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Abstract

This paper studies the quantile risk-sharing rule introduced in Denuit, Dhaene & Robert

(2022). New properties are investigated and an axiomatic theory is developed. The axiomatic

characterization of this risk-sharing rule is based on aggregate and comonotonicity-related prop-

erties of risk-sharing rules. Numerical examples illustrate how this rule allocates losses among

participants.
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1 Introduction

Consider n economic agents with respective losses X1, X2, ..., Xn who decide to form a pool. If

the agents presume that X1, X2, ..., Xn are identically distributed and if no knowledge about their

dependency structure is available, or they do not want to use this information, then they often

share losses equally. This means that they adopt the uniform risk-sharing rule allocating to each

agent the average loss Xn = X1+X2+...+Xn
n within the pool. The uniform risk-sharing rule possesses

many attractive properties. See e.g. Denuit, Dhaene & Robert (2022).

Now, assume that participants become aware that their respective losses are not identically

distributed. Participants bringing comparatively “smaller” losses to the pool may then not be

willing to contribute the same amount Xn anymore. When the participants know the respective

distribution functions of their losses X1, X2, ..., Xn, the quantile risk-sharing rule may provide them

with an acceptable solution. Under this rule, the aggregate loss SX = X1+X2+...+Xn of the entire

pool is transformed into a probability level and all participants contribute an amount equal to the

quantile of their loss at that probability level. In this way, individual characteristics are accounted

for in the allocation. If all distribution functions are identical then the uniform risk-sharing rule is

recovered as a particular case.

Formally, let X1, X2, ..., Xn denote insurance loss amounts, modeled as non-negative random

variables with 1-to-1 distribution functions FXi over (0,∞) and a possible positive probability

mass P[Xi = 0] at 0. When realized losses x1, x2, . . . , xn are observed, they can be turned into

probability levels pi via the equation xi = F−1
Xi

(pi), where F
−1
Xi

is the inverse function of FXi , called

the quantile function. This means that participant i staying alone, without engaging in any risk-

sharing activities with other participants, would have remained solvent provided his or her available
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assets were (at least) equal to the Value-at-Risk F−1
Xi

(pi) at level pi. The randomness of individual

losses causes differences in the solvency levels pi. The idea of joining the pool according to the

quantile risk-sharing rule is to replace the possibly different p1, . . . , pn by a unique and uniform

probability level p(s) corresponding to the realized aggregate loss s. The unique solution is to ask

participant i to contribute the amount F−1
Xi

(p(s)) where p(s) satisfies

n∑
i=1

F−1
Xi

(pi) =

n∑
i=1

F−1
Xi

(p(s)) = s.

This defines the quantile risk-sharing rule, allocating the ex-post contribution F−1
Xi

(p(s)) to par-

ticipant i. The key argument in the study of the quantile risk-sharing rule is that
∑n

i=1 F
−1
Xi

(·)

defining the common probability level p(s) is the quantile function of the sum of the comonotonic

modification of the random vector X = (X1, X2, ..., Xn), which leads to many of the important

properties of this rule.

Individual contributions under the quantile risk-sharing rule can be expressed as non-linear

transformations of the equal allocation Xn under the uniform risk-sharing rule. The identity above

can indeed be rewritten as

1

n

n∑
i=1

F−1
Xi

(p(s)) = xn,

where xn = s
n is the ex-post contribution under the uniform risk-sharing rule. Defining the function

g mapping the unit interval to the half positive real line as g(q) = 1
n

∑n
i=1 F

−1
Xi

(q), we finally

obtain the common probability level p(s) = g−1(xn) while the individual contributions are equal to

F−1
Xi

(g−1(xn)), i = 1, 2, ..., n. This shows that the quantile risk-sharing rule allocates to participant i

a non-linear transformation F−1
Xi

◦g−1 of the average loss xn at pool level, accounting for individual

characteristics. The uniformity is transposed here to the common probability level p(s), as all

participants contribute an amount equal to the quantile of their respective losses at this same
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probability level. If individual losses are identically distributed then F−1
Xi

◦ g−1 is just the identity

function and the uniform risk-sharing rule is recovered, as mentioned before.

This quantile risk-sharing rule has been introduced in Denuit, Dhaene & Robert (2022) where

several of its properties have been investigated. This rule is a comonotonic risk-sharing rule in the

sense that the contributions are non-decreasing functions of total losses SX , which is a desirable

property since it ensures that the interests of all participants are aligned, in the sense that they all

have an interest in keeping their losses as small as possible. This paper further investigates this

risk-sharing rule.

Embrechts, Liu & Wang (2018) and Wang and Wei (2020) characterized Pareto-optimal risk-

sharing rules, where the Pareto-optimality is expressed in terms of a sum of quantile-based risk

measures applied to the individual losses in the pool. The approach in the present paper is different

as we investigate some properties that the quantile risk-sharing rule may or may not possess, and

we determine the defining axioms underlying this risk-sharing rule.

The axiomatic theory developed in this paper compares with Jiao, Kou, Liu & Wang (2022)

who pioneered the theory on axiomatic characterization of certain classes of “anonymized” risk-

sharing rules, i.e. risk-sharing rules that do not require any information on the preferences of the

agents, a risk exchange market, or subjective decisions of a central planner. They proved that

four axioms characterize the conditional mean risk-sharing rule introduced by Denuit and Dhaene

(2012). In this paper, we consider three axioms and prove that these axioms characterize the

quantile risk-sharing rule.

Let us discuss these three axioms in an informal way. The first of them requires that participants

adopt an aggregate risk-sharing rule, in the sense that individual contributions depend on losses

X1, X2, ..., Xn, only through their sum SX . This condition is standard in the literature. It is
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for instance referred to as “risk anonymity” in the axiomatics supporting the conditional mean

risk-sharing rule proposed by Jiao, Kou, Liu & Wang (2022).

The second axiom imposes that the risk-sharing rule adopted by participants is dependence-

free, in the sense that individual contributions only depend on the marginal distribution functions

FX1 , FX2 , . . . , FXn and not on the dependence structure of the random vector X. This property

is certainly debatable but turns out to be reasonable in certain situations. Assume for instance

that the dependence among individual losses results from the agents’ exposition to a common

environment, making X1, X2, ..., Xn positively related, in the sense that large (or small) values

of these random variables tend to occur simultaneously. Participants may then be willing to let

their contributions only depend on the marginal distribution functions of their losses, especially if

the dependence structure is hard to model. This common environment may be geographic when

participants live in the same area and wish to share losses due to storms for instance. It may also be

economic when participants work in the same sector of activities. Being equally impacted by their

common environment, participants may only want to adjust their contributions to the magnitude

of the risks they bring to the pool, as reflected in the quantile functions.

The third and last axiom is an extreme case of the second one, in that the risk-sharing rule must

leave every participant with his of her own loss when X1, X2, ..., Xn become maximally positively

dependent, or comonotonic. This means that when the impact of the common environment is so

strong that individual losses become functionally related, so that knowing the value of one loss

gives the values of all other ones, then there is no diversification possible anymore and agents may

wish to only pay for their own losses as if they stood alone.

We show that when participants agree about these three axioms then they must resort to the

quantile risk-sharing rule to allocate their respective losses. Additional discussion about the three
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axioms can be found in the next sections.

The remainder of the paper is organized as follows. Section 2 introduces notation and recalls

basic concepts including allocations and risk-sharing rules. Section 3 defines the quantile risk-

sharing rule. Several of its properties are considered in Section 4. Section 5 proposes an axiomatic

theory for the quantile risk-sharing rule. Numerical illustrations are provided in Section 6. Technical

material about supports of distribution functions is provided in the appendix. Interested readers are

referred to Dhaene, Robert, Cheung & Denuit (2023) for more pedagogical examples and additional

technical material.

2 Allocations and risk-sharing rules

2.1 Notation

All random variables considered in this paper are defined on a common probability space (Ω,G,P).

The latter is assumed to contain the random variable U which is uniformly distributed over the

unit interval (0, 1). (In-)equalities between random variables are supposed to hold almost surely.

Similarly, (in-)equalities between random vectors hold almost surely and component-wise. A random

variable will always be denoted by an upper-case letter (e.g. Xi), while its realization (observed

ex post) will be denoted by the corresponding lower-case letter (e.g. xi). A random vector will be

denoted by a bold upper-case letter, e.g. X = (X1, X2, . . . , Xn), while its realization (observed ex

post) is denoted by the corresponding bold lower-case small letters, e.g. x = (x1, x2, . . . , xn). In

this paper, “
d
=” stands for “equality in distribution”.
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2.2 Allocations

Let χ be an appropriate set of random variables on the probability space (Ω,G,P) under consider-

ation. We interpret χ as the collection of risks (losses) under interest. For particular situations, the

set χ could be defined as the set Lq of all random variables X with E [|X|q] < ∞, for an appropriate

choice of q ∈ [0,∞), with E[·] being the expectation under P. Another possible choice for χ is the

set of all (essentially) bounded random variables L∞.

Also, for any q considered above, the set Lq
+ of all non-negative elements of Lq might be an

appropriate choice. More generally, χ can be chosen as a convex cone of random variables on the

probability space (Ω,G,P), which means that for any X, Y ∈ χ and any scalars a > 0 and b > 0,

one has that aX + bY ∈ χ. In this paper, we assume that χ = Lq
+ or χ = Lq for some q in [0,∞],

appropriate for the situation at hand.

Consider n economic agents, numbered i = 1, 2, . . . , n. Let time 0 be “now”. Each agent i faces

a loss Xi ∈ χ at time 1. Without insurance or pooling, each individual agent bears his or her own

loss, i.e. at time 1, agent i suffers loss xi, which is the realization of Xi.

The n-dimensional random vector of the losses X is called the (initial) loss vector. The joint

distribution function of the loss vector X is denoted by FX . The marginal distribution functions

of the individual losses are denoted by FX1 , FX2 , . . . , FXn , respectively. As in the introduction, the

aggregate loss faced by the n agents with loss vector X is denoted by

SX =

n∑
i=1

Xi.

Hereafter, we will often call X the pool and each agent a participant in the pool.

Definition 2.1. For any random vector X ∈ χn with aggregate loss SX , the set An(SX) is defined
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by:

An(SX) =

{
(Y1, Y2, . . . , Yn) ∈ χn

∣∣∣ n∑
i=1

Yi = SX

}
.

The elements of An(SX) are called the n-dimensional allocations of SX in χn. Notice that

the initial loss vector X is an element of An(SX), and that for any Y ∈ An(SX), one has that

An(SY ) = An(SX).

2.3 Risk sharing

Risk sharing in a pool X ∈ χn is a two-stage process. In the ex-ante step (at time 0), the losses Xi in

the pool are re-allocated by transforming X into another random vector H = (H1, H2, . . . ,Hn) ∈

An(SX) called the contribution vector. Participants thus exchange their individual risks Xi to the

contributions Hi when they join the pool. As H ∈ An(SX), risk-sharing is self-financing in the

sense that the identity
n∑

i=1

Hi =
n∑

i=1

Xi (2.1)

holds true. This self-financing condition (2.1) in risk-sharing is often called the full allocation

condition. In the ex-post step (at time 1), any participant receives the realization xi of his or her

initial loss Xi from the pool and pays the realization of Hi to the pool. This leads to the following

definition.

Definition 2.2. A risk-sharing rule is a mapping H : χn → χn associating to each pool X ∈ χn a

contribution vector H satisfying H ∈ An(SX).

In this paper, we only consider internal risk-sharing rules, in the sense that individual contri-

butions are functions of the random vector X gathering individual losses and its joint distribution

function FX , assumed to be known at time 0. In order to be able to define internal risk-sharing
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rules, we introduce the notation F (χn) for the set of all n-dimensional distribution functions of

the elements in χn.

Definition 2.3. A risk-sharing rule H : χn → χn is said to be internal if there exists a function

h : Rn × F (χn) → Rn such that the contribution vector H for any pool X ∈ χn with distribution

function FX can be expressed as

H = h (X;FX) . (2.2)

Under a rule which can be expressed in the form (2.2), one has that the realization of H is

known once the realization of X is revealed at time 1. In other words, H can be expressed as

a function of X and hence is σ (X)-measurable. Furthermore, the argument FX in h (X;FX)

indicates that the realization of the contribution vector H does not only depend on the realization

of X, but may also depend on the distribution function of X (which is assumed to be known at

time 0).

Let us now define aggregate risk-sharing rules.

Definition 2.4. A risk-sharing rule H : χn → χn is said to be aggregate if there exists a function

haggr : R×F (χn) → Rn such that the contribution vector H for any pool X ∈ χn can be expressed

as

H = haggr (SX ;FX) . (2.3)

It is clear from the definition that an aggregate risk-sharing rule is internal with internal function

h satisfying

h (X;FX) = haggr (SX ;FX)

for any X ∈ χn.
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An example of an aggregate risk-sharing rule is the conditional mean risk-sharing rule introduced

in Denuit & Dhaene (2012). In this case, we have that

H =
(
E [X1 | SX ] , E [X2 | SX ] , . . . , E [Xn | SX ]

)
,

which implies that

haggr (s;FX) =
(
E [X1 | SX = s] , E [X2 | SX = s] , . . . , E [Xn | SX = s]

)
.

In case H is an aggregate risk-sharing rule, for any pool X, one has that the realization of

the contribution vector H is known once the realization of the aggregate claims SX is known.

In other words, H is σ (SX)-measurable. Aggregate risk-sharing rules are appropriate in case

the contributions of the participants should not take into account the composition (origin) of

the aggregate claims. For this reason, Jiao, Kou, Liu & Wang (2022) call this property “risk

anonymity”.

3 The quantile risk-sharing rule

3.1 α-quantiles and comonotonicity

For any real-valued random variable X, the left-continuous quantile of order p ∈ [0, 1] is defined by

F−1
X (p) = inf{x ∈ R | FX(x) ≥ p},

while its right-continuous quantile of order p ∈ [0, 1] is defined by

F−1+
X (p) = sup {x ∈ R | FX(x) ≤ p} .
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In these definitions, we set inf{∅} = +∞ and sup{∅} = −∞, by convention. For any α ∈ [0, 1], the

α-quantile of order p is then defined by

F
−1(α)
X (p) =



F−1+
X (0) if p = 0

α F−1
X (p) + (1− α) F−1+

X (p) if p ∈ (0, 1)

F−1
X (1) if p = 1

.

Notice that in this definition, we have that F
−1(α)
X (0) and F

−1(α)
X (1) are both independent of the

particular choice of α. They are chosen as the “smallest” and the “largest” value of X, respectively.

The next result is central to the determination of the probability level defining quantile risk shar-

ing. We make the following important convention that the interval of the type
[
F−1+
X (0), F−1

X (1)
]

has to be considered as a subset of R rather than as a subset of the extended real line R∪{±∞}. For

instance, if F−1+
X (0) = −∞ and F−1

X (1) = +∞, then
[
F−1+
X (0), F−1

X (1)
]
= R but not [−∞,+∞].

Similarly, if F−1+
X (0) = 0 and F−1

X (1) = +∞, then
[
F−1+
X (0), F−1

X (1)
]
= [0,+∞). This convention

is made throughout this paper.

Proposition 3.1. For any random variable X and any x ∈
[
F−1+
X (0) , F−1

X (1)
]
, there exists a

(not necessary unique) αx ∈ [0, 1] such that

F
−1(αx)
X

(
FX(x)

)
= x. (3.1)

The proof of Proposition 3.1 is straightforward, see Dhaene, Denuit, Goovaerts, Kaas & Vyncke

(2002a), who also discussed the possible non-uniqueness of the solution αx of (3.1). Notice that in

case (x, FX(x)) lies on a strictly increasing part of the graph of FX , then any element of [0, 1] is a

possible choice for αx. On the other hand, when (x, FX(x)) lies on a flat part of the graph of FX ,

then αx is uniquely determined. Furthermore, if FX (x) = 0 or FX (x) = 1, then any element of

[0, 1] is a possible choice for αx.
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Comonotonicity is an important dependency structure which is particularly relevant for the

study of the quantile risk-sharing rule. For completeness, we repeat its definition hereafter.

Definition 3.2. A random vector X is comonotonic if there exist non-decreasing functions gi :

R → R such that

X =
(
g1(SX), . . . , gn(SX)

)
. (3.2)

Equivalently, X is comonotonic if for the random variable U which is uniformly distributed

over the unit interval [0, 1], one has that

X
d
=
(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
. (3.3)

Comonotonicity and its applications in insurance and finance have been studied in detail in the

actuarial literature, see e.g. Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a, 2002b), Deelstra,

Dhaene & Vanmaele (2010) and Linders, Dhaene & Schoutens (2015).

To any pool X, let us associate its “comonotonic counterpart”

Xc =
(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
, (3.4)

which is by our earlier convention about U , defined on the original probability space. We introduce

the notation Sc
X for the sum of the components of Xc. For any α ∈ [0, 1] and p ∈ [0, 1], the

following additivity property holds:

F
−1(α)
Sc
X

(p) =
n∑

i=1

F
−1(α)
Xi

(p) . (3.5)

In particular, we find that

F−1+
Sc
X

(0) =

n∑
i=1

F−1+
Xi

(0) and F−1
Sc
X
(1) =

n∑
i=1

F−1
Xi

(1) . (3.6)
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In this paper, we say that a set C ⊆ Rn is a support of a random vector X if P[X ∈ C] = 1.

One particular choice for the support of SX is given by

Support [SX ] =
{
F−1
SX

(FSX
(s)) | s ∈

[
F−1+
SX

(0), F−1
SX

(1)
]}

. (3.7)

Similarly, one particular choice of the support of Sc
X is

Support [Sc
X ] =

{
F−1
Sc
X
(FSc

X
(s)) | s ∈

[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]}

. (3.8)

Notice that our definition of supports differs from the usual one, where the support of X is the

smallest closed set C such that P[X ∈ C] = 1. See Appendix A for a discussion on the supports of

SX and Sc
X defined respectively by (3.7)-(3.8).

3.2 Definition of the quantile risk-sharing rule

We can now define the quantile risk-sharing rule, which was described informally in the introduction

to this paper, in a rigorous way.

Definition 3.3. Under the quantile risk-sharing rule Hquant : χn → χn, the contribution vector

Hquant for a pool X ∈ χn is given by

Hquant = hquant (SX ;FX) , (3.9)

where hquant : R×F (χn) → Rn is defined by

hquant (s;FX) =
(
F

−1(αs)
X1

(
FSc

X
(s)
)
, . . . , F

−1(αs)
Xn

(
FSc

X
(s)
))
, (3.10)

with αs following from

F
−1(αs)
Sc
X

(
FSc

X
(s)
)
= s. (3.11)
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One can prove that for any possible outcome s of SX , the quantile risk-sharing contributions

are uniquely determined. Consider s ∈ (F−1+
SX

(0), F−1
SX

(1)). By (A.3), we have that

F−1+
SX

(0) < s < F−1
SX

(1) ⇒ F−1+
Sc
X

(0) < s < F−1
Sc
X
(1)

so that 0 < FSc
X
(s) < 1. This implies that F−1

Sc
X

(
FSc

X
(s)
)
and F−1+

Sc
X

(
FSc

X
(s)
)
are finite and

F−1
Sc
X

(
FSc

X
(s)
)
≤ s ≤ F−1+

Sc
X

(
FSc

X
(s)
)
.

Now, define

αs =


F−1+
Sc
X

(
FSc

X
(s)
)
−s

F−1+
Sc
X

(
FSc

X
(s)
)
−F−1

Sc
X

(
FSc

X
(s)
) if F−1+

Sc
X

(
FSc

X
(s)
)
̸= F−1

Sc
X

(
FSc

X
(s)
)

1 if F−1+
Sc
X

(
FSc

X
(s)
)
= F−1

Sc
X

(
FSc

X
(s)
) . (3.12)

Clearly, (3.11) immediately follows from (3.12). Therefore, any realization s of SX can be expressed

as a linear combination of F−1+
Sc
X

(
FSc

X
(s)
)
and F−1

Sc
X

(
FSc

X
(s)
)
with weights obtained from (3.12), thus

as an αs-quantile. Notice that if F−1+
Sc
X

(
FSc

X
(s)
)
̸= F−1

Sc
X

(
FSc

X
(s)
)
then αs defined in (3.12) is the

unique solution of (3.11) while if F−1+
Sc
X

(
FSc

X
(s)
)
= F−1

Sc
X

(
FSc

X
(s)
)
then every choice for αs is a

solution to (3.11). Considering (3.5), we have that

0 =

n∑
i=1

(
F−1+
Xi

(
FSc

X
(s)
)
− F−1

Xi

(
FSc

X
(s)
))

⇒ F−1+
Xi

(
FSc

X
(s)
)
= F−1

Xi

(
FSc

X
(s)
)
for i = 1, 2, . . . , n.

Thus every choice of αs leaves (3.10) unchanged and we set it to 1. This shows that the allocation

(3.10) is unique and follows from (3.12).

For any given s ∈ R and X ∈ χn, the additivity property (3.5) combined with (3.11) guarantees

that
n∑

i=1

hquanti (s;FX) = s whenever s ∈
[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
, (3.13)

and hence Hquant satisfies the self-financing condition (2.1). Furthermore, Hquant is an aggregate

risk-sharing rule by definition. An important observation is that the quantile risk-sharing rule does
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not require the knowledge of the dependency structure of the joint distribution function FX of

loss vector X. It suffices to know the marginal distribution functions FXi of the individual losses

Xi. This property will be formalized in the next section. Furthermore, it can be proven that all

F
−1(αs)
Xi

(
FSc

X
(s)
)
are non-decreasing and Lipschitz continuous functions in s, see Denuit, Dhaene

& Robert (2022). This observation immediately implies that the contribution vector Hquant is a

comonotonic random vector, which means that the quantile risk-sharing rule transforms pools into

comonotonic contribution vectors.

For any given comonotonic random vector Xc, one particular choice of its support is

Support[Xc] =
{(

F−1
X1

(
u
)
, . . . , F−1

Xn

(
u
))∣∣0 ≤ u ≤ 1

}
.

This support is not necessarily a connected curve in Rn but rather a series of ordered connected

curves in general; any horizontal segment of one of the marginal distribution functions FXi would

lead to a discontinuity in Support[Xc]. If the endpoints of consecutive curves in Support[Xc] are

connected by straight lines, we obtain a comonotonic connected curve in Rn. We will call this set

the connected support of Xc and denote it by CSupport[Xc]. It can be parameterized as follows:

CSupport[Xc] =
{(

F
−1(α)
X1

(
u
)
, . . . , F

−1(α)
Xn

(
u
))∣∣0 ≤ u ≤ 1, 0 ≤ α ≤ 1

}
.

We make the convention here that both Support[Xc] and CSupport[Xc] have to be seen as subsets

of Rn. We refer to Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a) for more discussion on

the notion of connected support. Of course, one may choose to enlarge Support[Xc] to form a

comonotonic connected curve by connecting the endpoints in any other way as long as the curve

after connection is comonotonic. However, connecting the endpoints by straight lines is probably

the most natural and easiest way to do so, and there seems to be no theoretical reasons to justify

other ways.
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3.3 The quantile risk-sharing rule as the solution of an optimization problem

The conditional mean risk-sharing rule is based on the conditional expectations of individual losses

Xi given their sum SX and is obtained by minimizing the expectation of the squared error (be-

tween Xi and a measurable function of SX). This property is known as elicitability and has been

introduced in a decision-theoretic framework for evaluating the performance of different forecasting

procedures (Gneiting (2011)). In the context of risk management, elicitable risk measures allow

financial institutions to evaluate and report risks in a way that can be objectively validated. These

measures are characterized by their ability to be “elicited” through scoring rules, meaning they can

be reliably estimated and verified based on observed outcomes (see e.g. Bellini & Bignozzi (2015)).

This quality makes elicitable risk measures particularly valuable in practice, as they allow for objec-

tive comparisons and evaluations of risk estimates based on empirical data. In financial regulation,

elicitable risk measures are favored because they are easy to implement and verify, fitting within

frameworks that aim to enforce consistency across different financial entities.

This section shows that the quantile risk-sharing rule can also be obtained by minimizing the

expectation of a specific loss function. To ease exposition, let us assume as in the introduction

that each FXi is 1-to-1, except for a possible positive probability mass at the origin. As for the

definition of Kendall’s tau, one of the most famous association measures between two random

variables, let us introduce an independent copy of the pool X = (X1, X2, . . . , Xn), which we denote

by X ′ = (X ′
1, X

′
2, . . . , X

′
n) and let SX′ be the sum of its components. We are interested in looking

for an aggregate internal function h that minimizes the following loss function

E

[
n∑

i=1

(∣∣Xi − hi(SX′ ;FX)
∣∣+ ∣∣X ′

i − hi(SX ;FX)
∣∣)] ,

i.e. the sum of the expected absolute values of the differences between the loss Xi of participant
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i in pool X and the contribution hi(SX′ ;FX) of its counterpart in pool X ′, and of the reciprocal

absolute values when the pools are swapped. The introduction of a second pool and the comparison

with the contributions of the other pool is linked to the idea of the robustness of the sharing rule

with respect to protection from the other pool.

The following lines show that the quantile risk-sharing rule can be obtained as a solution of the

following minimization problem:

min
h s.t.

∑n
i=1 hi=Id

E

[
n∑

i=1

(∣∣Xi − hi(SX′ ;FX)
∣∣+ ∣∣X ′

i − hi(SX ;FX)
∣∣)] .

First, note that, for i = 1, . . . , n,

E [|Xi − hi(SX′ ;FX)|] = E
[∣∣X ′

i − hi(SX ;FX)
∣∣]

and that

E

[
n∑

i=1

|Xi − hi(SX′)|

]
= E

[
n∑

i=1

E
[
|Xi − hi(SX′)|

∣∣∣SX′

]]
,

with

E
[
|Xi − hi(SX′)|

∣∣SX′ = s
]
= E [|Xi − hi(s)|] .

It is therefore enough to consider the following problem for each s ∈ [F−1+
SX

(0) , F−1
SX

(1)]

min
hi,s s.t.

∑n
i=1 hi,s=s

n∑
i=1

E [|Xi − hi,s|]

and to prove that its solution corresponds to the quantile risk-sharing rule, i.e.

hi,s = F−1
Xi

(
FSc

X
(s)
)
, i = 1, . . . , n. (3.14)

The intuition is as follows: for any realization s of SX , we minimize the sum over all participants of

the expected differences in absolute value of the random losses and the realized contributions. See

also Theorem 2 in Dhaene, Tsanakas, Valdez & Vanduffel (2012) where an optimization problem
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leads to (3.14) in relation to optimal capital allocation. Notice that there is a difference between

the first optimization problem where the minimum is with respect to functions summing to identity

and the second optimization problem where the minimum is with respect to scalars summing to s.

This is why hi(s) is replaced with hi,s.

The corresponding Lagrangian is given by

L (h1,s, . . . , hn,s, λ) =

n∑
i=1

E [|Xi − hi,s|]− λ

(
n∑

i=1

hi,s − s

)
,

where λ is the Lagrange multiplier related to the constraint
∑n

i=1 hi,s = s. The first-order conditions

given by

∂

∂hi,s
L (h1,s, . . . , hn,s, λ) = 2FXi (hi,s)− 1− λ = 0

lead to

hi,s = F−1
Xi

(
1 + λ

2

)
, i = 1, . . . , n.

Based on the self-financing condition (2.1), that is,

n∑
i=1

hi,s = s =

n∑
i=1

F−1
Xi

(
1 + λ

2

)
= F−1

Sc
X

(
1 + λ

2

)
,

we then get

λ = 2FSc
X
(s)− 1, i = 1, . . . , n,

so that we end up with (3.14), that is, with the allocation under the quantile risk-sharing rule.

4 Properties of risk-sharing rules

Properties that risk-sharing rules may (or may not) satisfy have been studied in detail in Denuit,

Dhaene & Robert (2022), as well as in Jiao, Kou, Liu & Wang (2022), who also provide axiomatic
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characterizations of the conditional mean risk-sharing rule. Hereafter, we repeat the definitions

of the “comonotonicity” property and the “stand-alone for comonotonic pools” property of risk-

sharing rules. We also introduce a new property referred to as “dependence-freedom”.

Definition 4.1 (Comonotonicity property). A risk-sharing rule H : χn → χn is comonotonic if

there exists a function hcom : R×F (χn) → Rn such that the contribution vector H of any X ∈ χn

can be expressed as

H = hcom (SX ;FX) =
(
hcom1 (SX ;FX) , . . . , hcomn (SX ;FX)

)
, (4.1)

where each hcomi , i = 1, 2, . . . , n, is non-decreasing in its first argument.

If H is comonotonic, then it is an aggregate risk-sharing rule, and for any pool X, one has that

the contribution vector H is a comonotonic random vector. The quantile risk-sharing rule Hquant

is clearly comonotonic. Notice that the definition here is more restrictive than the one in Denuit,

Dhaene & Robert (2022), as here we also require the risk-sharing rule H to be internal.

Next, we introduce the stand-alone property for comonotonic pools.

Definition 4.2. A risk-sharing rule H : χn → χn with internal function h : R × F (χn) → Rn is

stand-alone for comonotonic pools if for any comonotonic pool Xc ∈ χn, one has that

h (xc;FXc) = xc for any xc ∈ CSupport[Xc]. (4.2)

For any risk-sharing rule which is stand-alone for comonotonic pools, one has that the contri-

bution vector of any comonotonic pool satisfies

H = h(Xc;FXc) = Xc.

In a comonotonic pool X, for any realized loss amounts x1, . . . , xn, the corresponding probability

levels p1, . . . , pn that solve the equations xi = F−1
Xi

(pi) would always be identical. A more intuitive
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motivation for the stand-alone for comonotonic pools property is that in a comonotonic pool, no

diversification benefit arises from risk-sharing. Therefore, it may be reasonable to require that

in such a pool each participant remains with his or her own risk, as stated in the property of

stand-alone for comonotonic pools.

In case the risk-sharing rule is stand-alone for comonotonic risks and also aggregate, (4.2)

transforms into

h (sxc ;FXc) = xc for any xc ∈ CSupport[Xc].

The next result demonstrates that the quantile risk-sharing rule satisfies the “stand-alone for

comonotonic pools” property.

Proposition 4.3. The quantile risk-sharing rule satisfies the “stand-alone for comonotonic pools”

property.

Proof. Consider a comonotonic pool Xc ∈ χn and let xc be a point in CSupport[Xc] with sxc = s.

By construction, both xc and hquant (sxc , FXc) lie in the intersection of the hyperplane {x ∈ Rn |

sx = s} and CSupport[Xc]. As CSupport[Xc] is non-decreasing in any of its coordinates, there

can be no more than one point in the intersection of this connected support and the hyperplane.

We can conclude that xc = hquant (sxc ;FXc), and hence the stated result holds.

Let us now define the dependence-free property of a risk-sharing rule that has been discussed

in the introduction.

Definition 4.4 (Dependence-free property). The risk-sharing rule H : χn → χn is dependence-free

if there exists a function hdep−free : Rn × (F(χ))n → Rn such that for any pool X ∈ χn, one has

that the contribution vector H is given by

H = hdep−free (X;FX1 , . . . , FXn) .
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Notice that this requirement is not always desirable. In general, there is no reason why the

contribution vectors would be the same in two pools with the same marginal distributions but op-

posite dependence structures. However, if the dependence comes from the exposition to a common

environment, so that all individual losses are positively related and only differ in their marginal

distributions, then participants can be willing to adopt a risk-sharing rule fulfilling the dependence-

free property, as explained in the introduction. Another reason why participants could be willing

to retain this property is when the dependency structure is unknown or hard to estimate.

From Definition 4.4, it follows that in order to determine the contribution vector H under

a dependence-free risk-sharing rule, we only need to know the outcome of X and the marginal

distribution functions of the individual losses Xi, but not the dependency structure of X. Given

the outcome x of X, the contribution vector remains the same, regardless of what the dependence

structure of X is. It is clear from the definition that a dependence-free risk-sharing rule is internal,

with internal function h satisfying h (X;FX) = hdep−free (X;FX1 , . . . , FXn) for any X ∈ χn.

Example 4.5. The quantile risk-sharing rule Hquant is dependence-free because for any pool X ∈

χn, the function hquant (sx;FX) is completely determined by sx and the marginal distributions

FX1 , . . . , FXn, implying that the knowledge of the dependence structure of X is not required.

In view of the fact that the quantile risk-sharing rule is dependence-free, we can also write

hquant(s;FX) as hquant(s;FX1 , . . . , FXn).

Remark 4.6. Dependence-free risk-sharing rules do not use the joint distribution function FX

but only its marginals FX1 , . . . , FXn . Let us mention that some rules do not use the joint distri-

bution function at all so that they could be called distribution-free. Formally, a risk-sharing rule

is distribution-free if there exists a function h : Rn → Rn such that the contribution vector H for
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any pool X is given by H = h(X). A first example of distribution-free risk-sharing rules is the

stand-alone risk-sharing rule where for any pool X one has that its contribution vector is given

by H = X. A second example is the uniform risk-sharing rule where H =
(
X̄n, . . . , X̄n

)
, with

X̄n = X1+...+Xn
n .

5 Axiomatic characterization of the quantile risk-sharing rule

In this section, we give an axiomatic characterization of the quantile risk-sharing rule.

Theorem 5.1. A risk-sharing rule H : χn → χn is the quantile risk-sharing rule if, and only if, it

satisfies the following axioms:

Axiom 1 H is aggregate.

Axiom 2 H is dependence-free.

Axiom 3 H is stand-alone for comonotonic pools.

Proof. As H satisfies Axioms 1 and 2, there exists a function haggr : R × (F(χ))n → Rn such

that the contribution vector of any pool X ∈ χn is given by haggr (SX ;FX1 , . . . , FXn). Let Xc =(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
be the comonotonic counterpart of X. From Axiom 3, we have

that

haggr (sxc ;FX1 , . . . , FXn) = xc, for any xc ∈ CSupport [Xc] .

Since the quantile allocation rule is also dependence-free and generalized stand-alone for comono-

tonic risks by Proposition 4.3, that is, hquant (sxc ;FX1 , . . . , FXn) = xc, we find that

haggr (sxc ;FX1 , . . . , FXn) = hquant (sxc ;FX1 , . . . , FXn) for any xc ∈ CSupport [Xc] .
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From Proposition A.3, we find that

haggr (s;FX1 , . . . , FXn) = hquant (s;FX1 , . . . , FXn) , for any s ∈
[
F−1+
SXc

(0), F−1
SXc

(1)
]
.

As Support [SX ] ⊆
[
F−1+
SXc

(0), F−1
SXc

(1)
]
by (A.1), the above equation implies that

haggr (SX ;FX1 , . . . , FXn) = hquant (SX ;FX1 , . . . , FXn) , (5.1)

which proves the “⇐=” part of the theorem.

Figure 1: Graphical interpretation of the quantile risk-sharing rule, bivariate case (part I).

In Figure 1, we give a graphical interpretation of the proof of the characterization theorem in

the bivariate case. Consider the risk-sharing rule H : χ2 → χ2 which satisfies the 3 axioms of the

theorem and a pool X = (X1, X2) ∈ χ2. Let (Xc
1, X

c
2) be its comonotonic counterpart. Suppose

that the time-1 observable outcome of (X1, X2) is given by (x∗1, x
∗
2), with x∗1 + x∗2 = s.

First, suppose that the marginal distribution functions FXi are strictly increasing. Taking into

account Axiom 1 (H is aggregate) we have that the contribution vector of the pool (X1, X2) is given
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by h (x∗1 + x∗2;FX) for some function h : R × F
(
χ2
)
→ R2. Let (xc1, x

c
2) be the unique point on

the intersection of the line x1 + x2 = s and Support[(Xc
1, X

c
2)]. We know that (xc1, x

c
2) is given by

(xc1, x
c
2) =

(
F−1
X1

(FSc
X
(s) , F−1

X2(FSc
X
(s)
)
. From Axiom 1 (H is aggregate), we find that

h (x∗1 + x∗2;FX) = h (xc1 + xc2;FX) .

From Axiom 2 (H is dependence-free), it follows that

h (xc1 + xc2;FX) = h (xc1 + xc2;FXc) .

Axiom 3 (H is stand-alone for comonotonic pools) leads to

h (xc1 + xc2;FXc) = (xc1, x
c
2) .

Summarizing, when the realization of (X1, X2) equals (x
∗
1, x

∗
2), then we have that the realization of

the contribution vector is given by

h (x∗1 + x∗2;FX) =
(
F−1
X1

(FSc
X
(s)), F−1

X2
(FSc

X
(s))

)
.

Next, suppose that the marginal distribution functions FXi are not both strictly increasing in

x∗i , i = 1, 2. In this case, the line x1 + x2 = s has no intersection with Support[(Xc
1, X

c
2)], and we

introduce the connected support of this comonotonic random vector. The graphical interpretation

of the characterization theorem in this case follows then in a similar way as before, see Figure 2.

Let us now show that the three axioms in Theorem 5.1 are non-redundant (also called inde-

pendent), which means that no pair of two axioms implies the remaining one. Taking into account

that the quantile risk-sharing rule satisfies these three axioms, non-redundancy implies that none

of the three axioms can be removed to characterize this risk-sharing rule.

Proposition 5.2. Axioms 1-3 in Theorem 5.1 are non-redundant.
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Figure 2: Graphical interpretation of the quantile risk-sharing rule, bivariate case (part II).

Proof. For each of the three axioms, we have to provide an example of a risk-sharing rule which is

different from the quantile risk-sharing rule, and which does not satisfy this axiom, while it satisfies

the two other axioms.

Axioms 2 and 3, but not Axiom 1: Consider the stand-alone risk-sharing rule Hsa : χn → χn

with contribution vector H = X for any pool X ∈ χn and with internal function h(x) = x

for any x ∈ Rn. It is straightforward to prove that Hsa is “dependence-free” and “generalized

stand-alone for comonotonic pools”, but does not satisfy the “aggregate” axiom.

Axioms 1 and 3, but not Axiom 2: Define the risk-sharing ruleH : χn → χn with contribution

vector

H =



X, if X is comonotonic,

(
X̄n, X̄n, . . . , X̄n

)
, otherwise,

and internal function satisfying h (x;FXc) = x for any x and any Xc.
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Under this rule, participants are left with their own risk in any comonotonic pool (since there is

no diversification in that case) while total losses are distributed uniformly among participants

in all other cases. It is straightforward to prove that H is an “aggregate” risk sharing rule and

is “stand-alone for comonotonic pools”, but does not satisfy the “dependence-free” axiom.

Axioms 1 and 2, but not Axiom 3: Consider the uniform risk-sharing rule Huni : χn → χn

defined for any pool X ∈ χn by contribution vector

Huni =
(
X̄n, X̄n, . . . , X̄n

)
.

It is straightforward to prove that Huni satisfies the “aggregate” and “dependence-free” ax-

ioms, but not the “stand-alone for comonotonic pools” axiom.

6 Numerical illustrations

6.1 Continuous losses

Consider n = 3 participants exposed to respective losses X1, X2 and X3. Assume that X1 is

Gamma distributed, with mean 1 and variance 0.5, while X2 and X3 are distributed according to

LogNormal distributions with mean 1 and variances 1 and 2, respectively. All random variables

are assumed to be mutually independent. The probability density functions of these losses are

displayed in Figure 3. We observe that the skewness is higher and that the tails are thicker for X2

and X3 compared to X1.

Figure 4 shows the distribution functions FSX
and FSc

X
. We see that these distribution functions

only cross once, with FSX
dominating FSc

X
after this unique crossing point. Clearly, SXc exhibits
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Figure 3: Probability density functions of X1 (solid line), X2 (broken line), and X3 (dotted line)

in the pool of Section 6.1.
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Figure 4: Distribution functions FSc
X

(solid line) and FSX
(broken line) in the pool of Section 6.1.

more dispersion compared to the actual aggregate loss SX .

Individual contributions under the quantile risk-sharing rule are displayed in Figure 5 for each

of the three participants. One can verify that the contributions are ordered differently depending

on whether the observed value s of SX falls in the central part or the tail part of the distribution.

For central values, the contribution paid by participant 1 is higher than those paid by participants

2-3, while it becomes smaller than those paid by participants 2 and 3 when SX assumes large

values. A similar comment applies to the contribution paid by participant 2 compared to the one

paid by participant 3.
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Figure 5: Contributions F−1
Xi

(FSc
X
(s)) as a function of the aggregate loss s, for participant 1 (solid

line), for participant 2 (broken line), and for participant 3 (dotted line) in the pool of Section 6.1.

The red curve is the probability density function of SX , properly re-scaled on the y-axis.
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6.2 Compound Poisson losses

Following the numerical illustrations in Denuit (2020), consider an insurance pool gathering n = 35

participants with 3 risk profiles. Each participant brings a compound Poisson loss Xi to the pool.

This means that the loss Xi for participant i to the insurance pool is of the form

Xi =

Ni∑
k=1

Ci,k with Ni ∼ Poisson(λi), i = 1, 2, . . . , (6.1)

where the claim severities Ci,k are positive, all these random variables being independent. The

severities Ci,k are assumed to be identically distributed for fixed i (as Ci, say). They are modeled

with the help of Beta distributions with group-specific parameters a and b, where the mean is equal

to a/(a+ b) and the variance is equal to ab/((a+ b)2(a+ b+ 1)). The 3 groups have the following

characteristics:

Group 1 (low risks): n1 = 20 individuals, λi = 5% for i = 1, . . . , 20, and claim sizes distributed

as C1 following the Beta distribution with parameters a1 = 2 and b = 5.

Group 2 (medium risks): n2 = 10 individuals, λi = 10% for i = 21, . . . , 30, and claim sizes

distributed as C2 following the Beta distribution with parameters a2 = 3 and b = 5.

Group 3 (high risks): n3 = 5 individuals, λi = 20% for i = 31, . . . , 35, and claim sizes dis-

tributed as C3 following the Beta distribution with parameters a3 = 4 and b = 5.

Participants in Group 3 have higher expected severities compared to participants in Group 2 who

themselves have higher expected severities compared to participants in Group 1.

All these losses follow zero-augmented distributions, as those encountered in the majority of

insurance applications, meaning that FXi(0) = exp(−λi) > 0 and FXi is continuously increasing
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over (0,∞). As pointed out by Denuit, Dhaene & Robert (2022, Remark 5.4), we have

FSc
X
(0) = min{FX1(0), . . . , FXn(0)} = exp(−0.2).

Therefore, once the value of SX is known to be equal to s, two situations may occur. Either

FSc
X
(s) > max{FX1(0), . . . , FXn(0)} = exp(−0.05) and every participant contributes to the total

loss, or FSc
X
(s) ≤ exp(−0.05) and participants with larger no-claim probabilities, i.e. those partic-

ipants i for which FSc
X
(s) ≤ FXi(0) do not have to contribute ex post. Stated more precisely, if s

is such that exp(−0.1) < s ≤ exp(−0.05) then participants in Group 1 do not have to contribute

whereas if s is such that exp(−0.2) < s ≤ exp(−0.1), participants in Groups 1 and 2 do not have

to contribute. This may lead to undesirable situations since it is reasonable to expect that all

participants putting the pool at risk must contribute to SX ex post.

Denuit, Dhaene & Robert (2022) established that this problem disappears when all no-claim

probabilities are equal or when the number of participants to the pool becomes sufficiently large

(under suitable technical conditions). Given the limited size of the pool, the second argument does

not apply here. Since we consider compound Poisson losses, there is an easy way to equalize all

no-claim probabilities. It suffices to decompose any loss in Group 2 as the sum of 2 independent

compound Poisson losses with the same severity distribution Beta(a2, b) and Poisson parameter

0.05 and to decompose any loss in Group 3 as the sum of 4 independent compound Poisson losses

with the same severity distribution Beta(a3, b) and Poisson parameter 0.05. We thus work in the

augmented pool with n1 = n2 = n3 = 20. Participants in the initial pool then contribute 2 times the

amount calculated in Group 2 and 4 times the amount calculated in Group 3 within the augmented

pool.

Figure 6 shows the distribution functions FSX
and FSc

X
. Again, we observe that these distri-

32



Figure 6: Distribution functions FSc
X

(solid line) and FSX
(broken line) in the pool of Section 6.2.

bution functions only cross once, with FSX
dominating FSc

X
after this unique crossing point. As

it was the case in Section 6.1, Sc
X exhibits more dispersion compared to the actual aggregate loss

SX . In particular, the probability mass of Sc
X at the origin is equal to exp(−0.05), which is much

larger than to the probability mass of SX at the origin, which is equal to exp(−3), and the tail of

SX extends to larger values.

Individual contributions under the quantile risk-sharing rule are displayed in Figure 7 for each

of the three groups. We see that the contribution paid by a member of Group 3 increases more

rapidly with aggregate loss compared to the contributions paid by members of Groups 1 or 2, due

to the larger size of the losses they bring to the pool. The total contribution paid by participants is
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Figure 7: Contributions F−1
Xi

(FSc
X
(s)) as a function of s, in Group 1 (solid line appearing at the

bottom), in Group 2 (broken line appearing in the middle), and in Group 3 (dotted line appearing

at the top) in the pool of Section 6.2. The red curve is the probability density function of SX over

(0,∞), properly re-scaled on the y-axis.

twice the amount displayed in Figure 7 for a participant in Group 2 and 4 times for a participant

in Group 3.
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Appendix

A Comonotonicity and supports of distributions

Consider a pool X and its comonotonic counterpart Xc, which is defined in the original probability

space (see (3.4)). As before, Sc
X stands for the sum of the components of Xc.

The support of the aggregate claims SX of the poolX is defined by (3.7). Recall that throughout

the paper, we make the convention that the interval
[
F−1+
SX

(0), F−1
SX

(1)
]
has to be replaced by(

F−1+
SX

(0), F−1
SX

(1)
)
in case F−1+

SX
(0) = −∞ and F−1

SX
(1) = +∞. Similar conventions are made in

case only one of the endpoints of the interval
[
F−1+
SX

(0), F−1
SX

(1)
]
is infinite. One can easily verify

that

Support [SX ] ⊆
[
F−1+
SX

(0), F−1
SX

(1)
]
. (A.1)

The support of the aggregate claims Sc
X of the comonotonic pool Xc is defined by (3.8) where we

make a similar convention as before concerning the endpoints of the interval
[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
.

In this case, we have that

Support [Sc
X ] ⊆

[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
. (A.2)

Remark that the endpoints of the intervals
[
F−1+
SX

(0), F−1
SX

(1)
]
and

[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
always sat-

isfy the following inequalities:

F−1+
Sc
X

(0) ≤ F−1+
SX

(0) ≤ F−1
SX

(1) ≤ F−1
Sc
X
(1). (A.3)

Example A.1. It is obvious that Support [Sc
X ] is not always a subset of Support [SX ]. A simple

example illustrating this fact is the bivariate random vector (X1, X2), with X1 = U and X2 = 1−U .
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In this case, we have that SX = 1, and hence,

Support [SX ] = {1} ,

while taking into account that Sc
X

d
= 2U leads to

Support [Sc
X ] = [0, 2] .

A somewhat less obvious fact is that Support [SX ] is not always a subset of Support [Sc
X ]. In order

to illustrate this statement, consider the mutually independent random variables X1 and X2, which

are both uniformly distributed over [0, 1] ∪ [2, 3]. Then we have that

Support [SX ] = [0, 6] and Support [Sc
X ] = [0, 2] ∪ [4, 6] .

The following result gives conditions under which Support [SX ] ⊆ Support [Sc
X ]. Remark that

we will say that a distribution function FX is strictly increasing if it is strictly increasing over the

interval
[
F−1+
X (0), F−1

X (1)
]
.

Proposition A.2. If FXi is strictly increasing, i = 1, 2, . . . , n, then

Support [SX ] ⊆ Support [Sc
X ] =

[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
.

Proof. If all FXi are strictly increasing, then all F−1
Xi

are continuous. Taking into account the

additivity property (3.5), this implies that F−1
Sc
X

is continuous, and hence, FSc
X

is strictly increasing,

which implies that Support [Sc
X ] =

[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
. From (A.1), (A.2) and (A.3), it follows then

that

Support [SX ] ⊆
[
F−1+
SX

(0), F−1
SX

(1)
]
⊆
[
F−1+
Sc
X

(0), F−1
Sc
X
(1)
]
= Support [Sc

X ] .

This ends the proof.
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Proposition A.3. For any comonotonic random vector Xc, one has that

{sxc | xc ∈ CSupport[Xc]} =
[
F−1+
SXc

(0), F−1
SXc

(1)
]
.

Proof. From the definition of CSupport[Xc], one finds that

{sxc | xc ∈ CSupport[Xc]} =

{
n∑

i=1

F
−1(α)
Xi

(
u
)∣∣∣0 ≤ u ≤ 1, 0 ≤ α ≤ 1

}
.

Taking into account the additivity property (3.5) leads to

{sxc | xc ∈ CSupport[Xc]} =
{
F

−1(α)
Sc
X

(
u
)∣∣0 ≤ u ≤ 1, 0 ≤ α ≤ 1

}
=
[
F−1+
SXc

(0), F−1
SXc

(1)
]
,

which proves the stated result.
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