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Abstract

This paper is concerned with the “problem” of allocating tontine fund winnings
in a pool where participants differ in wealth (contributions) and health (longevity),
and particularly when the pools are relatively small in size. In other words, we
offer a modelling framework for distributing longevity-risk pools’ income and ben-
efits (or tontine winnings) when participants are heterogeneous. Similar to the
nascent literature on decentralized risk sharing (DRS), there are several equally
plausible arrangements for sharing benefits (a.k.a. “skinning the cat”) among sur-
vivors. Indeed, the selected rule may depend on the extent of social cohesion within
the longevity risk pool, ranging from solidarity and altruism to pure individualism.
And, if fairness is a concern, we suggest introducing an administrator — which differs
from a guarantor — to make the tontine pool payouts collectively actuarial fair in
the sense that the group of participants will on average receive the same benefits
as what they collectively invested, and we provide the mathematical framework to
implement that suggestion. One thing is for certain: actuarial science cannot really
offer uniqueness; it is only a methodology.



1 Introduction

1.1 Motivation

One of the hallmarks of a developed country is the existence of a national pension scheme,
which forces all working citizens to contribute savings to a retirement collective, which
is then used to pay retirement annuities. National pension schemes are distinct from
corporate retirement plans, which (arguably) involve more homogenous groups whose
financial generosity is (arguably) at the discretion of employers.

For example, in a stylized national pension scheme, all workers might contribute 10,000
(real, inflation-adjusted) euros per year in mandatory premiums in exchange for a benefit
of 27,000 (real, inflation-adjusted) euros per year beginning at retirement age 65. There-
fore, a citizen who makes these contributions during 40 working years, for example, from
age 25 until age 65, and then lives to (and then dies exactly at) age 85, will earn an
internal rate of return of 1% per year, in real terms.

This compares favourably with other real risk-free investments around the world and
is effectively guaranteed by the national government. The paternalistic calculus is to force
all citizens to participate since many would be unlikely to do so on their own or be able
to generate these investment returns themselves.

Alas, the challenge — and impetus for this investigation — is what happens to those
unhealthy retirees who don’t spend 20 years in retirement and do not live to age 85 in
the above example. Those who are unfortunate to live 10 years to age 75, for example,
will actually earn a negative internal rate of return of -1.6% per year in real (inflation-
adjusted) terms. Indeed, contributing a (non-PV adjusted) total of 400,000 euros over
the entire life in exchange for only 270,000 euros is not a good investment, especially
considering they were forced to participate.

Now, in defence of this stylized national pension scheme, the conventional and centuries-
old response by pension economists and insurance actuaries is that for every unlucky per-
son who only lives to age 75 there is another lucky one who lives to a ripe old age 95.
They would receive 810,000 = 30 x 27,000 euro worth of payments during retirement and
thus earn an even better 2% inflation-adjusted return. Moreover, these defenders argue,
that is the nature of longevity risk pooling. Winners and losers are only known at the
end, ex post, but everyone benefits from longevity pooling, ex ante.

Unfortunately, there is a well-known and alarming body of evidence that survival in a
group of equally aged persons is not analogous to a series of i.i.d. coin tosses. Whether due
to genetics, environment or even lifestyle choices, longevity prospects are heterogeneous
for individuals at the same chronological age. For these less fortunate groups, there is little
chance they will live to an advanced age and benefit from the insurance aspects of longevity
risk pooling. Within society, these groups have a legitimate claim that national pension
schemes aren‘t fair or equitable. The most widely cited article linking income to life
expectancy (in the US) is the study by Chetty et al. (2016). They conclude that “higher
income was associated with greater longevity throughout the income distribution” and
“the gap in life expectancy between the richest 1% and poorest 1% of individuals was 14.6



years for men and 10.1 years for women.” Other researchers have looked at non-financial
factors for the so-called stochastic longevity gap (a.k.a. the non-homogeneity) vis a vis
the implications for pension plans, both from a theoretical and empirical perspective.

This problem is more than an academic exercise in probability or a theoretical dilemma.
In early 2023, a group representing Aboriginal Australians filed suit claiming the state
pension discriminates against them because their life expectancy is much lower than non-
aboriginals. Most live to their mid 70s, while the rest of Australia live into their 80s
and 90s. Although stochastic, their internal rate of return will fall far short of the safest
risk-free alternative. The case has garnered much international attention and is pending
before their Federal Court, and various groups are expressing similar concerns worldwide.
This is the impetus for our paper: going back to the very first principles and try to find
an answer to the question how longevity risk should be shared in a fair way? Another case
in which a similar problem arises — and perhaps a more controversial position — is that
unhealthy males with much lower longevity prospects should be considered for similar
treatment; namely, receive higher payments for the same level of contributions.

The literature — on the heterogeneity of longevity and the impact on pension fairness
— is vast and growingH

And, while a footnote list is not a proper review of the unique contribution of every
paper in the literature, their underlying messages are identical. Namely, the most crucial
empirical takeaway is the existence of an identifiable group within society that will not
live as long as the fortunate ones. Yet, most national and corporate pension schemes are
all pooled together in one sizeable longevity-risk-sharing fund or pool.

With the motivation and background out of the way, this paper offers a modelling
framework for distributing longevity-risk pools’ income and benefits when participants
are heterogeneous. Our central insight is that — similar to the nascent literature on
decentralized risk sharing — there are several equally plausible rules for sharing benefits
(a.k.a. “skinning the cat”) among survivors. Moreover, the selected rule may depend on
the extent of social cohesion within the longevity risk pool, ranging from solidarity and
altruism to pure individualism. The vehicle we choose to use for analyzing longevity risk
pooling and sharing is the simple one-period tontineﬂ Our aim is to demonstrate that
there are a multiplicity of feasible arrangements for sharing gains in a one-period model.

1See, Ayuso et al. (2017), Bravo et al. (2023), Coppola et al. (2022), Couillard et al. (2021), Dudel
and van Raalte (2023), Finegood et al. (2021), Himmelstein et al. (2022), Kinge et al. (2019), Li and
Hyndman (2021), Lin et al. (2017), Milligan and Schirle (2021), Mackenbach et al. (2019), Pitacco
(2019), Perez-Salamero et al. (2022), Sanzenbacher et al. (2019), Shi and Kolk (2022), Simonovitz and
Lacko (2023), Sloan et al. (2010), Strozza (2022) and Woolf et al. (2023).

2There is a very long history of tontines in France, and for the most recent laws and regulations
relating to these products, see Code des Assurances, ReplierPartie rA@glementaire (Articles R111-1
A R541-1), Section VII : Tontines. (Articles R322-139 A R322-159), which can be accessed from this
URL: https : //www.legifrance.gouwv. fr/codes/article;c/ LEGTARTI000006815350



1.2 Setting the Stage

In this subsection, we “set the stage” for our paper’s main contributions by illustrating the
multitude of ways that in theory could allocate gains from longevity. A more formal and
general model will be presented in subsequent sections. For now, imagine the following
situation. A group of n investors pool together into the following one-period longevity risk-
sharing scheme. They each invest or allocate m; > 0 dollars at time zero into an account
earning a one-plus risk-free rate: (1 4+ R) > 1, while they face a p; > 0 probability of
surviving to the end of the period. They decide to share the total fund among survivors,
which is also known as a one-period tontine. For the sake of a simple numerical example,
we will assume n = 3 and R = 0, but our findings can easily be extended to the case of
more participants and a positive risk-free return. The first participant invests m; = $80,
the second m = $50 and third 73 = $20. Their respective one-period survival probabilities
are p; = 20%, po = 50%, p3 = 80%, which reflect mortality rates over a decade at old,
middle and early retirement ages. The two tables in subsections 1.2 and 1.3 summarize
the in- and outputs for the numerical example under consideration.

m = $80 p1 = 20%
Ty = $50 P2 = 50%
T3 = $20 P3 = 80%

I > m [ $150.00 [ and | R=0% |

Clearly, investor 1 has placed the most at risk because he/she faces an 80% probability
of dying and losing it all and has invested $80. Think of the function g(7,p) = 7/p as a
theoretical measure of “money at risk”, although g(7, p) could be defined as any function
that is increasing in its first argument and decreasing in its second. Regardless of how
exactly “money at risk” is measured, investor 3 risks a mere $20, and faces an 80%
probability of surviving, so their g(m,p) = 7/p = 25. Ergo, and perhaps even for ethical
reasons, investor 1, with a g(m, p) = 400, should be entitled to a larger share of the gains
if he/she happens to (get lucky) and survive. That should be obvious, the question is
how much more. There are: 23 = 8 different scenarios, the most vexing is the scenario
in which everyone dies. Now, one can set the rules of this game in many ways — perhaps
even by offering refunds to beneficiaries — but we will assume that in the scenario in
which everyone dies, which has a (1 — p1)(1 — p2)(1 — p3) = 8% probability (assuming
independence), the $150 is lost to participants and donated to charity or simply taken
by the Government, as stipulated in the contract. There are another 3 scenarios that
are trivial, namely when there is only one survivor who takes the entire: > m; = $150.
This leaves 4 scenarios in which the fund must be distributed in a non-discriminatory
manner. An informal discussion with colleagues indicates the lack of any clear consensus
on exactly how the funds should be distributed in each of those 4 non-trivial scenarios in
a manner that is perceived as non-discriminatory.



1.3 One Possible Allocation

We sent the above query to a number of specialists (who are noted and thanked at the end
of this paper) and received a variety of replies. In the following table we offer one possible
way or “rule” that can be used to distribute the $150 in the four non-trivial scenarios.
This solution should help set the stage for a more general discussion later.

\ Payouts to Participants: W(w)
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Let us start with scenario wy, where all three investors stay alive (corresponding to a
column with all input set equal to 1), an event with 8% probability. The first investor
(m1 = $80,p1 = 0.20) thinks to him or herself: Had I used m; to purchase a pure
endowment from an insurance company — my payout would have been: m /p; = $400,
assuming a technical interest or valuation rate equal to » = 0 and ignoring loadings for
costs. This is an insurance claim, but one in which a limited pool of money is available.
The insurance claim is g(m,p), which is the (above noted) “money at risk” function.
Likewise, the second investor (ms = $50,p2 = 0.50) is entitled to an insurance claim of:
7o /pe = $100, and the third investor (m3 = $20,p3 = 0.80) claims: 73/p; = $25, using
the same actuarial logic. In total, for the three survivors in scenario wy, the aggregate
insurance claim is C(w;) := Y5, (m/pr) = $525, but alas there is only> > mp = $150
available to distribute to the pool.

So, our proposed rule is to give investors the relative fraction, i.e. their personal insur-
ance claim against the aggregate insurance claim of the available funds. The first investor
claims 400 out of a total 525, which is 76.19%, from the available $150. This is more
than individual ¢ = 1 invested, but less than his personal insurance claim. Algebraically
this investor takes: (3 ;_, m) X (m1/p1)/C(w1). The same logic gives the second investor
100 out of 525, or 19.04% of the $150 available, which is $28.57, and this is less than the
my = $50 invested. The third and final investor makes a personal claim of 25 from an
aggregate claim of 525, a mere 4.76% of the available $150, for a total payout of $7.14.
The third investor, like the second, walks away with less than originally invested, while
the (relative) winner is investor number one, who gets more than his original m; = $80.

The same logic can be applied to the other three non-trivial scenarios ws, w4, ws. While
the personal insurance claim of amount 7;/p; remains the same for each, the aggregate
insurance claim paid to survivors is lower due to the smaller number. For example, the
value of the aggregate insurance claim in wy, where only the second and third participants
survive, is given by C(wy) = 125. Similarly, C(ws) = 425 and C(ws) = 500. Again, these
are the denominators for the fractional allocation of end-of-period available funds, where
the numerator is the personal insurance claim my /py.



In sum, while there are many different ways to skin the tontine cat our suggested
(general) rule for W/; ;), which represents the payout in scenario w; (column) to individual
J (row) in the above table, can be written as:

3
. ) X [Z .
k=1 > ket (T /PE) X L gy

where ; ;) is the (scalar) life status of the j'th investor in the i’th scenario. The quantity
in brackets in equation is the ratio of personal to aggregate insurance claim, which is
then multiplied by the money available in the pool. Remark that in the equation above,
only the scenarios i = 1,2, ..., 7 are defined. When ¢ = 8, which is the w scenario in which
there are no survivors, we cannot apply the equation above as there appears a zero in
the denominator. Therefore, we define W(g ;) := 0 for j = 1,2,3. Equation (1)), which will
reappear in many guises and incarnations over the paper, is a proportional risk-sharing
rule, but other rules will be proposed and analyzed in due time. Note (once again) that
our numerical example assumed investment return R = 0 and technical interest rate r = 0,
but nothing stops us from using the same rule for more general cases of R > 0 and r > 0.
In this case, we only have to multiply the right-hand side of the above formula by (1 4+ R).

1.4 The Tontine Fund

A single period tontine fund, as the one considered in the above example, is an investment
made by a group of people (participants), who each invest a certain amount in the fund. At
the end of the observation period, surviving participants share the proceeds of the tontine
fund, while non-surviving participants do not receive anything. If no participant survives,
the proceeds are donated to a charity or to another party, as stipulated in the contract. The
tontine fund is self-financing, meaning that only the available proceeds are distributed,
and insolvency or default is not possible. Therefore, no solvency capital needs to be set
up at the beginning of the contract. We refer to the Online Appendix, which provides
a comparison between classical ‘centralized’ insurance (which requires setting a solvency
capital) and ’decentralized’ pooling mechanisms (which do not require a solvency capital).
The literature of multi-period tontines, as well as group self-annuitzation schemes, more
generally, are large and continue to growE]. Denuit, Hieber & Robert (2022) and Denuit
& Robert (2023) studied single-period tontine funds, also known as longevity funds or
endowment contingency funds.

In this paper, we also consider single-period tontine funds where only the surviving
participants receive the proceeds at the end of the observation period. However, it is
possible to distribute the proceeds among participants who meet objective criteria other
than survival, such as a pre-defined health event, hospitalization, etc. The mathematical

3Key papers in that literature include, alphabetically listed, Bernhardt & Donelly (2019), Bernhardt
and Qu (2023), Blake, Boardman & Cairns (2014), Chen, Chen & Xu (2022), Donnelly (2018), Donnelly,
Guillien & Nielsen (2014), Forman and Sabin (2015), McKeever (2009), Piggott, Valdez & Detzel (2005),
in particular Sabin (2010), as well as Stamos (2008), Weinert and Grundel (2021).



description is similar, but in this paper, we focus on survival as a trigger for participants
to be entitled to proceeds.

We will discuss the situation where initial investments (wealth) and survival probabil-
ities (health) vary among participants, which we call a heterogeneous case. As a special
case, we will also examine the situation where all participants invest the same amount
and have the same survival probabilities, which we refer to as the homogeneous case.

One concern with (re-introducing) tontines is their actuarial fairness. A single-period
tontine, where the probability that all members die before the end date is positive, is
clearly (mathematically) unfair in the sense that the expected return for the group, after
accounting for any investment gains, is less than the return obtained on the investments.
This is due to the fact that in case of survival of at least one participant, the investment
gains are distributed among all survivors, but in case no participant survives (which
happens with a positive probability) not any investment return is distributed. Previous
research has also addressed this problem. To resolve this issue, some researchers have
suggested adding an insurance benefit for beneficiaries of deceased members. Most papers
on tontines written in the last few years have added this element to repair expectations.

While the above-mentioned approach resolves the mathematical problem, we believe
that this isn’t why people buy tontines. Indeed, it violates the spirit of the (historical)
tontine in which all rights and ownership benefits are lost at death. Furthermore, some
members may not have any beneficiaries, leading to yet another unintended redistribution
of wealth. In extreme cases, when there is only one person surviving, this may create a
moral hazard. In other words, and for many reasons, while adding a death benefit refund
or payout “solves” the math, it “ruins” the elegance of the tontine ideal. As far as we are
aware, the alternative approach we will present in this paper is new or at least different
from the recent literature. We introduce a tontine administrator as both a technical and
real-world solution to some of these issues, instead of artificially adding legacy or bequest
payouts. The same administrator could be invoked within when this problem is examined
through the prism of decentralized risk sharing (DRS) with a posteriori contributions to
be paid by the participants, although in that context, this “new player” would serve as a
legal enforcer more than a mechanism for creating actuarial fairness. More on this DRS
aspect is discussed in the Online Appendix.

Why an administrator?

The (modern) tontine scheme is designed to eliminate the need for guarantees, capital,
and solvency requirements. However, to ensure that all participants in the scheme behave
appropriately, an “authority” must monitor and enforce the “rules of the game”. This
is not just a real-world friction but a critical aspect of the tontine scheme, as it creates
the necessary legal and administrative confidence that payouts will be shared according
to pre-specified rules. The tontine administrator, who could be a government agency or
regulator, is thus, in our view, a key participant in the scheme and must be provided with
compensation for their services. This compensation is the extra leftovers noted above,
allocated or bequeathed to the tontine administrator when everyone dies. As we will
show, if the administrator contributes to the initial investments, this approach may make



the scheme collectively actuarial fair and more realistic for implementation. [

In sum, this paper introduces a new player into the (modern) tontine literature, who
is called the administrator, and shows how he interacts and engages with the group, as
well as whether or not he might be asked to pay (which means he also contributes to
the fund) for the 'right to administer’ if indeed, he is going to benefit from the tontine
leftovers.

With some of the introductory concepts and notation behind us, the structure of what
follows in this paper is organized as follows. Section 2 models and discusses the process of
allocating tontine share. The subsequent Section 3 examines a multitude of expressions
for the payout of a tontine fund. Then, Section 4 moves on to matters of actuarial fairness,
while Section 5 links the tontine fund to (classical) pure endowment insurance. Section
6 looks at internal share allocation schemes, and Section 7 concludes the paper. The
Online Appendix flushes out the connection between tontine funds more generally and
decentralized risk-sharing rules. This appendix ends with a simple theoretical example
illustrating the role of an administrator in a tontine fund.

2 Tontine funds and tontine shares

Let us consider a group of n individuals who decide to set up a one-period tontine fund.
These individuals are referred to as ’participants’. At the beginning of the investment
period, each participant ¢ makes an initial (strictly positive) investment ; in the fund.
Our objective is to establish a fair and practical method for the surviving participants to
divide the total investment among themselves if one or more of them survives. There is
also a possibility that all participants may pass away, in which case, we need to determine
what happens to the fund’s proceeds. We have an administrator (party n+ 1) to manage
the fund. The administrator’s role is to collect investments at the beginning of the invest-
ment period, invest them, and distribute the proceeds (initial investments and returns)
to the surviving participants. If all participants pass away, the administrator receives the
full proceeds of the fund. The administrator also contributes an initial (non-negative)
investment m,,1 to the fund to receive these funds in case of no survivals. To make things
simpler, we introduce the vector 7r, which is defined by

T = (71,2, « oy Ty Tpt1) s

and will call the investment vector.

The sum of all the investments made by the participants and the administrator, i.e.
Z;‘;l 7j, equals the total value of the fund at the time 0. Each participant invests m; to

4As a point of interest and disclosure, one of the co-authors of this paper was involved in the introduc-
tion of a tontine scheme in Canada and can attest to the fact that participants were extremely concerned
about who would monitor and oversee the tontine, since the traditional insurance regulators, who demand
capital, were absent. Thus, while a utopian version of longevity risk sharing assumes everyone behaves
appropriately and discloses the required information concerning survival probabilities correctly, we argue
that an administrator is needed to keep the deal fair.



buy shares or units in the fund. Any participant ¢ who survives until time 1 will cash in
exchange for his/her shares. This paper aims to determine a reasonable and acceptable
number of units each participant should receive at time 0 for their initial investment of
;. We will consider both the chance of inheriting part of the tontine fund and the initial
investment amount while answering this question.

Let us denote the (strictly positive) number of shares of the tontine fund received by
participant ¢ by f;. The vector f defined by

f:(f17f27"'7fn>

will be called the (tontine) share allocation vector.

The total number of shares issued at time 0 is given by 2?21 fj- It’s important to note
that the administrator does not receive any shares, but in case no participant survives,
all proceeds from the fund will belong to the administrator.

We define the time-0 value S(0) of a tontine share as follows:

1
Z;l; 5

S0 = Z;’L:I fi .

(2)

At an individual level, the participant’s initial investment is not necessarily equal to
the time-0 value of his allocated tontine shares. Indeed,

m # S(0) x f;, fori=1,2,...,n,

where we make the convention that the symbol # means "not necessarily equal”. This
‘non-equality’ is because, in certain situations, two participants with the same investment
m; might require different rewards. For example, suppose the first person has a lower
survival probability due to a higher risk profile (older age). In that case, they might need
to be compensated for the extra risk they’re taking by receiving more shares than the
second person. In other situations, giving more to those with higher survival probabilities
could be more appropriate, as they are expected to live longer and will need more financial
support. We’'ll explore this issue further in this text.

It is also important to note that the shares or units are assumed to be personalized in
the sense that each unit appointed at time 0 is linked to a particular individual participant
in the fund. Moreover, the allocated shares of can only be exchanged for cash at the end
of the observation period by its owner and only if this owner survives. The units of any
participant who dies during the observation period become worthless, and we will say
that the participants’ tontine shares ’die’ in that case.

The number of ’surviving’ shares (i.e. shares of which the owner is still alive at time
1) is given by

> hix I, (3)
j=1



where ; stands for the indicator variable (Bernouilli r.v.) which equals 1 in case partici-
pant j survives and equals 0 otherwise. On the other hand, the number of shares of which
the owner has passed away is given by

ijx(l—fj)- (4)

Notice that and may be equal to 0 and z;zl fj, respectively, which will happen
in case all participants die.

Apart from the survival indicator variables related to the n participants, we also
introduce an indicator variable [, 1, that is related to the payoff that the administrator
will receive. Specifically, I,,.; = 1 if all participants die and the administrator receives
all the fund’s proceeds. Conversely, I,,,1 = 0 if at least one participant survives and the
administrator does not receive any proceeds from the fund. Hence,

n

Lin=]]0-1). (5)

j=1
Hereafter, we will always assume that
0<Pr[l,41=1] <1 (6)

This assumption means that the probability that all participant die is strictly positive
and strictly smaller than 1.

To differentiate the shares owned by participants of the tontine fund from regular,
anonymous shares, we refer to them as ’tontine shares’. These are individualized shares
belonging to a specific person that become worthless in the event of their death.

At time 1, the total investment in the tontine fund has grown to

(I+ R) x (S:&) 7

where R is the return over the observation period. We assume that R is deterministic.
Notice that we can generalize all coming results to the case where R is random, by
replacing R by E[R] in all formulas, provided we assume that R and the I; are mutually
independent.

As previously discussed, we calculate share allocations in a manner such that if no
participants survive, the administrator receives the entire time - 1 value of the fund.
However, if at least one participant survives, the time-1 value of the fund is distributed
among the surviving participants, with each surviving share having a value of S(1) which
is defined by the following expression:

S(1) = (1+ R) x if 7,41 = 0. (7)



In case no participants survive, there are no surviving shares left and hence, we don’t
have to define S(1) in that case.

Let us denote the time - 1 payouts to the participants and the administrator by W},
fori=1,2,...,n+1. To define these payouts, we have to consider the cases I,,;; = 0 (i.e.
at least one participant survives) and I,,;; = 1 (i.e. not any participant survives). We will
introduce the notations (W; | I,+1 = 0) and (W; | I,41 = 1) to distinguish between these
two cases.

Conditional on I,;; = 0, i.e. at least one participant survives, we have that the
payouts to the participant and the administrator are given by

. . S(].)XfZXIZ, fori:1,2,...,n,
(Wi | Ins1 = 0) _{ 0, for i =n+ 1. (8)

Taking into account the expression ([7)) of S(1), the conditional payouts for the participants
can be expressed as follows:

n+1
(Wi | Iny1 = 0) = (1 + R) x Zw] Lx@-, fori=1,2,...,n. (9)
> fi X

Hence, in case at least one participant survives, the total proceeds of the fund, that is
(1+R) x (Z?;l 7rj>, are shared among all surviving participants, where any survivor

receives a part of the total funds, which is proportional to the number of tontine shares f;
which were allocated to him at the set-up time of the fund. In this case, the administrator
does not receive any payment.

On the other hand, in case [, 1 = 1, i.e. not any participant survives, the payouts to
all parties involved are defined by

0, fori=1,2,...,n
(VVZ | In—i—l - 1) - (1 + R) X (Z;H_ll 773) for i =n+ 1. <1O)

Hence, in case at not any participant survives, the total proceeds of the fund are owned
by the administrator, while the (heirs of the) participants do not receive anything.

Remark that the r.v.’s Z?Zl fj x I; and I,y are 'mutually exclusive’, which is a
special kind of countermonotonicity. This means that Z;;l fj x I; and I, are both
non-negative, while the one being strictly positive implies the other being equal to zero.
Hence, the realization of Z”fll ; % I;, where f,; is an arbitrarily chosen strictly positive
number can never be equal to 0. Some relevant actuarial papers considering the concept
of 'mutual exclusivity’ are Dhaene & Denuit (1999), Cheung and Lo (2014) and Lauzier,

Lin and Wang (2024).

Taking into account this observation and the expressions @ and , we can express
the payouts W; to the participants and the administrator in the following way:

n+1
W;=(14+R) x <Zw]) #xg, fori=1,2,...,n+1, (11)



Notice that any strictly positive value of f, . is allowed, as the particular choice does not
influence the payouts W; of the participants and the administrator. Our proposed rule
is to give each surviving investor a fraction of the available funds, where each survivor’s
fraction is defined as the number of his personally appointed tontine shares against the
number of tontine shares that were appointed to all surviving participants. In case no
participants survive, the administrator receives all available funds.

It is a straightforward exercise to verify that the payouts to the participants can also
be written as follows:

n+1
i .
Wi=(1+R)x ) L, fori=1,2,....n,
< W])Xfi Z?#ij[jx or 1 n

where in Z;‘ i 5 % I, the sum is taken over all values j from 1 to n, except for j = i.
This expression is used in Denuit & Robert (2023) in the special case that 7,41 = 0 and
all f; are equal to 1.

From , we immediately find that

n+1 n+1
Y Wi=(1+R)> m (12)
i=1 i=1

which means that the sum of all payments to the participants and the administrator is
equal to the total proceeds of the fund. Hence, there is no default risk. For obvious reasons,
we call this property the ’self-financing property’ of the tontine fund.

Let us now introduce the notation I for the random vector consisting of all the survival
indicator variables of the participants:

I=(I1,1s...,1,).

A tontine fund may be set up if the n participants with survival indicator vector
I=(L,I...,1I,) and the administrator agree on the vector of investments 7 and the
share allocation vector f. Setting up a tontine fund only requires a group of participants
and an administrator, as well as agreement between them on the vectors 7w and f. Stated
differently, the payout vector W = (W7, Wy, ..., W, 11), of the single period tontine fund
is fully characterized by I, and f. Therefore, we will often identify the tontine fund
with the triplet (I,7r,f). Notice that no probabilities have to be assumed to make the
tontine fund operational. There must only be an agreement on the vectors 7w and f. Of
course, typically f may depend on 7 and eventually also on the participants’ agreed set of
survival probabilities. Specific choices of the share allocation vector f will be considered
hereafter.
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3 Other expressions for the payouts of a tontine fund.

Taking into account (2)) we can rewrite the payouts W; of the tontine fund (I, 7, f) defined

in as follows:

N S i) (L= 1) = fara
S f X

I/I/i:S(O)x(lJrR)xfix(l )x[i fori=1,2,...,n+1.

(13)

The expression of the payout W; to participant ¢ has a straightforward interpre-
tation: In case participant ¢ survives, then I, ,; = 0, and he will receive two payments at
time 1. The first one is the time-1 value S (0) x (14 R) x f; of the tontine shares he was
allocated at time 0, where at time 1 each share is valuated by S (0) x (1 + R). In addition,
the shares of the persons who did not survive, that is Z?Zl fi x (1 — 1), are distributed
among the survivors, where each survivor gets a part of it proportional to the shares he
was allocated at time 0. Hence, person i receives in addition Y7, f;x (1 — I;) x %
shares, where each additional share is also evaluated by S (0) x (1 + R). The value of
these extra shares corresponds to the second payment at time 1.

Notice that implies that
W; > S(0) x (14 R) x f; x I fori=1,2,...,n, (14)

which means that in case participant ¢ survives, he will always receive at least the time-1
value of the tontine shares that were allocated to him at time 0, where accumulation is
performed with the tontine fund return R. Notice that does not mean that upon
survival, the participant receives at least the accumulated value of his initial investment
m;. Hence, upon survival,

Wi 2 mx (L+R) x I, fori=1,2,...,n, (15)

where ;if has to be interpreted as 'not necessarily larger than or equal to’. Remark that
W; > m x (1 + R) x I; will hold for each participant in case f; = m; for all participants 7.
We will come back to this particular tontine share allocation rule in a further section.

For any ¢, we can rewrite formula as follows:

W,=mx(1+R)x(1+R)x (1+R")x I, fori=1,2,...,n+1, (16)
with 50
Ur
and .
X (1=L) — f
1+R”—(1+2J1 Ji n+(1 ) f“). (18)
=1 i < I

This means that the return that participant i receives on his initial investment m; upon
survival is composed of 3 parts: a risk adjustment return R, (because at time 0, the

13



investment 7; is used to buy shares, where the number of allocated shares to each partic-
ipant in one way or another reflects his risk profile), the investment return R of the fund,
and finally the return R” which is caused by the mortality credits, as the investments
of the participants who died are shared among the surviving participants. Notice that R
and R"” are non-negative and independent of i, whereas the risk adjustment return R/
is participant-specific and may be negative. Further, we point out that R and R] are
deterministic, whereas R” is stochastic.

Remark 1 Suppose that my = w9 = ... = m, = m, and also that the participants are
ordered in such a way that

<< . < fa

Intuitively, participant 1 is the one who gets the least amount of shares (e.g. because he is
the youngest, implying that his investment is least at risk), while participant n is the one
who gets the most shares (e.g. because he is the oldest participant). Then we find from

(@) that

S(O)xf1§ﬁ+m;+1.

This observation and lead to

17Tn+1
R < =Tt

n m

In case m,11 = 0, which means that the administrator does not pay any contribution, the
person who is allocated the least amount of tontine shares receives a negative adjustment
return Ry < 0. On the other hand, one has that

Tn+1

S0)x fp>m+

and hence from , we find that

This means that the ’person who gets the most shares’ receives a positive risk adjustment
return R), > 0.

4 Actuarial fairness of a tontine fund

Following Bernard, Feliciangeli & Vanduffel (2022) and others in the next definition, we
say that a tontine fund is ’actuarially fair’ for the participants in case it is an actuarial fair
deal for each participant. This means that the time 1 value of each participant’s initial
investment 7; is equal to his expected payoff E [W;] at time 1.

Definition 1 The tontine fund (1,7, f) is actuarial fair for each of its participants in
case
m X (14+ R) = E[W,], fori=1,2,...,n. (19)
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Remark that one could differentiate between a technical (valuation) interest rate,
which is used to discount expected cash flows, and the deterministic return R of the fund
itself, that is, the rate by which the fund grows. Carrying those two Rs wouldn’t add
much to the underlying longevity risk-sharing insights and would (only) add clutter to
the equations. For this reason, we assume that the technical interest rate is equal to the
return of the fund.

As the payouts for the participants are zero in case no person survives, we have the
tontine fund (I, 7r, f) is actuarially fair in the case

7TiX(1+R):E[WZ'|In+1:O]XPI‘[]n_H:O], fori:1,2,...,n. (20)

Taking into account , the n fairness conditions can be written as follows:
n+1

T, = <Z Wj) x B
j=1

We leave for future work, or perhaps to an enterprising student, a formal proof that
— under some appropriate and suitable conditions — at least one solution 7 exists to
the above set of equations. Also, on the topic of future work, in the event the survival
probabilities are themselves stochastic (or entirely unknown), one could devise an ex ante
agreement for sharing the proceeds of the fund, notwithstanding the fact it might not be
“actuarially fair”.

_Bxh o xPrlly =0, fori=1,2....n.

> i1 fi X 1

(21)

Theorem 1 If the tontine fund (I, 7, f) is actuarial fair for each of its participants, then
for any a > 0 and 5 > 0 also the tontine fund (I, x 7,5 x ) is actuarially fair for all
participants.

Proof: The proof follows immediately from the fairness conditions . [ ]

The theorem above implies that if a tontine fund (I, 7, f) is actuarially fair for its
participants, then the tontine fund (I, x 7r, f), where we multiply all the investments of
all participants and the administrator by a uniform positive factor «, is also actuarially
fair for these same participants. In other words, for a given group of participants with
given survival index vector I and given tontine share allocation vector f not depending
on 7, the set of n equations with unknown 7 can never have a single solution: if 7
is a solution of , then for any a > 0 also o x 7 is a solution.

Definition 2 The tontine fund (I, 7, f) is actuarial fair for the administrator in case
Tne1 X (L + R) = E[Wy44] . (22)
Taking into account that the payout to the administrator is zero in case at least one
participant survives, we find that the tontine fund is actuarially fair for the administrator

in case

Tp+1 X (1 + R) =F [Wn—l—l | [n+1 = 1] x Pr [In—i-l = 1],
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or equivalently, taking into account (11]), the tontine fund is actuarial fair for the admin-
istrator if and only if
& Pr ([l = 1]
Tn+1 (]2:; 7Tj> Pr []n+1 — 0] ( )

Notice that in case the number of participants n is large, we will typically have that
the probability that at least one participant survives, i.e. Pr[I,,;; = 0], will be close to 1.
That means that in this case, we will have that

Tpi1 =~ 0.

In the special case that all I; arei.i.d. with Pr[I; = 0] = ¢, we have that Pr[[,.; = 1] =

q", and transforms into
n qn
Tnil = i | X .
a= (L) <25

A question that we will consider in the following theorem is whether a tontine fund
which is fair for all participants is also fair for the administrator.

Theorem 2 A tontine fund (I, 7, f) that is actuarial fair for each of its participants is
also actuarial fair for the administrator, i.e. the conditions (@ imply that m,41 1S given

by ([23).

Proof: Suppose that the tontine fund is actuarial fair for each participant. This means
that the conditions hold for all participants. Summing these n actuarial fairness

conditions,
n+1

Z’ﬂ'j = (Z@-) X Pr[l,4+1 = 0],
j=1 j=1

implies that 7,1 is given by , and hence, the tontine fund is actuarial fair for the
administrator. ]

From the theorem above, we conclude that a necessary condition for a tontine fund to
be actuarially fair for each of its participants is that it is actuarial fair for the adminis-
trator. In other words, in case a tontine fund is not actuarial fair for its administrator, it
cannot be actuarial fair for all its participants.

In the literature, usually the investment 7, ; of the administrator is set equal to 0,
which means that the tontine fund is not actuarial fair for the administrator, which in
turn implies that it can also not be actuarial fair for all its participants. This observation
can also be seen as follows. In case 7,1 = 0, we find from (11]) that

zn:E (Wi = (1+ R) (zn:@) X Pr[L,41 = 0]

=1

< (1+R) (im)
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This inequality implies that it is impossible that the tontine fund is actuarial fair for each
participant, i.e. E[W;] = (1+ R) x m; for all i. For at least one participant i, one must
have that E[W;] <m x (1+ R).

Milevsky and Salisbury (2016) investigate tontines where the expected present value
of income is always less than the amount contributed or invested in the tontine. They
introduce ’equitable’ rules, as rules where no specific or identifiable member is disadvan-
taged in time-zero expectations. More specifically, in that paper, they investigate how to
construct a multi-age tontine scheme and “determine the proper share prices to charge
participants so that it is equitable and doesn’t discriminate against any age or any group.”
The tontine they propose is a closed pool that does not allow anyone to enter or exit after
the initial set-up. To quote from Milevsky & Salisbury (2016):

(13

. a heterogeneous tontine scheme can often (though not always) be made
equitable by ensuring that the present value of income (although less than the
amount contributed) is the same for all participants in the scheme, regardless
of age. This scheme will not discriminate against any one cohort, although it
won’t be fair...”

We should note that they (too) discuss the challenges in designing longevity-risk shar-
ing rules that work for small groups, and they conclude:

“...We have proved that it is possible to mix cohorts without discriminating
provided the diversity of the pool satisfies certain dispersion conditions and
we propose a specific design that appears to work well in practice...”

Their conclusions are consistent with the main tenor of this paper, that there are an
assortment or multitude of methods in which longevity risk can be shared — the many
ways to skin a cat — and that a priori one isn’t necessarily better or worse than the other.

Theorem 3 The tontine fund (1,7, f) is actuarial fair for each participant if and only if
the following conditions are satisfied:
Uy f,L X [l Pr [In+1 = 0]
=F|—=——— |41 =0| X —/————|
Tn+1 Zj:l fj X Ij ‘ H Pr [[n+1 = 1]

fori=1,2,...,n. (24)

Proof: (a) Let us first assume that the tontine fund (I, 7, f) is actuarial fair for each
participant. Then we have from Theorem 2 that the tontine fund is also actuarial fair for
the administrator and his investment 7,1 follows from (23|). The actuarial fairness for the
participants means that holds for any ¢ = 1,2, ..., n. Combining these n expressions
with leads to the stated expressions for the participant’s investments. (b) Next,
we assume the conditions are satisfied. Summing these n equations leads to (23)),
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which is the actuarial fairness condition for the administrator. The conditions can
be rewritten as

5 . Pr [In+1 = 0]
Pr [In+1 = 1]

Ji X I;
> i1 fi X L

= +1)><E | Liy1 = 0| x Pr|l4; =0].

Tn41

Taking into account the expression for m,.1 leads to the actuarial fairness conditions
for the participants. [

A possible application to the above theorem is as follows. A group of people who
wants to construct a tontine fund or scheme which is actuarially fair could reach that goal
by first choosing the administrator’s investment m,,; and the share allocation vector f.
The individual investments so that the scheme is actuarially fair, follow then from (24]).
Of course, in practice, this order is often reversed when the investment vector 7r is chosen
first, and the share allocation vector f is an afterthought, depending on the choice of .

From Theorem 2, we know that if a tontine fund is actuarially fair for each of its
participants, then it is also fair for the administrator. However, the opposite implication
does not hold: Actuarial fairness for the administrator is not sufficient to have actuarial
fairness for each of its participants. Let us now introduce a weaker form of actuarial
fairness, which we baptize “collective actuarial fairness”, equally described as “social
justness” to avoid the overused and rather loaded term, fair.

Definition 3 The tontine fund (1,7, f) is collective actuarial fair for its participants in

(iw])x(lJrR)—E iWJ] (25)

Collective actuarial fairness (a.k.a. social justness) means that the time 1 value of the
sum of all participant’s initial investments Z?Zl 7; is equal to the expected value of the
sum of all their payoffs > 7| W; at time 1.

Theorem 4 A tontine fund (1,7, f) is collective actuarial fair for its participants if and
only if it is actuarial fair for the administrator, i.e. the conditions and are
equivalent.

Proof: From it follows that the expected value of the total payouts to all participants

is given by
n+1

zn:Wj] = (1+R) x (Z 7@) X Pr[l4 =0]. (26)

This means that the condition for collective actuarial fairness can be rewritten as

follows:
n n+1
(Z Wj) = (Z Wj) x Pr [In-i—l = O] )
j=1

J=1

E
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which is equivalent with the condition of actuarial fairness for the administrator. m

In the following theorem, we consider the situation where the participants are indis-
tinguishable in the sense that the random vector (11, I, ..., I,,) is exchangeable. A special
case of the exchangeability assumption is that all [; are i.i.d.

Theorem 5 Consider the tontine fund (I, 7, f). Suppose that the indicator vector I =
(I, Is, ..., 1,) is exchangeable and assume that the fund applies a uniform tontine share
allocation vector £ = (f, f,..., f). Then we have that the tontine fund is actuarial fair for
any of its participants if and only if the following condition is satisfied: All participants
pay the same initial investment, that is 7; =, fori=1,2,...,n, with:

_ Tn+1 % Pr [In+1 = 0]
n Pr (I, =1]

(27)

Proof: Consider the tontine fund (I, 7, f), where I = (Iy, I, ..., I,) is exchangeable and
f=1(f,f,...,f). From (24]), we know that the tontine fund is actuarial fair for any of its
participants if and only if

Ii Pr [[n+1 == O] .
T =Tl X B | = | [n;1 =0 X —————, fort=1,2,...,n. 28
o Bl g e ] Prll = 1] (28)
Taking into account the exchangeability of (I, I, ..., I,), a symmetry argument leads to

the conclusion that F [ﬁ | Iy = ()] is equal for all 7. Further, as

I;
—|In+1:()] =1,

E
; Z?:l I

we find that
E

1; 1
= | [n1 =0 = —, fori=1,2,...,n.
2;21 [j ’ n+1 ] n t] )

We can conclude that the n actuarial fairness conditions for the participants are equivalent
with m; =7, for ¢t = 1,2,...,n, where 7 is given by . [

5 Single period tontine vs. classical pure endowment

Consider n persons with survival indicator vector I, who want to set up a one-period
tontine fund and start negotiations about how much everyone should invest and how the
tontine shares should be allocated. To come up with a reasonable tontine fund structure
characterized by (I,7,f), they start by deciding on the vector 7r. Once this vector is
specified, the participants observe the insurance market to find out what kind of pure
endowment insurance each could buy for a premium equal to his tontine fund investment.
Suppose that person ¢ can buy a pure endowment with survival benefit L; for a premium
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equal to ;. We do not require any particular premium principle to determine the ;. In
other words, we assume the 7; to be chosen and the corresponding L; to be observed in
the market.

In case the n persons buy the insurance from a particular insurer, this insurer faces a
possibility of insolvency, that is a possibility that the event

ZL x I; — (1+ R) x ij>o
J=1

might occur.

In traditional life insurance, the insurer ”solves” the insolvency issue by charging
sufficiently high premiums and setting up a solvency capital.

To solve this issue for the tontine fund under construction, the n persons appoint an
external administrator, who is assumed to contribute 7,1 > 0. As before, we introduce
the Bernoulli r.v., defined as follows:

n

L =[J0-1). (29)

j=1

Furthermore, let L, be an arbitrarily chosen strictly positive number. Then, for
each participant, the ’insurance payout’ L; X I; is replaced by the tontine payout’

W;=a(I) x L; x I, fori=1,2,...,n+1, (30)

where « (I) follows from
n+1 n+1
X(ZLJXIJ> 1+R <Z7T])_ s
j=1

1
2;&1 Ty

S Ly x I

or, equivalently,

a(l)=(1+R)x (31)

Hence, the random coefficient « (I) is chosen such that the benefits a (I) x L; x I;
satisfy the full allocation condition.

Notice that « (I) is identical for any particular participant and the administrator, but
it is only observable at time 1. It is straightforward to verify that the particular choice
of L, 1 does not influence the payouts W;.

Furthermore, from and , we find that

n+1
L:
; >t Ly < I
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We find that these payouts are exactly equal to the payouts of the tontine fund (I, 7, f)
with payouts W; defined in , provided the allocated shares are given by

f=1L,
where
L = (Ll,LQ,...,Ln).

This rule pays the survivors the relative fraction, i.e. their personal insurance claim against
the aggregate insurance claims of the survivors, of the available funds.

In order to be able to apply , the participants and the administrator only have to
agree on the vectors w and L. This means that they only have to decide and agree on
what everyone invests at time 0 and on what the participants would receive as survival
benefit in a classical pure endowment insurance environment for their investment used as
a premium. The choice of the premium principle or a mortality table is not required.

So far, we did not consider the choice of 7, 1. A possible choice for the administrator’s
contribution is given by ([23)),

RN Pr([l,:1 = 1]
- (Z 7@> Bl

This choice of m,,; makes the tontine fund (I, 7, L) fair for the administrator, and hence,
also collective fair for the group of participants.

A possible way to fix L is chosing the L; such that

X L; X p;, fori=1,2,...,n

T, =

1+7r

for given (agreed) survival probabilities p; and technical interest r. This means that
the participants agree on a lifetable and choose the amounts L; as the survival benefit
corresponding to the net premium in a pure endowment insurance with net premium ;.

Under this choice, we find that (32)) reduces to
n+1 urs
W;=(1+R) x 7| X ——2—— x I, fori=1,2,...,n+ 1. 33
(£) s -

In the following section, we will come back to the particular payout scheme defined in
. Remark that the payouts (1)) of the example in Section 1 are a translation of
to the particular situation in that example.

6 Tontine funds with an internal share allocation scheme.

Let us consider a group of n persons with a survival indicator vector I = (Iy, Iy, ..., I,).
As mentioned above, a tontine fund for this group is characterized by (I, 7r, f). Let us now
assume that the n participants and the administrator agree on a probability vector

p:(plﬂ b2,..., pn)a
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where p;,i = 1,2, ..., nis the survival probability of participant ¢, i.e. p; = P [I; = 1]. The
vector p of the survival probabilities have to be interpreted as an ’agreed vector’, which
may be different from the ’real vector’ of the survival probabilities of the participants.
We also introduce the notation p,,1 = P[[,41 = 1] for the probability that not any
participant survives.

In this section, we assume that the tontine share allocation vector f is a function of
the contribution vector 7 and the probability vector p:

f:f(ﬂ'ap):(fl(ﬂ-7p)7f2(ﬂ-7p)7"‘7fn(777p))7

where the value of f; (7, p) corresponds to the number of tontine shares received by person
i in the tontine fund (I, 7, f). In other words, f : R"™ x R” — R™ maps any couple (7, p)
consisting of a contribution vector and a survival probability vector into a tontine share
allocation vector f (m,p).

Each f; (7, p), i =1,2,...,n, can be interpreted as a measure of the 'risk exposure’ of
the corresponding participant, taking into account the information on initial investments
and survival probabilities of all participants. We call the function f an internal share
allocation scheme in the sense that the allocated number of shares only depends on internal
information of the pool, i.e. on the vectors 7w and p. More generally, one could also consider
more complex share allocation schemes, where the number of allocated shares does not
only depend on 7 and p, but also on other deterministic information and/or on time 1
observable random variables, such as the state of the economy at the end of the year, the
occurrence (or not) of a pandemic over the coming year, the precise magnitude of medical
inflation over the coming year, etc.

From , we find that the payouts W; of the tontine fund (I, 7, f) can be expressed
as follows:

n+1
VVZ»=(1+R)><<Z7TJ->><Z fil®P) 1 fri=12...n+l (34)

n+1
j=1 jil fi(m.p) x I

At the set-up of the tontine fund with an internal share allocation rule, an agreement
on the investments and an assumption about (or agreement on) the survival probabilities
of the participants are required to be able to define the payouts. Once the tontine fund
is launched, it only needs an administrator who collects info about the survival or death
of the participants, from which he can then determine each payout W; via formula .
Notice that any strictly positive choice for f, . (7, p) can be made as the payouts do not
depend on this choice.

In certain situations, it may be reasonable to assume that

fl(ﬂ-7p):7rl><g(pl)7 fori:1727"'ana (35>

where ¢ is strictly positive and decreasing (or increasing, or something else) in the survival
probability p;. That means that it may be appropriate to assume a linear behaviour
between the number of allocated tontine shares f; and the initial investment m;, when
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the survival probability p; is fixed. A decreasing g corresponds to the mathematical
translation of the fact that 'a participant with a smaller survival probability receives a
larger number of tontine shares than a person with the same initial investment but higher
survival probability.” Such an approach is inspired by the idea that the person with a
smaller survival probability has a higher chance of losing his initial investment. On the
other side, in case one imposes an increasing g that means that the allocation rule is such
that it favours participants with higher survival probabilities. This might be a desirable
property in a closely connected social group, and would be in the hands of the scheme’s
architects. Finally, notice that we assume here that g is not participant-specific and hence,
does not depend on i. More generally, one could introduce a participant-specific function

Gi-
In case holds, we have that the payouts W; in transform into

n+1

i X g (i) :

W;=(1+R) x T — x I, fori=1,2,...,n+1. (36)
(Z j) >ty % g (pg) x I

Hereafter, we introduce some important special cases of the share allocation scheme

defined in .

Example 1 The DM allocation scheme.
Let us assume the internal tontine share allocation scheme (35)), where g (p;) = 1/p;. In
other words, we consider the following tontine share allocation scheme:

PM(rp) ="t i=12....n+1. (37)
pi
In this case, the payouts of the participants are given by
n+1 ues
Di y
Wz 1+R <Z7T]) w—ﬂ]“XIi, fOI'Z—l,Q,...,TL—I—l, (38)
pPj

which corresponds with the tontine fund payouts W; that we introduced in . Remark
that a special case of this allocation scheme was considered in . Notice that we have
chosen fPM (,p) = 72, but any other strictly positive value of £} (m,p) will lead to
the same payouts.

A motivation for this allocation in terms of traditional insurance benefits was given

in the previous section.

It’s interesting to note that a rather special case of the above will arise if all participants
are required to have the same risk exposure in the sense that g— = ¢, where ¢, is a given
constant. In that special case, for a given (or assumed) vector of survival probabilities,
the investments are then given by:

m; = ¢ X p;, 1=1,2,...,n+1,
and reduces to:
n+1
W 1+R (Z?T]) ZnTI, fori:1,2,...,n+1

7j=1
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Example 2 The T allocation scheme.
Consider the internal share allocation scheme (35) with g(p) = 1:

i (m,p) =7, fori=1,2,...,n+1.
Then becomes

n+1
Wi =(1+R) x (Zﬁﬂ> ZH+XL~, fori=1,2,...,n+1. (39)

jo1 T X

Notice that from , it follows that the time - 0 value of a tontine share, notation S (0)

1S now given by
n+1
§ 4 T e
=1 "7 n+1
J =1 +

Z?:l Ty Z?:l T

From ((13)) it follows then that can be rewritten as follows:

n+1

My 1-1)—m,

W= (14— )« (14+R) xm x |y 2 Jnfl ) = Mot x I,
Zj 175 ZJ 1 T X

fori=1,2,...,n+1. (40)

ST(0) =

S ) (1= 1)) ~mn

Zn+11 i x1;

When 7,1 = 0, formula remains to hold, provided we replace 7,11 in
J

by a strictly positive value f, 1. In this case, we find that

Z?:l 7 X (1= 1) = fug1 X Tnya
D i1 T X L+ fasr X Lpga

W‘Z.T:(1+R)><7Ti><(1+ )x[l-, fort=1,2,...,n+1.

In case at least one participant survives, i.e. 1,11 = 0, we have that

21 X (1= 1)
W Ly =0)=1+R)xmx |1+Z=;
( #1=0) ) ( > i ™ X

)x[i, fori=1,2,...,n

In the questionnaire survey that we noted in the early part of the paper, one of the
replieﬂ that we received was the above-noted formula, and which we denote as Tavin
allocation scheme. That scheme favours younger participants, individuals with higher
survival probabilities. Indeed, consider two participants, ¢ and j, who invest the same
amount 7; = 7;, but the first one is younger than the second one in the sense that p; > p;.
Then obviously, the younger person is favoured as in the case of survival, both receive the
same amount, although the younger one has a higher survival probability. To paraphrase
Tavin (2023):

5Private communication from Bertrand Tavin.
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(13

. In this allocation, the recorded amount upon survival is only driven by
the agent’s initial stake compared to the others’ stakes. This system plays a
role in terms of the welfare of the social group. Namely, there is a reallocation
of wealth (the total amount in the fund) that is favourable to those who are
likely to survive long after the liquidation of the tontine, compared to the
risk-return-based allocation, which favours the agents who are likely not to
survive long after the liquidation of the tontine. This system increases the
group’s welfare if we look at the welfare obtained by the surviving agents after
time 1. Conditional on survival at time 1, those likely to live long after time
1 need more (because they probably need to take care of an elder parent or
children) and are more likely to have projects that benefit the social group
(e.g. opening or financing a business). On the other hand, the agent who is
not likely to survive long after time 1 will probably not have enough time to
enjoy the received amount ...”

Example 3 Consider the share allocation rule with:

1
fi(m,p) = —, i=1,2,....n.
Di

In this case, we find from that

n+1 1
m:(l—i-R)X(Z’YTJ)XZnPﬁX—, f0r2:1,2,,n+1 (41)
j=1 pj

o P

This rule favors "poorer’ participants (i.e. participants who invest less). Indeed, consider
two persons ¢ and j with initial investments m; < ;. Suppose that both have the same
survival probability. Then in case of survival both receive the same amount, whereas
person ¢ invested less.

Example 4 The DR allocation scheme, following the work of Denuit & Robert (2023).
Consider the uniform rule with

In this case, we find from that

n+1
W 1‘|‘R <Z7TJ) Z:nT]’ fori:1,27...,n—|—1. (42)

=1 "7

n+1

From , we find that SPR(0) = @ Hence, from 1) we find that

n+1 n+1
Zj:l Ty » <1 " ijl (1-1;) -1

WPR = (1 + R) x
( ) n S

7

)x[i, fort=1,2,...,n+ 1.
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This scheme is advantageous for individuals who are younger and poorer. Suppose
there are two people, ¢ and j. If ¢ is younger and has a higher chance of survival, but is
poorer and pays less to the tontine fund than j, he will receive the same payout money
if they both survive. Therefore, the tontine arrangement benefits the younger and less
affluent person i. A similar scheme can be found in Denuit & Robert (2023), with the
difference being that they make their rule fair by returning the initial investments if all
participants pass away and defining the initial investments so that the allocations are
actuarially fair.

We end this section by a note about the (rather loaded term) ”actuarial fairness”.
Taking into account Theorem 4, the above-discussed allocation schemes or arrangements
- although in general not actuarially fair to any given individual - can be made collective
actuarial fair (in the sense of Definition 3), or perhaps the proper word is actuarially
“just” to add another term to the growing lexicon, by introducing the administrator and
making the arrangement actuarially fair for him.

6.1 Back to the Original Motivation

We conclude here, returning to the example from Section 1.2 (“Setting the Stage”), with
which we motivated the paper. In particular, we now add the tontine share allocations
(f1, f2, f3) and the contribution from the administrator (agent 4) to illustrate how these
tontine shares would be (re)valued and how their introduction would make the scheme
actuarially fair collectively. Recall there were three participants or agents whose contri-
butions 7, and survival probabilities p were: (80,0.2), (50,0.5) and (20, 0.8) respectively.
The total gross fund contribution from the three participants was 150 dollars. The proba-
bility of aggregate death was p* = 0.08, all of which was explained in the introductory
sections.

6.1.1 Tontine Share Allocations

We (arbitrarily) set the total number of tontine shares issued by the scheme to be 1,000 at
time zero, and then allocate those shares to the three participants using the proportional
share allocation rule summarized by the following expression:

£, __(m/p) 1000, i=1,2,3.

ZZ:l(Wk/pkz)

The number of tontine shares each participant receives is summarized by the following
table:

The key (practical) assumption from implementing tontine shares is that these units
are cancelled when their owner dies, so the value of the remaining shares increases, no
different from the impact of corporate stock-buybacks (and cancellations.) This is yet
another way to think about mortality credits from a financial perspective.
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= (80/0.2)1000 = 761.90 shares
2 = - ()50 (05 t — 190.48 shares
( 070()20 (078))13_0(07 :) |
fs = (22)+(22)+(2) = 47.62 shares
H Total ‘ Sitfat /s ‘ = 1,000 shares H

6.1.2 No Administrator

The total contribution or size of the fund was > 7 = 150 units of currency, so with exactly
1,000 tontine shares outstanding at time zero, the initial value per share is 150/1000 =
0.15 units of currency. Then, at the end of the period, if everyone is alive (which is scenario
wy ), the first participant receives a cash payout of 761.90 shares, times 0.15 per share,
which is 114.285 dollars. The second participant receives a cash payout of 190.48 shares,
times the same 0.15 per share, which is 28.571, and the third and final participant’s 47.62
shares entitle him to 7.143 dollars. Under scenario w;, the per share tontine value did
not change during the period because nobody died and we assumed an investment rate
of R = 0. Needless to point out, the cash payouts are precisely the numbers reported in
the solution we offered in Section 1.3, albeit using a separate (actuarial) argument.

To see the mechanics of cancelled tontine shares in action, let’s examine the fourth (wy)
scenario (of eight) in which participant 2 dies, and his 190.48 shares are cancelled before
the end of the period payout. In that case, the 150 value of the fund is re-proportioned
across the remaining and reduced (1000 — 190.48 = 809.52) shares, leading to a revised
time ¢ = 1 value per tontine share of 150/809.52 = 0.1852 dollars. The tontine share value
has jumped from 0.15 at times zero to 0.1852 at the end of the period due to the death
of participant 2. In the fourth scenario, participant 1 receives 761.90 shares x 0.1852 per
share, which is 141.10 dollars. The only other surviving participant, number 3, receives
47.62 shares times 0.1852, which is 8.82 dollars. Again, this is identical to the numerical
solution provided in Section 1.3, but the explanation and rationale are grounded in the
ownership of tontine shares. To sum up: (i.) death cancels tontine shares, which then
(ii) increases the value per remaining shares, which then (iii.) leads to an appropriate
cash payout based on the new value per share. All that matters is the number of shares
the surviving participant owns (at the end of the period) and the revised value per share.
Now, as explained earlier, this tontine scheme is actuarially unfair in the aggregate, a.k.a.
collectively due to the p* = (0.08) probability of aggregate death. Indeed, individual
participants 2 and 3 are expected to receive more than they contributed, a.k.a. the
tontine is individually generous to them, but not participant 1 and not in aggregate. The
expected payout to the participants are: E[W;] = 25.84 for the first one, E[WW,] = 53.29
and E[W3] = 58.88 for the third one. Clearly, the second and third agents are expected
to receive more than they invested (a.k.a. the scheme is generous to them), and the first
agent expects to receive less than he invested.
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6.1.3 Enter the Administrator

To make the tontine actuarially fair to the administrator — and by construction for the
entire group — the expected payout E[Wj] must equal the to-be-determined contribution:
m4. That number must satisfy the following relationship:

Ty = pr(m 4+ mo + w3+ M),

From which we find m; = (0.08)(150 + 7m4), so the administrator contributes m, = 13.04
at time zero, increasing the size of the tontine fund from 150 to 163.04 dollars. The
administrator receives no tontine shares (ever) but is entitled to the entire 163.04 value
of the fund if-and-only-if everyone dies, a.k.a. aggregate death, which occurs with 0.08
probability. However, this added 13.04, which is now part of the tontine fund, increasing
the time ¢ = 0 value per share from 0.15 to 163.04/1000 = 0.16304 dollars. The number
of shares held by the three participants remains the same as in the no-administrator case.
Still, the cash flow to survivors is adjusted by the new share price. The following table
is a revised version of the table displayed in section 1.3, with the adjusted cashflows
to survivors. These cashflows can also directly be determined from formula of the
DM allocation scheme. Compare the two tables to see how the administrator’s money is
distributed to survivors.

W (w1) W (w2) W(ws) W (ws) W (ws) W (we) W (wr)
1112422 || 0 0 0 0 1115345 || 1| 13043 | 1| 163.04 | 0 0

—_

1] 31.06 || 113043 | 0O 0 0 0 1] 3261 |0 0 163.04

1| 7.76 1] 3261 | 1]163.04 (1| 959 |0 0 0 0 0 0

Notice how the payout has increased to all participants and in all states because the
value of their tontine shares has increased. For example, under wy, the share price of
0.16304 multiplied by the (same) number of tontine shares (761.90, 190.48,47.62) leads to
the first column, etc. With the administrator, the expected payout to the participants
are: E[W;] = 28.08 for the first one, E[W,] = 57.92 and E[W3] = 64.00 for the third
one and F[W,] = 13.04 to the administrator. Once again, the second and third agents
are expected to receive more than they invested, and the first agent (still) expects to
receive less than he invested — but it is slightly more favourable to everyone individually,
actuarially fair to the administrator and the collective group as a whole.

7 Summary and Conclusion

The motivation for this paper — both conceptually and in practice — revolves around the
many justifiable ways in which a group of heterogeneous individuals could, in theory, share
the proceeds of a (longevity) risk-pooling agreement. We offered the example and began
with a one-period tontine, a product that is enjoying a resurgence of interest worldwide,
both in academia and industry. Our (small pool) numerical example where the members
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of a heterogeneous group invested unequal amounts into the tontine pool made the multi-
plicity of possible solutions evident. Therefore, one of the contributions of this paper is to
argue that the payout structure for a tontine fund can be quite comprehensive, catering
to a broad range of groups wishing to share longevity risks without the interference of an
external entity assuming the risk of insolvency.

These insights are particularly beneficial for closely-knit smaller groups aiming to
redistribute wealth from their older, wealthier members to their younger, less prosperous
counterparts. In such scenarios, the emphasis isn’t on actuarial fairness or the magnitude
of the administrator’s contribution. Instead, the focus is on the collective benefit of
the group, as the administrator embodies the group’s interests, and their contributions
directly benefit the group.

Our methodology accommodates larger groups, even when participants do not share
social connections or interpersonal ties. In these situations surviving members ought
to be compensated based on the actuarial risks they’ve accepted and been exposed to.
Individuals with a lower likelihood of survival should be entitled to a more substantial
reward. An external entity, like an insurance company or a government regulator, takes
the role of administrator in these contexts. They could also contribute to the fund in case
there is a significant likelihood that none of the participants will survive.

So, while the objective of modern tontines, and more generally, uninsured decumula-
tion products (UDP),E] is to eliminate the costly capital associated with insurance guar-
antees, we are not advocating the elimination of insurers. Rather, under these arrange-
ments, the role of the insurer would be to administer the fund — in exchange for “a piece
of the action” — which would serve two distinct roles. First, oversight. They would en-
sure all participants in the scheme were abiding by their obligations and commitments.
Second, and just as importantly, administrators in the scheme would make it collectively
actuarially fair, that is, socially just.

The next step is to extend this one-period framework to a multiperiod tontine fund,
which would be constructed as a sequence of linked one-period funds. Defining the re-
lations between indicator vectors, premium vectors, share allocation vectors, and the
all-important payout vectors in consecutive periods is left for future research. In the same
category of plans for future research, we leave the discussion of allowing 7; and even f; to
equal zero, allowing certain groups to avoid paying (and still benefiting) or not benefiting
(and still paying.) Examples would be targetted demographic groups such as the young
and old, or the poor and the rich, respectively.

We conclude by noting that the single-period tontine fund, which is described within
the body of this paper can be treated or viewed as a special case of (what we call)
compensation-based decentralized risk-sharing (DRS) arrangements, where at time ¢t = 0
one contributes (deterministic) premiums (or investments) and at time ¢ = 1 one receives
(random) compensations, which are set such that the risk-sharing scheme is self-financing.
Like the literature on tontines, there is a growing literature on this type of DRS. Apart

6This is the term recently introduced by Canadian regulators to describe the arrangements of this
sort. See: https://www.fsrao.ca/requlation/quidance/understanding-decumulation-products.
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from compensation-based DRS arrangements, there exist also (what we call) contribution-
based DRS schemes, which are characterized by time 1 (random) contributions and time
1 (random) benefits or claims, and where the contributions are determined, such that the
risk-sharing scheme is again self-financing. There is also a growing literature on this type
of DRS. For an overview of a unified theory of DRS, we refer to Feng (2023) and the
references in that book. The above-mentioned observations are further explored in some
detail in the Online Appendix.
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