.e. g(up,j) 6= F−1
Sl

(p). Nevertheless, it is still possible to find an
α-quantile of X1 and a corresponding (1 − α)-quantile of X2 such that VaRp

[
Sl
]

is equal to
their sum. This result is stated in the following lemma. Note that the decomposition of the VaR
of Sl is obtained by setting x = F−1

Sl
(p).

Lemma 4.1 For any x ∈
(
xmin, xmax

)
and any element ux,j inEx there exists an αx,j satisfying:

x = F
−1(αx,j)
X1

(ux,j) + F
−1(1−αx,j)
X2

(1− ux,j). (4.2)

Moreover:

αx,j =

{
x−g(ux,j−)

g(ux,j+)−g(ux,j−) , if g(ux,j+) 6= g(ux,j−),

0, if g(ux,j+) = g(ux,j−).
(4.3)

where g(ux,j+) and g(ux,j−) are the right and left limits, respectively, of the function g in ux,j .

Proof. For ux,j ∈ Ex, when the function g is continuous at ux,j , the equality g(ux,j−) =

g(ux,j+) = x holds, and hence:

F
−1(αx,j)
X1

(ux,j) + F
−1(1−αx,j)
X2

(1− ux,j) = F−1X1
(ux,j) + F−1X2

(1− ux,j) = x,

13



for any αx,j ∈ [0, 1]. Thus, Equation (4.2) holds in particular for αx,j = 0.

When the function g jumps at ux,j , the jump size is |g(ux,j+) − g(ux,j−)|. Then, there exists
αx,j ∈ [0, 1] such that:

x = (1− αx,j) g(ux,j−) + αx,jg(ux,j+). (4.4)

Note that F−1X2
(1− (ux,j−)) = F−1X2

(ũx,j+), and F−1X2
(1− (ux,j+)) = F−1X2

(ũx,j−), where
ũx,j = 1− ux,j . Moreover, the inverses F−1Xi

are left-continuous, which means that F−1Xi
(q−) =

F−1Xi
(q) and F−1Xi

(q+) = F−1+Xi
(q) for q ∈ (0, 1). Using (2.1), (4.4) is equivalent to:

x = F
−1(αx,j)
X1

(ux,j) + F
−1(1−αx,j)
X2

(1− ux,j).

Using again (4.4) and rearranging leads to Expression (4.3) of αx,j when g has a jump at ux,j .

If g is continuous at ux,j , i.e. g(ux,j−) = g(ux,j+) = g(ux,j), Equality (4.2) holds for any
choice of αx,j , and more importantly, the equality g(ux,j) = x holds. If g has a jump at ux,j ,
i.e. g(ux,j−) 6= g(ux,j+), the choice of αx,j is unique. The value of αx,j locates x within the
discontinuity, and quantifies the distance between x and the function g.

4.2 Illustration

Consider the first example where X1 and X2 both follow a Gamma distribution, i.e. the top
panel on Figure 2. For x = F−1

Sl
(0.95), the set EF−1

Sl
(0.95) contains the following two elements:

up,1 = 0.01328 and up,2 = 0.96358. (4.5)

Since the function g is continuous, the decomposition in (4.1) holds for both up,1 and up,2.

Consider now the second example where X1 follows a Gamma distribution and X2 follows a
Poisson distribution, i.e. the bottom panel on Figure 2. For x = F−1

Sl
(0.5), the set EF−1

Sl
(0.5)

contains the following twelve elements:

up,1 = 0.13337, up,2 = 0.15843, up,3 = 0.23781,

up,4 = 0.33971, up,5 = 0.38404, up,6 = 0.53079,

up,7 = 0.55951, up,8 = 0.69279, up,9 = 0.73497,

up,10 = 0.81179, up,11 = 0.87535, up,12 = 0.89076.

(4.6)

Figure 2 also shows that the function g jumps at up,1, up,3, up,5, up,7, up,9 and up,11. For these
elements, the decomposition (4.1) does not hold. Instead, the result of Lemma 4.1 has to be
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used. In particular, from (4.3), it follows that the αp,j’s required for (4.2) are given by αp,1 =

0.83598, αp,3 = 0.46330, αp,5 = 0.22700, αp,7 = 0.16108, αp,9 = 0.31461 and αp,11 =

0.76530. For the remaining elements, the decomposition (4.1) holds.

5 Tail Value-at-Risk of the counter-monotonic sum

5.1 Main results

The following theorem provides a decomposition for the TVaR of Sl in terms of marginal
TVaR’s and LTVaR’s.

Theorem 5.1 For any p ∈ (0, 1) and α ∈ [0, 1], let uαp,1 < ... < uαp,Nα
p

be the Nα
p ordered

elements of the set E
F

−1(α)

Sl
(p)

. The Tail Value-at-Risk at the level p of Sl can be expressed as

follows:

TVaRp

[
Sl
]

=

{
1

1−pt
α
1 (p), if g(u) ≤ F

−1(α)
Sl

(p) for u ∈
(
0, uαp,1

)
,

1
1−pt

α
2 (p), if g(u) ≥ F

−1(α)
Sl

(p) for u ∈
(
0, uαp,1

)
,

(5.1)

where

tα1 (p) = (1− uαp,1)
(

TVaRuαp,1 [X1] + LTVaR1−uαp,1 [X2]
)
− T αp,Nα

p
+ F

−1(α)
Sl

(p)
(
uαp,1 +Dαp,Nα

p
− p
)
,

tα2 (p) = uαp,1

(
LTVaRuαp,1 [X1] + TVaR1−uαp,1 [X2]

)
+ T αp,Nα

p
+ F

−1(α)
Sl

(p)
(

1− uαp,1 −Dαp,Nα
p
− p
)
,

(5.2)

and

T αp,Nα
p

=
Nα
p∑

j=2

(−1)j(1− uαp,j)
(

TVaRuαp,j
[X1] + LTVaR1−uαp,j [X2]

)
,

Dαp,Nα
p

=
Nα
p∑

j=2

(−1)j
(
1− uαp,j

)
,

(5.3)

and
∑1

j=2 = 0 by convention.

Proof. Using the notation xαp = F
−1(α)
Sl

(p), where xαp ∈ (xmin, xmax) for p ∈ (0, 1), the TVaR
of the counter-monotonic sum can be written using (2.7) as follows:

TVaRp

[
Sl
]

=
1

1− p

(∫ 1

0

(
F−1
Sl

(u)− xαp
)
+

du+ xαp (1− p)
)
. (5.4)
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Since Sl d
= g(U), it holds that:∫ 1

0

(
F−1
Sl

(u)− xαp
)
+

du =

∫ 1

0

(
g(u)− xαp

)
+

du. (5.5)

Let uαp,j for j = 1, ..., Nα
p be the Nα

p ordered elements of the set Exαp . Suppose first that Nα
p is

finite. The following holds:

∫ 1

0

(
g(u)− xαp

)
+

du =

∫ uαp,1

0

(
g(u)− xαp

)
+

du+

Nα
p −1∑
j=1

∫ uαp,j+1

uαp,j

(
g(u)− xαp

)
+

du+

∫ 1

uα
p,Nαp

(
g(u)− xαp

)
+

du.

The sign of the function g(u) − xαp alternates over two consecutive intervals
(
uαp,j−1, u

α
p,j

)
and(

uαp,j, u
α
p,j+1

)
, for j = 1, ..., Nα

p , and the sign of g(u) − xαp on (0, uαp,1) determines the sign of
g(u) − xαp on all subsequent intervals. Therefore, depending on whether Nα

p is either even or
odd, and whether the sign of g(u)− xαp is either positive or negative on

(
0, uαp,1

)
, four possible

cases can be distinguished.

The first case is when Nα
p is an even number (i.e. there exists an integer m such that Nα

p = 2m),
and g(u) ≥ xαp for u ∈

(
0, uαp,1

)
. In this case, it follows that:

∫ 1

0

(
g(u)− xαp

)
+

du =

∫ uαp,1

0

(
g(u)− xαp

)
du+

m−1∑
j=1

∫ uαp,2j+1

uαp,2j

(
g(u)− xαp

)
du+

∫ 1

uα
p,Nαp

(
g(u)− xαp

)
du.

(5.6)
The second case is whenNα

p is an even number (i.e.Nα
p = 2m), and g(u) ≤ xαp for u ∈ (0, uαp,1),

which leads to: ∫ 1

0

(
g(u)− xαp

)
+

du =
m∑
j=1

∫ uαp,2j

uαp,2j−1

(
g(u)− xαp

)
du. (5.7)

The third case is when Nα
p is an odd number (i.e. there exists an integer m such that Nα

p =

2m+ 1), and g(u) ≥ xαp for u ∈ (0, uαp,1). In this case, it follows that:

∫ 1

0

(
g(u)− xαp

)
+

du =

∫ uαp,1

0

(
g(u)− xαp

)
du+

m∑
j=1

∫ uαp,2j+1

uαp,2j

(
g(u)− xαp

)
du. (5.8)

The fourth case is when Nα
p is an odd number (i.e. Nα

p = 2m + 1), and g(u) ≤ xαp for u ∈
(0, uαp,1), which leads to:

∫ 1

0

(
g(u)− xαp

)
+

du =
m∑
j=1

∫ uαp,2j

uαp,2j−1

(
g(u)− xαp

)
du+

∫ 1

uα
p,Nαp

(
g(u)− xαp

)
du. (5.9)
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For j = 1, ..., Nα
p − 1, the following integral split holds:

∫ up,j+1

up,j

(g(u)− xp) du =

∫ 1

up,j

(g(u)− xp) du−
∫ 1

up,j+1

(g(u)− xp) du. (5.10)

Taking (5.10) into account in (5.6)-(5.9), the four cases reduce to two only, for anyNα
p . Namely:

∫ 1

0

(
F−1
Sl

(u)− xαp
)
+

du =

{
Iα1 (p), if g(u) ≤ xαp for u ∈ (0, uαp,1),

Iα2 (p), if g(u) ≥ xαp for u ∈ (0, uαp,1),
(5.11)

where

Iα1 (p) =

∫ 1

uαp,1

(
g(u)− xαp

)
du−

Nα
p∑

j=2

(−1)j
∫ 1

uαp,j

(
g(u)− xαp

)
du, (5.12)

Iα2 (p) =

∫ uαp,1

0

(
g(u)− xαp

)
du+

Nα
p∑

j=2

(−1)j
∫ 1

uαp,j

(
g(u)− xαp

)
du. (5.13)

Taking into account the definitions of the TVaR and LTVaR from (2.2) and (2.3), respectively,
and using the appropriate change of variable for the integral over F−1X2

(1− u), it follows that:∫ 1

uαp,j

(
g(u)− xαp

)
du =

(
1− uαp,j

) (
TVaRuαp,j

[X1] + LTVaR1−uαp,j [X2]
)
− xαp

(
1− uαp,j

)
,

(5.14)
for all j = 1, ..., Nα

p , as well as:

∫ uαp,1

0

(
g(u)− xαp

)
du = uαp,1

(
LTVaRuαp,1

[X1] + TVaR1−uαp,1 [X2]
)
− xαpuαp,1. (5.15)

Plugging (5.14) and (5.15) in (5.12) and (5.13), the expressions of Iα1 (p) and Iα2 (p) can be
written as follows:

Iα1 (p) =
(
1− uαp,1

) (
TVaRuαp,1

[X1] + LTVaR1−uαp,1 [X2]
)
− xαp

(
1− uαp,1 −Dαp,Nα

p

)
− T αp,Nα

p
,

Iα2 (p) = uαp,1

(
LTVaRuαp,1

[X1] + TVaR1−uαp,1 [X2]
)
− xαp

(
uαp,1 +Dαp,Nα

p

)
+ T αp,Nα

p
,

where T αp,Nα
p

and Dαp,Nα
p

are defined in (5.3). Using (5.4), the TVaR of the counter-comonotonic
sum is given by

(1− p)TVaRp

[
Sl
]

=

{
tα1 (p), if g(u) ≤ xαp for u ∈ (0, uαp,1),

tα2 (p), if g(u) ≥ xαp for u ∈ (0, uαp,1),
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where tα1 (p) = Iα1 (p) + xαp (1− p) and tα2 (p) = Iα2 (p) + xαp (1− p). The proof ends by noting

that combining xαp (1− p) with either −xαp
(

1− uαp,1 −Dαp,Nα
p

)
or −xαp

(
uαp,1 +Dαp,Nα

p

)
, leads

to xαp
(
uαp,1 +Dαp,Nα

p
− p
)

and xαp
(

1− uαp,1 −Dαp,Nα
p
− p
)

, respectively.

For a given p ∈ (0, 1), each choice of α ∈ [0, 1] will result in a specific decomposition of the
Tail Value-at-Risk. In case the marginal cdf’s FX1 and FX2 are continuous, all the generalized
inverses in (5.2) coincide and the decomposition of the TVaR is unique. The choice α = 0 leads
to a decomposition in terms of the usual inverse F−1

Sl
(p).

The decomposition of the TVaR of the sum in the counter-monotonic case involves more terms
than in the comonotonic case. In particular, on top of the linear combination involving the first
element uαp,1 of the set E

F
−1(α)

Sl
(p)

, the sum T αp,Nα
p

and the terms F−1(α)
Sl

(p)
(
uαp,1 +Dαp,Nα

p
− p
)

and F−1(α)
Sl

(p)
(

1− uαp,1 −Dαp,Nα
p
− p
)

are also required.

The number of components of the sum T αp,Nα
p

depends on the number of elements in the set
E
F

−1(α)

Sl
(p)

, and T αp,Nα
p

vanishes when the function g is monotone. The more complex the shape
of g is, the more terms may appear in T αp,Nα

p
. A noteworthy remark is that the notation T αp,Nα

p

is only used to synthesize the result. This notation does not imply that the contribution of
this sum to the TVaR of Sl is less important than the contribution of the first term containing
the marginal TVaR and LTVaR related to the first element uαp,1. In fact, as it is shown in the
numerical examples below, the sum T αp,Nα

p
can capture a substantial part of TVaRp

[
Sl
]
.

The terms F−1(α)
Sl

(p)
(
uαp,1 +Dαp,Nα

p
− p
)

and F−1(α)
Sl

(p)
(

1− uαp,1 −Dαp,Nα
p
− p
)

in (5.2) arise

because the quantile function F−1(α)
Sl

may be constant in the neighborhood of p, i.e. F−1(α)
Sl

is

‘flat’ in p and hence, FSl
(
F
−1(α)
Sl

(p)
)

is not necessarily equal to p. For the values of p where

F
−1(α)
Sl

is strictly increasing, it can be shown that these terms equal 0. The following lemma
proves this result, thereby providing a link between the elements of the set E

F
−1(α)

Sl
(p)

and p in

case the quantile function F−1(α)
Sl

is strictly increasing in p.

Lemma 5.1 For any p ∈ (0, 1) and α ∈ [0, 1], suppose that the function F
−1(α)
Sl

is strictly

increasing in p, and let uαp,1 < ... < uαp,Nα
p

be the Nα
p ordered elements of the set E

F
−1(α)

Sl
(p)

.

Then:

p =

{
uαp,1 +Dαp,Nα

p
, if g(u) ≤ F

−1(α)
Sl

(p) for u ∈ (0, uαp,1),

1− uαp,1 −Dαp,Nα
p
, if g(u) ≥ F

−1(α)
Sl

(p) for u ∈ (0, uαp,1),
(5.16)

where Dαp,Nα
p

is given in (5.3).

Proof. For any p ∈ (0, 1) and any α ∈ [0, 1], the quantile F−1(α)
Sl

is strictly increasing in p if
and only if the cdf FSl is continuous at xαp = F

−1(α)
Sl

(p). In this case, FSl
(
xαp
)

= p, and hence,

18



q ≤ p is equivalent with F−1(α)
Sl

(q) ≤ F
−1(α)
Sl

(p). Combining this equivalence with the fact that
Sl

d
= g(U) and Sl d

= F
−1(α)
Sl

(U) for any α ∈ [0, 1], the TVaR can be written as follows:

TVaRp

[
Sl
]

= E
[
g(U)I

[
g(U) ≥ xαp

]]
=

1

1− p

∫ 1

0

g(u)I
[
g(u) ≥ xαp

]
du. (5.17)

Further, the function F−1(α)
Sl

is strictly increasing in p ∈ (0, 1) if and only if P
[
Sl = xαp

]
=

P
[
g(U) = xαp

]
= 0, and hence, P

[
g(U) ≥ xαp

]
= P

[
g(U) > xαp

]
. Therefore, the integral in

(5.17) can be decomposed as in (5.9), where the following holds:∫ 1

uαp,j

g(u)du =
(
1− uαp,j

) (
TVaRuαp,j

[X1] + LTVaR1−uαp,j [X2]
)
,

for all j = 1, ..., Nα
p , where uαp,j are the Nα

p elements of Exαp , as well as:

∫ uαp,1

0

g(u)du = uαp,1

(
LTVaRuαp,1

[X1] + TVaR1−uαp,1 [X2]
)
.

In particular, the terms F−1(α)
Sl

(p)
(
uαp,1 +Dαp,Nα

p
− p
)

and F−1(α)
Sl

(p)
(

1− uαp,1 −Dαp,Nα
p
− p
)

in tα1 (p) and tα2 (p), respectively, are equal to 0, which proves (5.16).

Lemma 5.1 shows that the situation where F−1(α)
Sl

is strictly increasing in p has two conse-
quences. The first consequence is that the expression of TVaRp

[
Sl
]

can be simplified because

F
−1(α)
Sl

(p)
(
uαp,1 +Dαp,Nα

p
− p
)

= 0 and F−1(α)
Sl

(p)
(

1− uαp,1 −Dαp,Nα
p
− p
)

= 0. The second
consequence is that, for Nα

p ≥ 2, it is sufficient to determine Nα
p − 1 elements, whereas for

Nα
p = 1, uαp,1 is either equal to p or to 1− p.

The decomposition of TVaR in Theorem 5.1 is further simplified in the next section, where a
link between tα1 (p) and tα2 (p) is established using the decomposition of the upper tail transform.

5.2 The case where Nα
p = 1 and F−1(α)

Sl
is strictly increasing in p

Suppose that Nα
p = 1, which includes the case where g is monotone. Additionally, suppose that

F
−1(α)
Sl

is strictly increasing in p. This situation leads to simple decompositions of TVaRp

[
Sl
]
,

which are provided in the following corollary. The result follows directly from Theorem 5.1 and
Lemma 5.1. In particular, since the generalized quantile function F−1(α)

Sl
is strictly increasing

in p, then from Lemma 5.1, uαp,1 = p if g(0) ≤ g(1), and uαp,1 = 1− p if g(0) ≥ g(1)3.

3Note that for Nα
p = 1, the case g(u) ≤ F

−1(α)

Sl (p) for u ∈ (0, uαp,1) is equivalent with g(0) ≤ g(1), whereas

the case g(u) ≥ F−1(α)

Sl (p) for u ∈ (0, uαp,1) is equivalent with g(0) ≥ g(1).
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Corollary 1 For any p ∈ (0, 1) and α ∈ [0, 1], if Nα
p = 1 and the function F−1(α)

Sl
is strictly

increasing in p, then:

TVaRp

[
Sl
]

=

{
TVaRp[X1] + LTVaR1−p[X2], if g(0) ≤ g(1),

LTVaR1−p[X1] + TVaRp[X2], if g(0) ≥ g(1).
(5.18)

The case where g(0) ≤ g(1) leads to a decomposition which is consistent with that of Chaoubi
et al. (2020) for strictly increasing functions g. Specifically, in Proposition 1 of Chaoubi et al.
(2020), the authors derive the decomposition that follows from g(0) ≤ g(1) by assuming
that X1 and X2 are continuous random variables ordered in the dispersive order sense.
Thus, the present Corollary 1 generalizes their expression by stating that their decomposition
does not require the function g to be globally monotone, nor both marginal random variables to
be continuous. Indeed, Nα

p = 1 and local strict increasingness of F−1(α)
Sl

in p are sufficient.

Interestingly, under these conditions, the dependence uncertainty spread (i.e. the difference be-
tween the upper bound and the lower bound) can be expressed in terms of the TVaR and LTVaR
of only one of the random variables. In particular, using the decomposition of the upper bound
TVaRp[S

u], it follows that if Nα
p = 1 and F−1(α)

Sl
is strictly increasing in p, then:

TVaRp[S
u]− TVaRp[S

l] =

{
TVaRp [X2]− LTVaR1−p [X2] , if g(0) ≤ g(1),

TVaRp [X1]− LTVaR1−p [X1] , if g(0) ≥ g(1).
(5.19)

Thus, the dependence uncertainty spread of TVaRp

[
Sl
]

depends on the tail distribution of one
of the two random variables only.

Suppose that the function g is strictly monotone, which is a special case of the conditions
Nα
p = 1 and F−1(α)

Sl
is strictly increasing in p. Since both the TVaR and the LTVaR are non-

decreasing functions of p, it follows from (5.19) that the dependence uncertainty spread is a
non-decreasing function of the level p. This result implies that in case g is strictly monotone,
a more conservative risk measurement (i.e. higher levels of p) leads to a larger dependence
uncertainty gap. This is in general not the case, as the dependence uncertainty spread can be
a non-monotone function of p. This can be seen by combining the decomposition of the upper
bound TVaRp[S

u] in (2.11) and that of the lower bound given in Theorem 5.1.

5.3 Illustration

The decomposition of the TVaR is illustrated using the examples from Figure 2, with a particular
emphasis on the components of the sum T αp,Nα

p
. The parameter α is set to 0, i.e. F−1(α)

Sl
(p) =

F−1
Sl

(p), and for simplicity, the superscript α is dropped from all relevant quantities.
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In both cases of Figure 2, it holds that g(u) ≥ F−1
Sl

(p) for u ∈ (0, up,1). This means that
the decomposition is given by t2(p). Further, as noted previously, Lemma 5.1 leads to p =

1 − up,1 − Dp,Np , which is due to the fact that g does not have flat parts, and hence, the last
term in t2(p) vanishes. This can also be verified numerically using the values given in (4.5) and
(4.6). Therefore, in both cases, the expression of TVaRp

[
Sl
]

is given by:

TVaRp

[
Sl
]

= up,1
(
LTVaRup,1 [X1] + TVaR1−up,1 [X2]

)
+ Tp,Np ,

where Tp,Np is given in (5.3) with α = 0.

0
2

4
6

8
-2
0

-1
0

0
10

20

Figure 3: Components of the TVaR decomposition for the two examples of the function g from Figure 2 in the
order they appear in the decomposition.

The set EF−1

Sl
(0.95) contains two elements in the first example with two Gamma distributed ran-

dom variables. This means that Np = 2, and that t2(0.95) has two components. The first
component is up,1

1−p

(
LTVaRup,1 [X1] + TVaR1−up,1 [X2]

)
and the second component is Tp,Np =

1−up,2
1−p

(
TVaRup,2 [X1] + LTVaR1−up,2 [X2]

)
. Both are displayed on the top panel of Figure 3,

where the first component is on the left and the second component is on the right. The figure
shows that T0.95,Np is substantially larger than the first component, and largely contributes to the
TVaR of the counter-monotonic difference.
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In the second example involving Gamma and Poisson random variables, the set EF−1

Sl
(0.5) con-

tains twelve elements, which means that t2(0.5) has twelve components. The first component
is up,1

1−p

(
LTVaRup,1 [X1] + TVaR1−up,1 [X2]

)
. The remaining eleven components with alternating

sign are (−1)j
1−up,j
1−p

(
TVaRup,j [X1] + LTVaR1−up,j [X2]

)
, for j = 2, ..., 12, where their sum is

Tp,Np . These twelve terms are displayed in the bottom panel of Figure 3 in the order in which
they appear in the expression, from left to right. Note that the decomposition leads to a TVaR
of the counter-monotonic sum equal to 10.51. In this example, the first component does not
contribute as much as the remaining ones. Further, from the second onward, the amplitudes are
decreasing. This is due to the fact that the components are weighted by (1 − up,j), and hence,
additional terms weighted by values of up,j close to 1 have less importance.

Recall that the TVaR of the comonotonic sum Su at any level p ∈ [0, 1] satisfies the simple
decomposition TVaRp[X1] + TVaRp[X2] in (2.11). Thus, it is worth verifying if the simple
decomposition in Corollary 1 is an accurate approximation for the TVaR of the counter-
monotonic sum Sl. Specifically, using the notation t̃1(p) = TVaRp[X1]+LTVaR1−p[X2] and
t̃2(p) = LTVaR1−p[X1] + TVaRp[X2], the aim now is to verify using the two examples from
Figure 2 whether either of the approximations TVaRp[S

l] ≈ t̃1(p) or TVaRp[S
l] ≈ t̃2(p)

holds.

Figure 4 displays the relative differences (expressed in percentages) between the counter-
monotonic TVaR and the approximations t̃1(p) (black straight lines) and t̃2(p) (blue dashed
lines) in function of the level p for both the first example (left panels) and the second ex-
ample (right panels), where the bottom panels display the corresponding differences in
the dependence uncertainty spread. For both examples, it appears that the approxima-
tions underestimate the true value of the counter-monotonic TVaR. The approximation
t̃1(p) underestimates TVaRp[S

l] by up to 5% for the Gamma-Gamma example and by up
to 6% for the Gamma-Poisson example. The second approximation t̃2(p) leads to com-
paratively larger relative differences in the first example with two Gamma distributed
random variable, where TVaRp[S

l] is underestimated by up to −14%. Further, whereas
the differences pertaining to the approximation of TVaRp[S

l] are already substantial, they
are exacerbated for the dependence uncertainty spread. Indeed, for both examples, the
dependence uncertainty spread would be overestimated by up to 70% in the first example
and up to 40% in the second example if one of the approximations were to be used. There-
fore, naively approximating TVaRp[S

l] by the simple decompositions from Corollary 1 is
not recommended.
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Figure 4: Relative differences (expressed in percentages) between the counter-monotonic TVaR and the ap-
proximations t̃1(p) (black straight lines) and t̃2(p) (blue dashed lines) in function of the level p for both the first
example (left panels) and the second example (right panels) displayed on Figure 2, where the bottom panels display
the corresponding differences in the dependence uncertainty spread.

6 Upper tail transform of the counter-monotonic sum

6.1 Main results

The following theorem provides a decomposition formula for the upper tail transform of the
counter-monotonic stop-loss premium.

Theorem 6.1 For any x ∈
(
xmin, xmax

)
, let ux,1 < ... < ux,Nx be the Nx ordered elements of

the set Ex. The upper tail transform at the level x of Sl can be expressed as follows:

πSl(x) =

{
s1(x), if g(u) ≤ x for u ∈ (0, ux,1) ,

s2(x), if g(u) ≥ x for u ∈ (0, ux,1) ,
(6.1)
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where:

s1(x) = πX1

(
F−1X1

(ux,1)
)
− λX2

(
F−1X2

(1− ux,1)
)
− Sx,Nx + (1− ux,1) (g(ux,1)− x)− Jx,Nx ,

s2(x) = πX2

(
F−1X2

(1− ux,1)
)
− λX1

(
F−1X1

(ux,1)
)

+ Sx,Nx + ux,1 (g (ux,1)− x) + Jx,Nx ,
(6.2)

with

Sx,Nx =
Nx∑
j=2

(−1)j
(
πX1

(
F−1X1

(ux,j)
)
− λX2

(
F−1X2

(1− ux,j)
))
,

Jx,Nx =
Nx∑
j=2

(−1)j(1− ux,j) (g(ux,j)− x) ,

(6.3)

and
∑1

j=2 = 0 by convention.

Proof. For x ∈
(
xmin, xmax

)
, there always exist p ∈ (0, 1) and α ∈ [0, 1] such that x =

F
−1(α)
Sl

(p). Let ux,1, ..., ux,Nx be the Nx elements of the set Ex. Note that ux,j = uαp,j for all
j = 1, ..., Nx, and Nx = Nα

p . Using the relationships (2.7) and (2.8), it follows that:

(1− ux,j)
(
TVaRux,j [X1] + LTVaR1−ux,j [X2]

)
= (1− ux,j)g(ux,j) (6.4)

+ πX1

(
F−1X1

(ux,j)
)
− λX2

(
F−1X2

(1− ux,j)
)
.

Define the quantity A as A = (1 − ux,1)
(
TVaRux,1 [X1] + LTVaR1−ux,1 [X2]

)
− T αp,Nα

p
, where

T αp,Nα
p

is given by (5.3). Multiplying Expression (6.4) by (−1)j and summing over j leads to:

A = πX1

(
F−1X1

(ux,1)
)
−λX2

(
F−1X2

(1− ux,1)
)
−Sx,Nx+(1−ux,1)g(ux,1)−

Nx∑
j=2

(−1)j (1− ux,j) g(ux,j),

where Sx,Nx is given by (6.3). By adding x
(
ux,1 +Dαp,Nα

p
− p
)

to the left-hand side, where
Dαp,Nα

p
is defined in (5.3), it follows that:

tα1 (p) = πX1

(
F−1X1

(ux,j)
)
− λX2

(
F−1X2

(1− ux,j)
)
− Sx,Nx + (1− ux,1)g(ux,1)

−
Nx∑
j=2

(−1)j (1− ux,j) g(ux,j) + x
(
ux,1 − 1 +Dαp,Nα

p
+ (1− p)

)
,

which can be rearranged such that tα1 (p) = s1(x) + (1 − p)x. The same reasoning allows to
express tα2 (p) in terms of s2(x). Therefore, it follows that:

tα1 (p) = s1 (x) + (1− p)x, and tα2 (p) = s2 (x) + (1− p)x, (6.5)

for any x ∈
(
xmin, xmax

)
. Note also that (2.7) immediately leads to πSl (x) = (1− p) TVaRp

[
Sl
]
−

(1− p)x. Combining the latter expression of πSl(x) and (6.5) ends the proof.
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The stop-loss premium of the counter-monotonic sum is equal to the difference of an upper
tail transform of one component and a lower tail transform of the other component, but analo-
gously to the decomposition of TVaRp

[
Sl
]
, additional terms appear that depend on the shape

of the function g. In particular, the sum Sx,Nx accounts for the fact that the function g is not
necessarily monotone, and vanishes when Nx = 1, i.e. Sx,1 = 0. The sum Jx,N as well as
(1 − ux,1) (g(ux,1)− x) and ux,1 (g(ux,1)− x) appear in case the function g has a jump at one
of the elements of Ex. In general, these terms vanish only when g is continuous at all the
elements of Ex. This is because if g is continuous at an element ux,j , then g(ux,j) = x.

The following theorem provides an alternative expression for s1(x) and s2(x). This alterna-
tive decomposition expresses the retentions in terms of the generalized inverses of X1 and X2

instead of left inverses F−1X1
and F−1X2

.

Theorem 6.2 For any x ∈
(
xmin, xmax

)
, let ux,1 < ... < ux,Nx be the Nx ordered elements of

the set Ex. The upper tail transform at the level x of Sl can be expressed as follows:

πSl(x) =

{
s1(x), if g(u) ≤ x for u ∈ (0, ux,1) ,

s2(x), if g(u) ≥ x for u ∈ (0, ux,1) ,
(6.6)

where:

s1(x) = πX1

(
F
−1(αx,1)
X1

(ux,1)
)
− λX2

(
F
−1(1−αx,1)
X2

(1− ux,1)
)
− Sx,Nx ,

s2(x) = πX2

(
F
−1(1−αx,1)
X2

(1− ux,1)
)
− λX1

(
F
−1(αx,1)
X1

(ux,1)
)

+ Sx,Nx ,
(6.7)

with

Sx,Nx =
Nx∑
j=2

(−1)j
(
πX1

(
F
−1(αx,j)
X1

(ux,j)
)
− λX2

(
F
−1(1−αx,j)
X2

(1− ux,j)
))

, (6.8)

and
∑1

j=2 = 0 by convention, and for j = 1, 2, . . . , Nx, αx,j’s are determined from:

x = F
−1(αx,j)
X1

(ux,j) + F
−1(1−αx,j)
X2

(1− ux,j). (6.9)

Proof. The first part of the proof shows that Expressions (6.2) and (6.7) of s1(x) are equal.

For j = 1, ..., Nx, let αx,j ∈ [0, 1] be such that:

F
−1(αx,j)
X1

(ux,j) + F
−1(1−αx,j)
X2

(1− ux,j) = x, (6.10)

for x ∈ (xmin, xmax), where αx,j is known to exist from Lemma 4.1. The stop-loss premium of
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X1 with retention F−1(αx,j)X1
(ux,j) can be expressed as follows:

πX1

(
F
−1(αx,j)
X1

(ux,j)
)

=

∫ +∞

F
−1(αx,j)

X1
(ux,j)

(1− FX1(y)) dy. (6.11)

For any αx,j ∈ [0, 1], the following equality holds:

FX1

(
F
−1(αx,j)
X1

(ux,j)
)

= FX1

(
F−1X1

(ux,j)
)

= ux,j. (6.12)

Combining (6.11) and (6.12) allows to link the stop-loss premiums of X1 with retentions
F
−1(αx,j)
X1

(ux,j) and F−1X1
(ux,j) as follows:

πX1

(
F
−1(αx,j)
X1

(ux,j)
)

= πX1

(
F−1X1

(ux,j)
)
−
(
F
−1(αx)
X1

(ux,j)− F−1X1
(ux,j))

)
(1− ux,j) ,

(6.13)
Similarly for the lower-tail transform of X2 with retention F−1(1−αx,j)X2

(1− ux,j):

λX2

(
F
−1(1−αx,j)
X2

(1− ux,j)
)

=

∫ F
−1(1−αx,j)
X2

(1−ux,j)

−∞
FX2(y)dy, (6.14)

and since the following equality holds:

FX2

(
F
−1(1−αx,j)
X2

(1− ux,j)
)

= FX2

(
F−1X2

(1− ux,j)
)

= 1− ux,j, (6.15)

for any αx,j ∈ [0, 1], the lower-tail transforms of X2 with retentions F−1(1−αx,j)X2
(1− ux,j) and

F−1X2
(1− ux,j) can be linked as follows:

λX2

(
F
−1(1−αx,j)
X2

(1− ux,j)
)

= λX2

(
F−1X2

(1− ux,j)
)

+
(
F
−1(1−αx,j)
X2

(1− ux,j)− F−1X2
(1− ux,j)

)
(1− ux,j) .

(6.16)
For j = 1, ..., Nx, consider the following difference:

Aj = πX1

(
F
−1(αx,j)
X1

(ux,j)
)
− λX2

(
F
−1(1−αx,j)
X2

(1− ux,j)
)
.
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Combining Expressions (6.13) and (6.16) leads to:

Aj = πX1

(
F−1X1

(ux,j)
)
− λX2

(
F−1X2

(1− ux,j)
)
−
(
F
−1(αx,j)
X1

(ux,j)− F−1X1
(ux,j))

)
(1− ux,j)

−
(
F
−1(1−αx,j)
X2

(1− ux,j)− F−1X2
(1− ux,j)

)
(1− ux,j)

= πX1

(
F−1X1

(ux,j)
)
− λX2

(
F−1X2

(1− ux,j)
)

+

(1− ux,j)
[(
F−1X1

(ux,j) + F−1X2
(1− ux,j)

)
−
(
F
−1(αx,j)
X1

(ux,j) + F
−1(1−αx,j)
X2

(1− ux,j)
)]

= πX1

(
F−1X1

(ux,j)
)
− λX2

(
F−1X2

(1− ux,j)
)

+ (1− ux,j) (g(ux,j)− x) , (6.17)

where both the definition of the function g and the relation (6.10) were used in the last step.
Therefore, (6.17) proves that the expressions of s1(x) given in (6.2) and (6.7) are equal.

It remains to prove that Expressions (6.2) and (6.7) of s2(x) are equal. Define:

B = πX2

(
F
−1(αx,1)
X2

(ux,1)
)
− λX2

(
F
−1(1−αx,1)
X2

(1− ux,1)
)
.

Using the same arguments as above, it follows that:

B = πX2

(
F−1X2

(ux,1)
)
− λX2

(
F−1X2

(1− ux,1)
)

+ ux,1 (g(ux,1)− x) , (6.18)

which can be combined with (6.17) for j = 2, ..., Nx to prove that (6.2) and (6.7) are two
equivalent expressions for s2(x) as well, which ends the proof.

In contrast with the expression in Theorem 6.1, the alternative expression in Theorem 6.2 does
not have the terms Jx,Nx nor (1 − ux,1) (g(ux,1)− x) and ux,1 (g(ux,1)− x). In counterpart, it
requires determining the generalized inverses of X1 and X2.

It can be proven that s1(x) + s2(x) = E
[
Sl
]
−x. Combining this equality with the parity (2.6),

the decomposition of the lower bound πSl(x) can be further simplified. In particular, if s1(x) is
the decomposition of the upper tail transform πSl(x), then −s2(x) is the decomposition of the
corresponding lower tail transform λSl(x), which means that only one of the two quantities is
positive. Hence, as stated in the lemma below, πSl(x) is always the highest of s1(x) and s2(x).
This simplification applies to the TVaR as well.

Lemma 6.1 For any p ∈ (0, 1), any α ∈ [0, 1] and any x ∈
(
xmin, xmax

)
, the Tail Value-at-Risk

at the level p and the upper tail transform at the level x of Sl can be expressed as follows:

TVaRp

[
Sl
]

=
1

1− p
max {tα1 (p), tα2 (p)} , and πSl(x) = max{s1(x), s2(x)},

where tα1 (p) and tα2 (p) are given in (5.2), and s1(x) and s2(x) are given in (6.2).
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Proof. First, note that using the parity (2.6), it follows that:

s1(x) + s2(x) = E
[
Sl
]
− x.

Suppose that πSl(x) = s1(x). Then, from (2.6), λSl(x) = −s2(x). Since the lower tail trans-
form is always non-negative, it follows that s2(x) ≤ 0, and hence, the non-negativeness of the
upper tail transform leads to s2(x) ≤ s1(x). The same reasoning applies when πSl(x) = s2(x),
in which case s2(x) ≥ s1(x). This concludes the proof for the stop-loss premium.

For p ∈ (0, 1) and xαp = F−1
Sl

(p), it follows that πSl
(
xαp
)

= max
{
s1
(
xαp
)
, s2
(
xαp
)}
. Combin-

ing this equality with (6.5) proves that the TVaR of Sl is also the maximum of 1
1−pt

α
1 (p) and

1
1−pt

α
2 (p), and hence ends the proof.

6.2 The case where Nx = 1

For x ∈
(
xmin, xmax

)
, suppose that the marginal cdf’s FX1 and FX2 are such that Nx = 1, i.e.

the set Ex contains a single element ux,1. The following corollary shows that the decomposition
of the stop-loss premium in case Nx = 1 can be expressed in terms of FSl(x). Thus, the
case Nx = 1 leads to decompositions which are similar to the decomposition of the upper tail
transform of the comonotonic sum in (2.12). Recall that for Nx = 1, the case g(u) ≤ x for
u ∈ (0, ux,1) is equivalent with g(0) ≤ g(1), whereas the case g(u) ≥ x for u ∈ (0, ux,1) is
equivalent with g(0) ≥ g(1).

Corollary 2 For any x ∈
(
xmin, xmax

)
, if Nx = 1, the upper tail transform at the level x of Sl

can be expressed as follows:

πSl(x) =

 πX1

(
F
−1(αx)
X1

(FSl(x))
)
− λX2

(
F
−1(1−αx)
X2

(1− FSl(x))
)
, if g(0) ≤ g(1),

πX2

(
F
−1(1−αx)
X2

(FSl(x))
)
− λX1

(
F
−1(αx)
X1

(1− FSl(x))
)
, if g(0) ≥ g(1),

where αx is determined from:

x =

{
F
−1(αx)
X1

(FSl(x)) + F
−1(1−αx)
X2

(1− FSl(x)) , if g(0) ≤ g(1),

F
−1(1−αx)
X2

(FSl(x)) + F
−1(αx)
X1

(1− FSl(x)) , if g(0) ≥ g(1).

Proof. For Nx = 1, the set Ex contains a single element ux,1 and Sx,1 = 0, and Theorem 6.2
leads to a simplified decomposition. The remaining task is to prove that the retentions of the
upper and lower tail transforms can be expressed in terms of the cdf of Sl.
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Note that Sl d
= g(U) leads to FSl(x) = P [g(U) ≤ x], and hence, in the first case where g(u) ≤

x for u < ux,1, it follows that FSl(x) = ux,1.

In the second case where g(u) ≥ x for u < ux,1, unlike in the first case, the inequality FSl(x) ≥
P [g(U) < x] = 1 − ux,1 holds, and becomes an equality if g is strictly decreasing in ux,1, in
which case FSl(x) = 1− ux,1. Otherwise, from the definition of the set Ex, the case where the
function g is flat before ux,1 leads to an inequality, and there exists u? < ux,1 such that g(u) = x

for u ∈ (u?, ux,1). Thus, FSl(x) = 1 − u?, and the upper tail transform of Sl can be written as
follows:

E
[(
Sl − x

)
+

]
=

∫ u?

0

(g(u)− x) du. (6.19)

Using Lemma 4.1, there exists αx ∈ [0, 1] such that:

x = F
−1(αx)
X1

(u?) +F
−1(1−αx)
X2

(1− u?) = F
−1(αx)
X1

(1− FSl(x)) +F
−1(1−αx)
X2

(FSl(x)) . (6.20)

Combining (6.19) and (6.20) and rearranging ends the proof.

Note that unlike for the TVaR, the dependence uncertainty spread of πSl(x) in case Nx = 1 is
not determined by one of the two random variables as in (5.19).

6.3 Illustration

The importance of each term in Sx,Nx is similar to that of the terms in T αp,Nα
p

, which means
that the discussion from the illustration of Section 5 remains valid. This numerical illustration
focuses on the importance of the terms due to the jumps of the function g. Only the second
example where X2 follows a Poisson distribution is discussed, because there are no jumps in
the other example. In order to illustrate the term due to the jumps, the decomposition from
Theorem 6.1 is used. For x = F−1

Sl
(0.5), the bottom panel of Figure 2 shows that g(u) ≥ x

for u ∈ (0, ux,1). Thus, the decomposition of the stop-loss premium is given by s2(x), and the
component under interest is ux,1 (g (ux,1)− x) + Jx,Nx .

Using the values of the elements of Ex, it follows from Theorem 6.1 that the stop-loss premium
at the level x = F−1

Sl
(0.5) of Sl is equal to 0.33610. The first term gives πX2

(
F−1X2

(1− ux,1)
)
−

λX1

(
F−1X1

(ux,1)
)

= 0.03918, whereas Sx,12 = 0.92823. The remaining part due to jumps gives
ux,1 (g (ux,1)− x) +Jx,12 = −0.63130. This shows the importance of the last term, as ignoring
it would considerably overestimate the value of the stop-loss premium.
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7 Conclusion

This paper studies the Value-at-Risk, the Tail Value-at-Risk, and the upper tail transform of the
sum of two counter-monotonic random variables Sl d

= F−1X1
(U) + F−1X2

(1− U). Decomposition
formulas for these risk measures are derived in terms of the corresponding risk measures of the
marginal random variables. An important step in the derivation is to study the behavior of the
function g : u 7→ F−1X1

(u) + F−1X2
(1 − u). This is performed by introducing the set Ex which

allows to identify the crossing points of g with respect to a level x.

The derivations of this paper do not require strong restrictions on the random variables X1 and
X2. In particular, these random variables can be continuous, discrete, or a combination of the
two. The results are also valid for random variables which are defined on the entire real support,
and are not limited to positive-valued random variables.

The contributions of this paper are relevant to different areas of finance and actuarial science.
One of the applications is asset and liability management where differences of random variables
are involved rather than sums. In this case, the counter-monotonic sum becomes a comonotonic
difference. The study of basis risk is also an area of application where the relevant quantity is a
difference of two random variables.

A compelling question is whether more general risk measures of counter-monotonic sums,
such as distorted expectations, could be decomposed into their corresponding marginal
components. Cheung et al. (2015) provide an expression of distorted expectations in func-
tion of the TVaR under some conditions of the distortion function and the random vari-
able. This formula could constitute a starting point of the derivation, but some complica-
tions could arise when the random variables X1 and X2 do not satisfy continuity condi-
tions. Such an endeavor deserves a separate contribution, and is left for future research.
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