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Abstract

The Value-at-Risk (VaR) of comonotonic sums can be decomposed into marginal VaR’s
at the same level. This additivity property allows to derive useful decompositions for other
risk measures. In particular, the Tail Value-at-Risk (TVaR) and the upper tail transform of
comonotonic sums can be written as the sum of their corresponding marginal risk measures.

The other extreme dependence situation, involving the sum of two arbitrary counter-
monotonic random variables, presents a certain number of challenges. One of them is that
it is not straightforward to express the VaR of a counter-monotonic sum in terms of the
VaR’s of the marginal components of the sum. This paper generalizes the results derived
in Chaoubi et al. (2020) by providing decomposition formulas for the VaR, TVaR and the

stop-loss transform of the sum of two arbitrary counter-monotonic random variables.

Keywords: Counter-monotonicity, extreme negative dependence, decomposition formulas,

Tail Value-at-Risk, stop-loss transform.



1 Introduction

This paper provides decompositions for the Value-at-Risk (VaR), Tail Value-at-Risk (TVaR),
and the upper tail transform (or stop-loss premium), of the sum of two counter-monotonic ran-
dom variables with arbitrary marginal distributions. It is shown that the VaR can be expressed
in terms of marginal quantiles but at different levels. Further, it is shown that the TVaR and the
upper tail transform can be expressed in terms of linear combinations of the marginal risk mea-
sures, with additional terms required when the underlying random variables are discrete. The
uniqueness of the representation of the VaR and the TVaR in terms of marginal risk measures is

however not guaranteed in general.

The results of the present paper are useful in situations involving sums or differences of two
random variables. These situations underlie a broad range of practical actuarial and financial
problems. In an insurance context, asset and liability management requires the analysis of a
difference of two random variables. The liability side of the balance sheet is in major part
determined by actuarial risks, whereas the asset side, on the other hand, is a mirror image of the
insurer’s investment strategy (Wiithrich, 2020). Other situations include the evaluation of basket
and spread options, whose payoffs are expressed as stop-loss premiums of sums, or differences,
of random variables (Dhaene and Goovaerts, 1996, Carmona and Durrleman, 2003, Laurence
and Wang, 2008, 2009). The complex instruments from the emerging market of longevity and
mortality derivatives, such as longevity trend bonds or catastrophic mortality bonds, also involve
differences of random variables (Hunt and Blake, 2015, Chen et al., 2015a, Bahl and Sabanis,
2021), and so does the management of basis risk (Coughlan et al., 2011, Zhang et al., 2017).

Determining the distribution and risk measures for linear combinations of random variables re-
quires modeling their joint distribution. As pointed out in a number of earlier related studies
(see e.g. Kaas et al. (2000), Bernard and Vanduffel (2015), Bignozzi et al. (2015)), modeling
the individual risks, or marginal distributions, is often considered a standard task by actuaries
and risk managers, whereas a more challenging task consists in determining their dependence
structure. Indeed, an extensive statistical and quantitative toolbox is available to model sepa-
rately actuarial risks, such as future mortality dynamics or claim counts in non-life insurance,
and financial risks, such as future returns of an investment portfolio. However, the joint behav-
ior of actuarial and financial risks is hard to estimate, and it is not uncommon that the problem

is simplified by assuming an independence structure.

A reasonable risk management strategy consists in analyzing the most extreme situations for the
joint behavior of a random vector with given marginal distributions. For sums of two random
variables, these extreme situations are modeled by comonotonicity (i.e. extreme positive depen-

dence) and counter-monotonicity (i.e. extreme negative dependence). In the framework of con-
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vex ordering, comonotonicity corresponds to the worst-case scenario and counter-monotonicity
corresponds to the best-case scenario (Denuit et al., 2005, Shaked and Shanthikumar, 2007,
Cheung and Lo, 2014). Therefore, the TVaR and the upper tail transform of the random sum
will reach their maximal and minimal value in case the random variables are comonotonic and
counter-monotonic, respectively. Under the assumption of extreme dependence structures, the
TVaR and the upper tail transform can be used to assess the diversification benefit from com-
bining different risks or investment opportunities (Embrechts et al., 2009, 2013). Further, since
even the most hardened modelers are not exempt from model risk, it is prudent to use sharp
comonotonic and counter-monotonic bounds which are consistent with the available informa-
tion on the univariate distributions (Dhaene et al., 2000, Kaas et al., 2000). These bounds are
also informative on the extent of dependence model risk, which can be quantified using the de-
pendence uncertainty spread, i.e. the difference between the upper and lower bounds (Embrechts
etal., 2015, Bignozzi et al., 2015). In particular, the knowledge about the marginal distributions
does not unambiguously determine the value of a risk measure, since infinitely many values can
be obtained from the spectrum of all possible dependence structures. Hence, the dependence
uncertainty spread allows insurers and risk managers to evaluate their vulnerability to the choice

of a dependence structure'.

The decompositions of the TVaR and the stop-loss premium of comonotonic sums are standard
results in actuarial science (Meileison and Nadas, 1979, Dhaene et al., 2000, 2006, Hobson
et al., 2005, Chen et al., 2008). A key property underpinning these results is the additivity of
quantiles of comonotonic sums, which is itself due to the non-decreasing properties of quantiles
(Dhaene et al., 2002a, McNeil et al., 2015). Solving the corresponding problem involving ex-

treme negative dependence is more challenging. In the bivariate case?, which is of interest to the

A substantial amount of research has been devoted to derive alternative analytical and numerical worst- and
best-case bounds. For the VaR, these bounds are necessary because comonotonic and counter-monotonic VaR’s
are not always worst- and best-case bounds. Some notable contributions in this direction are due to Mesfioui and
Quessy (2005), Wang et al. (2013), Embrechts et al. (2013), Bernard et al. (2017), and more recently Luxa and
Papapantoleon (2019). Approaches tailored for the TVaR or for distortion risk measures that incorporate additional
information can be found in Kaas et al. (2000), Puccetti (2013) and Bernard et al. (2014). Nevertheless, a trade-
off arises from this discussion. Including more information would indeed tighten the bounds, but it could also
add to the dependence model risk, because of the uncertainty that stems from that information. In contrast, the
comonotonic and counter-monotonic bounds provide more safety in the analysis of the dependence uncertainty
spread, at the cost of a wider interval.

2Characterizing extreme negative dependence for more than two random variables is still an active area of re-
search. One of the proposed notions is complete mixability, which minimizes the variance of sums of random
variables and coincides with counter-monotonicity in the bivariate case; see Gaffke and Riischendorf (1981) for
the foundational principles and Wang and Wang (2011), Wang et al. (2013) and references therein for additional
results pertaining to VaR minimization. Dhaene and Denuit (1999) proposed mutual exclusivity, which leads to
convex lower bounds for some classes of multivariate distributions with given marginals. Cheung and Lo (2014)
provide details on the intrinsic relationship between pairwise counter-monotonicity and multivariate mutual ex-
clusivity. Other proposals for multivariate extreme negative dependence include Lee and Ahn (2014)’s d-counter-
monotonicity and Puccetti and Wang (2015)’s -counter-monotonicity; see also Wang and Wang (2015, 2016).



present paper, deriving explicit decomposition formulas for the VaR, TVaR, and stop-loss pre-
mium of the sum of counter-monotonic random variables with arbitrary marginal distributions

remains an open problem.

For the equivalent problem of comonotonic differences, Laurence and Wang (2009) derive a
decomposition for stop-loss premiums in the case of two continuous random variables, but they
do not provide closed-form expressions for the corresponding retentions. Chaoubi et al. (2020)
also restrict their analysis to continuous random variables with a specific choice of marginal
distributions, including symmetric or unimodal distributions. When the random variables follow
such marginal distributions, the function defined as the sum of quantiles of counter-monotonic
random variables have appealing properties. In particular, it is continuous, and either strictly
monotone or globally convex/concave. However, this paper shows that many situations involve
functions with complex shapes which are not covered in the existing literature. A typical case
is when one of the random variables is discrete (e.g. number of survivors) whereas the other is
continuous (e.g. investment fund value). Another one is when the marginal distributions have fat
tails or are skewed. In such situations, the existing decompositions are not valid. Hanbali and
Linders (2021) provide decompositions for the VaR of comonotonic differences under more
general assumptions using the concept of tail monotone functions, where the decomposition
holds for certain values of the quantile level. Their results can readily be applied to decompose

the TVaR as well, but only at confidence levels beyond some thresholds.

The present paper contributes to the body of literature devoted to the decomposition of risk
measures of sums of two random variables (Dhaene and Denuit, 1999, Cheung and Lo, 2013,
Cheung et al., 2017). The paper extends the work of Laurence and Wang (2009) and Chaoubi
et al. (2020) by deriving explicit decompositions of the VaR, TVaR and stop-loss premium of
counter-monotonic sums with general marginal distributions. Whereas the decomposition of
the VaR is a natural result that follows from the basic definitions, the decomposition of TVaR’s
and stop-loss premiums are more challenging. This is due to the fact that the sum of quantiles
of two counter-monotonic random variables may exhibit complex features, such as jumps (and
hence, does not fall in the framework considered in Laurence and Wang (2009) and Chaoubi
et al. (2020) with continuous random variables) or multiple inflection points (and hence, for

VaR and TVaR, violates Chaoubi et al. (2020)’s convex/concave assumptions).

A standard result in the literature is that the quantile of a random variable transformed by a

monotone function can be expressed as the quantile of the original function transformed using

Nevertheless, this fertile literature has scarcely addressed the decomposition of the TVaR and the stop-loss premi-
ums. A noteworthy result is due to Dhaene and Denuit (1999) who proved the additivity of stop-loss premiums
for sums of mutually exclusive risks under some conditions on the marginal distributions; see also Cheung and Lo
(2013) for other convex functionals of sums, as well as Cheung et al. (2017) for tail mutual exclusivity.



that function (Dhaene et al., 2002a). For instance, for a continuous and non-decreasing function
¢ and a random variable X, it holds that Fg_&) (p) = g (Fx'(p)) forall p € (0,1). The situation
where ¢ is not monotone is problematic. Hanbali and Linders (2021) address the problem and
show that the equality F, 5, (p) = g (Fi'(p)) holds for specific values of p if the function g has
a monotone tail. The present paper adds to their insights by showing that if g is not monotone,
then that equality does not necessarily hold. Further, when it does hold, there does not always

exist a unique p* such that F, 5, (p) = g (F'(p"))-

The remainder of the paper is organized as follows. Section 2 introduces the notations and
relevant definitions. A definition of the companion comonotonicity concept is also provided, as
well as the analogous results available in the literature. Section 3 contains a formal definition
of counter-monotonicity. The main problem of the paper is exposed, and some key elements
for the subsequent derivations are provided, together with some numerical examples. The main
results of the paper are derived in Sections 4, 5 and 6, dealing with the decompositions of the
VaR, TVaR and the stop-loss premium, respectively. Each section contains the main results,
followed by a discussion and numerical illustrations. Section 7 concludes the paper. In order to

ease the reading, all proofs are relegated to the appendix.

2 Preliminaries

2.1 Notations

All random variables are defined on a common probability space (£, F,P). They can be dis-
crete, continuous, or a combination of the two. It is assumed that all random variables are such

that the risk measures introduced hereafter are finite.

The cumulative distribution function (cdf) of a random variable X is denoted by F’x. The
left inverse of Fl is denoted by F'5;', and is defined as F'' (p) = inf {x € R | Fx(x) > p}, for
p € [0,1], with inf () = +o00 by convention. The Value-at-Risk (VaR) of a random variable X at
the level p € [0, 1] is given by VaR,[X] = Fy'(p). The right inverse of F is denoted by F'i;'*,
and is defined as Fiy't (p) = sup {x € R | Fx(x) < p}, forp € [0,1], with sup ) = —oc0. If
Fx is continuous and strictly increasing, the left and right inverses are equal. Otherwise, on
horizontal segments of Fl, the inverses Fi;' (p) and Fi;'™ (p) are different. In such cases, the

generalized a-inverse Iy l(a), for any a € [0, 1], is defined as follows:

F'@(p)=(1—a)F5' (p) +aF™" (p),  pel0,1]. e



More details on generalized inverses can be found in Dhaene et al. (2002a) and Embrechts and
Hofert (2013), among others.

The Tail-Value-at-Risk (TVaR) at the level p € [0, 1] of X is defined as follows:

1 1
TVaR,[X] = —— [ Fy'(q)dg, 22)
IL—-pJ,
and the Lower Tail-Value-at-Risk (LTVaR) at the level p € [0, 1] of X is defined as follows:

LTVaR,[X] = % / ’ Fi'(q)dg. (2.3)
0

The upper tail transform of the random variable X at the level x € R, also called the stop-loss

premium with retention x, is denoted by 7y (z), and is given by the following expected value:

rx(@) =E[(X —2),] = / - o) . 2.4)

where (x); = max{x,0}. The lower tail transform of X at the level z € R is denoted by

Ax(z), and is given by the following expected value:
Ae(o) =B -x),] = [ Fxly)ay 2.5)

—0o0

The upper and lower tail transforms 7 x (x) and Ax () are linked through the following relation:
mx(x) — Ax(z) = E[X] — z, (2.6)

which is referred to as the put-call parity in quantitative finance.

For any p € (0,1) and a € [0, 1], the following relation establishes a link between the TVaR

and the upper tail transform:

1

TVaR,[X] = F'“(p) + —

mx (Fx' ). )
which can be rearranged to obtained the link between the LTVaR and the lower tail transform:
a 1 (e
LIVaR,[X] = e (p) = - Ax (F"(9) 2.8)

The proof of (2.7) can be found in e.g. Dhaene et al. (2006).

Consider the bivariate vector (X, X5) and the sum S given by S = X; + X5. The goal
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is to derive decomposition formulas for the VaR, TVaR, and stop-loss premium of the sum
S, where the components of the vector (X7, X5) are counter-monotonic, i.e. extreme negative
dependence. In order to better understand the challenges when working with counter-monotonic
random variables, it is helpful to shortly revisit the analogous results for comonotonicity. This

is the focus of the remainder of this section.

2.2 Comonotonic sums

Definition 2.1 (Comonotonic modification) 7he comonotonic modification of a bivariate ran-

dom vector X is denoted by X = (X¢, XS), and is given by:
e d [ _
X = (Fy (U), By, (U)) (2.9)
where < stands for equality in distribution, and U is uniformly distributed over the unit interval.

Characterization (2.9) shows that the components of the comonotonic random vector X are
jointly driven by a single random source transformed by the non-decreasing functions F)gll and
F)}Ql. The marginals of the comonotonic modification remain, however, equal in distribution
to those of the original vector X. Comonotonicity was extensively discussed in Dhaene et al.
(2002a), and its applications in finance and actuarial science are numerous; see €.g.

Dhaene et al. (2002b), Dhaene et al. (2005), Denuit and Dhaene (2007), Deelstra et al. (2011),
Feng et al. (2015) and Hanbali and Linders (2019).

Let S“ be the sum of the components of X°. Then S“ 2 Fx(U)+Fx)(U). For any dependence

structure of the random vector (X7, X5), both the TVaR and the stop-loss premium of the sum

S = X, + X, are bounded from above by their comonotonic counterparts:

TVaR,[S] < TVaR,[S"], forall p € [0, 1],

(2.10)
ws(z) < mgu(x), forall z € R.

The proofs of (2.10) can be found in Dhaene et al. (2000) and Kaas et al. (2000).

Quantiles are non-decreasing functions, and hence, the function f : u — F )}11 (w) + F )};(u)
is also non-decreasing. It is well-known that the quantile of a random variable transformed by
a monotone function can be expressed as the quantile of the original random variable trans-
formed using that function (Dhaene et al., 2002a). Thus, combining S* < f(U) and the non-

decreasingess of f, the following decomposition of the Value-at-Risk holds:
VaR, [S*] = f(p) = VaR, [X;] + VaR, [X5], for all p € [0, 1].

7



Note that this decomposition is also valid when S is a sum of more than two random variables;
see e.g. Dhaene et al. (2002a). Taking into account (2.2), it holds that:

TVaR, [S“] = TVaR, [X1] + TVaR, [X,],  forallp € [0,1]. 2.11)

This decomposition is also not limited to the two-dimensional case; see Dhaene et al. (2006).
For any z € (Fg.!(0), Fg. (1)), the comonotonic stop-loss premium 7gu(z) admits the de-

composition 7gu () = mx, (1) + 7x,(22), where

z; = Fi ') (Fau(2)), (2.12)

3

for i = 1, 2, and «, follows from x| + x5 = x.

The fact that the stop-loss premium of a comonotonic sum can be expressed as a sum of the
marginal stop-loss premiums is a long-established result (see Meileison and Nadas (1979)),
and is valid regardless of the number of components of the comonotonic sum S*. The explicit
expression (2.12) for the retentions x; was derived in Dhaene et al. (2000); see also Hobson
et al. (2005), Chen et al. (2008), Chen et al. (2015b) and Linders et al. (2012).

3 Counter-monotonic sums

3.1 Definition

Definition 3.1 (Counter-monotonic modification) 7he counter-monotonic modification of a

bivariate random vector X is denoted by X" = (X{™, X$™), and is given by:
em 4 — —
X = (Fy! (U), Fy, 1-U)),
where < stands for equality in distribution, and U is uniformly distributed over the unit interval.

The counter-monotonic modification X" of a random vector X has the same marginal dis-
tributions as X, but the components of X“" move perfectly in the opposite direction. Hence,

counter-monotonicity corresponds to extreme negative dependence structure.

Counter-monotonicity leads to a convex lower bound for a sum of dependent risks; see e.g.
Riischendorf (1983), Dhaene and Denuit (1999) and Cheung and Lo (2014). Let S’ be the sum
of the components of the transformed vector X, such that S' = Fy 11 U)+F )221 (1-0).



Analogously to the inequalities in (2.10), for any dependence structure of the random vector
(X1, X5), both the TVaR and the stop-loss premium of the sum S = X; + X, are bounded from

below by their counter-monotonic counterparts:

TVaR,[S!] < TVaR,[5], forall p € [0, 1],
ma(x) < mg(x), for all z € R.

But the analogy with comonotonic sums breaks down at this point. In particular, the decom-
position of the VaR, TVaR and stop-loss premium of the counter-monotonic sum of arbitrary

random variables is still an open problem, to which the present paper is devoted.

In order to understand the challenge, recall the function f:
flu) = Fyl(u) + Fyl (u), foru € (0,1), (3.1)
and consider the following function g:
g(u) = Fx!(u) + Fy, (1 — u), foru € (0,1), (3.2)

with v £ f(U) and S! < g(U). A crucial property underpinning the decompositions of risk
measures of comonotonic sums is that the function f is always non-decreasing. In contrast, the

function g is not necessarily monotone, which complicates the derivations.

For some classes of marginal distributions, the problem of determining decomposition formulas
is relatively simple, and the function ¢ is often monotone under some easily identifiable con-
ditions. For instance, this is the case when log(X;) — E [log(X;)] for i = 1,2 are symmetric
and identically distributed. Another example is when X; and X are such that X; 4 a; + b;W;,
for i = 1, 2, where the W,’s are symmetric and identically distributed random variables, which
implies that the function ¢ is always monotone, and the sign of its derivative depends upon the
sign of b; — by. Chaoubi et al. (2020) derive decompositions of the VaR and TVaR of counter-
monotonic sums in the case of non-decreasing functions g (Proposition 1), as well as in the
more challenging case of concave/convex functions g (Propositions 2 and 3). They also show
that the function g can be either non-decreasing or concave/convex for several combina-

tions of marginal distributions F'x, and F,.

3.2 Theset £,

In order to derive decomposition formulas for risk measures of counter-monotonic sums that

hold for general marginal distributions, a closer analysis has to be performed on the behavior of
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the function g. A key component in the derivations is the set £, introduced hereafter. Note that
throughout the paper, the set 2, is associated with the function g, even though it is not explicitly

included in the notation.

Definition 3.2 Forany x € (2™, 2™), with 2™ = sup,c( 1 9(u) and ™™ = inf 1) g(u),
and j = 1, ..., N,, the element u, ; € (0,1) belongs to E, if and only if there exist a;, b;,c; €

0, 1] with a; < c¢; such that one of the following conditions is satisfied:

1. g(u) < xforu € (aj,b;), and g(u) = x foru € (bj, u,;), and g(u) > x foru € (uy;, ¢;).

2. g(u) >z foru € (a;,b)), and g(u) = x foru € (b;,u, ;), and g(u) < x foru € (uyj, c;).

Definition 3.2 states that for u, ; to be an element of £, the function g must cross the level z,
where the crossing occurs from below under Condition 1 and from above under Condition 2. If
g reaches z without crossing it, no elements would be counted in £,. In case g equals x before
crossing it, then the element that belongs to £, is the last one before the crossing occurs. Note
that b; = u, ; if the function is strictly increasing in the neighborhood of the crossing. In
such cases, there are no points v in (b;, u, ;), and in particular, the equality g(u) = x is not

required.

Figure 1 provides a general illustration of how the set E, is defined. For a given z € (2™, z™¥),
the set I/, contains the elements u, 1, Uy 2, Uy 3, Uz a and ug, 5. For ug 1, U, 2 and u, 3, the func-
tion is locally continuous and strictly monotone. In particular, Condition 1 of Definition 3.2 is
satisfied for u, ; and u, 3, where the level x is crossed from below, and Condition 2 is satisfied
for u, 2, where x is crossed from above. The function g is left-continuous and has a jump at
uy4. Inequality g(u,4+) < o < g(u,4) holds, and Condition 2 is satisfied, where g(u, 4+)
is the right-limit of ¢ in u, 4. Note that g(u,4) # x. The points ¢; and ¢, in Figure 1 do not
belong to the set F,. Although g(¢1) = g(q2) = =z, the function g does not cross z immedi-
ately after these points. The function g is flat on the interval [g2, u, 5], with g(u) = x for all
u € [qo, u, 5). However, only the point u, 5 from that interval belongs to the set £, since for

this point Condition 1 of Definition 3.2 is satisfied.

Note that Definition 3.2 requires the existence of three points a;,b;,c; € [0,1] with ¢; <
b; < ¢;. For all four points u, 1, u, 2, U, 3 and u, 4, the equality v, ; = b; holds because the
function g is strictly monotone at the level of the crossing. In contrast, the identification
of the point b; which is not necessarily equal to u, ; is required when the function g is

constant at the level of the crossing, as is the case of the point 5.

The set E, is not empty for z € (2™, 2™%), and is at most countably infinite (i.e. N, can

be infinity), as long as S' is not degenerate. The trivial case where S' is degenerate is not

10
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Figure 1: Illustration of the function g and the set E,,, where E, = {uy 1, Uz 2, Uz 3, Uz 4, Uz5}, and g1 and go
do not belong to E,.

discussed here. If the function g is monotone, the set £, contains a single element for any x €
(xmin, a:max). In this case, Condition 1 corresponds to non-decreasingness whereas Condition
2 corresponds to non-increasingness. If g is either convex or concave, the set £/, contains at
most two elements, where these two elements are equidistant from the minimum of g when g
is symmetric; closed-form expressions of the elements of £, in these cases can be found in
Propositions 2 and 3 of Chaoubi et al. (2020) for symmetric and either convex or concave g,

respectively, as well as Propositions 6 and 7 where the assumption of symmetry is relaxed.

A typical situation where the set £, has multiple elements, and which motivates the present
study, is when one of the two random variables, say X, is continuous (e.g. investment fund
value) and the other, say X, is discrete (e.g. number of claims). The inverse F)}f is strictly
increasing whereas the inverse F)}Ql is non-decreasing. As a consequence, the function g in-
creases on the flat segments of F' ’21, and has downward jumps due to the jumps of F)};. The
situation where F, has multiple elements can also arise when X; and X, are continuous but

exhibit skewness and excess kurtosis.

Figure 2 illustrates the function g with two examples. The top panel of Figure 2 displays the
function g when X and X, follow a Gamma distribution with shape parameters 4 and 3 respec-
tively, and scale parameter 1 in both cases. The combination of these two distributions results in
a concave and asymmetric function g. The horizontal line = corresponds to the quantile of the
counter-monotonic sum S’ at the level 0.95, which is equal to 8.94. Due to the concave shape
of g, the set Eg 94 contains two elements. The asymmetry of g implies that the elements of Fj g4

are not equidistant from the point where the minimum of ¢ is attained.

The bottom panel of Figure 2 displays the case where X; is assumed to follow a Gamma dis-
tribution with shape parameter 5 and scale parameter 1, and X5 is assumed to follow a Poisson
distribution with rate parameter 5. The shape of the function g is rather complex. Moreover, for

x = 9.85, which is the median of the counter-monotonic sum, the set Fq g5 has 12 elements.
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Figure 2: Two examples of the function g. In the top panel, both X; and X5 follow a Gamma distribution with
shape parameters 4 and 3, respectively, and scale parameter equal to 1 for both. In the bottom panel, X; follows
a Gamma distribution with shape parameter 5 and scale parameter 1, and X follows a Poisson distribution with
rate parameter 5.

The remainder of the paper contains the main results. Namely, the decomposition of the VaR,
the TVaR, and the upper tail transform of the counter-monotonic sum are derived. The two
examples of the function g from Figure 2 are used to illustrate the results. In the sequel, the
notation u, ; and N, is used to denote the elements and the number of elements of the set F,
when this set is defined for any . When  stands for the inverse Fi;' (p), the notation u,; is

used instead of Up-1 for the elements of EFT ()’ and the notation [V, is used instead of
S S

®),J

Np-1(,) ;- Similarly, u; ; and Nj* are used instead of u F

« cand N -1 . when z stands
o ROF FLH)

(p).J
(o) (

for the generalized inverse Fig,” ™ (p).
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4 Value-at-Risk of the counter-monotonic sum

4.1 Main results

The decomposition of the VaR is closely related to the definition of the set £,. For p € (0, 1),
let u,1 < ups < ... < up N, be the N, elements of EF;ZI(p). Recall that by definition, for any

j € {1,..., N,}, the function g crosses the level F,'(p) at u,;. If g has a jump at u,,;, then

9(upj) # Fg' (p). If g is continuous at w,, ;, then g(u, ;) = Fg'(p). Therefore:

VaR,[S"] = VaR,, [X1] + VaR;_,, ,[X>], (4.1)

for any p € (0, 1), where w,,; is one of the N, elements of Ej,-1, in which g does not jump.
S

If g 1s continuous at more than one element of the set £/ F3' ) then VaR,[S'] admits multiple
decompositions, i.e. (4.1) holds for all elements u,, ; in which g does not jump. In fact, the
decomposition holds for all u € (0,1) such that g(u) = Fg'(p), and is not restricted to the
elements of the set /-1 ,. The decomposition of VaR when g is not monotone is therefore not

sl
necessarily unique.

If g is not continuous at a given element wu,, ; of Estll(upJ)

not hold for that element, i.e. g(u,;) # Fg'(p). Nevertheless, it is still possible to find an

, then the decomposition (4.1) does

a-quantile of X; and a corresponding (1 — «)-quantile of X5 such that VaR, [Sl} is equal to
their sum. This result is stated in the following lemma. Note that the decomposition of the VaR
of S' is obtained by setting = = F;' (p).

Lemma 4.1 Foranyx € (xmin, xmax) and any element u, ; in F, there exists an o, ; satisfying:

w = Fy 9 () + Fig U (1 — ). (4.2)
Moreover: ( )
o s = g(uz,jf)*zguz,r)’ ifg(ux,j—i-) 7 g<uw’j_)7 (4.3)
x,) — . ’
0, lfg(ux,j'f‘) = g(ux,j_)'

where g(u, j+) and g(u, j—) are the right and left limits, respectively, of the function g in uy ;.

Proof. For u,; € E,, when the function g is continuous at u, ;, the equality g(u,;—) =

g(uy j+) = x holds, and hence:

—1(ag, —1(l-az,; - Y.

2

13



for any «, ; € [0, 1]. Thus, Equation (4.2) holds in particular for o, ; = 0.

When the function g jumps at u, ;, the jump size is |g(u, ;+) — g(u, ;—)|. Then, there exists
agj € [0, 1] such that:

T = (1 - O‘oaj) g(uaaj_) + a:c,jg(ux,j"')' (44)

Note that Fiy! (1 — (uz;—)) = Fx,) (tg;+), and Fy| (1 — (ug;+)) = Fy, (iis;—), where
Uy ; = 1 — u, ;. Moreover, the inverses F)}il are left-continuous, which means that F)}il(q—) =
F)}Z_l(q) and F)}il(q%—) = F)}Z_H(q) for g € (0,1). Using (2.1), (4.4) is equivalent to:

-1

v = F ) () + B (1 =, ).

2

Using again (4.4) and rearranging leads to Expression (4.3) of «,, ; when g has a jump at u, ;. ®

If g is continuous at u, ;, i.e. g(u,;—) = g(us;+) = g(uy;), Equality (4.2) holds for any
choice of «, ;, and more importantly, the equality g(u, ;) = x holds. If g has a jump at u, j,
ie. g(uy;—) # g(us ;+), the choice of «, ; is unique. The value of «, ; locates x within the

discontinuity, and quantifies the distance between z and the function g.

4.2 Illustration

Consider the first example where X; and X5 both follow a Gamma distribution, i.e. the top

panel on Figure 2. For x = F; (0.95), the set Ep-1(0.95) contains the following two elements:
S
up1 = 0.01328 and Up2 = 0.96358. 4.5)

Since the function g is continuous, the decomposition in (4.1) holds for both w,, ; and w,, 5.

Consider now the second example where X; follows a Gamma distribution and X5 follows a
Poisson distribution, i.e. the bottom panel on Figure 2. For 2 = F'(0.5), the set Ep-1(0.5)
S

contains the following twelve elements:

upy = 0.13337,  w,, = 0.15843,  w,s = 0.23781,
ups = 033971, w,5=0.38404,  w,s = 0.53079,
upr = 055951,  wps = 0.69279,  w,e = 0.73497,
U0 = 0.81179,  wp1y = 0.87535, 10 = 0.89076.

(4.6)

Figure 2 also shows that the function g jumps at w,, 1, w3, Ups5, Up7, Upg and u, 11. For these

elements, the decomposition (4.1) does not hold. Instead, the result of Lemma 4.1 has to be
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used. In particular, from (4.3), it follows that the o, ;’s required for (4.2) are given by o, ; =
0.83598, a,3 = 0.46330, a5 = 0.22700, o7 = 0.16108, a9 = 0.31461 and a1 =
0.76530. For the remaining elements, the decomposition (4.1) holds.

5 Tail Value-at-Risk of the counter-monotonic sum

5.1 Main results

The following theorem provides a decomposition for the TVaR of S' in terms of marginal
TVaR’s and LT VaR’s.

Theorem 5.1 For any p € (0,1) and o € [0,1], let ugy < ... < ug no be the Ni' ordered
elements of the set £ F1) () The Tail Value-at-Risk at the level p of S can be expressed as
sl

follows:

TVaR, [S'] :{ # v if g(u) < Fg!"(p) for e (0,u5,), (5.1)

T
), i () = Fg" ) for we (0,u5,),
where

1) = (1—ug,) (TVaRyg, [X1) + LTVaRy s | [Xa]) = Tytye + F'© (0) (ugy + Die — p)
—1
t%(p) = ug"l (LTV.‘:IRUK1 [Xl] + TValeu;l [XQ]) + TOfNa + FSl (@) (p) <1 —u? ’ngNﬁ‘ — p) ,

P, N p,l
(5.2)
and
Ng ‘
7;?(]\75‘ = Z(—l)ﬂ(l — ug‘vj) <TVaRug’j [Xl] + LTVaRl_u;z’j [XQ]) s
N (5.3)
Do = L1 (L-15,).
]:

and 2]1:2 = 0 by convention.

Proof. Using the notation x5 = F, 1) (), where xo € (z™™, 2™*) for p € (0, 1), the TVaR

of the counter-monotonic sum can be written using (2.7) as follows:

1 1
TVaR, [S'] = i (/0 (Fg'(u) —xp), du+ap (1 - p)) : (5.4)
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Since S £ g(U), it holds that:

/o1 (FS_I(“)_IS)NUZ/OI (9(u) = 7)) , du. (5.5)

Let u, ; for j = 1,..., N} be the V' ordered elements of the set £,a. Suppose first that N} is
finite. The following holds:

Ng-1 L

/01 (9(u) — 22) , du— /Ou (9(u) — 22, dut ; /uu+ (9u) - 25) , du—i—/ (9(u) — 22, du.

«a
u o
p,Np

The sign of the function g(u) — x; alternates over two consecutive intervals (ug 10 Up j) and

(us s, ug ;yy), for j = 1,..., N, and the sign of g(u) — z% on (0, ug,) determines the sign of

g(u) — x5 on all subsequent intervals. Therefore, depending on whether N is either even or
odd, and whether the sign of g(u) — z7 is either positive or negative on (0, uff’l) , four possible
cases can be distinguished.

The first case is when N is an even number (i.e. there exists an integer m such that Nj* = 2m),

and g(u) > x5 for u € (0,uZ,). In this case, it follows that:

1

/01 (9(u) —zp), du = /Ou;‘} (9(u) — 27) du+§ /u“+ (9(u) — 22) du+/u (g(u) — 22) du.

@

P, N§
(5.6)
The second case is when N is an even number (i.e. N = 2m), and g(u) < x5 foru € (0, us,),

which leads to:

/U *(gtu) 1), du = zm: / T () — %) du. 5.7)

The third case is when N is an odd number (i.e. there exists an integer m such that N =

2m + 1), and g(u) > x5 for u € (0, u; ;). In this case, it follows that:

! Up1 i Up 2541
/0 (g(u) — x;)+ du = /0 (9(u) — 22) du + Zl /u"‘ (9(u) — 22) du. (5.8)
Jj= ;2]

The fourth case is when N is an odd number (i.e. N = 2m + 1), and g(u) < x for u €

(0, ug5 ), which leads to:

/0 1 (9(u) —a5), du= z:; / “ (9(u) — =) du + /u 1 (9(u) — 2) du. (5.9)

Up,2j—1
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For j =1,..., N — 1, the following integral split holds:

/uup,j# (g(u) = x) du = /u 1 (g(u) — z) du — /u 1 (g(u) — z,) du. (5.10)

P,J D,J p,j+1

Taking (5.10) into account in (5.6)-(5.9), the four cases reduce to two only, for any N*. Namely:

/1 (F_l(u) —{L‘a) du = { Ila(p)v if g(u)
St p/4 o

< for u € (0,uy,),
Ig(p), if g(u) >

for w e (0,us,),

(5.11)

B = [ (o

a

p,1 D,J

)—x )du—zp:(—l)j /a (9(u) — 22) du, (5.12)
I3(p) = /Ou (9(u) — 27) du+ Z (—1) / | (g9(u) — %) du. (5.13)

p,J

Taking into account the definitions of the TVaR and LTVaR from (2.2) and (2.3), respectively,
and using the appropriate change of variable for the integral over F)}; (1 — u), it follows that:

1
/ (90w — @) du = (1= ug,) (TVaRys | [X1) + LTVaR: s [Xa]) — a5 (1— ).
(5.14)

D,

forall j =1,..., N, as well as:

up g
/ (9(u) — zg) du = uf, (LTVaR g, [X1] + TVaR, g, [Xo]) = g, (5.15)
0 > D, ’

Plugging (5.14) and (5.15) in (5.12) and (5.13), the expressions of I{*(p) and I$(p) can be
written as follows:

Ip(p) = (1= up,) (TVaRyg, [X0] + LTVaR, e, [X]) = 25 (1= uf, = Dpne ) = Ty
I2(p) = u2 <LTVaRug7l [X1] + TVaR, s [X2]> — 2 (u;:’l + D;Ng> S

where E?N,? and Dy Ng are defined in (5.3). Using (5.4), the TVaR of the counter-comonotonic

sum is given by

for u € (0,u5,),

«
p
o for e (0,up,),

(1-p)TVaR, [S] = {t‘f(p% if g(u)



where t¢(p) = I7*(p) + 5 (1 — p) and t5(p) = I5'(p) + x5 (1 — p). The proof ends by noting

that combining z§ (1 — p) with either —z5 (1 —ug, — Dy N]?) or —r; (uf,‘,l + Dy Ng), leads

to x, <u$71 + D, Ng ~ p) and z (1 —uyy — Dy Ng —P)s respectively. [ ]
For a given p € (0, 1), each choice of o € [0, 1] will result in a specific decomposition of the
Tail Value-at-Risk. In case the marginal cdf’s Fx, and F'x, are continuous, all the generalized
inverses in (5.2) coincide and the decomposition of the TVaR is unique. The choice @ = 0 leads

to a decomposition in terms of the usual inverse Fig,' (p).

The decomposition of the TVaR of the sum in the counter-monotonic case involves more terms
than in the comonotonic case. In particular, on top of the linear combination involving the first

element v, of the set F 1) ,, the sum 7;31\73 and the terms stl(a) (p) (ufj}l + Dy Ng p)

ROk

and F&l(a) (p) (1 — Uy — Dpne — p) are also required.

The number of components of the sum 7. depends on the number of elements in the set
“Yp

E —1(x
F () a

of g is, the more terms may appear in 7 Ne- A noteworthy remark is that the notation 7;?1\/;

, and p?‘Ng vanishes when the function g is monotone. The more complex the shape

is only used to synthesize the result. This notation does not imply that the contribution of
this sum to the TVaR of S’ is less important than the contribution of the first term containing
the marginal TVaR and LTVaR related to the first element ;. In fact, as it is shown in the

numerical examples below, the sum 7"y can capture a substantial part of TVaR,, [S l} .
ip

The terms Fi,'(p) (s, + D g — p) and Fy,'(p) (1= ug, = Doy — p) in (5.2) arise

(a) i

because the quantile function F&l(a) may be constant in the neighborhood of p, i.e. F; S

‘flat’ in p and hence, Fq (Fs_ 1(e) (p)) is not necessarily equal to p. For the values of p where

FS_ll(O‘) is strictly increasing, it can be shown that these terms equal 0. The following lemma

proves this result, thereby providing a link between the elements of the set £, 1) ) and p in
sl
()

case the quantile function F, T strictly increasing in p.

(a)

Lemma 5.1 For any p € (0,1) and o € |0, 1], suppose that the function F L;l is strictly

increasing in p, and let uy, < ... < uy o be the N ordered elements of the set EF—I(a)(p).
) wip st

Then:

b Up1 + Dy na if glu) < F&l( )(p) for w e (0,us,), (5.16)
L—uly = Doye,  if gu) > F' W (p) for ue(0,us),

where DS,N; is given in (5.3).

()

Proof. For any p € (0,1) and any « € [0, 1], the quantile F' L;l is strictly increasing in p if

and only if the cdf Fq: is continuous at z; = F, _1(a)(

s (p). In this case, Flg (xl‘f) = p, and hence,
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q < pis equivalent with F’ §1(a) (q) < F 51(04) (p). Combining this equivalence with the fact that
gL g(U) and S' < Fk;l(a)(U) for any v € [0, 1], the TVaR can be written as follows:
1 1

TVaR, [Sl} =E [g(U)I [g(U) > 23]] = =) g [g(u) > x5] du. (5.17)

Further, the function F ;1(a) is strictly increasing in p € (0,1) if and only if P [S' = 2] =
P [g(U) = 2] = 0, and hence, P [g(U) > 22| = P [g(U) > «&]. Therefore, the integral in
(5.17) can be decomposed as in (5.9), where the following holds:

/1 gu)du = (1 - us )(TVaR X)) + LTVaR, e [X2]),

a .
p,J

forall j = 1,..., N}Y, where uj) ; are the N elements of £, as well as:

@

up,l
/ g(u)du = ug, (LTVaR gz, [X1] + TVaR, sz, [Xa])
0 > P,

In particular, the terms F Sjl(a) (p) (u&l + Dy ne p) and F 1(e) (p) <1 — Uy — Dpne — p)
in t{(p) and t$(p), respectively, are equal to 0, Wthh proves (5.16). |

Lemma 5.1 shows that the situation where F' §1(a)

is strictly increasing in p has two conse-
quences. The first consequence is that the expression of TVaR,, [Sl} can be simplified because
Fg ) (ugy + Ding —p) = 0and Fy'(p) (1 - ug, = Diyg —p) = 0. The second
consequence is that, for NIj‘ > 2, it 1s sufficient to determine Nz? — 1 elements, whereas for

Ny =1, uy, is eitherequal toporto 1 —p

The decomposition of TVaR in Theorem 5.1 is further simplified in the next section, where a

link between ¢{(p) and t§(p) is established using the decomposition of the upper tail transform.

5.2 The case where N =1 and F, M) g strictly increasing in p

Suppose that N* = 1, which includes the case where g is monotone. Additionally, suppose that

stl(a) is strictly increasing in p. This situation leads to simple decompositions of TVaR,, [Sl],

which are provided in the following corollary. The result follows directly from Theorem 5.1 and

—1(a)

Lemma 5.1. In particular, since the generalized quantile function F, " is strictly increasing

in p, then from Lemma 5.1, u$, = pif g(0) < g(1), and u$, = 1 — pif g(0) > g(1)°.

*Note that for N = 1, the case g(u) < F;l(a)(p) for u € (0, is equivalent with g(0) < ¢(1), whereas

Up1) i
Up,1
the case g(u) > F;ll(o‘)(p) for u € (0, uy ) is equivalent with g(0) > g(1).
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Corollary 1 For any p € (0,1) and a € [0,1], if N;} = 1 and the function Fs_ll(a) is strictly

increasing in p, then:

TVaR,[X1] + LTVaR,_,[Xy], if 9(0) < g(1),

(5.18)
LTVaR;_,[X;]| + TVaR,[X5], if g(0) > g(1).

TVaR, [S'] = {
The case where ¢g(0) < g(1) leads to a decomposition which is consistent with that of Chaoubi
et al. (2020) for strictly increasing functions g. Specifically, in Proposition 1 of Chaoubi et al.
(2020), the authors derive the decomposition that follows from ¢(0) < ¢(1) by assuming
that X, and X, are continuous random variables ordered in the dispersive order sense.
Thus, the present Corollary 1 generalizes their expression by stating that their decomposition
does not require the function g to be globally monotone, nor both marginal random variables to

be continuous. Indeed, N = 1 and local strict increasingness of F;(a) in p are sufficient.

Interestingly, under these conditions, the dependence uncertainty spread (i.e. the difference be-
tween the upper bound and the lower bound) can be expressed in terms of the TVaR and LTVaR
of only one of the random variables. In particular, using the decomposition of the upper bound
TVaR,[S"], it follows that if N =1land F &1(04) is strictly increasing in p, then:

TVaR, [Xo] — LTVaR,_, [Xo],  if g(0) < g(1),

. (5.19)
TVaR, [X,] — LTVaR,_, [X1], if ¢(0) > g(1).

TVaR,[S“] — TVaR,[S'] = {

Thus, the dependence uncertainty spread of TVaR,, [Sl] depends on the tail distribution of one

of the two random variables only.

Suppose that the function g is strictly monotone, which is a special case of the conditions
Ny =1and F&l(a) is strictly increasing in p. Since both the TVaR and the LTVaR are non-
decreasing functions of p, it follows from (5.19) that the dependence uncertainty spread is a
non-decreasing function of the level p. This result implies that in case g is strictly monotone,
a more conservative risk measurement (i.e. higher levels of p) leads to a larger dependence
uncertainty gap. This is in general not the case, as the dependence uncertainty spread can be
a non-monotone function of p. This can be seen by combining the decomposition of the upper
bound TVaR,,[S*] in (2.11) and that of the lower bound given in Theorem 5.1.

5.3 Illustration

The decomposition of the TVaR is illustrated using the examples from Figure 2, with a particular
emphasis on the components of the sum 7" a The parameter « is set to 0, i.e. F;l(a) (p) =

ngl (p), and for simplicity, the superscript « is dropped from all relevant quantities.
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In both cases of Figure 2, it holds that g(u) > Fg'(p) for u € (0,u,;). This means that
the decomposition is given by t5(p). Further, as noted previously, Lemma 5.1 leads to p =
1 — up1 — Dy n,, which is due to the fact that g does not have flat parts, and hence, the last
term in ¢, (p) vanishes. This can also be verified numerically using the values given in (4.5) and

(4.6). Therefore, in both cases, the expression of TVaR,, [Sl} is given by:
TVaR, [S'] = w1 (LTVaR,, , [Xi] + TVaRi_,, , [Xo]) + Ty,

where 7, v, is given in (5.3) with a = 0.

I:ID DDDDDDED:

Figure 3: Components of the TVaR decomposition for the two examples of the function g from Figure 2 in the
order they appear in the decomposition.

The set Ff- ~1(095) contains two elements in the first example with two Gamma distributed ran-
dom Varlables This means that N, = 2, and that ¢5(0.95) has two components. The first
component is qf”—l (LTVaRu AXa] +TVaR_,, [Xg]) and the second component is T, n, =
L "” 2 (TVaR,,,[Xi] +LTVaR,_,, ,[X>]). Both are displayed on the top panel of Figure 3,
Where the first component is on the left and the second component is on the right. The figure
shows that 7 g5 v, is substantially larger than the first component, and largely contributes to the

TVaR of the counter-monotonic difference.
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In the second example involving Gamma and Poisson random variables, the set £/ F5(0.5) COD-
tains twelve elements, which means that ¢5(0.5) has twelve components. The first component
1s 11‘%*; (LTV&[RMP’1 [X1] +TVaR,_,,, [Xg]). The remaining eleven components with alternating
sign are (_1)3‘1%2]' (TVaRum, [X1] +LTVaR,_,, [XQ]), for j = 2,...,12, where their sum is
Ty, These twelve terms are displayed in the bottom panel of Figure 3 in the order in which
they appear in the expression, from left to right. Note that the decomposition leads to a TVaR
of the counter-monotonic sum equal to 10.51. In this example, the first component does not
contribute as much as the remaining ones. Further, from the second onward, the amplitudes are
decreasing. This is due to the fact that the components are weighted by (1 — u, ;), and hence,

additional terms weighted by values of u,, ; close to 1 have less importance.

Recall that the TVaR of the comonotonic sum S* at any level p € [0, 1] satisfies the simple
decomposition TVaR,[X;] + TVaR,[X;] in (2.11). Thus, it is worth verifying if the simple
decomposition in Corollary 1 is an accurate approximation for the TVaR of the counter-
monotonic sum S'. Specifically, using the notation 7, (p) = TVaR,[X;]+LTVaR, ,[X,] and
t2(p) = LTVaR,_,[X;] + TVaR,[X5], the aim now is to verify using the two examples from
Figure 2 whether either of the approximations TVaR,[S!] ~ #,(p) or TVaR,[S!] ~ #,(p)
holds.

Figure 4 displays the relative differences (expressed in percentages) between the counter-
monotonic TVaR and the approximations 7, (p) (black straight lines) and #,(p) (blue dashed
lines) in function of the level p for both the first example (left panels) and the second ex-
ample (right panels), where the bottom panels display the corresponding differences in
the dependence uncertainty spread. For both examples, it appears that the approxima-
tions underestimate the true value of the counter-monotonic TVaR. The approximation
t1(p) underestimates TVaR,,[S'] by up to 5% for the Gamma-Gamma example and by up
to 6% for the Gamma-Poisson example. The second approximation ,(p) leads to com-
paratively larger relative differences in the first example with two Gamma distributed
random variable, where TVaR,[S!] is underestimated by up to —14%. Further, whereas
the differences pertaining to the approximation of TVaR,[S'] are already substantial, they
are exacerbated for the dependence uncertainty spread. Indeed, for both examples, the
dependence uncertainty spread would be overestimated by up to 70% in the first example
and up to 40% in the second example if one of the approximations were to be used. There-
fore, naively approximating TVaR,[S’| by the simple decompositions from Corollary 1 is

not recommended.
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Figure 4: Relative differences (expressed in percentages) between the counter-monotonic TVaR and the ap-
proximations #; (p) (black straight lines) and £,(p) (blue dashed lines) in function of the level p for both the first
example (left panels) and the second example (right panels) displayed on Figure 2, where the bottom panels display
the corresponding differences in the dependence uncertainty spread.

6 Upper tail transform of the counter-monotonic sum

6.1 Main results

The following theorem provides a decomposition formula for the upper tail transform of the

counter-monotonic stop-loss premium.

Theorem 6.1 For any x € (xmi“, xmax), let uy 1 < ... < uy N, be the N, ordered elements of

the set E,. The upper tail transform at the level x of S' can be expressed as follows:

s1(x), if glu) <z for ue (0,u.1),

= 6.1)
52($>’ lf g(U,) Z x fOl" u € (Oauw,l)v
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where:

si(r) = mx, (Fy! (Ue1)) — Axy (Fx, (1= t01)) = Sony + (1= ta1) (9(te1) — ) — Ton,
-1

2 (1 - ux,l)) )\X1 ( (u:c 1)) + Sx,Nz + ux,l (g (ux,l) - .73) + jx,Nza
(6.2)

SQ(QZ’) = Tx, (F

with

‘Sx,NI = Z ( ) (le (F)zll(ul“,])) - )\X2 (F)Zgl(l o ux,j))) )
; (6.3)
P>

Ten, = 2 (=17 (1 = tta ) (9(uay) — @),

and Z;ZQ = 0 by convention.

Proof. For x € (z™" ™), there always exist p € (0,1) and a € [0,1] such that z =

F;(a) (p). Let ugy, ..., N, be the N, elements of the set ;. Note that u,; = u ; for all

J=1,..,N;, and N, = N}'. Using the relationships (2.7) and (2.8), it follows that:
(1 —ug;) (TVaR,,  [Xi] + LTVaRi_y, ,[X5]) = (1 —us;)g(us;) (6.4)
+ X, (F)zll(ul‘,])) - /\X2 (F);gl(l - U%j)) .

Define the quantity A as A = (1 — ug,1) (TVaR,,, [Xi] + LTVaR,_y,, [Xa]) — T;'y., where

p.Ng is given by (5.3). Multiplying Expression (6.4) by (—1)? and summing over j leads to:

Ny
A:ﬂ-Xl (FX1 (uaz1>)_)\X2 (F)Ezl(l _um,l)) SQZNT—i_(]- uml url Z 1 _urj>g(ur,j)7

Jj=2

where S, n, is given by (6.3). By adding x (um + D, No ~ p) to the left-hand side, where
D Ne is defined in (5.3), it follows that:

p,

ttll<p) = 7TX]\1[ (F)le(um,j)) - /\Xz (F);21<1 - u:c,j)) - Sz,Nx + (1 - um,l)Q(“x,l)
=~ (U ) )+ (1 = 1+ Dy + (1))

which can be rearranged such that ¢¢(p) = s1(x) + (1 — p)xz. The same reasoning allows to

express t5(p) in terms of so(z). Therefore, it follows that:
t1(p) = s1(x) + (1 —p)z, and 15(p) = s2 () + (1 = p)a, (6.5)

forany z € (2™, ™). Note also that (2.7) immediately leads to mg: (2) = (1 — p) TVaR,, [S'] -
(1 — p) . Combining the latter expression of 74 () and (6.5) ends the proof. |
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The stop-loss premium of the counter-monotonic sum is equal to the difference of an upper
tail transform of one component and a lower tail transform of the other component, but analo-
gously to the decomposition of TVaR, [S l} , additional terms appear that depend on the shape
of the function g. In particular, the sum S, n, accounts for the fact that the function g is not
necessarily monotone, and vanishes when N, = 1, i.e. S;1 = 0. The sum J, x as well as
(1 —ugz1) (9(ug1) — ) and uy g (9(us,1) — ) appear in case the function g has a jump at one
of the elements of F,. In general, these terms vanish only when ¢ is continuous at all the

elements of E,. This is because if ¢ is continuous at an element v, ;, then g(u, ;) = .

The following theorem provides an alternative expression for s;(x) and sy(z). This alterna-
tive decomposition expresses the retentions in terms of the generalized inverses of X; and X,

instead of left inverses F);ll and F)};.

Theorem 6.2 For any x € (:L‘mi“, xmax), letuyy < ... < ug N, be the N, ordered elements of

the set E,. The upper tail transform at the level x of S' can be expressed as follows:

T l(l‘): 81(1‘), lf g(“) <z fOl” u € (Ovuw,l)a (66)
° sa(), if g(u)>x for ue(0,u;.),
where:
31('17) = TXx, F);l(az’l) (uac,l)> - /\X2 (F);;(l_o‘z,l) (1 - uﬂ%l) - SJI,NM (6 7)
sale) = mx, (Fy " (1= wa)) = A, (B (wa)) + S |
with
Na j — ez, j - —Qg ;5
S = X (<17 (mx (P () = A (F ™0 = wy))) . (68)
j:
and 231‘:2 = 0 by convention, and for j = 1,2,..., N,, o, ;’s are determined from:
v = F D (uy) + U700 (1 =y, ). (6.9)

Proof. The first part of the proof shows that Expressions (6.2) and (6.7) of s;(z) are equal.

Forj =1,...,N,, let a, ; € [0, 1] be such that:
Fi o9 (uy ) + Fg, U709 (1 =y ) =, (6.10)
for z € (z™™ x™), where v, ; is known to exist from Lemma 4.1. The stop-loss premium of
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Hag,j)
.

X, with retention F'y u,,;) can be expressed as follows:

“+00
o, (F2) (1)) = / (= Fy)dy. ©6.11)
FX1 =7 (um,j)

For any «, ; € [0, 1], the following equality holds:

Fx, <F§11(al’j) (Ux,j)> = Fx, (Fx, (te))) = ta. (6.12)
Combining (6.11) and (6.12) allows to link the stop-loss premiums of X; with retentions
F;(a”’j ) (uq,;) and Fy! (ug;) as follows:

—1 Qg j — — Loy —
X, (Fxl( )(um)) =mx, (Fy! (us;)) — (Fxll( N (ugy) — Fy! (Uz,j))) (1= usy),

(6.13)
Similarly for the lower-tail transform of X, with retention F' _;21(17&” ) (1 —uy )
Ay, (F);;u—az,j) (1— um.)) _ /_ Py 0 Fy, (y)dy, (6.14)
and since the following equality holds:
Fy, (F;j““’w) (1- uw,j)> = Py, (F! (1= ta)) = 1 — tg, 6.15)

(1-ag,j) (

for any o, ; € [0, 1], the lower-tail transforms of X, with retentions F);j 1 —u,,)and

Fy} (1 — u,,) can be linked as follows:

—1(1-ag,; —
e (Fa ™ (=) = A (Frl (- wy))

(P07 (1= ) = Pt (1= ag)) (1= ).
(6.16)

For j =1, ..., N,, consider the following difference:

Ay =, (F 9 (ua5)) = dw (F "7 (1= )
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Combining Expressions (6.13) and (6.16) leads to:

Ay = iy (P () = Mo (Fit (1= wag) = () () = P () ) (1= 1)

— (P (= ) = Pl (1= way)) (1= )
= 7y, (Fy! () = A, (Fy) (1= ugy)) +

1) (P ) + Pl (U= ) = (B, () + B (1= ) )|

= mx, (Fy, () = Axe (Fy, (1= tay)) + (1= ua) (9(usy) — @), (6.17)

where both the definition of the function g and the relation (6.10) were used in the last step.

Therefore, (6.17) proves that the expressions of s;(x) given in (6.2) and (6.7) are equal.

It remains to prove that Expressions (6.2) and (6.7) of so(x) are equal. Define:

B =mx, (F " () = A (Fa 7 (U= ).

Using the same arguments as above, it follows that:

B =1y, (Fy} (us1)) = Ax, (Fx) (1= ug)) + e (9(us) — ), (6.18)

which can be combined with (6.17) for 7 = 2,..., N, to prove that (6.2) and (6.7) are two

equivalent expressions for sy(x) as well, which ends the proof. ]

In contrast with the expression in Theorem 6.1, the alternative expression in Theorem 6.2 does
not have the terms 7, n, nor (1 — ;1) (g(uz1) — =) and u, 1 (9(uy1) — ). In counterpart, it

requires determining the generalized inverses of X; and X5.

It can be proven that s1(z) 4 s5(z) = E [S'] — z. Combining this equality with the parity (2.6),
the decomposition of the lower bound 7g () can be further simplified. In particular, if s;(z) is
the decomposition of the upper tail transform 7 (), then —s,(z) is the decomposition of the
corresponding lower tail transform Ag (x), which means that only one of the two quantities is
positive. Hence, as stated in the lemma below, 7 () is always the highest of s;(z) and s3(x).

This simplification applies to the TVaR as well.

Lemma 6.1 Foranyp € (0,1), any o € [0,1] and any x € (2™, 2™*), the Tail Value-at-Risk

at the level p and the upper tail transform at the level x of S' can be expressed as follows:
1
TVaR, [5'] = T, max {tT(p),t5(p)}, and  wg(r) = max{s;(x), s2(x)},
—-D

where t{(p) and t3(p) are given in (5.2), and s,(x) and so(x) are given in (6.2).
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Proof. First, note that using the parity (2.6), it follows that:
s1(z) + sa(z) = E [SY] — z.

Suppose that g () = s1(x). Then, from (2.6), Agi(x) = —sq(z). Since the lower tail trans-
form is always non-negative, it follows that ss(x) < 0, and hence, the non-negativeness of the
upper tail transform leads to so(z) < s1(x). The same reasoning applies when 7g (z) = s2(x),

in which case sy(z) > s1(z). This concludes the proof for the stop-loss premium.

For p € (0,1) and 2 = Fs_ll(p), it follows that 7 (xloj) = max {31 (x;‘) , So (xg‘)} . Combin-
ing this equality with (6.5) proves that the TVaR of S! is also the maximum of ﬁt‘f (p) and

fptg‘ (p), and hence ends the proof. n

6.2 The case where NV, =1

For z € (2™, 2™), suppose that the marginal cdf’s Fy, and F, are such that N, = 1, i.e.
the set £/, contains a single element u, ;. The following corollary shows that the decomposition
of the stop-loss premium in case N, = 1 can be expressed in terms of Fq (x). Thus, the
case IV, = 1 leads to decompositions which are similar to the decomposition of the upper tail
transform of the comonotonic sum in (2.12). Recall that for N, = 1, the case g(u) < z for
u € (0,u,,) is equivalent with g(0) < g¢(1), whereas the case g(u) > x for u € (0,u,1) is
equivalent with ¢g(0) > ¢(1).

Corollary 2 For any x € (z™",2™), if N, = 1, the upper tail transform at the level x of S'

can be expressed as follows:

IN

mx (Frd ) (Far(@)) = A, (Fo "™ (1= Fa(@)) i 9(0) < g(1),

T\ s (B0 (Falo)  aw, (F00 (- Fale)). i 9(0) 900,

where o, is determined from:

. { Fy, ) (Fyi (@) + "™ (1= Fa(a), i 9(0) < (1),
Fil 07 (Fa(2) + Fi[ " (1 = Fa(2)), if 9(0) > g(1).

Proof. For N, = 1, the set E, contains a single element u,; and S, ; = 0, and Theorem 6.2

leads to a simplified decomposition. The remaining task is to prove that the retentions of the

upper and lower tail transforms can be expressed in terms of the cdf of S'.
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Note that S! < g(U) leads to Fiqi(x) = P [g(U) < x], and hence, in the first case where g(u) <

x for u < u,,, it follows that Fi(z) = 1.

In the second case where g(u) > z for u < u, 1, unlike in the first case, the inequality Fe:(x) >
Plg(U) < 2] = 1 — u, holds, and becomes an equality if g is strictly decreasing in u, 1, in
which case Fgi(r) = 1 — u,;. Otherwise, from the definition of the set E,, the case where the
function g is flat before u, ; leads to an inequality, and there exists ©* < u, 1 such that g(u) = =
for u € (u*,u,1). Thus, Fg(z) = 1 — u*, and the upper tail transform of S' can be written as

follows:

*

E [(sz _x)+] :/OU (g(u) — z) du. (6.19)

Using Lemma 4.1, there exists «, € [0, 1] such that:
v = Fl ) () + F 7 (1= w) = F/ ) (1 = Fa(2)) + Fe, ™) (Fa(z)) . (6.20)

Combining (6.19) and (6.20) and rearranging ends the proof. ]

Note that unlike for the TVaR, the dependence uncertainty spread of mq () in case N, = 1 is

not determined by one of the two random variables as in (5.19).

6.3 Illustration

The importance of each term in S, y, is similar to that of the terms in p?‘N;, which means

that the discussion from the illustration of Section 5 remains valid. This numerical illustration
focuses on the importance of the terms due to the jumps of the function g. Only the second
example where X, follows a Poisson distribution is discussed, because there are no jumps in
the other example. In order to illustrate the term due to the jumps, the decomposition from
Theorem 6.1 is used. For = F,'(0.5), the bottom panel of Figure 2 shows that g(u) > «
for u € (0, u,,1). Thus, the decomposition of the stop-loss premium is given by so(z), and the

component under interest is u, 1 (g (tuz1) — =) + Tu N, -

Using the values of the elements of F,, it follows from Theorem 6.1 that the stop-loss premium
at the level 2 = Fi;,' (0.5) of S' is equal to 0.33610. The first term gives mx, (Fy, (1 — ug1)) —
Ax, (F);l1 (Um)) = 0.03918, whereas S, 12 = 0.92823. The remaining part due to jumps gives
Uz 1 (g (Uzy) — ) + Jp12 = —0.63130. This shows the importance of the last term, as ignoring
it would considerably overestimate the value of the stop-loss premium.
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7 Conclusion

This paper studies the Value-at-Risk, the Tail Value-at-Risk, and the upper tail transform of the
sum of two counter-monotonic random variables 5’ < Fx!(U) + Fy (1 — U). Decomposition
formulas for these risk measures are derived in terms of the corresponding risk measures of the
marginal random variables. An important step in the derivation is to study the behavior of the
function g : u — Fy(u) + Fy, (1 — u). This is performed by introducing the set £, which

allows to identify the crossing points of g with respect to a level x.

The derivations of this paper do not require strong restrictions on the random variables X and
X5. In particular, these random variables can be continuous, discrete, or a combination of the
two. The results are also valid for random variables which are defined on the entire real support,

and are not limited to positive-valued random variables.

The contributions of this paper are relevant to different areas of finance and actuarial science.
One of the applications is asset and liability management where differences of random variables
are involved rather than sums. In this case, the counter-monotonic sum becomes a comonotonic
difference. The study of basis risk is also an area of application where the relevant quantity is a

difference of two random variables.

A compelling question is whether more general risk measures of counter-monotonic sums,
such as distorted expectations, could be decomposed into their corresponding marginal
components. Cheung et al. (2015) provide an expression of distorted expectations in func-
tion of the TVaR under some conditions of the distortion function and the random vari-
able. This formula could constitute a starting point of the derivation, but some complica-
tions could arise when the random variables X; and X, do not satisfy continuity condi-

tions. Such an endeavor deserves a separate contribution, and is left for future research.
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