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1 Introduction

This online appendix is devoted to comparing classical (centralized) insurance with de-
centralized risk-sharing. Section 2 describes (single period) classical insurance and the
inherent solvency issue in such a centralized approach. In Section 3, we describe (single
period) compensation-based risk-sharing, as a generalization of risk-sharing via a tontine
fund as considered in the paper. A short Section 4 describes another approach of decentral-
ized risk-sharing, which we call contribution-based risk-sharing. In Section 5, we present a
simple and theoretical example which clearly illustrates how compensation-based systems
operate in the presence of an administrator.

2 Classical insurance

Consider a pool of n > 1 agents (policyholders). Each one of them purchases an insurance
contract at time t = 0, which entitles him to a non-negative random claim amount Xi,
payable at time T = 1. This claim can be a random loss related to a well-defined peril
(e.g. hospitalization-related expenses) or it can be a deterministic benefit contingent
on the occurrence of a well-defined event (e.g. a pure endowment). Suppose that each
policyholder i pays a premium πi at time t = 0, to acquire said protection or benefit.
Further, suppose that the aggregate premiums

∑n
i=1 πi is invested risk-free, at R over the

period [0, 1].

The job of an actuary is to ensure the aggregate claims
∑n

i=1Xi due at time 1 are
not larger than the available assets at time 1,with a suffi ciently large probability. Here,
the available assets consist of the time-1 value of the premiums (1 +R)

∑n
i=1 πi and the

time-1 value (1+R)SC of the solvency capital SC to be set up at time 0. In particular, the
insurer will avoid bankruptcy and remain solvent at the end of the period if the following
event occurs:

Insurance solvency condition:
n∑
i=1

Xi ≤ (1 +R)

(
n∑
i=1

πi + SC

)
. (1)

The intuition for this condition is straightforward. The insurer (i.e. guarantor) can
fulfill her liabilities if-and-only-if the total claims to be paid at time 1 do not exceed the
accumulated value of the premiums and solvency capital.

Classical insurance is a form of “centralized”(versus decentralized) risk-sharing, mean-
ing that it is a risk-sharing mechanism under which individual losses faced by policyholders
are transferred to a central insurer. Every policyholder is compensated ex-post from the
insurer for his experienced loss. In return for that total coverage, the insurer charges each
policyholder an insurance premium ex-ante. Premiums and solvency capital are chosen
such that the probability of the event that the sum of all accumulated premiums and
solvency capital exceeds the aggregate loss of the insurance portfolio is suffi ciently large
(e.g. 99.5%). The key is that the centralized approach with ex-ante premiums requires
capital to be set up by the insurer to be able to meet his ex-post obligations with a high
probability.
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3 Decentralized risk-sharing via compensations

Consider a pool of n participants, each of them suffering a random non-negative claim
due at time 1. The claim of participant i is denoted by Xi. Apart from the n participants,
there is an administrator (agent n+1), who is the person responsible for the management
of the fund. Furthermore, we introduce the non-negative and non-degenerate dummy ran-
dom variable Xn+1 and we assume that the random couple

(
Xn+1,

∑n
j=1Xj

)
is mutually

exclusive, which means that

Xn+1 > 0⇔
n∑
j=1

Xj = 0, (2)

which also means that Xn+1 > 0 if and only if every participant has a zero claim. The
vector or pool of all claims (benefits or losses) is denoted by X:

X = (X1, X2, . . . , Xn+1) .

We assume that at time 0, each participant pays a premium (or invests an amount) of
size πi > 0. Also the administrator pays a premium at time 0, which we denote by πn+1.
For that premium she will receive a compensation at time 1, see further. The vector of
all premiums is labeled the premium vector:

π = (π1, π2, . . . , πn+1) .

Decentralized risk-sharing (henceforth, DRS) refers to a mechanism under which the
participants in the pool share the risks among each other in such a way that no solvency
risk occurs. To achieve that objective and figure out the allotment, in compensation-
based risk-sharing, premium payments are made at time 0. In return, each participant i
is partially compensated ex-post for his loss Xi. In other words, he does not necessarily
get reimbursed for the total amount Xi. At time 1, the pool —or perhaps better labeled
the community, managed by the administrator —will pay the non-negative amount Wi

to participant i, as a compensation for his loss Xi, taking into account the premium πi
he paid at time 0. Also the administrator will receive a compensation Wn+1 at time
1, taking into account the premium πn+1 she paid at time 0. The random vector of all
compensations is called the compensation vector:

W = (W1,W2, . . . ,Wn+1) .

We make the following assumption about these compensations:

Xi = 0⇒ Wi = 0, for i = 1, 2, . . . , n+ 1. (3)

Typically,W is a random vector which depends on π, X and other deterministic (i.e.
time-0 observable) and random (i.e. time-1 observable) information. We will denote the
compensation-based DRS mechanism described above by (π,X,W).
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In order to avoid solvency risk, the risk-sharing rule is set such that the following
condition is fulfilled:

Compensation-based solvency condition:
n+1∑
i=1

Wi = (1 +R)

n+1∑
i=1

πi, (4)

which means that the sum of all compensations paid at time 1 is exactly equal to the
time-1 value of the accumulated premiums paid by the participants and the administrator
at time 0, where the accumulation factor (1 +R) is assumed to be deterministic.

Taking into account solvency condition (4), our assumption (3) implies that in case all
participants have a zero claim, they will receive a zero compensation and the administrator
will receive (1 +R)

∑n+1
i=1 πi. In the other case, i.e. when at least one participant has a

non-zero claim, then by the mutual exclusivity asumption, we have that Xn+1 = 0 and
the administrator will receive zero compensation.

As an example of a compensation-based risk-sharing rule, consider the case where for
each participant i and the administrator, the compensation function Wi follows from

W prop
i = (1 +R)×

(
n+1∑
j=1

πj

)
× Xi∑n+1

j=1 Xj

for i = 1, 2, . . . , n+ 1. (5)

We call this risk-sharing scheme the proportional risk-sharing scheme: Given the
aggregate claims

∑n+1
j=1 Xj, each participant i receives a compensation proportional to

his observed claim Xi, where the proportional factors are determined such that the full
compensation condition (4) is satisfied. This risk-sharing rule satisfies the assumptions
(3). In general, there is non-zero probability that

∑n
j=1Xj = 0, which is the rational for

introducting the administrator. As mentioned before, we assume that Xn+1 is mutually
exclusive with

∑n
j=1Xj, implying that W

prop
i is always well-defined, as the denominator

in (5) is always strictly positive. Notice that any (non-negative, non-degenerate) choice of

Xn+1 is allowed, provided
(
Xn+1,

∑n
j=1Xj

)
is mutually exclusive. Indeed, the particular

choice of Xn+1 does not impact the compensations to the participants and the adminis-
trator. In case the claims Xi of the participants 1, 2, . . . , n are all zero, the administrator
will receive the accumulated value of all premiums. On the other hand, in case at least one
participant has a strictly positive claim, we have that Xn+1 = 0, implying thatW

prop
n+1 = 0,

while the compensations of the participants follow from (5).

The tontine fund described in the paper arises as a special case of the compensation-
based DRS scheme (5) by choosing X as follows:

X = (f1 × I1, f2 × I2, . . . , fn+1 × In+1) ,

with the survival indicator and share allocation vectors I and f as defined in the paper.
In this case, (5) transforms in

W prop
i = (1 +R)×

(
n+1∑
j=1

πj

)
× fi∑n+1

j=1 fj × Ij
× Ii for i = 1, 2, . . . , n+ 1, (6)

which is expression (11) in the main paper.
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4 Decentralized risk-sharing via contributions

In contrast to a system with premiums being transformed into compensations, this section
describes a contribution-based system for DRS. Consider again a pool of n participants
with non-negative random end-of-period claims Xi, related to a well-defined peril or con-
tingent benefit. The combined vector of all dollar value claims is again called the claims
vector and denoted by the bold X:

X = (X1, X2, . . . , Xn)

As alluded to earlier, DRS refers to risk-sharing mechanisms under which the par-
ticipants in the pool share their risks without generating or creating any solvency risk.
To achieve that objective, in this particular section, we assume that each of the n par-
ticipants in the risk-sharing pool is fully compensated ex-post for his claim Xi. But, in
return each participant pays an ex-post contribution Ci to the pool, which is managed by
the insurance community, overseen by an administrator. The vector of all contributions
is called the contribution vector:

C = (C1, C2, . . . , Cn)

We assume that C is random vector which depends on X and other deterministic (time-0
observable) and random (time-1 observable) information. We denote the contribution-
based DRS described above by (X,C).

To avoid solvency risk — since there is no guarantor company, we assume that the
risk-sharing rule is such that the following condition is fulfilled:

Contribution-based solvency condition:
n∑
j=1

Xj =
n∑
j=1

Cj, (7)

This condition means that the sum of all contributions paid by the participants matches
the sum of all losses the pool covers.

Notice that for a compensation-based risk-sharing rule, we needed an administrator
who pays a premium and receives a compensation in order to guarantee that the solvency
condition (4) also holds in case all participants have a zero claim. In a contribution-based
risk-sharing scheme as introduced in this section, we do not need the administrator to
pay a contribution for the contribution-based solvency condition (7) to hold in all cases.
This is due to the fact that the contributions are fixed ex post, after the claims have been
observed.

An example of a contribution-based risk-sharing rule is the conditional-mean risk-
sharing rule (X,Ccm), introduced in the actuarial literature in Denuit & Dhaene (2012),
with contribution vector defined by

Ccm =

(
E

[
X1 |

n∑
j=1

Xj

]
, E

[
X2 |

n∑
j=1

Xj

]
, . . . , E

[
Xn |

n∑
j=1

Xj

])
(8)
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The properties of these and other risk-sharing rules have been investigated in detail by
Denuit, Dhaene & Robert (2022) and Denuit, Dhaene, Ghossoub & Robert (2023) among
others. An axiomatic characterization of the conditional mean risk-sharing rule is given
in Jiao, Kou, Liu & Wang (2023).

5 A simple example

Consider two agents, denoted as person 1 and person 2, who participate in a game of
chance. To enter the game, person 1 pays an amount π1, while person 2 pays an amount
π2. Person 1 tosses a two-sided coin, and person 2 rolls a six-sided die. In this game,
person 1 is successful if he tosses heads, while person 2 is successful if he rolls a 1.

In addition to the two participants, also an administrator is involved. She is also
allowed to contribute to the prize pool by paying an amount π3. According to predeter-
mined rules, the administrator is responsible for collecting the money and distributing
it.

For simplicity, let us assume a zero return over the observation period. Furthermore,
if the coin lands on heads and the die does not land on 1, the total amount of π1+π2+π3
is awarded to person 1 at time 1. Similarly, if the coin does not land on heads but the
die lands on 1, the total amount of π1+ π2+ π3 is awarded to person 2 at time 1. If both
participants are successful (i.e., heads and 1 appear after the respective throws), the total
proceeds of π1 + π2 + π3 are shared by person 1 and person 2 in a well-defined manner.
Finally, if both participants are not successful (i.e., neither heads nor 1 appear after their
respective throws), the total proceeds of π1 + π2 + π3 go to the administrator. At first
glance, it may seem unusual that the administrator also contributes an amount of money
π3 to the prize pool. However, in our example, the probability that the administrator
will receive the entire prize pool is 5

12
assuming independence, so it seems reasonable the

administrator should contribute to the prize pool for her chance of winning.

If at most one of the two participants is successful, the rules for paying out the total
proceeds are clear. However, in this section, we seek to answer the following question:
What is a reasonable way to allocate the total proceeds (π1 + π2 + π3) in case both
participants have a successful throw? A uniform allocation where each participant receives
π1+π2+π3

2
may be seen as ’unfair’because it does not consider that the chances for success

are much larger for participant 1 than for participant 2. To address this, we will denote
the payouts to participants 1 and 2 in case of a successful throw by β × (π1 + π2 + π3)
and (1− β)× (π1 + π2 + π3), respectively, where 0 < β < 1.

Introducing the indicator variables I1 and I2 where Ii is 1 for a successful participant
i and 0 otherwise, the payouts W1 and W2 can be expressed as follows:

(W1,W2) =


(π1 + π2 + π3)× (1, 0) : if I1 = 1 and I2 = 0
(π1 + π2 + π3)× (0, 1) : if I1 = 0 and I2 = 1
(π1 + π2 + π3)× (0, 0) : if I1 = 0 and I2 = 0

(π1 + π2 + π3)× (β, 1− β) : if I1 = 1 and I2 = 1

(9)
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where (π1 + π2 + π3)× (a, b) represents ((π1 + π2 + π3)× a, (π1 + π2 + π3)× b).
In order to write down the payoutW3 to the administrator, we introduce the indicator

variable I3 which is defined by

I3 = (1− I1)× (1− I2) . (10)

This indicator variable equals 1 when neither participant is successful (i.e., I1 = I2 = 0)
and 0 otherwise (i.e., I1 = 1 or I2 = 1). The administrator’s payoff can be expressed as:

W3 =

{
0 : if I3 = 0

π1 + π2 + π3 : if I3 = 1

Before playing, the participants and the administrator must agree on the payments
π1, π2, and π3, as well as on the value of β.

Let us now assume that the payouts of the two participants are mutually independent.
We apply the results of Section 4 of the paper to determine the investment π1 and π2 such
that the payouts as described above are actuarial fair. Let us denote the total investment
effort of the participants by π:

π = π1 + π2.

In a first step, we determine the contribution π3 of the administrator such that the tontine
fund is collective actuarial fair. From expression (23) in the paper, we find that

π3 = π × Pr [I3 = 1]
Pr [I3 = 0]

=
5

7
π. (11)

In a second step, we determine the investments πi of the two participants by equation
(19) of the paper, guaranteeing that the game is actuarial fair for the two participants.
Applying this approach leads to

π1 = E [W1] =
5 + β

7
π (12)

and

π2 = E [W2] =
2− β
7

π. (13)

Note that π1, π2 and π3 are proportional to the total investment π of the two partici-
pants. One can chose the magnitude of π first , and then determine the investment efforts
of the participants and the administrator by (11), (12) and (13), respectively. Finally,
notice that one could also first choose π1 and π2, and then determine π3 and β such that
the game with payouts given by (9) is fair.
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