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Abstract

In this paper, we provide a theoretical framework justifying the existence of a cor-
relation risk premium in a market with two traded assets. We prove that risk-neutral
dependence can differ substantially from real-world dependence by characterizing
the set of risk-neutral martingale measures. This implies that implied correlation
can be significantly different with the realized correlation. Depending on the choice
of the market regarding the pricing measure, implied correlation can be high or low.
We label the difference between risk-neutral and real-world correlation the ‘corre-
lation gap’ and make the connection with correlation risk premium. We show how
dispersion trading can be used to exploit this correlation gap and demonstrate how
there can exist a negative correlation risk premium in the financial market.

Keywords: implied correlation, risk-neutral measure, correlation trading, cor-
relation risk premium

1 Introduction

Correlation among assets plays an important role in the financial market. Empirical evi-
dence shows that market returns are lower when correlations among assets are increasing,
since higher correlations reduce the diversification effect and increase the market volatil-
ity. Roughly stated, the correlation risk premium is the difference between the realized
and the option-implied, i.e. risk neutral, correlation1. The correlation risk premium can
be interpreted as an insurance premium paid for assets that hedge against unanticipated
rises in correlation. Academic research has provided more empirical evidence to show that
the correlation risk premium in equity markets is economically and statistically significant
and long-term market returns can be predicted using the option-implied correlation; see
e.g. Driessen et al. (2009) , Faria and Kosowski (2014), Buss et al. (2017) and Faria
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1we will provide an exact definition of the correlation risk premium later in this paper.
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et al. (2022). In this paper, we will provide a theoretical framework that allows to better
understand the correlation risk premium.

Stocks and market indices are modeled as random variables on the probability space(
Ω, (Ft)t≥0 ,P

)
. Under the assumption of no-arbitrage, the prices of traded derivatives can

be expressed as discounted expected payoffs under a risk-neutral probability measure Q.
Implied correlations (i.e. the correlation between assets under the risk neutral measure)
can be determined from traded derivative prices, as was shown in Skintzi and Refenes
(2004). Indeed, implied correlation provides a measure of the relative cheapness/richness
of index options in relation to the index components, see e.g. Chicago Board Options
Exchange (2022). It reveals in the first place information about the degree of the co-
movement under the probability measure Q, see also Dhaene et al. (2012), Linders et al.
(2015) and Madan and Schoutens (2013) for alternative implied dependence measures.
The discrepancy between the realized correlation (i.e. the correlation between assets under
the real-world measure P) and the implied correlation gives rise to the existence of the
correlation risk premium.

The increasing complexity of insurance products has introduced the need to under-
stand the difference between implied and real-world correlation when dealing with insur-
ance problems. Indeed, modern insurance products combine actuarial and financial risks.
Therefore, their valuation and risk management rely on real-world and risk-neutral proba-
bilities. For example, Solvency II requires that insurance companies value their liabilities
in a ‘fair’ way, which implies that risk-neutral valuation has to be used for financial risks
and real-world valuation for the actuarial risks. See for example Pelsser and Stadje (2014),
Ghalehjooghi and Pelsser (2020), Dhaene et al. (2017), Barigou et al. (2019), and Linders
(2023) for various methodologies for pricing insurance products based on combinations of
real-world and risk-neutral information. Examples of complex insurance products com-
bining financial and actuarial risks are variable annuities. In Bauer et al. (2008) and
Bacinello et al. (2011) a valuation framework for a general class of variable annuities
based on risk-neutral and real-world expectations was introduced. Concrete examples are
then provided in Coleman et al. (2007), Feng and Jing (2017) and MacKay et al. (2023).
Therefore, understanding the difference between risk-neutral and real-world information
is important when considering variable annuities.

In this paper, we consider a discrete market setting. For stochastic finance in discrete
time, one can refer to Föllmer and Schied (2004). We investigate to what extent the
implied correlation reveals information about the degree of the co-movement under the
probability measure P. We illustrate how statements which hold true in the risk-neutral
world do not necessarily hold in the real world. For example, stock prices can be strongly
negative dependent in the risk-neutral world (under Q) while being positive dependent in
the real world (under P), this leads to a large difference between the real-world and the
risk-neutral correlation, which is quantified by the correlation gap. Moreover, we introduce
a new derivative called dispersion swap to trade the correlation gap and demonstrate that
the correlation gap does not converge to zero for market equilibrium, i.e. the realized
correlation can be different with the implied correlation in the case of market equilibrium.

In Section 2, we introduce a simple discrete financial market with two traded stocks.
We apply the multivariate binomial tree model for the underlying stock prices. At time t,
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t = 0, 1, 2 . . . , the price of the stock at the next valuation moment t+1 can only take two
possible outcomes. This financial market is arbitrage-free and incomplete, we characterize
the set of feasible risk-neutral probability measures and demonstrate that it is feasible to
determine a risk-neutral measure Q by explicitly specifying the implied correlation. Note
that we limit our analysis to two stocks in the financial market. This choice is motivated
by the fact that a market with two assets offers an intuitive setting for both theoretical
and numerical exploration of the correlation gap2.

In Section 3, we consider the situation where a pricing measure is chosen by the
market from the set of feasible risk-neutral probability measures, see Section 3.1. We
show that the pricing measure chosen by the market can differ substantially from the
real-world probability measure without introducing arbitrage opportunities. We give an
example where the dependence structure used to price multivariate derivatives is different
from the real-world dependence structure. In such a situation there can be a significantly
large correlation gap in the financial market, i.e. the difference between risk-neutral and
real-world correlations is substantial.

In Section 4, we consider the sale of a unit-linked insurance product to a group of N
policyholders. The payoff of this unit-linked contract is contingent upon the performance
of a stock market fund comprising two stocks within the financial market. We demonstrate
how disparities between real-world dependence and risk-neutral dependence contribute to
determining the expected excess return above the risk-free return for each policyholder.
To be more specific, an example is presented in Section 4.1 to illustrate that the expected
excess return for the purchase of the unit-linked insurance is determined by the correlation
gap. A non-zero correlation gap leads to a non-zero expected excess return for buying
the unit-linked insurance product. Therefore, policyholders of the unit-linked insurance
product are also facing the correlation risk in the financial market.

At first, a large correlation gap may look like a dysfunction of the financial market.
However, we propose in Section 5 that, in our simple market model, one can use a new
derivative, the dispersion swap, to exploit the correlation gap. This strategy is not an
arbitrage strategy, but as dependence under Q is moving further and further away from
its P counterpart, buying the dispersion swap becomes more attractive in terms of larger
expected profit. To be more precise, a large positive correlation gap, corresponding to the
situation that the realized correlation is expected to exceed the implied correlation, results
in a significant positive expected profit for longing the dispersion swap. Furthermore, we
show how one can combine the floating leg of individual variance swaps and the floating leg
of the index variance swap to approximate the floating leg of the dispersion swap, which
is called the realized dispersion. The expected profit for a buyer of the dispersion swap is
directly related to the correlation gap, the higher this gap, the higher the expected profit.
The idea of setting up trading strategies to exploit the difference between realized and
implied dependence was also discussed in Laurence (2008), Laurence and Wang (2008),
Bossu (2014) and Meissner (2015).

Apart from trading the dispersion swap to make a profit, investors can also long the
dispersion swap to hedge against unanticipated correlation spikes in the financial market.

2In a future research paper we generalize this market situation to n assets, where n ≥ 2.
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Because the investors may have a high degree of risk aversion towards the correlation
risk, they are willing to buy the dispersion swap, even with a negative expected profit.
The expected profit of a dispersion swap is also called the correlation risk premium, as
it represents the price that market participants are willing to pay to sell correlation risk.
On the other hand, we show that the dispersion swap with a strictly negative (or positive)
expected return is not an arbitrage strategy. Therefore, we conclude in Section 6 that a
market in equilibrium can accommodate a negative correlation risk premium.

2 The financial market

2.1 A discrete financial market

We consider a discrete financial market with two non-dividend paying stocks over a finite
time horizon. Today is time 0, the price of stock i (i = 1 or 2), at the future time t
(t = 1, 2, ..., n), is denoted by Si(t)

3. Given the price of stock i at time t − 1, the future
stock price at time t can only increase to euiSi(t − 1) or decrease to ediSi(t − 1). The
forward return of stock i at time t is denoted by Ri (t) and defined as:

Ri(t) = log
Si(t)

Si(t− 1)
, i = 1 or 2 and t = 1, 2, ..., n. (1)

The financial market is also home to a bank account, which allows borrowing and lending
at a constant, risk-free interest rate r. The time 0 value of the risk-free asset is B(0), and
its time t value is given by B(t) = ertB(0). We assume that eui and edi are symmetric
with respect to the forward rate er:

eui − er = −(edi − er), for i = 1, 2. (2)

Under the real-world probability measure P, we denote the joint probabilities of the
random vector (R1(t), R2(t)) as follows:

P [R1(t) = d1, R2(t) = d2] = pdd(t), (3)

P [R1(t) = u1, R2(t) = d2] = pud(t),

P [R1(t) = d1, R2(t) = u2] = pdu(t),

P [R1(t) = u1, R2(t) = u2] = puu(t).

We assume that the joint probabilities under real-world measure P are strictly positive.
The distribution of the random vector (R1(t), R2(t)) is determined by the marginal distri-
butions of Ri (t) , and the dependence structure connecting R1 (t) and R2 (t) . We assume
that for i = 1, 2, the random variables Ri (1) , Ri (2) , . . . , Ri (n) are independent of each

3All random variables we encounter are assumed to be defined on the common probability space
(Ω, (Ft)t=1,2,...,n,P). The filtration (Ft)t=1,2,...,n is the natural filtration generated by the stock price
processes.
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other. The probability of stock 1 moving up and down from t− 1 to t is denoted by pu·(t)
and pd·(t), respectively. For stock 2, these probabilities are denoted by p·u(t) and p·d(t).

Assume the financial market is arbitrage free, hence there exists at least one probability
measure Q, called a risk-neutral probability measure, satisfying the following conditions:

1. Q and P are equivalent probability measures;

2. for any traded asset , its future payoff discounted at the risk-free rate r is a martin-
gale with respect to Q:

e−rEQ [Si (t) |Ft−1] = Si (t− 1) , for i = 1, 2, and t = 1, 2, .., n. (4)

If Q is a probability measure satisfying the above-stated conditions, we say that it is a
feasible risk-neutral probability measure. Under Q, the joint probabilities of the random
vector (R1(t), R2(t)) are denoted by quu(t), qud(t), qdu(t), and qdd(t). Additionally, the
risk-neutral marginal probabilities in [t− 1, t] are denoted by qu· (t) , qd· (t) , q·u (t), and
q·d (t) . We show in the next subsection that this simple market model is incomplete by
characterizing the set of feasible risk-neutral probability measures.

2.2 The set of equivalent martingale measures

Let us now characterize the set of all feasible risk-neutral probability measures. This
set is denoted by M. Each Q ∈ M is characterized by the joint probabilities qdd(t),
qud(t), qdu(t), quu(t), t = 1, 2, ..., n. In Theorem 1, we characterize the risk-neutral pricing
measure Q by the correlation coefficients ρQ(t) = CorrQ [R1 (t) , R2 (t)], t = 1, 2, . . . , n. A
proof of this Theorem can be found in Appendix A.1.

Theorem 1 Consider the stock price model (3) satisfying the conditions (2). The set M
of risk-neutral probability measures can be characterized as follows:

Q ∈M ⇔ ∃ ρQ(t) ∈ (−1, 1) , t = 1, 2, ..., n,

such that

{
quu(t) = qdd(t) =

1
4
(1 + ρQ(t)),

qud(t) = qdu(t) =
1
4
(1− ρQ(t)).

(5)

The risk-neutral measure Q is not unique and the market is incomplete. It is clear to
see from Theorem 1 that the risk-neutral marginal probabilities are all equal to 1

2
. Note,

however, that our model can be generalized to situations where the marginal risk neutral
probabilities are different from 1

2
. Specifying a feasible risk-neutral measure Q under the

stock price model (3), requires specifying the correlation efficient ρQ(t), t = 1, 2, ..., n.
Each risk-neutral probability measure Q in M has the same marginal distributions but
different dependence structures. For instance, take ρQ(t) ≡ 0, then we find the risk-neutral
measure Q⊥ ∈ M where the marginals are independent.

The situations characterized by the minimal correlation coefficient ρQmin(t) ≡ −1 and
the maximal correlation coefficient ρQmax(t) ≡ 1, correspond with the probability measure

5



Qmin and the probability measure Qmax, respectively. The random vector (R1(t), R2(t))
under the probability measure Qmin is counter-monotonic. In this situation, the com-
ponents of the random vectors are maximum negative dependent. Inversely, the random
vector (R1(t), R2(t)) under the probability measure Qmax is comonotonic and the compo-
nents of the random vector are maximum positive dependent.

The real-world joint probabilities are assumed to be strictly positive, hence all the
risk-neutral probabilities specified by (5) are strictly positive. Using (5), we can directly
find that for each Q ∈ M, ρQ(t) ∈ (−1, 1), which means that the comonotonic and
the counter-monotonic cases are not reachable in M. The larger ρQ(t), the ‘closer’ the
risk-neutral probability measure Q is to the maximum measure Qmax.

The set M contains a wide range of dependence structures. Each element Q in the
set M of risk-neutral probability measures can be expressed as a linear combination of
Qmin and Qmax:

Q ∈M ⇔ ∃ ρQ(t) ∈ (−1, 1) such that Q =
(1−ρQ(t))

2
Qmin +

(1+ρQ(t))

2
Qmax. (6)

By increasing the correlation coefficient ρQ (t) , we can gradually increase the dependence
of the components R1 (t) and R2 (t) .

It directly follows from (5) that the joint risk-neutral cdf FQ
t of the forward return

vector (R1(t), R2(t)) can be given by:

F Q
t (x1, x2) =


0, if x1 < d1 or x2 < d2,

ρQ(t)+1

4
, if x1 ∈ [d1, u1) and x2 ∈ [d2, u2) ,

1
2
, if x1 ∈ [d1, u1) and x2 ≥ u2,

1
2
, if x1 ≥ u1 and x2 ∈ [d2, u2) ,

1, if x1 ≥ u1 and x2 ≥ u2.

(7)

It follows from (7) that the joint risk-neutral cdf of forward return FQ
t (x1, x2) can be

unambiguously determined by the correlation coefficient ρQ(t).

2.3 Comparing different risk-neutral measures

The set M contains different risk-neutral measures such that the marginals R1 and R2

are always the same. Therefore, the difference between multivariate risk-neutral measures
is in dependence structure. To compare different probability measures in M and identify
under which one the dependence is stronger or weaker, we can use multivariate stochastic
orders. The notion of multivariate stochastic orders in actuarial science goes back to
Yanagimoto and Okamoto (1969).

We first introduce the Positive Quadrant Dependence and the Negative Quadrant De-
pendence. The notions of PQD and NQD were introduced in Lehmann (1966).

Definition 2 (Quadrant Dependence) The random vector (R1(t), R2(t)) is said to be
Positive Quadrant Dependent under the probability measure Q, notation (R1(t), R2(t)) ∼
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Q-PQD, in case the vector (R1(t), R2(t)) satisfies

Q [R1(t) ≤ x1]Q [R2(t) ≤ x2] ≤ F Q
t (x1, x2) , for all (x1, x2) ∈ R2.

The vector (R1(t), R2(t)) is said to be Negative Quadrant Dependent under the probability
measure Q, notation Q-NQD, in case the vector satisfies

Q [R1(t) ≤ x1]Q [R2(t) ≤ x2] ≥ F Q
t (x1, x2) , for all (x1, x2) ∈ R2,

where F Q
t is the joint cdf of (R1(t), R2(t)) under the probability measure Q.

Using Expression (7) for F Q
t results in the following implications:

ρQ(t) ≥ 0 ⇐⇒ ρQ(t) ≥ ρQ⊥(t) ⇐⇒ (R1(t), R2(t)) is Q-PQD, (8)

ρQ(t) ≤ 0 ⇐⇒ ρQ(t) ≤ ρQ⊥(t) ⇐⇒ (R1(t), R2(t)) is Q-NQD,

where ρQ⊥(t) is the correlation of the independent copy of the random vector (R1(t), R2(t)),
it is straightforward to show that ρQ⊥(t) equals 0. Using the notion of quadrant depen-
dence, we can measure the joint behavior of two random variables. If the risk-neutral
correlation ρQ(t) is larger than 0, then the random vector (R1(t), R2(t)) is Q-PQD, which
means that the two random variables R1(t) and R2(t) are likely to assume small or large
values simultaneously. Conversely, if ρQ(t) is less than 0, the random vector is Q-NQD,
implying an inverse relationship where R1(t) and R2(t) may move in different directions.

The concept of quadrant dependence measures the association between two random
variables. However, under different risk-neutral measures Q(1) and Q(2), the marginals
and quadrant dependence of the random vector (R1(t), R2(t)) may be identical. To dis-
tinguish the difference under such two different risk-neutral measures, we can use the
correlation order introduced in Dhaene and Goovaerts (1996), since the joint distribution
of (R1(t), R2(t)) is different when using two different risk-neutral measures.

Definition 3 (Correlation order) Consider the risk-neutral probability measures Q(1)

and Q(2) with correlation parameters ρQ(1)(t) and ρQ(2)(t), respectively. We say that the

cdf ’s F Q(1)

t and F Q(2)

t are ordered in the correlation order, notation F Q(1)

t ⪯Corr F
Q(2)

t if the
following holds

F Q(1)

t (x1, x2) ≤ F Q(2)

t (x1, x2) , for all (x1, x2) ∈ R2. (9)

Intuitively, the inequality F Q(1)

t ⪯Corr F
Q(2)

t implies that the two stock prices in [t−1, t]
move stronger together under the probability measure Q(2) than under the probability
measure Q(1), i.e. the probability of having simultaneously large/small realizations in
[t − 1, t] is larger under Q(2), compared to Q(1). Moreover, comparing the correlations
ρQ(1) (t) and ρQ(2) (t) gives information about the correlation order between the probability
measures Q(1) and Q(2). Indeed, it follows directly from Expression (7) that the following
equivalence relation holds:

ρ
Q(1)

(t) ≤ ρ
Q(2)

(t) ⇐⇒ F Q(1)

t ⪯Corr F
Q(2)

t . (10)

There are infinitely many risk-neutral probability measures and each risk-neutral mea-
sure models the stock prices using a different dependence structure. If a contingent claim
has to be priced, the market will pick a suitable pricing measure.
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3 Real world vs risk-neutral measures

Section 2 shows that the market is incomplete and a whole set of risk-neutral measures
exists. Market prices are determined by supply and demand, and we assume they do
not allow for arbitrage. We also assume that sufficiently many derivatives are traded
and these prices are publicly available. All market participants can observe these prices.
Having these prices at our disposal allows to back out the choice of the market concerning
the risk-neutral measure.

If we can obtain the risk-neutral pricing measure used to price traded derivatives, we
can back out the view of the market about future dependencies between the stock prices.
However, the market can choose from a wide range of possibilities for ρQ (t) and our results
show that there is, mathematically, no reason why the market should take Q such that
ρQ (t) is close to the real-world correlation ρP (t) for all t.

3.1 A market with a combined asset

From Theorem 1, the spot price of stock i and its potential outcomes di and ui, fully
specify the distribution of Ri. However, individual derivatives written on each stock do not
give additional information about the joint distributions. To determine the multivariate
distribution, a combined asset and derivative prices on this combined asset are necessary.

Consider the market described above, but now also assume that a stock market index
is traded. Its price at time 0 is denoted by S(0) and its price at time t is denoted by S(t):

S(t) = S1(t) + S2(t), for t = 0, 1, 2, . . . , n. (11)

We have that EQ [S(t)] = EQ [S1(t) + S2(t)] = ertS (0) . The forward return of the stock
market index at time t is denoted by R (t) and defined as follows:

R (t) = log
S(t)

S(t− 1)
, for t = 1, 2, . . . , n. (12)

Call options on the index with maturity T = 1, 2, ..., n are also traded. The payoff of
an index call option is given by (S (T )−K)+ where (x)+ = max {x, 0}. The price of
an index call with maturity T and strike K is then denoted by CQ [K,T ] and can be
expressed as follows:

CQ [K,T ] = e−rTEQ
[
(S(T )−K)+

]
.

The cumulative distribution function of the random variable S (T ) under the risk-neutral
measure Q is denoted by FQ

S(T ). We introduce the stop-loss order between two risk-neutral
probability measures in terms of their call option curves.

Definition 4 (Stop-loss order) Consider the stock price model described in (3) satis-
fying the conditions (2) and the stock market index defined in (11). Consider the risk-

neutral probability measures Q(1) and Q(2). We say that FQ(1)

S(T ) and FQ(2)

S(T ) are ordered in

the stop-loss order, notation FQ(1)

S(T ) ⪯sl F
Q(2)

S(T ) if

CQ(1) [K,T ] ≤ CQ(2) [K,T ] for all K ≥ 0. (13)
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Intuitively, the stop-loss order relation FQ(1)

S(T ) ⪯sl F
Q(2)

S(T ) implies that the stock market index

S (T ) is more volatile under the pricing measure Q(2) than under the pricing measure Q(1).
Indeed, one can prove the following implication

FQ(1)

S(T ) ⪯sl F
Q(2)

S(T ) =⇒ VarQ(1) [S (T )] ≤ VarQ(2) [S (T )] .

Therefore, call options are more expensive under the measure Q(2) than under Q(1). The
following theorem shows that the correlation ρQ (1) determines the variability of the stock
market index S (1) .

Theorem 5 Consider the stock price model described in (3) satisfying the conditions (2)
and the stock market index defined in (11). Then, the following equivalence relation holds:

ρ
Q(1)

(1) ≤ ρ
Q(2)

(1) ⇐⇒ FQ(1)

1 ⪯Corr F
Q(2)

1 ⇐⇒ FQ(1)

S(1) ⪯sl F
Q(2)

S(1) .

Proof: From (10), we find that ρ
Q(1)

(1) ≤ ρ
Q(2)

(1) ⇐⇒ FQ(1)

1 ⪯Corr FQ(2)

1 . The call

option price CQ [K, 1] can be expressed as follows:

CQ [K, 1] = e−r

(
1

4
(P1 + P2 + P3 + P4) + (P1 − P2 − P3 + P4)

ρQ (1)

4

)
, (14)

where,

P1 = (S1 (0) e
u1 + S2 (0) e

u2 −K)+ ;P2 =
(
S1 (0) e

u1 + S2 (0) e
d2 −K

)
+
;

P3 =
(
S1 (0) e

d1 + S2 (0) e
u2 −K

)
+
;P4 =

(
S1 (0) e

d1 + S2 (0) e
d2 −K

)
+
.

It follows from Expression (14) that CQ [K, 1] is an increasing linear function of ρQ (1) ,
since (P1 − P2 − P3 + P4) ≥ 0.

The time 0 market price of a call option with strike K and maturity 1 year, denoted
by CQ [K, 1], can then be used to extract the correlation ρQ (1) associated with the risk-
neutral measure Q, as demonstrated in (14). Indeed, we have that

ρQ (1) =
4erCQ [K, 1]− (P1 + P2 + P3 + P4)

(P1 − P2 − P3 + P4)
. (15)

From Theorem 1, the joint probabilities qdd(1), qdu(1), qud(1), quu(1) in this case are fully
specified. For the single period case, Theorem 1 also indicates the equivalence relation
between the correlation of two stocks and the volatility of the stock index. Moreover, we
provide the following Theorem 6 to show that having available the option prices CQ [K,T ] ,
for T = 1, 2, . . . , n, one can back out the pricing measure Q.

Theorem 6 Assume the index call option prices CQ [K,T ] , T = 1, 2, ..., n are all avail-
able, then the correlation coefficient ρQ(t), t = 1, 2, ..., n can unambiguously be determined.
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Proof: Firstly, we already determined ρQ (1) from expression (15). Next, knowledge
about the price CQ[K, 2] enables us to back out the correlation ρQ(2). Indeed, we can
write:

CQ [K, 2] = e−2rEQ
[
EQ
[
(S (2)−K)+ | F1

]]
= e−2r

[
quu (1)EQ

[
(S (2)−K)+ | S1 (1) = S1 (0) e

u1 , S2 (1) = S2 (0) e
u2
]

+ qud (1)EQ
[
(S (2)−K)+ | S1 (1) = S1 (0) e

u1 , S2 (1) = S2 (0) e
d2
]

+ qdu (1)EQ
[
(S (2)−K)+ | S1 (1) = S1 (0) e

d1 , S2 (1) = S2 (0) e
u2
]

+ qdd (1)EQ
[
(S (2)−K)+ | S1 (1) = S1 (0) e

d1 , S2 (1) = S2 (0) e
d2
]]
. (16)

From Expression (14), we find that the conditional expectations are given by

EQ
[
(S (2)−K)+ | S1 (1) = s1, S2 (1) = s2

]
=

(P1 + P2 + P3 + P4) + (P1 − P2 − P3 + P4) ρQ(2)

4
,

where the constants Pj, j = 1, 2, 3, 4, are now defined as follows:

P1 = (s1e
u1 + s2e

u2 −K)+ ;P2 =
(
s1e

u1 + s2e
d2 −K

)
+
;

P3 =
(
s1e

d1 + s2e
u2 −K

)
+
;P4 =

(
s1e

d1 + s2e
d2 −K

)
+
.

The probabilities quu(1), qud(1), qdu(1), qdd(1) are already determined from the call option
price CQ[K, 1]. As a result, the only unknown parameter in the Expression (16) is ρQ (2)
and observing the option price CQ [K, 2] allows to solve for ρQ (2) . Suppose we have derived
the correlations ρQ (t) , t = 1, 2, ..., i, where i < n, we can then apply the same approach
to acquire the correlation ρQ (i+ 1) from the correlations ρQ (1), ρQ (2), . . . , ρQ (i) and the
index option price CQ [K, i+ 1]. The probability distributions of S1(i) and S2(i) can be
specified using ρQ (1), ρQ (2) , . . . , ρQ (i). Hence, by using the option price CQ [K, i+ 1],
we can solve for ρQ (i+ 1). Therefore, we conclude that having available the option prices
CQ [K,T ] , for T = 1, 2, . . . , n, one can back out the pricing measure Q.

Theorem 6 showed that adding index call options with maturities t = 1, 2, . . . , T, com-
pletes the market described in (3). Indeed, one can back out the risk-neutral correlation
using index call options, and therefore the risk-neutral probability measure is unique in
this market setting. The idea of extracting the implied correlation from available mul-
tivariate option prices is widely discussed in the literature. For example, Linders and
Schoutens (2014) use basket option prices, Ballotta et al. (2017) use quanto options and
Garcia et al. (2009) derive implied correlations using CDO spreads.

Prices of traded stocks and options can be used to back out the corresponding risk-
neutral pricing measure, the correlation of the stock returns and the volatility of the
stock market index. We refer to these quantities as implied measures, implied correlation,
implied volatility. Note that market prices are expectations under the pricing measure Q
and therefore the implied correlation and the implied volatility have to be understood as
correlation and volatility levels with respect to the risk-neutral probability measure Q.
Correlation and volatility under the probability P are referred to as real-world correlation
and volatility, respectively.
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3.2 Example: A single period model

We consider a one-period financial market as described in Section 2. The risk-free rate r
is assumed to be 0 and consider eu1 = 1.4, eu2 = 1.7. The time 0 spot prices of the traded
assets are given by S1 (0) = 100 and S2 (0) = 200. The dynamics of the financial market
under the real-world measure P are described by the following equations:

pdd(1) = 0.3, pud(1) = 0.2, (17)

pdu(1) = 0.2, puu(1) = 0.3.

Notice that we choose the marginals such that the P-marginals are the same as the Q-
marginals, this is to make the example simpler and is not required in general case.

Consider the stock market index S (t) = S1 (t) + S2 (t) , t = 0, 1. We find that the
real-world correlation ρP(1) = Corr[R1(1), R2(1)] = 0.2, and the real-world volatility
σP(1) =

√
VarP [R (1)] = 0.585. Since ρP(1) = 0.2 > 0, the return vector (R1 (1) , R2 (1))

is Positive Quadrant Dependent under the real-world probability measure P:

(R1 (1) , R2 (1)) is P− PQD. (18)

We conclude from (18) that stocks are positively dependent under the real-world measure
P specified by (17). However, the dependence structure under the risk-neutral measure Q
can be different, even opposite from the dependence under P. The following Proposition
1 is presented to show that the stock prices can be negatively dependent under the risk-
neutral measure.

Proposition 1 A call option written on the stock market index S (1), with strike K =
300, is traded and its time 0 price ĈQ can be observed in the market. Then we have the
following equivalence relations:

ĈQ ≥ 70 ⇐⇒ Q− PQD, (19)

ĈQ ≤ 70 ⇐⇒ Q− NQD

Proof: From (14), we have ĈQ = 70 + 20ρQ(1). Hence, it follows from (8) directly to
derive (19).

Proposition 1 shows that the market decides if the stocks are positive or negative
dependent under the risk-neutral measure. Indeed, different market situations result in
different risk-neutral measures, which can be different with the real-world measure P.
Here we provide three different market situations in Table 1.

Table 1: Three different market situations given that ρP = 0.2 and σP = 0.585.

Market ĈQ ρQ σQ Quadrant Dependence

Q(1) 52 −0.9 0.373 Q(1) − NQD
Q(2) 73 0.15 0.578 Q(2) − PQD
Q(3) 86 0.8 0.668 Q(2) − PQD

11



From Table 1, we can also conclude that the risk-neutral pricing measures Q(1), Q(2),
and Q(3) are ordered in the correlation order:

FQ(1)

t ⪯CorrF
Q(2)

t ⪯CorrF
Q(3)

t .

This example shows that deriving the implied correlation and volatility to learn about the
future dynamics of the stock prices is only part of the story. Implied measures are giv-
ing information about the risk-neutral dynamics and these statements cannot be directly
translated to statements under the real-world probability measure. If the risk-neutral
measure Q(1) is chosen by the market, then implied volatility and correlation are substan-
tially different with the real-world volatility and correlation. It might feel counter-intuitive
to use a negative dependence structure to price the index option while under the real-
world probability measure, the stocks are positive dependent. Notice that, however, the
corresponding index option price does not lead to arbitrage and is consistent with other
derivative prices.

3.3 Example: A multi-period model

Consider the financial market described above, but now we consider the future times
t = 1, 2, . . . , 10. Assume that the real-world correlation ρP(t) is given by ρP(t) = 0.92 −
0.08t, for t = 1, 2, . . . 10. Similar to the one-period case, we still assume the real-world
marginals are the same as the risk-neutral marginals, then the real-world dynamics can
be expressed as

pdd(t) =
1

4
(1 + ρP(t)), pud(t) =

1

4
(1− ρP(t)), (20)

pdu(t) =
1

4
(1− ρP(t)), puu(t) =

1

4
(1 + ρP(t)).

We show real-world correlations in the second column of Table 2 below.

Table 2: Real-world and risk-neutral correlations.

T ρP(T ) Ĉ[300, T ] ρQ̂(T )

1 0.84 71.72 0.086
2 0.76 98.03 0.258
3 0.68 109.89 0.348
4 0.60 127.91 0.428
5 0.52 144.79 0.496
6 0.44 154.04 0.553
7 0.36 162.56 0.600
8 0.28 174.16 0.634
9 0.20 182.13 0.651
10 0.12 187.13 0.663

Assume at time 0, at-the-money call options with maturities T = 1, 2, . . . , 10 are
traded. The market prices are denoted by Ĉ [300, T ] , where T = 1, 2, . . . , 10, and are
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given in the third column of Table 2. The market prices can be used to determine the
unique risk-neutral measure Q̂. Indeed, Theorem 6 shows that implied correlations ρQ̂(t)

can be uniquely determined by index call option prices Ĉ[300, t] for t = 1, 2, . . . , n. We
present implied correlations ρQ̂(t) in the fourth column of Table 2. We can find from
Table 2 that there always exists a gap between real-world and implied correlations. We
call this gap the correlation gap. The following Figure 1 shows the plot of the correlation
gap, ρP(t)− ρQ̂(t) for time t = 1, 2, . . . , 10.
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Figure 1: The correlation gap ρP(t)− ρQ̂(t) with respect to time t

Implied correlations capture the aggregate view of the market about future risk-neutral
correlations. Table 2 and Figure 1 clearly show that these views cannot always be directly
translated to real-world statements. Indeed, in our example, the risk-neutral correlation
is increasing: market participants anticipate a increase in correlation. However, the real-
world correlation is moving in the opposite direction and decreases over time. Moreover,
we can see from Figure 1 that the correlation gap ρP(t) − ρQ̂(t) is decreasing over time.
The correlation gap is highly positive at time 1 and becoming strongly negative at time 10.
Notably, a non-zero correlation gap may persist in the financial market over time. In the
next Section 4, we demonstrate that this non-zero correlation gap not only manifests in
the financial market but also carries implications for the purchase of unit-linked insurance
products.

4 The correlation gap: Market-consistent valuation

for insurance products

Consider an insurer selling a unit-linked product to a group of N policyholders of the
same age x. For i = 1, 2, . . . , N, we denote by Ii the indicator random variable modeling

13



the survival of the policyholder i,

Ii =

{
0, if policyholder i dies before time T,

1, if policyholder i survives to time T.
(21)

The payoff of this unit-linked contract depends on the performance of a stock market fund.
We assume here, for simplicity, the fund consists of two stocks S1(t) and S2(t). However, if
the fund value drops below a threshold K at time T , the insurer will compensate such that
the policy holder still receives the payoff K. To be more specific, policyholder i receives
upon survival at time T the payoff hi(T ) given by

hi(T ) = max(S1(T ) + S2(T ), K)× Ii, for i = 1, 2 . . . , N. (22)

Then the per-policy payout of the insurer is denoted by h(T ) and given by

h(T ) = max(S1(T ) + S2(T ), K)× 1

N

N∑
i=1

Ii. (23)

We assume the survival random variables I1, I2, . . . , In are i.i.d. and each Ii is independent
from the stock prices S1(T ) and S2(T ). Moreover, we assume that P [Ii = 1] = Tpx.

Market-consistent valuations are considered extensively for the valuation of unit-linked
insurance products, see e.g. Malamud et al. (2008),Artzner and Eisele (2010), Pelsser and
Stadje (2014), Dhaene et al. (2017) and Linders (2023). A market-consistent valuation
can be interpreted in the sense that the valuation of any hedgeable part within a claim
aligns with the price of its hedge. Now let us consider a market-consistent (MC) valuation
for the unit-linked insurance product with payout per policy given by (23). Denote this
MC valuation by ρ[h(T )] and it is given by

ρ[h(T )] = e−rTEQ[max(S1(T ) + S2(T ), K)]Tpx. (24)

Assume that N is large and the insurance risk can be diversified. For simplicity, here we
use the best-estimate for the valuation of the actuarial risk within h(T ). Hence, we can
regard the valuation ρ(h(T )) as a MC valuation based on perfect actuarial diversification.
By using the fact that e−rTEQ[max(S1(T )+S2(T ), K)] is equal to CQ[K,T ] +Ke−rT , the
value ρ[h(T )] can be rewritten as

ρ[h(T )] = CQ[K,T ]Tpx +Ke−rT
Tpx. (25)

In a broader context, market-consistent valuations can fulfill different purposes, which
can be employed not only in determining technical provisions but also in setting premi-
ums. Assume that ρ[h(T )] is the premium charged by the insurance company for each
policyholder. The expected payoff for policyholder i at time T is given by EP[hi(T )] and
can be expressed as

EP[hi(T )] = EP[max(S1(T ) + S2(T ), K)]Tpx, for i = 1, 2, . . . , N. (26)

14



It directly follows (24) and (26) that the time T expected excess return above the risk-free
return (Expected ER) for each policyholder to buy this unit-linked insurance product is
given by

Expected ER = EP[hi(T )]− erTρ[h(T )]

= Tpx
(
EP[max(S1(T ) + S2(T ), K)]− EQ[max(S1(T ) + S2(T ), K)]

)
. (27)

By recognizing that EP[max(S1(T ) + S2(T ), K)] can also be written as K + EP[(S1(T ) +
S2(T )−K)+], the expected excess return for purchasing this unit-linked insurance contract
can be rewritten as

Expected ER = Tpx
(
EP[(S1(T ) + S2(T )−K)+]− erTCQ[K,T ]

)
. (28)

From (28), it is evident that the expected excess return for buying this unit-linked insur-
ance contract depends on the expected excess return for investing in the index call option
with a strike K and a maturity T . In Section 3.1, it is shown that implied correlations
can be uniquely determined from the index call option prices. Hence, the expected ex-
cess return for each policyholder is associated with implied correlations. In the following
subsection, we examine the same market setting in Example 3.2 to illustrate that the ex-
pected excess return for the policyholder of this unit-linked insurance can be determined
by the correlation gap in the financial market.

4.1 Illustration: A single period model

Example 3.2 illustrates that there exists a correlation gap in the financial market. Consider
the same market setting as in Example 3.2, we show how the correlation gap determines
the expected excess return for buying the unit-linked insurance product.

In the single period market with r = 0, as in Example 3.2, let us consider a one-period
unit-linked insurance product with T = 1. The payout per policy for this unit-linked
insurance contract, given by (23), is denoted as h(1). Assume the threshold K = 300,
from (24), a market-consistent valuation of this one-period unit-linked insurance product
is denoted as ρ[h(1)] and given by

ρ[h(1)] = EQ[max(S1(1) + S2(1), 300)]px = (ĈQ + 300)px,

where ĈQ represents the time-0 index call option price with strike K = 300 and maturity
T = 1, and px stands for the probability that a policyholder aged exactly x survives to
time 1. Subsequently, the expected excess return for each policyholder at time-1 can be
written as

Expected ER = px

(
EP [(S(1)− 300)+]− ĈQ

)
, (29)

where S(1) is the market index defined in (11).

Using the real-world dynamics in (17), the expectation EP [(S(1) − 300)+] can be
expressed as follows

EP [(S(1)− 300)+] = 180× 1

4
(1 + ρP(1)) + 100× 1

4
(1− ρP(1)) = 70 + 20ρP(1).
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Additionally, Proposition 1 implies that ĈQ = 70+20ρQ(1). Hence in this market scenario,
we can find that

Expected ER = 20 · px(ρP(1)− ρQ(1)). (30)

From (30), we can clearly see that different correlation gaps give rise to different expected
excess returns. Indeed, a positive (negative) correlation gap implies a positive (negative)
expected excess return for buying the unit-linked insurance. Table 3 compares the expected
excess return of the unit-linked insurance policyholder across the three different market
scenarios presented in Example 3.2.

Table 3: Expected excess return for each policyholder in three different market situations

Market ĈQ ρQ ρP − ρQ ρ[h(1)] Expected ER

Q(1) 52 −0.9 1.1 352px 22px
Q(2) 73 0.15 0.05 373px 3px
Q(3) 86 0.8 −0.6 386px −12px

Table 3 clearly reveals that the presence of a non-zero correlation gap results in a
non-zero expected excess return for the purchase of the unit-linked insurance product.
Therefore, a policyholder of the unit-linked insurance contract is also exposed to a corre-
lation risk in the financial market. In the following Section 5, we show how one can trade
and hedge the correlation risk in the financial market.

5 Trading the correlation gap

We demonstrated that volatility and correlation under P and Q can differ substantially.
In this section, we show that the existence of the correlation gap gives rise to trading
strategies which have a large expected profit. We will introduce a new financial derivative
called dispersion swap, and show that the expected profit for longing the dispersion swap
is related to the correlation risk premium in the financial market.

5.1 Variance swaps

We first introduce a new derivative in our financial market: A variance swap on the stock
market index. At maturity T, the holder of the floating leg of a variance swap receives
the difference RV [T ]− SR [T ] , where RV [T ] is defined as

RV [T ] =
1

T

T∑
t=1

R(t)2. (31)

The quantity RV [T ] is called the annualized realized variance and represents the floating
leg of the contract. The fixed leg of the contract is SR [T ], also called the swap rate. The
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swap rate of the contract is a constant which is determined at inception such that the
contract is fair and no money has to be exchanged at inception. Denote by Q the pricing
measure used by the market to price derivatives. The swap rate is then given by

SR [T ] = EQ [RV [T ]] . (32)

The holder of a variance swap will pay the swap rate SR [T ] at maturity and will receive
the realized variance RV [T ]. At time 0, the swap rate is known but the realized variance is
random. Meanwhile, investors are willing to pay a premium to hedge against the variance
risk in the financial market, called the variance risk premium (VRP); see e.g. Carr and
Wu (2009), Bollerslev and Zhou (2007) and Alibeiki and Lotfaliei (2021). Indeed, the
variance risk premium is the expected profit for the holder of the variance swap, which is
given by

V RP = Expected Profit = EP [RV [T ]]− SR [T ] .

The variance risk premium can be expressed as follows

V RP =
1

T

T∑
t=1

(
σ2
P (t)− σ2

Q (t)
)
+

1

T

T∑
t=1

(
(EP [R (t)])2 − (EQ [R (t)])2

)
, (33)

where σQ (t) is the t−year forward volatility. Expression (33) clearly shows that the
holder of the variance swap longs the real-world volatility and shorts the risk-neutral
volatility. The summation in the expression of the variance risk premium arises because a
variance swap is actually trading the second moment, rather than the variance. Investing
in a variance swap becomes attractive if the gap between real and risk-neutral volatility is
substantially large. If this gap is positive, it may lead to a positive variance risk premium,
while in the other case, it may yield a negative risk premium. Investors who are exposed
to variance risk may be willing to buy the variance swap, even if the risk premium is
negative, since it can provide insurance against adverse variance risk scenarios. Indeed,
investors who buy the variance swap receive a hedge for their exposure to variance risk
and are willing to accept a negative expected profit in return.

5.2 Dispersion swaps

In Example 3.2, it is clear that there exists a correlation gap. However, variance swaps
do not allow us to directly trade the difference between the real-world correlation and the
implied correlation. Indeed, two prevalent approaches have been proposed for exploiting or
hedging the correlation risk within the financial market. Firstly, investors can implement
a dispersion trading strategy, wherein they construct a portfolio by taking a position in
an index option and the opposite position in the options written on the constituents of
the index. Such dispersion strategies have been established using calls, puts, straddles,
and variance swaps, see e.g. Jacquier and Slaoui (2007), Bossu (2014) and Meissner
(2015). In the second approach, one directly trades in correlation derivatives such as
correlation swaps or covariance swaps. Correlation swaps were first introduced in the
early 2000s as a derivative to hedge against the correlation risk exposure inherent in
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exotic derivatives trading. However, unlike implied volatility, implied correlations are not
directly observable from option markets, making the pricing and hedging of correlation
swaps a challenging task. For literature on the pricing of the correlation swap, we refer to
Bossu (2005, 2007). In addition to correlation swaps, covariance swaps are a generalization
of the variance swap, providing an alternative method to hedge correlation risk within a
two-asset framework. The floating leg of the covariance swap is the realized covariance
between the log returns of two underlying assets. Discussions on the pricing and hedging
strategies of covariance swaps can be explored in Carr and Corso (2001) and Salvi and
Swishchuk (2014).

Instead of employing existing approaches to capitalize on the correlation risk between
several assets, we propose a new derivative called the dispersion swap. The floating leg of
the contract relies solely on the product of forward returns of the two underlying stocks,
establishing an intrinsic link to the correlation between the assets, and simplifying the
determination of the fixed leg. Theoretical analysis and numerical results will be presented
to demonstrate that the dispersion swap provides an opportunity to trade the correlation
gap. Moreover, we also show that the existence of a correlation risk premium in the
financial market is justified.

The holder of the floating leg of a dispersion swap receives at maturity the following
payoff

RD [T ]− P [T ] ,

where

RD [T ] =
1

T

T∑
t=1

R1 (t)R2 (t) . (34)

We call RD [T ] the realized dispersion. P [T ] is the fixed leg of the contract, determined
at inception such that the contract is fair and with zero initial payment. The following
proposition is presented to show the realized dispersion can be approximated by the
realized variance of stock index and the realized variances of individual stocks. A proof
of this proposition can be found in Appendix A.2.

Proposition 2 The realized dispersion can be approximated by the difference between the
realized variance of the stock market index and the sum of realized stock variances:

RD[T ] ≈ 1

2
(RV [T ]−RV1[T ]−RV2[T ]) , (35)

where RVi[T ] is the realized variance for stock i and is given by

RVi[T ] =
1

T

T∑
t=1

Ri(t)
2, i = 1, 2.

From Proposition 2, the realized dispersion can be approximated by subtracting marginal
variances from the basket variance. It implies that the realized dispersion is indeed linked
to the dependence. Additionally, there is a more refined approximation approach based
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on Taylor series expansion , which can be found in Appendix A.5. This approximation
allows to determine the approximation error.

At time 0, the realized dispersion is unknown and random, while the strike is fixed
and known. The fixed leg P [T ] is determined as follows:

P [T ] = EQ [RD [T ]] .

In our market setting, the fixed leg P [T ] can be expressed as follows:

P [T ] =
1

4T

T∑
t=1

[ρQ(t)(u1 − d1)(u2 − d2) + (u1 + d1)(u2 + d2)] . (36)

A proof of Expression (36) is given in Appendix A.3.

The expected profit for the holder of the floating leg of a dispersion swap is given by

Expected Profit = EP [RD [T ]]− P [T ] .

Hence it is straightforward to show that the expected profit of the dispersion swap can
be expressed as

Expected Profit =
1

T

T∑
t=1

(σP[R1(t)]σP[R2(t)]ρP(t)− σQ[R1(t)]σQ[R2(t)]ρQ(t))

+
1

T

T∑
t=1

(EP [R1(t)]EP [R2(t)]− EQ [R1(t)]EQ [R2(t)]) . (37)

Expression (37) clearly indicates that the buyer of the dispersion swap longs the real-world
correlation and shorts the risk-neutral correlation. To be more specific, in Appendix A.4,
it is proven that the expected profit of the dispersion swap can also be written as follows:

Expected Profit =
(u1 − d1)(u2 − d2)

T

T∑
t=1

(√
pu·(t)pd·(t)p·u(t)p·d(t)ρP(t)−

1

4
ρQ(t)

)

+
1

T

T∑
t=1

EP [R1(t)]EP [R2(t)]−
1

4
(u1 + d1) (u2 + d2) . (38)

From Expressions (37) and (38), we can find that the expected profit of the dispersion
swap is closely associated with the correlation gap. The correlation risk premium (CRP) is
also defined using the correlation gap. In our market model, the correlation risk premium
is defined as follows:

CRP =
1

T

T∑
t=1

(ρP(t)− ρQ(t)). (39)

By assuming the real-world marginals are same as the risk-neutral marginals in this
market setting, i.e. pu· (t) = p·u (t) =

1
2
, the expected profit of the dispersion swap given
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by (38) can be written as

Expected Profit Dispersion Swap =
(u1 − d1)(u2 − d2)

4T

T∑
t=1

(ρP(t)− ρQ(t))

=
(u1 − d1)(u2 − d2)

4
CRP. (40)

When the marginal distributions are the same under P and Q, the expected profit of
buying the dispersion swap is solely determined by the correlation gap. It is proportional
to the correlation risk premium, which allows us to directly trade the weighted difference
of the correlation gap ρP(t) − ρQ(t). A larger positive correlation gap results in a higher
expected profit, increasing the contract’s appeal to potential investors.

5.3 Illustration: one-period example

In this subsection, we still consider the same market setting as in Example 3.2, and will
demonstrate the potential use of dispersion swaps in exploiting the correlation gap. In
this one-period market with r = 0, it follows directly from the Expression (33) that the
expected profit of the variance swap (EPVS) is given by

EPVS = V RP = σ2
P(1)− σ2

Q(1) + (EP[R(1)])2 − (EQ[R(1)])2. (41)

Additionally, the expected profit of the dispersion swap (EPDS) given by Expression (40)
can be expressed as follows:

EPDS =
(u1 − d1)(u2 − d2)

4
CRP =

(u1 − d1)(u2 − d2)(ρP(1)− ρQ(1))

4
. (42)

We use Table 4 to compare the expected profits of the variance swap and the dispersion
swap, the variance risk premiums and the correlation risk premiums, concerning three
different market situations in Example 3.2.

Table 4: Variance risk premium (VRP) and correlation risk premium (CRP) in three
different market situations

Market ρQ σQ VRP EPVS CRP EPDS

Q(1) −0.9 0.373 0.224 0.224 1.1 0.404
Q(2) 0.15 0.578 0.010 0.010 0.05 0.060
Q(3) 0.8 0.668 −0.122 −0.122 −0.6 −0.220

In Example 3.2, the first market situation featured a significant gap between the real-
world and risk-neutral scenarios. Variance and dispersion swaps serve as tools to exploit
this gap. As shown in Table 4, both the variance risk premium and the correlation risk
premium are positive, suggesting potential benefits from taking long positions in the vari-
ance swap and the dispersion swap. However, the gap between the real-world and the
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risk-neutral volatility and correlation is much smaller in the second market situation,
which is reflected in the expected profit of the variance and the dispersion swap, shown
in Table 4. Expected profits turn out to be limited in case. Since these are only expec-
tations, fluctuations can result in losses when stepping in a variance or dispersion trade,
making these products less investment-worthy in this market situation than the first mar-
ket situation. In the third market situation, both the volatility and correlation gaps are
strongly negative, resulting in significantly negative variance and correlation risk premi-
ums. Rational investors are willing to short the variance swap or the dispersion swap to
gain a profit. But who is willing to long the dispersion swap or the variance swap? Market
participants who are afraid that the correlation and volatility risk will have significant
negative impact on their portfolios are willing to accept a negative expected profit to long
the dispersion swap or the variance swap. Indeed, they are more afraid of the correlation
and volatility risk than they are of the possible losses from the dispersion and volatility
swap.

6 What are implied measures telling us?

We have shown that risk-neutral and real-world measures can be significantly different,
see Example 3.2. Derivative prices reflect the aggregate view of the market about the
future dynamics of the stocks involved. Example 3.3 showed that this view can be wrong:
while stocks are becoming less dependent over time under the real-world measure, the
risk-neutral dependence structure is evolving in the opposite direction; see Table 2 and
Figure 1. In Section 3.2, it seems irrational that the market is pricing a index option
with the pricing measure Q(1), since Q(1) has a strong negative dependence structure
while the real-world dependence is positive. Is this difference between real-world and risk-
neutral dependence a dysfunctioning of the market? This seemingly irrational behavior
does not lead to an arbitrage opportunity since the market is incomplete and the risk-
neutral probability measure Q(1) belongs to the set M of feasible risk-neutral measures;
see Theorem 1. However, the discrepancy between real-world and risk-neutral correlation
provides a trading opportunity. Indeed, the dispersion swap becomes more attractive if
the correlation gap becomes larger; see Expression (37). A large correlation gap aligns
with a large expected profit.

We showed that a positive correlation gap corresponds to a positive expected return for
longing the dispersion swap, while a negative correlation gap yields a negative expected
return. But a positive expected profit does not mean that there is no opportunity for
the buyer of the dispersion swap to encounter a loss. Likewise, a negative correlation gap
does not imply that investing in the dispersion swap cannot realize any profit at maturity.
Consider the one-period setting in Example 3.2, the probability of having a loss for the
holder of the floating leg of the dispersion swap is given by

P[loss > 0] = P[RD[1] < P [1]]. (43)

Expression (43) shows that if the fixed strike P [1] exceeds the realized dispersion RD[1],
the buyer of the dispersion swap incurs a loss. In the one-period setting, realized dispersion
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R1(1)R2(1) under the real-world measure P can take four possible values u1u2, u1d2, d1u2,
or d1d2 with corresponding probabilities puu(1), pud(1), pdu(1), and pdd(1). The fixed leg
P [1] is EQ[R1(1)R2(1)]. Since all joint probabilities are strictly positive under P, the
probability of loss given by (43) is always positive and cannot reach 1.

Similar to the single period case, the probability of loss when taking the floating leg
of the dispersion swap is always positive and less than 1 in the multi-period market.
To illustrate this statement, consider T = 10. Assume the real-world joint probabilities
are given by (20), and ρP(t) ≡ 0.2 for t = 1, 2, . . . , T. Two different market situations are
specified by implied correlations ρQ(1)(t) = 0.05t−0.95 and ρQ(2)(t) = −0.05t+0.95 for t =
1, 2, . . . , T. The following Figure 2 is presented to show the frequency of different payoffs
for the buyer of the dispersion swap in these two different market situations. We can see
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(a) Market 1: ρQ(1)(t) = 0.05t− 0.95
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(b) Market 2: ρQ(2)(t) = −0.05t+ 0.95

Figure 2: Comparison of payoff histograms for buying the dispersion swap in two market
scenarios Q(1) and Q(2)

that in the first market situation, the correlation gap ρP(t)−ρQ(t) is always assumed to be
positive for t = 1, 2, . . . , T, resulting in a positive correlation risk premium. Conversely,
under Q(2), the correlation gap remains negative, yielding a negative correlation risk
premium. Compare Figure 2(a) with Figure 2(b), we can see that the probability of
having a loss is larger in the second market situation, and it is because there exists a
negative correlation gap in the second market situation. Nevertheless, Figure 2 shows
that the probabilities of taking a loss in the first and the second market situations are
both larger than 0 and smaller than 1. Due to the possibility of experiencing a loss being
non-zero, trading the dispersion swap is not an arbitrage strategy.

Throughout the paper, we assumed the probability measure P to be known. The
knowledge of the real-world dynamics of the stocks enables us to conclude in the example
of Section 3.2 that real-world and risk-neutral correlation differ substantially and that
entering a dispersion swap results in a positive expected profit. In reality, the probability
measure P is unknown and subjective: different market participants may have different
opinions about the real-world probability measure. The risk-neutral probability measure
Q chosen by the market can be extracted unambiguously if sufficient derivative instru-
ments are available. Therefore, it is reasonable to assume that the measure Q is objective
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in that all market participants agree on the choice of Q used for pricing derivatives. Con-
sider now the first market situation in the example described in Section 3.2. All market
participants observe the same option prices and thus agree that ρQ(1) = −0.9. In Section
5.3, we then showed that an investor using ρP = 0.2 may want to invest in the floating leg
of a dispersion swap since this gives the investor a positive expected profit. Consider now
another investor, who uses another real-world measure P′ and believes that ρP′ = −0.95.
This investor may want to take the fixed leg of a dispersion swap since this produces a
positive expected profit. Both investors are observing the same option prices, but have
different opinions about the real-world measure. They both observe a correlation gap and
consider a dispersion swap to exploit this gap. They do agree on the value of the fixed leg
of the dispersion swap since the risk-neutral measure is assumed to be objective. However,
they have different opinions about the sign of the correlation gap. As a result, they both
agree to enter in a trade, where each one takes a side of the same dispersion swap.

Note that if the real-world measure is also objective, all market participants would
see the same correlation gap. For example, consider market situation 1 in the example
described in Section 3.2. All market participants agree that ρP = 0.2, so most investors
want to enter the floating leg of a dispersion swap, i.e. there is a larger number of in-
dividuals willing to receive the realized dispersion and pay the fixed leg than there are
market participants willing to take up the opposite leg of the dispersion swap. Therefore,
this imbalance between supply and demand will push the implied correlation to increase
toward the realized correlation.

However, will the correlation gap converge to 0 eventually? To answer this question,
we shift to the market situation 3 in Section 3.2. In this market situation, the implied
correlation ρQ(3)(t) equals 0.8, and the real-world correlation is still 0.2. It follows directly
that the correlation gap in this market is negative. Moreover, the probability of taking
a loss for buying the dispersion swap is equal to 0.7. Therefore, many investors are con-
sequently willing to short the dispersion swap. However, there are still investors willing
to long the dispersion swap, since they dislike the correlation risk in the financial market
and would like to offset their correlation exposure. Investing in the dispersion swap can
offer a hedge against the correlation increases.

Ultimately, the market may attain a state of equilibrium with a negative correlation
risk premium. To be more precise, if there are more investors selling the dispersion swap
than buying the dispersion swap in this market situation, the negative correlation gap
will gradually tighten. It will reach an equilibrium when the number of sellers in the
dispersion swap contract aligns with the number of buyers. Indeed, when the correlation
risk premium comes closer to zero, a short position in the dispersion swap still has a
positive expected profit, but becomes less attractive due to an increase in the probability
of a loss. At the same time, hedging correlation risk through the dispersion swap becomes
more attractive. Therefore, with a tightening of the correlation gap, the number of people
who would like to short the dispersion swap decreases whereas the number of people who
are inclined to hedge the correlation risk increases. At some point, the number of sellers
of the dispersion swap will match the number of buyers to reach a market equilibrium. At
this equilibrium, the correlation risk premium can still be strictly negative. Indeed, in such
a situation, market participants looking for hedging their correlation risk are willing to
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pay a premium to offset this risk, whereas the increased probability of a loss when shorting
the dispersion swap limits the supply of correlation hedges through the dispersion swap.
Consequently, this situation explains the negative correlation risk premium which is often
observed in the market.

7 Conclusion

This paper showed that risk-neutral dependence can significantly diverge from real-world
dependence when working in an incomplete two-dimensional market model. We character-
ized the set of equivalent martingale measures and illustrated the correlation gap between
P and Q. A unit-linked insurance product was considered to illustrate that this non-zero
correlation gap also exerts influence on the expected excess return for policyholders. We
also introduced the dispersion swap to exploit the correlation gap. Both theoretical and
numerical results were provided to illustrate that the dispersion swap serves not only as
a tool to capitalize on the large correlation gap, but also as a hedging strategy for the
correlation risk in the financial market.

We also demonstrated that investors with strong fear of correlation risk are willing
to take long positions in the dispersion swap, even when the expected profit is negative.
As a consequence, the market will reach an equilibrium with a negative correlation risk
premium.
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Malamud, S., Trubowitz, E. and Wüthrich, M. (2008), ‘Market consistent pricing of
insurance products’, ASTIN Bulletin 38(2), 483–526.

Meissner, G. (2015), Correlation trading strategies: limitations and pitfalls, Technical
report, University of Hawai System.

26



Pelsser, A. and Stadje, M. (2014), ‘Time-consistent and market-consistent evaluations’,
Mathematical Finance 24(1), 25–65.

Salvi, G. and Swishchuk, A. V. (2014), ‘Covariance and correlation swaps for financial
markets with markov-modulated volatilities’, International Journal of Theoretical and
Applied Finance 17(1).

Skintzi, V. D. and Refenes, A. N. (2004), ‘Implied correlation index: A new measure of
diversification’, Journal of Futures Markets 25, 171–197. doi: 10.1002/fut.20137.

Yanagimoto, T. and Okamoto, M. (1969), ‘Partial orderings of permutations and mono-
tonicity of a rank correlation statistic’, Annals of the Institute of Statististical Mathe-
matics p. 489–506.

Competing interests

The authors have no competing interests to declare

Acknowledgement
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A Proofs and calculations

A.1 Proof of Theorem 1

We first take into account the martingale condition. For any t, we find that the risk-
neutral marginal probabilities (qd· (t) , qu· (t) , q·u (t) , q·d (t)) satisfy:

e−rS1 (t− 1) (eu1qu· (t) + ed1qd· (t)) = S1 (t− 1) ,
e−rS2 (t− 1) (eu2q·u (t) + ed2q·d (t)) = S2 (t− 1) ,

qd· (t) + qu· (t) = 1,
q·d (t) + q·u (t) = 1.

(44)
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From (44), we find that the marginal probabilities are independent of the time, hence the
risk-neutral marginal probabilities can be denoted as (qd·, qu·, q·d, q·u), and are given by:

qu· = qd· = q·u = q·d =
1

2
. (45)

Notice we can write quu (t) = Q [R2 (t) = u2 | R1 (t) = u1]×Q [R1 (t) = u1] . We use αQ(t)
to denote Q [R2 (t) = u2 | R1 (t) = u1], and taking into account Expressions (45), we find

that quu (t) =
α(t)
2
. Similarly, expressions can be derived for qud(t), qdu(t) and qdd(t). Hence

the set M of feasible risk-neutral probability measure can be characterized as follows:

Q ∈M ⇔ ∃ α(t) ∈ (0, 1) , t = 1, 2, ..., n,

such that

{
quu(t) = qdd(t) =

1
2
α(t)

qud(t) = qdu(t) =
1
2
(1− α(t))

(46)

Since Q has to be equivalent to P, we need that puu (t) , pud (t) , pdu (t) , pdd (t) > 0. Hence
we find that α(t) ∈ (0, 1) .

The risk-neutral covariance CovQ [R1 (t) , R2 (t)] can be determined as follows:

CovQ [R1 (t) , R2 (t)] =
2α(t)− 1

4
(u1 − d1)(u2 − d2),

We then find:

ρQ(t) =
CovQ [R1 (t) , R2 (t)]√

VarQ [R1 (t)] VarQ [R2 (t)]
= 2α(t)− 1.

Following (46), we can directly get the expression (5)

A.2 Proof of Proposition 2

First, the forward return of the stock market index at time ti can be expressed as:

R(t) = log
S1(t− 1)S1(t)S2(t− 1) + S1(t− 1)S2(t− 1)S2(t)

(S1(t− 1) + S2(t− 1))S1(t− 1)S2(t− 1)

By replacing S1(t− 1)S1(t)S2(t− 1) by S1(t− 1)S1(t)S2(t) and replacing S1(t− 1)S2(t−
1)S2(t) by S1(t)S2(t− 1)S2(t), R(t) can be approximated by

R(t) ≈ log
S1(t− 1)S1(t)S2(t) + S1(t)S2(t− 1)S2(t)

(S1(t− 1) + S2(t− 1))S1(t− 1)S2(t− 1)
= log

S1(t)S2(t)

S1(t− 1)S2(t− 1)

It follows directly the realized dispersion can be approximated by (35).

A.3 Proof of Expression (36)

It follows from (5) directly that the fixed leg P [T ] can be written as follows:

P [T ] =
1

T

T∑
t=1

EQ [R1 (t)R2 (t)] =
1

4T

T∑
t=1

(ρQ(t)(u1 − d1)(u2 − d2) + (u1 + d1)(u2 + d2)) .

28



A.4 Proof of Expression (37)

Note that EP [R1 (t)R2 (t)] can be expressed as

EP [R1 (t)R2 (t)] =ρP (t)×
√
VarP [R1 (t)] VarP [R2 (t)] + EP [R1 (t)]EP [R2 (t)]

=(u1 − d1)(u2 − d2)
√

pu·(t)pd·(t)p·u(t)p·d(t)× ρP(t) + EP [R1 (t)]EP [R2 (t)] .

Then we can derive the expected profit of the dispersion swap:

Expected Profit =EP

[
1

T

T∑
t=1

R1 (t)R2 (t)

]
− P [T ]

=
1

T

T∑
t=1

(
(u1 − d1)(u2 − d2)

(√
pu·(t)pd·(t)p·u(t)p·d(t)ρP(t)−

1

4
ρQ(t)

))

+
1

T

T∑
t=1

EP [R1 (t)]EP [R2 (t)]−
1

T

T∑
t=1

(
u1 + d1

2

)(
u2 + d2

2

)

=
(u1 − d1)(u2 − d2)

T

T∑
t=1

(√
pu·(t)pd·(t)p·u(t)p·d(t)ρP(t)−

1

4
ρQ(t)

)

+
1

T

T∑
t=1

EP [R1(t)]EP [R2(t)]−
1

4
(u1 + d1) (u2 + d2) .

A.5 Approximation of the realized dispersion: Taylor series ex-
pansion

Proposition 3 The realized dispersion can be approximated by the difference between the
realized variance of the stock market index and a weighted sum of realized stock variances:

RD[T ] =
1

T

T∑
t=1

R(t)2 − w1(t− 1)2R1(t)
2 − w2(t− 1)2R2(t)

2

2w1(t− 1)w2(t− 1)
+ ϵ, (47)

where

wi(t− 1) =
Si(t− 1)

S1(t− 1) + S2(t− 1)
, i = 1, 2, (48)

and ϵ represents the approximation error given by

ϵ =
1

T

T∑
t=1

O (SR(t)3)− w1(t− 1)2O (SR1(t)
3)− w2(t− 1)2O (SR2(t)

3)

2ω1(t− 1)ω2(t− 1)
(49)

−O
(
SR2(t)

2SR1(t)
)
−O

(
SR2(t)SR1(t)

2
)
,

and

SR(t) =
S(t)− S(t− 1)

S(t− 1)

SRi(t) =
Si(t)− Si(t− 1)

Si(t− 1)
, i = 1, 2.
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Proof: First, the square of the index forward return at time t is given by:

R(t)2 =

(
log

S(t)

S(t− 1)

)2

=

(
log

(
1 +

S(t)− S(t− 1)

S(t− 1)

))2

.

Consider a function f(x) = (log(1 + x))2, we use the first two terms of the Taylor series
expansion to approximate f(x) centered at x = 0 which gives f(x) = x2 +O(x3), where
O(x3) represents the approximation error. Hence the approximation of R(t)2 is given by

R(t)2 =
(S1(t)− S1(t− 1) + S2(t)− S2(t− 1))2

(S1(t− 1) + S2(t− 1))2
+O

((
S(t)− S(t− 1)

S(t− 1)

)3
)
. (50)

Similarly, we approximate the square of individual stock forward returns by the following
expressions:

Ri(t)
2 =

(Si(t)− Si(t− 1))2

Si(t− 1)2
+O

((
Si(t)− Si(t− 1)

Si(t− 1)

)3
)
, i = 1, 2. (51)

Meanwhile, the forward return of stock 1 at time t is given by

R1(t) = log
S1(t)

S1(t− 1)
= log

(
1 +

S1(t)− S1(t− 1)

S1(t− 1)

)
.

Consider another function g(x) = log(1+x), we approximate g(x) by using the first term
of the Taylor series expansion of g(x) centered at x = 0 to obtain g(x) = x+O(x2). Then
R1(t)R2(t) can be approximated by

R1(t)R2(t) =
2∏

i=1

(
Si(t)− Si(t− 1)

Si(t− 1)
+O

((
Si(t)− Si(t− 1)

Si(t− 1)

)2
))

. (52)

From Expressions (50), (51), and (52) we find that the realized dispersion can be approx-
imated by Expression (47). We can find that w1(t − 1) and w2(t − 1) are the relative
importance of stock 1 and stock 2 in the market index S(t− 1), respectively.
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