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Abstract

By gathering communities of acquainted participants, peer-to-peer (P2P) insur-

ance has been providing partially refundable insurance coverage associated with the

social networks among its participants. This study analyzes the issue of moral haz-

ard within the framework of peer-to-peer insurance from a theoretical perspective.

We investigate how the social network within the community affects the partici-

pants’ incentive to spend effort on precautionary loss prevention. Using a quanti-

tative framework to study the moral hazard in P2P insurance, we present that the

participants’ efforts at Nash equilibria are influenced by their social network. In

addition, we investigate how participants’ tendency to spend effort in reducing risk

varies according to the structure of the social network.
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1 Introduction

The emergence of InsurTech has brought forth innovative business models equipped with

advanced technologies, aiming to disrupt the traditional insurance industry. Among these

models, peer-to-peer (P2P) insurance stands out for its potential to alleviate moral haz-

ard by gathering a network of members and reducing the role of conventional insurers.

P2P insurance represents a novel risk-sharing network where individuals with similar risk

profiles pool their resources to insure against common risks. The National Association

of Insurance Commissioners (NAIC) defines P2P insurance as a product that enables a

group of insured individuals to pool resources together and collaboratively manage their

insurance arrangements (National Association of Insurance Commissioners 2023). This

innovative InsurTech model facilitates risk-sharing among like-minded participants, intro-

ducing elements of control, trust, and transparency while reducing costs (Fang, Qin, Wu

& Yu 2020).

One notable feature of P2P insurance is the formation of communities comprising

acquainted participants. P2P insurance pools usually consist of a limited number of

individuals, ranging from dozens to hundreds. Within these pools, diverse social networks

emerge, often through invitations by friends or relatives. Consequently, the extent of social

connections among participants differs, as some individuals are acquainted with more pool

members than others. This self-organizing structure is believed to mitigate moral hazard,

a persistent issue in the insurance industry.

This paper investigates the relationship between social connection and moral hazard in

P2P insurance. Moral hazard, a long-standing problem in the insurance industry, incen-

tivizes risk-taking behaviour among insured individuals. It arises when having insurance

encourages the insureds to reduce their efforts to avoid the occurrences of losses, thereby

raising the likelihood of accidents happening. Economists contend that resolving infor-

mation asymmetry, which prevents insurers from perfectly observing insureds’ efforts, is

key to mitigating this problem (Arrow 1963, Pauly 1968, Research and Markets 2018,

Thakor 2020, International Association of Insurance Supervisors 2017, Moenninghoff &

Wieandt 2013, Institute of International Finance 2015, World Bank Group 2018). It is
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anticipated that this effort reduction (a.k.a. moral hazard) might be less pronounced if

losses are partly shared among individuals known to each other, rather than fully bur-

dened by a traditional insurer. Therefore, our objective is to analyze whether the social

network within the risk-sharing community could enable P2P insurance to better address

the issue of moral hazard.

This study conducts a theoretical analysis of the moral hazard problem in P2P in-

surance. We begin by formulating an optimal decision-making problem regarding partic-

ipants’ efforts in P2P insurance within specific social network structures. Subsequently,

we offer a comprehensive examination of the Nash equilibria concerning participants’ ef-

forts. Our analysis reveals that the inclinations of P2P insurance participants to exert

efforts are closely linked to their social connections within the network. Specifically, par-

ticipants with larger social connections or greater centrality are more inclined to expend

effort in minimizing losses. Additionally, each participant exhibits increased effort when

the connectivity between any two participants strengthens. Thus, our theoretical analysis

underscores that the social network significantly contributes to the low-cost advantage of

the P2P insurance model. Furthermore, we investigate how participants’ propensity to

expend effort in risk reduction is influenced by the size of the P2P insurance pool. We

discover that participants’ efforts to mitigate loss probabilities diminish as the number

of participants approaches infinity. In summary, our study enhances the understanding

of how P2P insurance addresses moral hazard. We ascertain that the social network

within the P2P insurance pool mitigates the moral hazard issue by enabling acquainted

participants to collaborate and pool their risks.1

Our research primarily aligns with two main distinct lines of literature. Firstly, this

paper joins the discussion on ex-ante moral hazard in insurance markets. In this sce-

nario, an insurer compensates an insured based on the loss influenced by the insured’s

unobservable effort exerted before the loss happens, thereby providing the insured with

1This aligns with industry practices, as Friendsurance, a P2P insurance company, processes 20%

to 40% fewer claims than others, partly because friends are less likely to harm or cheat each other

(source: see https://www.fastcompany.com/3021024/a-social-network-for-insurance-that-cuts

-costs-and-reduces-fraud).
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an incentive to put less effort into preventing loss (Arrow 1963, Pauly 1968, Bolton &

Dewatripont 2005). Since supervision is often costly, insurers commonly employ partial

coverage to mitigate this effort-reduction behaviour (a.k.a. moral hazard). Ehrlich &

Becker (1972) demonstrated that the insurance coverage reduces the insured’s effort level

if she is not prohibitively risk-averse; Helpman & Laffont (1975), Shavell (1979), and

Arnott & Stiglitz (1988) revealed that the optimal market equilibria, in the presence of

moral hazard, typically involve partial insurance coverage. In addition to theoretical re-

search, numerous empirical studies have contributed to identifying moral hazard in the

field of insurance practice (see e.g. Cummins & Tennyson (1996), Abbring, Heckman,

Chiappori & Pinquet (2003), Abbring, Chiappori & Pinquet (2003), Kim, Kim, Im &

Hardin (2009) and Spindler, Winter & Hagmayer (2014)).

In particular, our work is closely aligned with the literature that examines moral

hazard in mutual insurance frameworks. Unlike traditional insurance arrangements, par-

ticipants in mutual insurance collectively share risks and benefits as residual claimants, in

which moral hazard is believed to be more effectively deterred. Cabrales, Calvó-Armengol

& Jackson (2003) analyzed fire mutual insurance in Andorra and found that Nash equi-

libria often deviate from Pareto efficient outcomes; Lee & Ligon (2001) explored the

relationship between the number of participants and their effort levels in mutual insur-

ance; von Bieberstein, Feess, Fernando, Kerzenmacher & Schiller (2019), building upon

Lee & Ligon (2001), further studied the scenario where participants in mutual insurance

can freely choose the level of coverage.

Secondly, this paper contributes to the growing volume of literature on risk-sharing

mechanisms in P2P insurance. P2P insurance represents a hybrid system that integrates

both risk-sharing and risk-transfer mechanisms (Denuit 2019, Feng et al. 2022, Feng 2023).

Recent studies have explored the optimal fusion of risk sharing and risk transfer rules in

P2P insurance, see e.g. Denuit & Dhaene (2012), Denuit (2019), Denuit & Robert (2021a),

Denuit et al. (2022), Denuit & Robert (2021c) and Chen, Feng, Hu & Mao (2023). While

risk sharing has been a longstanding focus in risk management literature, it has gained

renewed attention in the context of decentralization trends. Notably, Denuit et al. (2022)

and Feng et al. (2022) provided comprehensive analyses of various risk-sharing rules and
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their properties, including the conditional mean risk-sharing rule proposed by Denuit

& Dhaene (2012), the quantile-based risk sharing rule introduced by Denuit, Dhaene &

Robert (2022). 2 Moreover, Abdikerimova & Feng (2022a) investigate the actuarially fair

risk sharing rule for heterogeneous risks across multiple groups. Abdikerimova, Boonen &

Feng (2024) extend the risk sharing rule to a multi-period framework. At last, researchers

have also applied these theoretical frameworks to practical insurance scenarios, such as

property & casualty insurance (Denuit & Robert 2021b) and flood risk pooling (Feng, Liu

& Taylor 2023).

The remainder of this paper proceeds as follows. Section 2 introduces the mechanism

of P2P insurance. In Section 3, we develop a theoretical framework to analyze the moral

hazard problem in P2P insurance. Section 4 and 5 are dedicated to equilibria analysis

and comparative statics. Section 6 presents a numerical illustration. Finally, Section 7

concludes with a summary.

2 Framework of P2P insurance with social network

P2P insurance is a concept that was likely first proposed in 2010 by Friendsurance, a Ger-

man InsurTech start-up. Since then, it has subsequently expanded to many other coun-

tries. Since the introduction of P2P insurance, numerous InsurTech companies around

the world have followed suit. It allows a small group of family members or friends with

the same needs of insurance to collectively pool their risks in a P2P platform with a (re-)

insurance contract, see e.g. Denuit (2019), Denuit & Robert (2021b), Denuit, Dhaene &

Robert (2022), Denuit, Dhaene, Ghossoub & Robert (2023).

2.1 Model setting

There are n individuals, also referred to as participants or members, numbered from 1 to

n, who share a common concern for financial losses. The set of participants (or members)

2Additionally, Jiao, Kou, Liu & Wang (2022) axiomatized the conditional mean risk-sharing rule,

while Dhaene, Robert, Cheung & Denuit (2023) axiomatized the quantile-based risk sharing rule.
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is denoted by Mn = {1, 2, . . . , n}. Participants face two outcome states at the end of a

single period, i.e. “loss” and “no loss”. We use a binary variable Ii to indicate participant

i’s outcome state at the end of the period, where Ii = 1 if the participant’s outcome state

is “loss”, and Ii = 0 in case of “no loss”. All participants experience the same level of

loss severity, meaning they each incur a deterministic loss amount ℓ ∈ R++ when a loss

happens. We consider that participants collectively pool their risks into a P2P platform.

The aggregated risk pooled by all participants, denoted by S, is calculated using the

expression

S = ℓ

n∑
i=1

Ii

Notably, the aggregated risk S (or aggregated loss after realization) is a random variable

to be observed until its realization.

2.2 Mechanism of P2P insurance

We mathematically introduce the mechanism of P2P insurance. P2P insurance is a hybrid

system that integrates risk sharing and risk transfer. In a P2P insurance pool, participants

assemble their risks into an aggregated risk, which is partly transferred to an insurer, with

the remainder shared among the participants. Figure 1 presents the mechanism of P2P

insurance. The nodes represent participants, the P○ refers to the P2P platform, and the

I○ indicates the insurer. The straight arrows refer to the momentary transfer between

entities, while the curved arrows symbolize the social connections between participants,

which will be introduced in the next section.

P2P insurance applies the excess-of-loss risk transfer rule to cap the aggregated risk

(or loss) S. This means that the platform transfers the aggregated risk S beyond a

deterministic threshold D ∈
[
0, sup(S)

]
= [0, nl] to an insurer by paying a deterministic

aggregated premium Π ∈ R+. Following the transfer of the tail risk (S−D)+ at a premium

cost Π, the pool of participants only needs to be responsible for the residual risk:

S − (S −D)+ = min(S,D)

This residual risk is to be shared among participants. Given that the aggregated loss can
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potentially be very large if left uncapped, deterring participants from joining the pool,

the excess-of-loss risk transfer rule is considered necessary to cap it.

1
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(D − S)+

Refund

Figure 1: Mechanism of P2P insurance

Considering the homogeneity of loss among participants, P2P insurance adopts the

uniform risk-sharing rule to allocate the residual risk. To ensure the enforceability of this

risk-sharing mechanism, the P2P platform generally requires each of the n participants

to initially contribute Π+D
n

, constituting the aggregated contribution (Π + D). This ag-

gregated contribution is firstly used to pay the aggregated premium Π. The remaining

amount, called an aggregated deposit and denoted as D, is then used to cover the residual

loss, expressed as min(S,D). Consequently, under this arrangement, any aggregated loss

beyond D, denoted as (S −D)+, is reimbursed by the insurer, while any aggregated loss

below D, denoted as min(S,D), is shared among all participants.

At the end of the period, participants may expect a refund from the P2P platform

if there is a surplus in the aggregated deposit, i.e. S < D. In this case, the leftover

aggregated deposit, denoted as (D − S)+, is refunded and uniformly shared among all

participants, with no liability incurred by the insurer. However, if the aggregated loss

exceeds the aggregated deposit, i.e. S ≥ D, then no refund is issued and the insurer is

obligated to reimburse the excess aggregated loss, expressed as (S−D)+, to the platform.

Therefore, we can summarize each of the n participant’s costs for P2P insurance

coverage. Taking into account the possible refund, each participant actually pays

Π +D

n
− (D − S)+

n
= π +min

(
runi(S), d

)
Here, the individual deposit is represented as d := D

n
, the individual premium as π := Π

n
,
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and the individual shared loss as runi(S) := S
n
. In essence, the cost for P2P insurance

coverage, represented as π + min
(
runi(S), d

)
, is a random variable contingent upon the

realization of S. Let the initial wealth of participants be w, then, each participant’s final

wealth, denoted as wf , is given by

wf = w − π −min
(
runi(S), d

)
It is worth noting that each participant is fully insured after paying π +min

(
runi(S), d

)
.

2.3 Social network

The so-called P2P insurance model is based on the concept that participants in a social

network, typically groups of family members or friends, pool their resources to compensate

each other for losses and cut down the cost of insurance (Abdikerimova & Feng 2022b).

Many P2P insurance platforms encourage friends and family members to join mutual

groups (Biener, Eling, Landmann & Pradhan 2018) Thus, some specific forms of social

networks exist in the P2P insurance model as participants are often friends or relatives.3

Though a certain form of social networks exists in P2P insurance, it does not mean that

everyone directly knows each other in the pool. By geometric characterization, each

participant can be viewed as a node in the pool and any two are connected if they know

each other (see Figure 1).

We use a graph to mathematically model the social network that exists in a P2P pool

consisting of n participants. For any two distinct participants, say i and j, gij ∈ R+

denotes the constant degree of i’s social connection toward j, indicating how much i cares

about j. The collection of their cross-connections forms a graph represented by an n× n

3This assumption aligns with industry practices, as seen with Friendsurance, a P2P insurance

company that connects friends via social media to purchase collective non-life policies from estab-

lished insurers. By joining a group they know and trust, the likelihood of dishonest behaviour

is reduced (source: see https://www.the-digital-insurer.com/dia/friendsurance-germany-makes

-insurance-social-again/.)
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matrix G4 where

G :=


0 g12 · · · g1n

g21 0 · · · g2n
...

...
. . .

...

gn1 gn2 · · · 0

 (1)

Notably, we employ a directed and weighted graph G to represent the social network

underlying P2P insurance.5 The centrality of participant i ∈ Mn is expressed as her

aggregated social connections toward others, denoted as
∑

j gij. Thus, we say a participant

has a greater centrality in the social network if she possesses stronger social connections

with others.

3 Moral hazard problem formulation

The problem of moral hazard has gained substantial scholarly attention within the existing

literature, particularly in the domain of insurance contracts. This issue holds particular

relevance in the context of P2P insurance arrangements. In this section, our objective is

to investigate the decision-making processes that govern how efforts are allocated in the

context of P2P insurance.

In P2P insurance, efforts to reduce losses have the characteristics of public goods. This

is because when each participant exerts effort to reduce her own risk, it creates positive

externalities by lowering the aggregated risk for the entire risk pool. Remarkably, these

externalities may be endogenized by the altruistic behaviour of the participants in the

P2P insurance.

4We set gii = 0 for all i ∈ Mn because each participant needn’t redundantly connect to herself again,

see equation (2) below.
5We explicitly consider the social network as given, a setting widely adopted in the literature, such as

by Bramoullé, Kranton & D’Amours (2014) and Bramoullé & Kranton (2007).
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3.1 Effort spending in P2P insurance

Each participant can spend a continuous and unobservable effort x ∈ R+ at a cost to

reduce her loss probability. The cost of effort, denoted as c(x), is twice continuously

differentiable, strictly increasing and convex regarding x, with c(0) = 0, c′(x) > 0 and

c′′(x) > 0. The probability of loss, denoted as q(x) ∈ (0, 1), is also twice continuously

differentiable and decreases with the effort in a diminishing way, i.e., q′(x) < 0 and q′′(x) >

0. For simplicity, we let x := (x1, x2, . . . , xn) ∈ Rn
+ be the effort levels of all participants,

that can be further abbreviated as x = (xi,x−i) with x−i := (x1, . . . , xi−1, xi+1, . . . , xn) ∈

Rn−1
+ .6

With the effort to reduce the probability of loss, the loss indicator of a representative

participant i is denoted as

Ii ∼ Bernoulli
(
q(xi)

)
,

for any i ∈ Mn. Let q(x) =
(
q(x1), q(x2), . . . , q(xn)

)
∈ (0, 1)n, then, the aggregated loss

incurred by n participants, denoted as S = ℓ
∑n

i=1 Ii, can be described as a deterministic

loss amount, i.e. ℓ, multiplied by the sum of individual losses

n∑
i=1

Ii ∼ PBD
(
q(x)

)
,

which follows a Poisson Binomial distribution.7 Here, I1, . . . , In are mutually independent

but not necessarily identically distributed due to the potentially heterogeneous efforts

exerted by participants. Using this characterization, we know that the distribution of the

shared loss, i.e. runi(S) = S
n
, is also dependent on the effort levels x of all participants.

3.2 Altruistic utility with social network

Considering a certain social network exists in the pool consisting of n participants, we

assume that participants are altruistic, that is, they make effort decisions by maximizing

6Hereafter in our study, x ≥ y means xi ≥ yi for all i when comparing two vectors x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn).
7PBD(q(x)) denotes the Poisson Binomial distribution, representing the discrete probability distribu-

tion of a sum of independent Bernoulli trials that are not necessarily identically distributed, i.e. Ii ∼ q(xi).
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not only their own utilities but also their peers’ utilities(Bergstrom 1989, Hori 2001,

Simon 2016). Let vi(x) be participant i’s personal utility function, then her altruistic

utility function is expressed as:

ui(xi,x−i;G) := vi(x) +
∑
j

gijvj(x), for all i ∈ Mn (2)

Because each participant contributes the cost for coverage, denoted as π+min
(
runi(S), d

)
,

for the full coverage, and pays the cost of effort c(xi) to reduce her probability of loss, the

personal utility function of a representative participant i is represented by: 8

vi(x) := E
[
b(wf ) | x

]
− c(xi)

= E

[
b
(
w − π −min(runi(S), d)

)
| x

]
− c(xi)

for all i ∈ Mn.
9 b(·) is assumed to be a twice continuously differentiable, strictly increasing

(b′(·) > 0), and strictly concave (b′′(·) < 0) Von Neumann–Morgenstern utility function.

Each participant, say i ∈ Mn, non-cooperatively selects her optimal effort x∗
i to maximize

her altruistic utility function, given others’ effort levels x−i:

x∗
i = arg max

xi∈R+

ui(xi,x−i;G), for all i ∈ Mn

Because efforts exhibit characteristics of public goods, one may think that any partici-

pant’s high effort to reduce the aggregated loss can discourage others from doing the same

thing. This assertion is commonly acknowledged in the realm of the public good provi-

sion, see for example Bramoullé, Kranton & D’Amours (2014). However, in this paper,

we will demonstrate that one’s high effort could encourage others to exert more effort.

It is believed that P2P insurance probably mitigates the conflicts that exist between

traditional insurers and insureds. In traditional insurance, the incentives of the insurer

8Because the cost of effort is reasonably unrelated to the risk appetite, participant i’s personal utility

is assumed to be additively separable in money and effort(Bourgeon & Picard 2014).
9As the effort levels x paid by participants have an impact on the distribution of shared loss runi(S), we

deliberately use “| x” to emphasize that the expected utility level of the final wealth, i.e. E
[
b(wf ) | x

]
, is

dependent of x, although x is not a random vector. This notation is also used by (Bolton & Dewatripont

2005, page 142).
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and the insured may not always align. This is because the insured pays a fixed premium

to the insurer regardless of whether a loss occurs, and the insured does not share the

insurer’s profit if she incurs no or few loss outcomes. However, in P2P insurance, this

issue is effectively addressed. Each participant pays a lower cost for coverage if fewer

claims are filed. This incentivizes altruistic participants to exert more effort in reducing

the aggregated loss shared by their relatives or friends, thus reducing their burden. Thus,

it is expected that the social networks underlying P2P insurance pools can mitigate moral

hazard and consequently lower the aggregated loss (Moenninghoff & Wieandt 2013).

3.3 Trade-offs in effort choices

We delve into the trade-off faced by participants in P2P insurance when deciding how

much effort they should exert. In navigating this trade-off, participants must strategi-

cally optimize their altruistic utility functions. Opting for higher effort entails increased

reciprocal altruistic and pure altruistic benefits but also incurs a higher cost of effort.

Firstly, committing to higher effort levels to mitigate losses introduces an additional

price of the cost of effort. Since c′(x) > 0, a participant opting for greater effort incurs

the higher initial cost of effort, which is represented by c(x).

Secondly, when a typical participant, say i ∈ Mn, chooses to exert higher effort,

it results in a reduced shared loss, denoted as runi(S), for herself, thereby leading to

a reciprocal altruistic advantage. As previously established, participants’ shared loss is

expressed as runi(S) =
ℓ(Ii+

∑
j ̸=i Ij)

n
, where Ii ∼ Bernoulli

(
q(xi)

)
. Since q′(x) < 0, it

indicates that participant i who exerts greater effort, represented by xi, is expected to

bear a lower shared loss. Thus, it can be inferred that by increasing effort, a participant

could enhance her personal utility by shouldering a reduced shared loss in an expectational

sense.

Thirdly, opting for high effort actively contributes to the reduction of the shared loss

for other participants, aligning with pure altruistic preferences. Because each participant’s

shared loss is influenced by the efforts paid by other participants, the higher effort exerted

by a representative participant, say i ∈ Mn, can decrease the shared loss borne by others.
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Consequently, participant i benefits from her pure altruistic behaviour, reaping rewards

beyond personal gains.

4 Nash equilibrium analysis

4.1 Problem formulation

We present a formal characterization of Nash equilibrium concerning participants’ efforts

(or “effort equilibrium” for short). Mathematically, a Nash equilibrium point for partici-

pants’ efforts, denoted by x∗ ∈ Rn
+, is defined by the following condition:

ui(x
∗;G) = max

xi∈R+

{
ui(xi,x

∗
−i;G) | (xi,x

∗
−i) ∈ Rn

+

}
, for all i ∈ Mn (3)

The condition (3) signifies that at a Nash equilibrium point, denoted as x∗, no par-

ticipant can unilaterally increase her altruistic utility by altering her effort level. It is

noteworthy that due to the strict concavity of the altruistic utility function with re-

spect to xi, mixed strategy Nash equilibria are precluded. Consequently, our analysis

concentrates solely on the investigation of pure-strategy Nash equilibria. Thus, a Nash

equilibrium is attained when a vector x∗ = (x∗
1, . . . , x

∗
n) exists, adhering to the condition

stipulated in the condition (3).

To find the Nash equilibria, we introduce the notation:

B−i :=
∑
j ̸=i

Ij ∼ PBD

(
q−i

(
x−i

))

where q−i

(
x−i

)
=

(
q(x1), . . . , q(xi−1), q(xi+1), . . . , q(xn)

)
∈ (0, 1)n−1. Leveraging the iter-

ated expectation theorem, we can reformulate the altruistic utility function as follows:

ui(xi,x−i;G) = E

[
b

(
w − π −min

(
runi(S), d

))
| x

]
− c(xi)

+
∑
j

gij

{
E

[
b

(
w − π −min

(
runi(S), d

))
| x

]
− c(xj)

}
= (1 +

∑
j

gij)

{
q(xi)E

[
b

(
w − π −min

(ℓ+ ℓB−i

n
, d
))

| x−i

]
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+
(
1− q(xi)

)
E

[
b

(
w − π −min

(ℓB−i

n
, d
))

| x−i

]}
− c(xi)−

∑
j

gijc(xj)

For ease of exposition, let δ(xi,x−i) represent the marginal reciprocal altruistic benefit

of participant i. It is expressed as:

δ(xi,x−i) := −q′(xi)

{
E

[
b

(
w − π −min

(ℓB−i

n
, d
))

| x−i

]
− E

[
b

(
w − π −min

(ℓ+ ℓB−i

n
, d
))

| x−i

]}
(4)

It can be verified that δ(xi,x−i) ≥ 0 and limn→∞ δ(xi,x−i) = 0 for all i ∈ Mn (see

Appendix). Employing the notation defined in equation (4), we obtain:

∂ui(xi,x−i;G)

∂xi

= (1 +
∑
j

gij)δ(xi,x−i)− c′(xi)

= δ(xi,x−i)︸ ︷︷ ︸
marginal reciprocal altruism

+
∑

j
gijδ(xi,x−i)︸ ︷︷ ︸

marginal pure altruism

− c′(xi)︸ ︷︷ ︸
marginal effort cost

(5)

Here, we distinguish between pure altruism and reciprocal altruism in participants’ moti-

vations. This distinction is inspired by Andreoni (1989), where the author highlights two

benefits of contributing to public goods: enjoying the group’s contributions (reciprocal

altruism) and experiencing a warm glow from giving (pure altruism). Reciprocal altruism

involves financial benefits from reduced shared losses, while pure altruism refers to gen-

uine concern for friends’ financial gains from one’s higher effort. Pure altruism exists only

if at least one participant is connected in the social network (G ̸= 0), while reciprocal

altruism persists even without a social network (G = 0).

The analysis of equation (5) indicates that the marginal benefit of increased effort

includes both reciprocal altruistic and pure altruistic aspects, while the cost of heightened

effort represents the associated disutility. Furthermore, an increase in
∑

j gij amplifies

the marginal pure altruistic benefit, thereby motivating a representative participant i to

intensify her effort.

4.2 Existence of equilibrium

After formulating the problem of the effort equilibrium, we commence our investigation by

examining its existence. This inquiry stands as a crucial prerequisite for further analysis
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of equilibrium properties. The ensuing proposition establishes that there exists at least

one solution, denoted as x∗ = (x∗
1, . . . , x

∗
n), satisfying the condition (3), thereby ensuring

the existence of the effort equilibrium.

Proposition 1 (Existence of Nash equilibrium) For a P2P insurance pool with a

social network G, there exists at least one Nash equilibrium x∗(G) with continuous effort.

Proof: From equations (4) and (5), we observe that ∂ui(xi,x−i;G)
∂xi

is continuous in x.

Moreover, it is also strictly decreasing with respect to xi for each fixed value of x−i

because ∂2ui(xi,x−i;G)

∂x2
i

< 0. Consequently, there exists a unique point x∗
i > 0 at which

∂ui(xi,x−i;G)
∂xi

|xi=x∗
i
= 0, or xi = 0 at which ∂ui(xi,x−i;G)

∂xi
|xi=0 ≤ 0. This implies the absence

of local maxima, thereby indicating a unique best response of participant i that varies

continuously in x−i. The conclusion follows directly from Kakutani’s theorem (Kakutani

1941).

After Proposition 1 confirms the existence of at least one Nash equilibrium with contin-

uous effort, we then investigate a method for searching and analyzing the equilibrium set.

In the following section, we explore the equivalent condition for reaching Nash equilibria.

4.3 Equivalent condition of equilibrium

The determination of effort at equilibrium involves each participant continuously exerting

effort until the marginal benefit, represented by (1+
∑

j gij)δ(xi,x−i), equals the marginal

cost of effort, denoted by c′(xi). However, the dynamics of interactions among participants

and the possible existence of multiple equilibria in P2P insurance introduce complexity

into the equilibrium analysis. In the following, we provide an equivalent condition for

solving equilibrium in a P2P insurance pool.

Let x∗(G) be the participants’ effort vector at a Nash equilibrium. The subsequent

proposition provides the complete set of Nash equilibria for any social network G. For

simplicity, we do not distinguish x∗(G) and x∗ when no confusion arises.
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Proposition 2 (Identification of Nash equilibria) For a P2P insurance pool with

social network G, x∗(G) is a Nash equilibrium if and only if the following (in)equalities

hold for all i ∈ Mn:

1. (1 +
∑

j gij)δ(x
∗
i ,x

∗
−i)− c′(x∗

i ) ≤ 0;

2. x∗
i ≥ 0;

3. x∗
i

[
(1 +

∑
j gij)δ(x

∗
i ,x

∗
−i)− c′(x∗

i )
]
= 0

Proposition 2 provides a sufficient and necessary condition for Nash equilibrium. With

this condition, we can theoretically obtain the equilibrium set for any social network G.

It suggests that before reaching equilibrium, each participant incrementally augments her

effort until the marginal benefit of higher effort, encompassing both reciprocal altruistic

and pure altruistic benefits, equals the marginal cost of effort. This condition encapsu-

lates the essence of equilibrium attainment within the P2P insurance framework, where

participants aim to optimize their personal utilities while considering their acquaintances

within the social network.

With the equivalent condition in Proposition 2 for achieving the Nash equilibrium, we

turn to describe the set of all Nash equilibria. In the following section, we discover a hyper-

rectangle boundary containing all Nash equilibria for a given social network structure.

4.4 Hyper-rectangle boundary of Nash equilibria

For a P2P insurance arrangement characterized by a social network G, the Nash equilib-

rium is denoted as x∗(G) = (x∗
1(G), . . . , x∗

n(G)). Let x = (x1, . . . , xn), x = (x1, . . . , xn)

,and [x,x] := {(x1, . . . , xn) : xi ≤ xi ≤ xi, for i = 1, . . . , n}10, then, we depict the Nash

equilibrium set with a hyper-rectangle determined by a given social network G:

Proposition 3 (Hyper-rectangle boundary of Nash equilibria) There exists a hyper-

rectangle containing all Nash equilibria, expressed as

x∗(G) ∈ [x(G),x(G)],

10For ease of memory, one can regard [x,x] as a “cage” that locks (x1, . . . , xn) inside.
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where x(G) and x(G) are the smallest and largest Nash equilibrium, respectively.

For ease of proof, we consider a common case where participants are not excessively

risk-averse.11 Despite the possibility of multiple hard-to-describe Nash equilibria within

a given social network, there is a silver lining: if participants do not exhibit excessively

high risk aversion, then, each participant will consistently exert more effort in response to

others’ high effort (referred to as “strategic complements”). This enables us to describe

the Nash equilibrium set with a hyper-rectangle, which is uniquely determined by a given

social network.

Proposition 3 states that for every effort equilibrium x∗(G) = (x∗
1(G), . . . , x∗

n(G)), the

effort level of each participant is bounded, represented as xi(G) ≤ x∗
i (G) ≤ xi(G) for all

i ∈ Mn. Notably, the Nash equilibrium set is always non-empty because of the existence

of Nash equilibria, as proven in Proposition 1 Figure 2 illustrates the hyper-rectangle

boundary for a three-participant example. Specifically, the axes of x1, x2 and x3 indicate

the efforts of participant 1,2 and 3, respectively. xi (xi) is the effort paid by participant

i at the smallest (largest) equilibrium for i = 1, 2 and 3. By Proposition 3, every Nash

equilibrium point x∗(G) lies within the rectangular cuboid.

5 Effect of social network

In this section, we explore how changes in the structures of social networks affect partici-

pants’ effort strategies at equilibria. Understanding the relationship between participants’

effort levels and their social connections at Nash equilibrium is a fundamental inquiry.

However, addressing this question poses significant challenges due to the complex interac-

tions inherent in P2P insurance arrangements. In the following, we explore the properties

11Mathematically, this assumption posits that a(wr) := 1
2 · −b′′(wr)

b′(w−π) , is not extremely large for wr ∈

[w−π−d,w−π]. This condition implies that each participant’s effort is an ordinary good. This assumption

is widely adopted in economic literature because real-life examples of non-ordinary goods (also known

as Giffen goods) are rare, see e.g. Jensen & Miller (2008) and Ehrlich & Becker (1972), and wr only

frustrates in a very small range [w − π − d,w − π].

17



x1

x2

x3

x1 x1

x3
x3

x2

x2

Figure 2: Hyper-rectangle for the three-dimension case

of effort equilibria and conduct comparative statics to elucidate the relationship between

social connections and effort levels at Nash equilibria.

5.1 Centrality in network

A P2P insurance pool may exhibit various structures of social networks. To compare

the positions of different participants within the same network G, we first investigate

the impact of centrality. Our objective is to assess the centrality of each participant

and subsequently analyze its influence on her effort level at Nash equilibrium. The most

straightforward approach to gauge participant i’s “connected” intensity within the social

network is through her degree of centrality, defined as the sum of her social connections

to other participants in the same social network, denoted as
∑

j gij. This metric offers

insight into the prominence of participant i within the network, providing a basis for

understanding her relative influence and position.

The following proposition concludes that participants’ efforts are positively correlated

with their centralities in a social network.

Proposition 4 (Centrality and Nash equilibria) For any Nash equilibrium x∗(G) =(
x∗
1(G), . . . , x∗

n(G)
)
associated with a given social network G, if participant j’s central-
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ity is greater than that of participant i, that is,
∑

k gjk ≥
∑

k gik, then it follows that

participant j’s effort is larger than that of participant i, that is,

x∗
j(G) ≥ x∗

i (G).

The rationale behind Proposition 4 can be intuitively understood as follows: partic-

ipants who exhibit stronger concern for a larger number of individuals within the pool

are likely to experience a heightened level of marginal pure altruistic benefit. Conse-

quently, they are more inclined to contribute greater efforts for their collective welfare.

This inclination stems from their increased sense of responsibility and commitment to

the well-being of other individuals in the same network. This alignment between social

centrality and effort expenditure underscores the intricate dynamics between individual

motivations and network structures within P2P insurance pools.

5.2 Network with higher connectivity

Proposition 4 introduces a method for comparing the equilibrium efforts of different par-

ticipants within the same social network, i.e. horizontal comparison. Now, we turn to

consider a more complex scenario by comparing the equilibrium effort of the same partic-

ipant across different social networks, i.e. vertical comparison.

Let us consider two social networks denoted as G and G′. We define that network

G′ is more “connected” than network G, if the social connection between any pair i and

j in network G′ surpasses that in network G, i.e., G′ ≥ G (which signifies g′ij ≥ gij for

any i and j). For example, a straightforward scenario illustrating G′ ≥ G is when G is a

sub-graph of G′, as in this scenario G′ encompasses more connections than G.

Recall that x(G) and x(G) denote the largest and smallest Nash equilibrium respec-

tively. Let x ≥ y indicate xi ≥ yi for all i ∈ Mn, the following proposition affirms that

participants consistently increase their efforts within a more connected network, in both

scenarios of the largest and smallest Nash equilibria.

Proposition 5 (More connected network and Nash equilibria) When G′ ≥ G,

we have x(G′) ≥ x(G) and x(G′) ≥ x(G). Furthermore, if both [x(G),x(G)] and
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[x(G′),x(G′)] are singleton sets, then the unique Nash equilibria x∗(G) and x∗(G′) sat-

isfy x∗(G) ≥ x∗(G′).

It is worth noting that Proposition 5 only compares the participants’ efforts at the

largest and smallest Nash equilibria, rather than at every single Nash equilibrium. It

highlights that both the upper and lower boundaries of the hyper-rectangle, encompass-

ing all Nash equilibria, ascend in response to the heightened social connections between

participants.

The underlying rationale behind this proposition is that intensified social connections

prompt participants to augment their efforts (referred to as “direct effect”), driven by

increased pure altruistic benefits. Then, any escalation in a participant’s effort further

incentivizes other participants to reciprocate this participant with their even heightened

efforts (referred to as “indirect effect”), owing to strategic complementarity. This positive

feedback loop continues, resulting in the expanded efforts paid by the participant and the

others. Given the alignment of the direct and indirect effects of these adjustments, we

anticipate that the impact of a more connected social network would be magnified.

5.3 Expansion of pool size

In most P2P insurance risk pools, the number of participants (often dozens to hundreds)

is relatively small compared to traditional insurance, suggesting a potential trade-off be-

tween risk diversification and moral hazard. Although a larger pool can enhance the

diversification of the pooled risk, it may exacerbate the moral hazard problem. The fol-

lowing proposition confirms this hypothesis: the participants’ efforts tend to diminish

as the pool size increases. For simplicity, we denote Gn as an arbitrary social network

associated with n participants, which satisfies limn→∞
∑n

j=1 gij < ∞ for all i ∈ Mn.

Proposition 6 (Pool expansion and Nash equilibria) Let x∗(Gn) be a Nash equi-

librium, then we have

lim
n→∞

x∗(Gn) = 0
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Notably, limn→∞
∑n

j=1 gij < ∞ is not a strong assumption, as it implies that each partic-

ipant’s centrality, expressed as
∑n

j=1 gij for participant i, approaches a finite value as the

risk pool expands. This assumption is grounded in reality as socializing time is inherently

limited.

Proposition 6 can be readily derived from the fact that the marginal reciprocal al-

truistic benefit resulting from a participant’s “moral” behaviour is uniformly distributed

among all participants. Consequently, as the number of participants increases, the recip-

rocal altruistic benefit of higher effort declines, i.e. limn→+∞ δ(xi,x−i) = 0 for all i ∈ Mn,

leading to a decreased willingness among participants to exert higher effort. This finding

aligns with the empirical evidence presented by Guinnane & Streb (2011) as well as the

theoretical studies conducted by Lee & Ligon (2001) and von Bieberstein et al. (2019). In

essence, the concept of high effort resembles a public good, which may be under-supplied

due to the free-rider problem.

However, because x∗(Gn) > 0 possibly happens for a finite n, Proposition 6 contra-

dicts the conclusion put forth by Ehrlich & Becker (1972), who examined moral hazard

in traditional insurance and concluded that full insurance coverage would always result in

zero prevention effort to reduce loss probability. The underlying reason is that in tradi-

tional insurance, fully insured individuals transfer the entirety of their risks to insurance

companies, whereas fully insured participants in P2P insurance still retain some risks that

come from the shared loss.

6 Numerical illustration

6.1 Setting and calibration

In this section, we provide numerical examples using some simplified social networks. To

begin with, we introduce specified function forms and their associated parameter values

for numerical illustration. We assume that participants’ utility functions adhere to the

Constant Relative Risk Aversion (CRRA) form, characterized by b(w) = w1−γ

1−γ
, where

w denotes wealth and γ represents the coefficient of relative risk aversion. In addition,
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we consider the cost of effort to be c(x) = h
2
x2, where h represents a scaling factor.

Meanwhile, the loss probability function, denoted as q(x) = q0
1+x

, captures the probability

of experiencing a loss, where q0 signifies an initial probability value. These functions and

parameters describe the essential dynamics within our model framework. Detailed values

of the parameters utilized in our analysis are summarized in the subsequent table for

clarity.

Table 1: Parameter values

Parameter h ℓ w γ q0 d π

Value 1× 10−5 10 100 2.5 0.2 5 1

In the following section, we employ two simple networks as examples to illustrate how

the equilibrium loss probability vector, denoted as

q
(
x∗(G)

)
:=

(
q
(
x∗
1(G)

)
, . . . , q

(
x∗
n(G)

))
,

varies with the social network G.12 The simulation results reveal that the Nash equilib-

rium happens to be unique, i.e. x(G) = x(G), indicating that the hyper-rectangle, i.e.

[x(G),x(G)], is a singleton. Both numerical examples to be illustrated in the following

section have a unique equilibrium.

6.2 Examples of network structures

In this section, we first apply a canonical star network to illustrate the variation of the

equilibrium loss probability vector, denoted as q
(
x∗(G)

)
, in response to the changes

in the social network G. Subsequently, using a circular network as an example, we

demonstrate that participants’ efforts converge to zero with the expansion of the risk

pool, i.e. limn→+∞ q
(
x∗(G)

)
= q

(
0
)
.

12We provide the algorithm for numerically deriving Nash equilibria in the Appendix.
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6.2.1 Star network

We consider P2P insurance within a simplified star network comprising four participants,

as depicted in Figure 3. The figure illustrates the star network’s configuration, where

the nodes 1○, 2○, 3○, and 4○ denote individual participants, and the curved, directed,

and weighted arrows denote their social connections. In this social arrangement, each

participant except 4○ only maintains a social connection with a centralized participant 4○.

This forms a star-like network structure, where participants lack direct connections with

each other. Specifically, their social connections in the star network can be represented

by the following matrix:

GStar =


0 0 0 1g

0 0 0 2g

0 0 0 3g

1g 2g 3g 0


Here, the connection strength between any two participants varies and is measured by

a unit of g. The parameter g signifies the intensity of interactions, understood as the

frequency of gatherings, such as family reunions, team-building activities for colleagues,

or social events among friends. The differing strengths of connections between participants

shape the dynamics of the effort that each participant puts forth within the star network.

4

1

23

1g 1g

2g

2g

3g

3g

Figure 3: Star network

Figure 4 illustrates the variation in the equilibrium loss probability of each participant

in response to the changes in g. We can observe a notable decrease in each participant’s

loss probability as g increases. This decline is attributable to both direct and indirect

23



0.000 0.064 0.128 0.192 0.256 0.320
g

0.125

0.130

0.135

0.140

0.145

0.150

0.155

q(
x)

Participant 1
Participant 2
Participant 3
Participant 4

Figure 4: g and equilibrium loss probabilities

effects. Firstly, the strengthened relationships among participants incentivize greater

effort due to pure altruistic motivations, representing the direct effect. Secondly, the

increased effort from participants further stimulates additional exertion due to strategic

complements, also known as the indirect effect. This finding corroborates the insight

presented in Proposition 5.

6.2.2 Circle network

We further explore the example of the circle network, depicted in Figure 5. Similarly,

1

3 2

n = 3

1 2

4 3

n = 4

1

5

4 3

2

n = 5

· · · · · ·

Figure 5: Increasingly Expanded Circle network

the nodes in the figure represent individual participants, while the curved, directed, but

unweighted arrows denote their constant social connections. In the circle network, the

participants are arranged in a circle, with each having two neighbours——one to the
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left and the other to the right. The circle network is also known as the local interaction

network (Bramoullé et al. 2014). The circle network with n participants can be represented

by an n× n matrix

GCircle
n =


0 0.5 0 · · · 0 0.5

0.5 0 0.5 · · · 0 0
...

...
...

. . .
...

...

0.5 0 0 · · · 0.5 0


n×n

Here, regardless of the number of participants in the circle network, i.e. the size of n in

GCircle
n , each participant maintains a constant social connection of g = 0.5 with their two

immediate neighbours. Thus, the social network among participants exhibits a circle-like

network structure.

We further investigate the variations in equilibrium loss probabilities concerning the

expansion of the circle network with n participants. Specifically, we examine increas-

ingly expanding circle networks for n = 3, 4, . . . , 300 participants. Figure 6 demonstrates

how the equilibrium loss probabilities of participants vary with respect to the number of

participants.

0 50 100 150 200 250 300
n

0.12
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0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

q(
x)

Figure 6: Loss probabilities in increasingly expanded circle network

Notably, due to homogeneity, each participant exerts the same effort, resulting in an

identical loss probability. Figure 6 shows that this identical loss probability increases

with the expanded pool size at a decelerating rate. From 13.05% (n = 3) to 18.61%
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(n = 50), and subsequently to 19.72% (n = 300), the loss probability escalates, approx-

imating 20% as n → ∞. This observation aligns with Proposition 6, which posits that

limn→∞ q
(
x∗(G)

)
= q(0) (recall that q(0) = 20%). The underlying rationale for this phe-

nomenon lies in participants’ limited gains from higher efforts in a larger pool, denoted as

limn→∞ δ(xi,x−i) = 0 for all i ∈ Mn, while still bearing the full cost of effort individually.

7 Conclusion

P2P insurance, an emerging phenomenon of the InsurTech industry worldwide, has been

providing more affordable insurance coverage for communities of participants. We analyze

the issue of moral hazard associated with the framework of P2P insurance from the

theoretical perspective. Specifically, our model provides an answer to the crucial question

of how the social network within the community affects the participants’ incentive to

spend effort in precautionary loss prevention.

This study carries some main contributions. Firstly, we introduce a quantitative frame-

work that considers the interplay between social networks and moral hazard in P2P insur-

ance, allowing for a comprehensive analysis of risk pooling among acquainted participants.

Secondly, our investigation into the equilibria of participants’ efforts reveals intriguing

insights. We find that efforts in P2P insurance exhibit strategic complementarity, partic-

ularly when participants are not excessively risk-averse. Our analysis demonstrates the

existence of Nash equilibria regarding effort, wherein participants with stronger social

connections tend to exert greater effort. Notably, all Nash equilibria are contained within

a hyper-rectangle, with the boundaries representing the smallest and largest equilibrium

points. Lastly, we delve into the impact of social network structures on participants’

behaviour at equilibria. Our findings suggest that as social connections between partic-

ipants strengthen, efforts at the smallest and largest equilibria intensify. Moreover, we

observe a tendency for participants’ effort exertion to diminish as the size of the risk pool

expands. In sum, our theoretical analysis offers valuable insights into the moral hazard in

P2P insurance, shedding light on both its underlying mechanisms and potential strategies

for mitigation.
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Nevertheless, this study has some limitations, prompting the exploration of potential

avenues for further research. While our investigation delves into the moral hazard prob-

lem within exogenous social networks, deposits, and insurance premiums, future studies

may delve into the endogenous nature of these variables. Furthermore, the scope of our

findings may be broadened to encompass alternative risk-sharing frameworks, including

those characterized by the co-monotonicity property.
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A Appendix: Algorithm for numerical illustration

In this appendix, we present the algorithm used to numerically identify the hyper-rectangle

containing all Nash equilibria, i.e., x∗(G) ∈ [x(G),x(G)].

The following procedure describes the algorithm to find the hyper-rectangle of the

Nash equilibria, i.e., x∗(G) ∈ [x(G),x(G)]. Initially, we discretize R+ and generate a

space X = {m
r

: m ∈ Z+} where r = 1 × 106 represents ”discretization error”. This

discretization ensures that the algorithm will converge to the ”extremal” equilibrium, i.e.,

x(G) or x(G), in finite iteration steps. Then, we begin with all participants playing the

maximal effort x0 = xmax1, let

x1
i = argmax

xi∈X
ui(xi,x

0
−i;G), for all i ∈ Mn

be the best response for each i ∈ Mn at stage 1, and iteratively, let

xk
i = argmax

xi∈X
ui(xi,x

k−1
−i ;G), for all k ≥ 2 and i ∈ Mn

be the beset response for each i ∈ Mn at stage k ≥ 2. It follows that the point such that

xk = xk−1 is very close to the largest Nash equilibrium point, i.e., xk ≈ x(G) by adjusting

r. Analogously, starting from the minimal effort x0 = xmin1 and iterating upward, one

can find the smallest Nash equilibrium point, i.e. x(G) (Young & Zamir 2014, page 104).

We employ a star network as a straightforward example to illustrate the iteration

process. Considering a star network depicted in Figure 7 where the bracket
(
x∗
i , q(x

∗
i )
)

beside participant i indicates her equilibrium effort level and its associated equilibrium

loss probability. The curved, directed and weighted arrows connecting them refer to the

constant degrees of social connections. we aim to introduce the iterative process. We

denote a loss probability vector as q(x) = [q(xi)]i∈Mn. Iterating on the best response

dynamics from the minimal effort, i.e., q(x0 = 0) = q01, leads to the convergence in

the smallest equilibrium q
(
x(G)

)
. Conversely, initiating the iteration of best response

dynamics from the maximal effort, i.e., q(x0 = xmax1) ≈ 0 (where xmax can be any

sufficiently large but finite value, and we set xmax = 1× 105 in our simulation), results in

the convergence towards the largest equilibrium q
(
x(G)

)
. Ultimately, all Nash equilibria
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lie within a hyper-rectangle, i.e., x∗(G) ∈ [x(G),x(G)]. It is noteworthy that q
(
x(G)

)
≥

q
(
x(G)

)
, because x(G) ≤ x(G) and q(x) is a strictly decreasing function with respect

to x.
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Figure 8: Iterating steps and best-response probabilities

Figure 8 illustrates the iterating process for this example. The horizontal axis rep-

resents the iteration step k, the vertical axis refers to the loss probability of participant

i = 1, 2, 3, 4, expressed as q(xk
i ), under her best-response effort xk

i . It reveals that partic-

ipants’ best-response loss probability vector converges to

q
(
x(G)

)
≈ q

(
x(G)

)
= [15.12% 14.52% 13.87% 13.22%]T

in a considerable speed. This implies the hyper-rectangle is very likely a singleton set
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containing a unique effort equilibrium:

x(G) = x(G) = [0.3224 0.3777 0.4424 0.5130]T

because q(x) = q0
1+x

is an injection, i.e. q(x′) = q(x) =⇒ x′ = x.

B Appendix: Proof

B.1 Proof of Proposition 2

Proof: By definition, we know that the equations

x∗
i (G) = arg max

xi∈R+

ui(xi,x
∗
−i(G);G)

for all i ∈ Mn, characterize the Nash equilibria x∗(G) =
(
x∗
1(G), . . . , x∗

n(G)
)
.

Because ui(xi = +∞,x−i) = −∞ , xi = +∞ is definitely not an optimal effort for

any x−i. Therefore, we can safely restrict the feasible set xi ∈ R+ to xi ∈ [0, xmax] for

all i ∈ Mn where xmax < ∞ is an arbitrarily large but finite real number. Since the

feasible set [0, xmax] ⊂ R+ is a non-empty, compact and convex set, and the objective

function ui

(
xi,x

∗
−i(G);G

)
is strictly concave with respect to xi, given that others effort

levels x−i = x∗
−i(G), we know that there exists a unique best-response effort x∗

i (G) =

argmaxxi∈R+ ui

(
xi,x

∗
−i(G);G

)
:

1. x∗
i > 0 and

∂ui

(
xi,x

∗
−i;G

)
∂xi

|xi=x∗
i
= (1 +

∑
j gij)δ(x

∗
i ,x

∗
−i) − c′(x∗

i ) = 0 if and only if

∂ui

(
xi,x

∗
−i;G

)
∂xi

|xi=0 = (1 +
∑

j gij)δ(0,x
∗
−i)− c′(0) > 0;

2. x∗
i = 0 if and only if

∂ui

(
xi,x

∗
−i;G

)
∂xi

|xi=0 = (1 +
∑

j gij)δ(0,x
∗
−i)− c′(0) ≤ 0.
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B.2 Proof of Proposition 3

Proof: Recall that ui

(
xi,x−i;G

)
:= vi +

∑
j gijvj (we use ui(xi,x−i) for simplicity), we

define the best-response function of participant i given x−i as

Ri(x;G) := arg max
xi∈R+

ui

(
xi,x−i;G

)
In the following, we use Ri(x) for simplicity and let R(x) :=

(
R1(x), . . . , Rn(x)

)
. From

the proof of Proposition 2, we know that Ri(x;G) is a function with respect to x given

G. Generally speaking, Ri(x;G) represents the unique best-response of i regarding x−i.

Denote the feasible effort (i.e. strategy) set of i as Si := [xi, xi] . Let S := [x,x] and

S−i := [x−i,x−i]. Further, we define the set of i’s undominated responses to S as

Wi(S) :=

{
xi ∈ Si | (∃x̂ ∈ S)(∀x′

i ∈ Si)
[
ui(xi, x̂−i) ≥ ui(x

′
i, x̂−i)

]}
Wi(S) is just the set of strategies of i that survive the process of crossing out strongly

dominated strategies from Si given others’ feasible strategy set S−i. We denote W (S) =(
W 1(S), . . . ,W n(S)

)
where W i(S) = supWi(S). Let W (S) =

(
W 1(S), . . . ,W n(S)

)
where W i(S) = infWi(S). Finally, we let W (S) := [W (S),W (S)]. By this setting,

we know that
(
W1(S), . . . ,Wn(S)

)
⊂ W (S).

Step 1: Proof of ∂2ui(xi,x−i)
∂xi∂xj

≥ 0

∂2ui(xi,x−i)

∂xi∂xj

= (1 +
∑
j

gij)
∂δ(xi,x−i)

∂xj

By the expression of δ(xi,x−i), we know that

∂δ(xi,x−i)

∂xj

= q′(xi)q
′(xj)

{
E

[
b
(
w − π −min(

2ℓ+ ℓB−i,−j

n
, d)

)
| x−i,−j

]
− 2E

[
b
(
w − π −min

(ℓ+ ℓB−i,−j

n
, d)

)
| x−i,−j

]
+ E

[
b(w − π −min

(ℓB−i,−j

n
, d)

)
| x−i,−j

]}
By Taylor’s Theorem and Mean Value Theorem, denote a(wr) :=

1
2
· −b′′(wr)
b′(w−π)

, we have

b(w − π − z) = b(w − π)− b′(w − π)z +
1

2
· b′′(w − π − t)z2
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= b(w − π)− b′(w − π)
[
z +

1

2
· −b′′(w − π − t)

b′(w − π)
z2
]

= b(w − π)− b′(w − π)
[
z + a(w − π − t)z2

]
for z ∈ [0, d] and t ∈ [0, z]. By assumption, a(w−π− t) := 1

2
· −b′′(w−π−t)

b′(w−π)
is not extremely

large, hence we can make an approximation that

b(w − π − z) ≈ b(w − π)− b′(w − π)z

This implies that

∂δ(xi,x−i)

∂xj

≈ q′(xi)q
′(xj)b

′(w − π)

{(
E

[
min(

ℓ+ ℓB−i,−j

n
, d) | x−i,−j

]
− E

[
min(

ℓB−i,−j

n
, d) | x−i,−j

])
−

(
E

[
min(

2ℓ+ ℓB−i,−j

n
, d) | x−i,−j

]
− E

[
min(

ℓ+ ℓB−i,−j

n
, d) | x−i,−j

])}
≥ 0

Therefore, ∂2ui(xi,x−i)
∂xi∂xj

≥ 0, implying that participants’ efforts are strategic complements.

Step 2: Proof of W (S) = [R(x),R(x)]

Firstly, we prove that [R(x),R(x)] ⊂ W (S). By definition, we have R(x),R(x) ∈

W (S) = W ([x,x]). Moreover, we have to show that R(x) ≤ R(x), i.e. Ri(x) ≤ Ri(x)

for all i ∈ Mn. In Step 1, we have proven that δ(xi,x−i) is increasing with respect to

x−i. We assert that δ(xi,x−i) is decreasing with respect to xi because

∂δ(xi,x−i)

∂xi

= q′′(xi)

(
E

[
b(w − π −min(

ℓ+ ℓB−i

n
, d) | x−i

]
− E

[
b(w − π −min(

ℓB−i

n
, d) | x−i

])
≤ 0

Assume by contradiction that there exists i ∈ Mn such that Ri(x) > Ri(x), then, we

have

0 = (1 +
∑
j

gij)δ
(
Ri(x),x−i

)
− c′

(
Ri(x)

)
≤ (1 +

∑
j

gij)δ
(
Ri(x),x−i

)
− c′

(
Ri(x)

)
< (1 +

∑
j

gij)δ
(
Ri(x),x−i

)
− c′

(
Ri(x)

)
≤ (1 +

∑
j

gij)δ
(
Ri(x),x−i

)
− c′

(
Ri(x)

)
= 0
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which contradicts the fact that 0 = 0, hence Ri(x) ≤ Ri(x) for all i ∈ Mn. Therefore

[R(x),R(x)] ⊂ W (S) = W ([x,x])

Secondly, we prove that W (S) ⊂ [R(x),R(x)]. Suppose x /∈ [R(x),R(x)], we now

prove that x /∈ W (S). If x /∈ [R(x),R(x)], we know that there exists i ∈ Mn such that

either (i) xi > Ri(x), or (ii) xi < Ri(x). If (i) holds, then, for an arbitrary x ∈ S = [x,x],

we have

ui(xi,x−i)− ui

(
Ri(x),x−i

)
≤ ui(xi,x−i)− ui(Ri(x),x−i) < 0

where the first inequality uses the property of strategic complements 13, the second in-

equality uses the optimality of Ri(x) given x−i. Hence, we know that Ri(x) strongly dom-

inates xi. Similarly, if (ii) holds, then, Ri(x) strongly dominates xi. Because either (i)

Ri(x) strongly dominates xi, or (ii) Ri(x) strongly dominates xi, recall thatR(x),R(x) ∈

W (S), we can infer that x /∈ W (S). Therefore, we know W (S) = [R(x),R(x)].

Step 3: Proof that all Nash equilibria lie in [x(G),x(G)]

Because ui(xi = +∞,x−i) = −∞ , xi = +∞ is definitely not an optimal effort for

any x−i. Therefore, we can safely restrict the feasible set xi ∈ R+ to xi ∈ [0, xmax] for

all i ∈ Mn where xmax < ∞ is an arbitrarily large but finite real number. This makes

0 ≤ x ≤ xmax1. We defineW j([0, xmax1]) := W
(
W j−1([0, xmax1])

)
withW 0([0, xmax1]) =

[0, xmax1]. Similarly, let Rj(0) := R
(
Rj−1(0)

)
and Rj(xmax1) := R

(
Rj−1(xmax1)

)
with

R0(0) = 0 and R0(xmax1) = xmax1. Then, using the conclusion that W ([x,x]) =

[R(x),R(x)] proven in Step 2, we have

W ([0, xmax1]) = [R(0),R(xmax1)]

W 2
(
[0, xmax1]

)
= W

(
W ([0, xmax1])

)
= W

(
[R(0),R(xmax1)]

)
= [R2(0),R2(xmax1)]

...

W j([0, xmax1]) = [Rj(0),Rj(xmax1)]

13Using ∂2ui(xi,x−i)
∂xi∂xj

≥ 0, we have

ui(xi,x−i)− ui

(
Ri(x),x−i

)
=

∫ xi

Ri(x)

u′
i(z,x−i)dz ≤

∫ xi

Ri(x)

u′
i(z,x−i)dz = ui(xi,x−i)− ui(Ri(x),x−i)
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By definition, Nash equilibrium cannot be crossed out by iterated elimination of strongly

dominated strategies, so all Nash equilibria lie in W j([0, xmax1]) = [Rj(0),Rj(xmax1)].

Moreover, since R(·) is an increasing function with respect to x because of strategic

complements, we can infer that {Rj(0)}∞j=1 is an increasing sequence and {Rj(xmax1)}∞j=1

is a decreasing sequence. By the existence of the Nash equilibria, we know that ∅ ̸=

W∞([0, xmax1]) = [R∞(0),R∞(xmax1)]. If we denote x(G) := R∞(0) and x(G) :=

R∞(xmax1), then , we know that x(G) and x(G) exist because Rn is complete, and Nash

equilibria lie in [x(G),x(G)].

Step 4: Proof that x(G) and x(G) are the largest and smallest Nash equi-

libria.

We now show that x(G) (and similar to x(G)) is a Nash equilibrium. 14 Assume

by contradiction that x(G) is not a Nash equilibrium, then, there exists i ∈ Mn and its

associated x̂i such that

ui(x̂i,x−i(G)) > ui(xi(G),x−i(G))

By the continuity of ui(·, ·) with respect to xi and x−i, we know that there exists some

finite number j, such that

ui(x̂i,R
j−1(xmax1)−i) > ui(R

j
i (xmax1),R

j−1(xmax1)−i)

which contradicting the optimality of Rj
i (xmax1).

B.3 Proof of Proposition 4

Proof: In the proof of Proposition 3, we know that δ(xi,x−i) is increasing with respect

to x−i and decreasing with respect to xi for all i ∈ Mn. We assume by contradiction that

x∗
j(G) < x∗

i (G), then, we have

δ
(
x∗
j(G),x∗

−j(G)
)
≥ δ

(
x∗
i (G),x∗

−j(G)
)
≥ δ

(
x∗
i (G),x∗

−i(G)
)

14Because any Nash equilibrium x∗ ∈ [x(G),x(G)], x(G) is then the largest Nash equilibrium.
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The first and second inequalities are followed by the monotonicity of δ(·, ·) with respect

to xi and x−i for all i ∈ Mn.

Further, we can know that

∂uj(xj,x−j;G)

∂xj

|x=x∗(G) = (1 +
∑
k

gjk)δ
(
x∗
j(G),x∗

−j(G)
)
− c′

(
x∗
j(G)

)
> (1 +

∑
k

gjk)δ
(
x∗
j(G),x∗

−j(G)
)
− c′

(
x∗
i (G)

)
≥ (1 +

∑
k

gjk)δ
(
x∗
i (G),x∗

−i(G)
)
− c′

(
x∗
i (G)

)
≥ (1 +

∑
k

gik)δ
(
x∗
i (G),x∗

−i(G)
)
− c′

(
x∗
i (G)

)
=

∂ui(xi,x−i;G)

∂xi

|x=x∗(G)

If x∗
j(G) > 0, this contradicts the fact that

∂uj(xj ,x−j ;G)

∂xj
|x=x∗(G) =

∂ui(xi,x−i;G)
∂xi

|x=x∗(G) = 0.

On the other hand, if x∗
j(G) = 0, this contradicts the fact that

∂uj(xj ,x−j ;G)

∂xj
|x=x∗(G) ≤ 0 =

∂ui(xi,x−i;G)
∂xi

|x=x∗(G). Therefore, we have x∗
j(G) ≥ x∗

i (G).

B.4 Proof of Proposition 5

Proof: In the proof of Proposition 2, we know that Ri(x;G) is defined as:

1. Ri(x;G) = 0 if and only if ∂ui(xi,x−i;G)
∂xi

|xi=0 ≤ 0;

2. Ri(x;G) > 0 and ∂ui(xi,x−i;G)
∂xi

|xi=Ri(x;G) = 0 if and only if ∂ui(xi,x−i;G)
∂xi

|xi=0 > 0.

If Ri(x;G) > 0, then, by the implicit function theorem, we have

∂Ri(x;G)

∂xj

= −∂2ui(xi,x−i)/∂xi∂xj

∂2ui(xi,x−i)/∂x2
i

and
∂Ri(x;G)

∂gij
= −∂2ui(xi,x−i)/∂xi∂gij

∂2ui(xi,x−i)/∂x2
i
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for all j ̸= i. In the proof of Proposition 3 , we know that

∂2ui(xi,x−i)

∂x2
i

= (1 +
∑
j

gij)
∂δ(xi,x−i)

∂xi

− c′′(xi) < 0

and
∂2ui(xi,x−i)

∂xi∂xj

= (1 +
∑
j

gij)
∂δ(xi,x−i)

∂xj

≥ 0

hence ∂Ri(x;G)
∂xj

≥ 0. In addition, as

∂2ui(xi,x−i)

∂xi∂gij
= δ(xi,x−i) ≥ 0

we can infer that ∂Ri(x;G)
∂gij

≥ 0. Hence, Ri(x;G) is increasing with respect to x−i and gij.

If Ri(x;G) = 0, then, for any x−i′ ≥ x−i and G′ ≥ G,

Ri

(
(xi,x−i′);G

′) ≥ Ri

(
(xi,x−i);G

)
= 0

Also, Ri(x;G) is increasing with respcet to x−i and gij. To sum up, Ri(x;G) is an

increasing function with respect to x−i and G, regardless of whether Ri(x;G) > 0 or

Ri(x;G) = 0.

As R(x;G) is an increasing function with respect to x ∈ [0, xmax1],
15 and [0, xmax1]

is a complete lattice, by Tarskis’ fixed point theorem 16, we know that x(G) = sup{x ∈

[0, xmax1] | R(x;G) ≥ x} and x(G) = inf{x ∈ [0, xmax1] | R(x;G) ≤ x}. Because

R(x;G) is also an increasing function with respect to G17, we know that

{x ∈ [0, xmax1] | R(x;G) ≥ x} ⊂ {x ∈ [0, xmax1] | R(x;G′) ≥ x}

and

x(G) = sup{x ∈ [0, xmax1] | R(x;G) ≥ x} ≤ sup{x ∈ [0, xmax1] | R(x;G′) ≥ x} = x(G′)

15That is to say, Ri(x;G) is an increasing function with respect to x−i for all i ∈ Mn.
16If T is a complete lattice and f : T → T is an increasing (non-decreasing) function, then, f has

fixed points. Moreover, the set of fixed points of f has sup{x ∈ T : f(x) ≥ x} as its largest element, and

inf{x ∈ T : f(x) ≤ x} as its smallest element, see Milgrom & Roberts (1990) for more detail.
17That is to say, Ri(x;G) is an increasing function with respect to gij for all i ∈ Mn and j ̸= i.
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Using a similar technique, we know that

{x ∈ [0, xmax1] | R(x;G′) ≤ x} ⊂ {x ∈ [0, xmax1] | R(x;G) ≤ x}

and

x(G) = inf{x ∈ [0, xmax1] | R(x;G) ≤ x} ≤ inf{x ∈ [0, xmax1] | R(x;G′) ≤ x} = x(G′)

Therefore, x(G′) ≥ x(G) and x(G′) ≥ x(G) for G′ ≥ G.

By Proposition 3, we know Nash equilibrium x∗(G) ∈ [x(G),x(G)] and x∗(G′) ∈

[x(G′),x(G′)]. If [x(G),x(G)] are singleton sets, then, we obviously know that x∗(G) ≥

x∗(G′) for unique Nash equilibrium x∗(G) and x∗(G′) under G and G′ respectively.

B.5 Proof of Proposition 6

Proof: Recall that

δ(xi,x−i) := −q′(xi)

{
E

[
b

(
w − π −min

(ℓB−i

n
, d
))

| x−i

]
− E

[
b

(
w − π −min

(ℓ+ ℓB−i

n
, d
))

| x−i

]}
.

We can infer that limn→∞ δ(xi,x−i) = 0, because

Pr

(
lim

n→+∞

∣∣∣∣min

(
ℓB−i

n
, d

)
−min

(
ℓ+ ℓB−i

n
, d

)∣∣∣∣ = 0

)
= 1

Further, because
∑∞

j=1 gij < ∞, we have

lim
n→∞

(1 +
∑
j

gij)δ(xi,x−i) = 0

and

lim
n→∞

∂ui(xi,x−i;Gn)

∂xi

= lim
n→∞

[
(1 +

∑
j

gij)δ(xi,x−i)− c′(xi)

]
= −c′(xi) < 0

for all i ∈ Mn and its associated xi and x−i, implying that xi = 0 is a strictly dominant

strategy for all i ∈ Mn. Therefore, limn→∞ x∗(Gn) = 0.
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