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Abstract

There is a growing need for higher retirement incomes to cover the higher long-term
care (LTC) costs when retirees become functionally disabled or ill. However, most of the
existing mortality pooling products in the literature do not consider the health status of
members. Hence, they do not provide higher retirement incomes to members who have LTC
needs due to deteriorated health conditions. To address this issue, we propose a health-
contingent mortality pooling product that is actuarially fair and self-sustaining, featuring
health-state-dependent income payments. The proposed framework allows free transitions
between health states so that recovery from functional disability is allowed. The framework
has the flexibility to allow any number of health states, while we use a five-state model
with the health states constructed from two dimensions, which are functional disability
and morbidity. Moreover, the product allows heterogeneity so members can have different
ages, contributions, initial health states, joining times, and rates of investment returns.
Allowing heterogeneous members to join helps increase the pool size and generate more
stable income payments. We find that the proposed health-contingent pooling product
consistently provides significantly higher retirement incomes to members with functional
disability and morbidity, while the costs to healthy members are relatively low. We also
find that the jump in income payments happens immediately when there is a transition to
a less healthy state, allowing members to quickly obtain higher incomes to cover the higher
costs incurred by being functionally disabled or ill. Meanwhile, if the member recovers from
functional disability, the income payments will decrease to reflect the reduced LTC cost.
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1 Introduction

Long-term care (LTC) costs have been a growing concern for retirees in recent years. The
expenditure of the Australian government on aged care has increased from 13.63 billion AUD
(0.73% GDP) in 2012 to 28.28 billion AUD (1.19% GDP) in 2022 (Productivity Commission,
2014; Productivity Commission, 2024; Australian Bureau of Statistics, 2023). A similar pattern
has been observed in other OECD countries. For example, the total LTC cost relative to GDP
has increased from 1.5% in 2004 to 2.5% in 2020 in Germany, and from 1.2% in 2014 to 1.5%
in 2020 in the USA (OECD, 2020; OECD, 2024). On average, 1.5% of GDP across OECD
countries has been spent on LTC cost in 2018, which is equal to around 760 USD per capita
(OECD, 2020).

LTC risk refers to the risk that individuals incur higher costs due to the need for care services
resulting from deteriorated health conditions. Products to hedge against LTC risk include LTC
insurance, LTC annuities, and the recently developed LTC pooling products. LTC insurance
is a traditional insurance product which provides a benefit, reimbursement, or LTC service to
the individual in the event that the individual becomes functionally disabled. Meanwhile, LTC
annuities combine LTC insurance with life annuities in different ways as in Murtaugh et al.
(2001), Brown and Warshawsky (2013), Pitacco (2016) and Chen et al. (2022b). The benefit
of LTC annuities is the lower cost of capital and lower tendency of adverse selection due to
the natural hedging of longevity risk and LTC risk (Murtaugh et al., 2001). LTC annuities are
also available to people with bad health who are often rejected from the underwriting of LTC
insurance (Hieber and Lucas, 2022). However, it is still challenging to determine the reserve
of LTC annuities. This has led to the development of LTC pooling products, also referred to
as health-contingent mortality pooling products in this paper, which do not promise lifetime
incomes and have individuals in a risk pool sharing the risk with each other. Thus, LTC pooling

products have zero capital requirements and very low premium loadings.

Health-contingent mortality pooling products, or LTC pooling products, are developed from
mortality pooling products, which involve individuals in a risk pool sharing the mortality risk by
distributing the mortality credits of members who passed away to all members or only surviving
members. Mortality pooling products are effective tools for retirees to hedge their longevity
risk. At the same time, they also provide retirees with retirement income streams. Mortality
pooling products can be broadly categorised into pooled annuities (Piggott et al., 2005; Qiao and
Sherris, 2013; Bernhardt and Donnelly, 2021), tontines (Milevsky and Salisbury, 2015; Milevsky
and Salisbury, 2016; Chen and Rach, 2019; Chen et al., 2019; Chen et al., 2020; Sabin, 2010;
Weinert and Griindl, 2021), and risk-sharing products (Donnelly et al., 2014; Donnelly and
Young, 2017; Denuit, 2019; Fullmer and Sabin, 2018) with an additional decumulation plan.
These products share the advantage of requiring zero or almost zero capital, while the ways
of distributing the mortality credits and determining income payments are different. In this
paper, we extend the last category, which is risk-sharing products with a decumulation plan to
further protect the LTC risk of policyholders. The risk-sharing products with a decumulation

plan are chosen because they have the advantage over the first two categories in that they are



actuarially fair, self-sustaining, and allow heterogeneity at the same time.

The key motivation for developing an LTC pooling product is that not all retirees have the same
level of demand for retirement income. For example, functionally disabled people at old ages
need higher retirement income to cover their higher LTC cost needs. Meanwhile, people being
functionally disabled also have a higher probability of death compared with healthy individuals
of the same age, thus it is not fair to distribute the same proportion of mortality credits to all
members of the pool. People with a higher probability of death need more from the mortality
credits to be compensated. This differs from mortality pooling products that do not consider
the health status of individuals. Therefore, we aim to study the suitable risk-sharing rule mixing
people in different health states and at different ages in a risk pool. We also expect people in

the more disabled and ill states to receive higher payments to cover their higher LTC costs.

Previous studies on LTC pooling products include Hieber and Lucas (2022), Chen et al. (2022a)
and Kabuche et al. (2024). However, Hieber and Lucas (2022) assume no recovery from the
dependent state to the healthy state. Our framework allows the free transition between any
health states which includes recovery from functional disability due to the use of forward itera-
tions. Meanwhile, the main focus of Chen et al. (2022a) is the optimisation of individual lifetime
utility, while our focus is to have properties like actuarial fairness and self-sustainability which
are very important for mortality pooling products as discussed in Denuit (2019). Kabuche et al.
(2024) extend the group self-annuitisation (GSA) in Piggott et al. (2005) and use a framework
that allows recovery from a disability state. However, the product in Kabuche et al. (2024) does
not allow heterogeneous members or new entrants in subsequent times. Members in Kabuche
et al. (2024) need to be one cohort of the same age joining at time zero, and there requires at
least one person in each health state. Therefore, there lacks an LTC pooling product that is
actuarially fair and self-sustaining, allowing recovery from functional disability, heterogeneous
members, and new members to join at the same time. The proposed framework for LTC pooling

products in this paper satisfies all these features mentioned above.

To study the risk-sharing with multiple health states, a multi-state health model that can
capture the transition probabilities between different health states is required. Recently, there
has been growing literature on multi-state health models. Fong et al. (2015) use a generalized
linear model for a three-state model, and they allow recovery from the disability state to the
healthy state. Li et al. (2017) and Fu et al. (2021) further incorporate trend and uncertainty in
disability rate in a three-state model. Sherris and Wei (2021) develop a five-state model that
not only incorporates trend and uncertainty but also constructs the states from two dimensions:
functional disability and health. We use the five-state model in Sherris and Wei (2021) for
empirical illustration, while our framework allows any number of health states and any type of

transition between health states.

This paper contributes to the literature by proposing a framework for health-contingent mor-
tality pooling products that are actuarially fair at any point in time, self-sustaining thereby
having no capital requirement, and allow different kinds of heterogeneity in members including
age, gender, contribution, health state, mortality rate, rate of return, and joining time. The

health-contingent design allows it to pay higher retirement incomes to members in less healthy
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states to cover their higher long-term care cost needs. The proposed framework is also flexible
to allow health state models with any number of health states and free transition between health
states. Thus, recovery from functional disability is allowed in this paper. Moreover, the benefit
payments are determined by forward iterations, which are clear and straightforward. The use
of forward iterations is also one reason that the framework allows recovery from functional dis-
ability. There is also flexibility in decumulation so that the product can generate annuity-like
payments that use health-state-dependent annuity factors or level payments with predetermined

drawdown rates.

We find that the proposed health-contingent mortality pooling product can provide higher
retirement income to retirees who have morbidity or are functionally disabled than those who
are healthy. The higher income payments of ill or functionally disabled retirees come from three
mechanisms: a higher but fair health-state-dependent accumulation factor, a higher probability
of death in a less healthy state and thus a higher proportion of mortality credits, and a higher
drawdown rate in a less healthy state. We also find that retirement incomes are significantly
higher for members who have functional disability and morbidity, with very little impact on
the retirement incomes of healthy members. Moreover, we analyse the volatility of income
payments and find that the payments are stable and the product is able to pay higher income in
unhealthy states even in the worst-case scenario. Furthermore, we study the income payments
when a transition to a less healthy state happens at a different time and find that the product
can provide higher income payments for ill and functionally disabled members no matter when
the transition happens, and the higher income payments persist if the individual stays in a
less healthy state. Meanwhile, if the member recovers from functional disability, the income
payments will reduce immediately to reflect the lower required long-term care cost. Finally, the
level payments provide more stable income payments than annuity-like payments because the

income payments remain the same as long as the balance does not run out.

The rest of the paper is structured as follows. Section 2 introduces the multi-state health
model used in this paper. Section 3 explains in detail the framework and operation of the
proposed health-contingent mortality pooling product. Section 4 discusses the assumptions of
the numerical experiments and the results we get including no risk-sharing, risk-sharing with
closed and open pools, and risk-sharing with health-state-dependent accumulation factors. We
compare the income payments and balances of individuals with different ages, contributions,
health states, and experience different transitions between health states for both annuity-like

and predetermined level decumulation plans. Section 5 concludes the paper.

2 Multi-state Health Model

A multi-state health model is required for a health-contingent mortality pooling LTC product.
Assume that there are Npg health states, and an individual ¢ belongs to one of the Npg
health states. States h = 1,2, ..., (Ngg — 1) represent the states that the individual is alive but
with different health statuses, while State h = Npg represents the dead state. The one-year

transition probability matrix of individual ¢ from time ¢ to time ¢ + 1 between different health
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states is defined as P;(¢,t + 1), which is represented as:

Pttt +1) P2t t+1) e ppNES (4 1)
P (tt+1) p2(tt+1) ... prNEs (t, t+1)
Pi(t,t+1) = : : . :
sl p 1y pNEsTRRg g 1) L. plNHsT 1NHS(t,t+1)
prs e 41)  pNESE(tt41) ... plNESNES( 44 )
prt(tt+1) prAtt+1) e prNES(t 4 1)
P (tt+1) P2t t+1) P NHS(t t+1)
iVHS 1, l(t t+ 1) p;NHS 1, 2(t t+ 1) .. pivHS_lvNHS(t,t + 1)
0 0 1

where p?’h(t, t+1) is the one-year transition probability of individual ¢ at time ¢ from State b to
State h between time ¢ and t+ 1. Note that plNHS’h#NHS(t, t+1) =0and prHS’NHS (t,t+1)=1

because dead state is an absorbing state.

We use the multi-state model calibrated in Sherris and Wei (2021) with US Health and Retire-
ment Study (HRS) data. The detailed multi-state health model is shown in Figure 1 below.
People are defined to be functionally disabled if they have two or more difficulties in six activit-
ies of daily living (ADL) (Li et al., 2017). The six ADLs are dressing, walking, bathing, eating,
transferring, and toileting as in Li et al. (2017). And people have ill health if they experience
any one of the four non-recoverable illnesses: heart problems, diabetes, lung disease, or stroke
(Brown and Warshawsky, 2013). Then, five states are constructed taking the interaction of

disability and illness into consideration.

Figure 1: A five-state transition model in Sherris and Wei (2021).



1. H: No morbidity and not functionally disabled;
2. M: Morbidity and not functionally disabled;

3. D: No morbidity and functionally disabled;

4. MD: Morbidity and functionally disabled;

5. Dead.

For a given age = and time ¢, the estimated five-state model will give us a transition probability
matrix as shown in the table below, which includes the transition probabilities between time ¢
and t + 1:

prt(tt+1) pritt+1) pritt+1) prttt4+1) prP(tt+1)
0 P2t t+1) 0 pottt+1) pPP(tt+1)
o 3,1 3,2 3,3 3,4 3,5
Pi(t7t+1)_ b; (t7t+1) b (t7t+1) b; (t7t+1) p; (t7t+1) p; (t7t+1) ’
P (t,t+1) 0 prttt+1) pro(tt+1)
0 0 0 0 1

where some of the transition probabilities are 0 because recovery from morbidity to no morbidity
is not allowed in this model, while recovery from functionally disabled to not functionally
disabled is allowed. We can also write ¢?(t) = p?’5(t,t + 1) for b = 1,2,3,4 to represent the
one-year probability of death from State b, and pi(t) = ?:1 p?’j(t,t +1) for b =1,2,3,4 to
represent the one-year survival probability in State b. Note that we have the relationship that
PRt + g0(t) = 1.

3 Multi-state Health-contingent Mortality Pooling

We allow retirees of different ages and in all health states to join the risk-sharing pool at any
discrete point in time. Assume an individual ¢ who joins the pool at time 0 has fund value
F;(0) as the initial contribution. Then, at time 1 the health-contingent accumulated fund value
becomes s?(1) = F;(0)al(1), where al(1) is the accumulation factor for individual i between
time 0 and 1 and which depends on the health state h;(1) of individual 7 at time 1. A health-
contingent risk-sharing rule is then applied to distribute the total mortality credits S(1) coming
from the accumulated fund balances of members who pass away between time 0 and 1 to the
fund members. The health-contingent balance after risk-sharing is Vih(l). The health-contingent
benefit payment B(1) is then paid from the balance after risk-sharing V*(1). The remaining
balance F;(1) = V;*(1) — B!(1) becomes the initial balance for the next time period [1,2] and

this iteration keeps going.

Now we look at the fund operation starting at an arbitrary point time ¢. The fund operation is

summarised in Steps 1-4 and illustrated in Figure (2):
Step 1: Health-contingent accumulation of investment return in Equation (4) and Equation (5).

Step 2: Health-contingent risk-sharing and distributing the total mortality credits in Equation (12).



Step 3: Health-contingent benefit paying from the balance after risk-sharing. The benefit payment
is determined as in Equation (13) or Equation (14).

Step 4: Health-contingent accumulation of investment return for the next period in Equation (4)

and Equation (5).

Time
Fund value after
t benefit payment:
F;(t)
Step 1
Health-contingent ac- Step 2 Fund value after health- Step 3 Fund value after health-
t+1 cumulated fund value: P contingent risk-sharing;: P contingent benefit payment:
sh(t + 1) Vit + 1) Fi(t+1) = VI (t+1)—BP (t+1)
Step 4 |
Health-contingent Ac-
t+2 cumulated fund value:
sh(t + 2)

Figure 2: Health-contingent fund operation between time ¢ and t + 2.

3.1 Step 1: Health-contingent Accumulation

Denote F;(t) as the final fund balance of individual ¢ at time ¢, and a;(t+1) = 1+ ROR;(t) the
accumulation factor of individual ¢ between time ¢ and t+ 1, where ROR;(t) is the rate of return
of individual ¢ between time t and ¢ 4+ 1. Then, we propose the use of a health state-dependent
accumulation factor al(t + 1) between time ¢ and ¢ + 1 which differs for different health states

hi(t + 1) that the individual i is in at time ¢ 4 1, i.e. the end of the period, represented as:

al(t +1) if hi(t+1) =1,
a2t +1) if hi(t+1) =2,
af(t+1)=4 : o
oMt 4 1) if hi(t+1) = Ngs — 1,
a5 (t+1) = 1+ ROR;(t) = ai(t +1) if hi(t + 1) = Ny,

where h;(t +1) = 1,2,..., Ngs — 1, Ngg represents the state that individual 7 is in at time
t + 1. Generally speaking, if the LTC cost in State n is higher than that in State m, then
the distribution factor in State m should be higher than that in State m for individuals to
cover their higher LTC cost and health-related cost needs. Hence, it is reasonable to assume

al(t+1)>a(t+1).



We expect the following equation to hold:
Elaj(t +1)] = ai(t + 1), (2)

so that the state-dependent accumulation is actuarially fair. Denote b;(t) = 1,2,--- ,Nyg — 1

the initial state of individual ¢ at time ¢, i.e. the beginning of time period [t,¢ + 1]. Thus, we

expect:
NHS—]. NHS ].
ST a1l (1) = ai(t+ Z pr (it t 4 1), (3)
h=1

where p?“h (t,t+1) is the one-year transition probability of individual i over the period [t, ¢+ 1],
from the health state b;(t), which is known at time ¢ for individual 4, to a health state h;(t + 1)
at time ¢ 4 1.

Equation (3) holds because we set a’"5(t + 1) = 14+ ROR;(t) = a;(t + 1) in Equation (1).

The accumulation factor in the dead state is set to be equal to the normal accumulation one

N,
ai HS

fund balance in their account and this will reduce complexity in risk-sharing and calculation of

(t4+1) = a;(t + 1) so that in the event of death, members will just lose the accumulated

total mortality credits. We show in the next subsection how to find a set of af(t + 1) which

suits this requirement.

Following the above considerations, the accumulated fund value at time ¢ + 1 of individual ¢

initially alive at time ¢, and in State h at time ¢ + 1 is represented as s/ (¢ + 1):

sh(t+1) = F(t) x al(t + 1), (4)
which translates to
st +1) if hi(t+1) =1,
s2(t+1) if hi(t+1) =2,
sh(t+1) = ; : (5)
s TL( 4 1) if hi(t +1) = Ngs — 1,
sNHS(t 1) = 5;(t+1)  if hi(t+ 1) = Nys,

where h;(t + 1) represents the state of individual ¢ at time ¢ + 1, and s;(t + 1) = F;(¢t)a;(t + 1).

Similar to Equation (2), we expect:
Efs?(t + 1) =si(t + 1), (6)

which can be written as

Npgs

Z sP(E+ Dpr (1) = si(t + 1),



and thus

Nps—1 Nps—1
ST skt 1)pl Mt +1) = si(t+ 1) Pl + 1),
h=1 h=1

Equation (6) holds if Equation (2) holds because:

E[st(t 4+ 1)] =E[al(t + 1)]F;(t + 1)
=a;(t +1)F;(t + 1)
ZSZ'(t—l- 1).

3.1.1 Determining the State-dependent Accumulation Factors

To determine the state-dependent accumulation factors al(t + 1), we assume that they are

proportional to a set of predetermined factors c; h(t4+1) for h=1,2,...,Ngs — 1.

Definition 1. We set:

aMs (g 4 1) = VST (4 1) (t 4 1),

(2

aMiS (t 4 1) = ai(t + 1),

so that a™(t+1) > a™(t+1)if P (t+1) > "(t+1) and z§(t+1) > 0, and z{(t+ 1) a constant

of individual ¢ for the time period [t,t 4 1] to be solved to keep actuarial fairness.

Proposition 1. The state-dependent distribution factors are:

NHslbh

ai(t+1) tt+1

1 ( ) 1
a; (t+1) = N T h(t+1) b n t+1)ci (t+1),
9 a; (t+1) NHS ! bzh(tt—&-l) 9
aZ(t+1) = ST (t+1) oo (t+1),

Nys—1 . az(t+1)ZNHs i h(t t+1) Npyg—1
a; (t + 1) iVHS 1 h(t—i—l)p i (t t+1) G (t + 1)7

aMS (t41) = a;(t + 1),

if Equation (8) and Equation (9) hold.

Proof. To have actuarial fairness, we require:

Elal(t +1)] =a;(t + 1),

(10)



which gives us

Nas by b Nastt
Sooalt+Dp "ttt + 1) =ai(t+1) Y p”
h=1 h=1

Nps—1 Nps—1
S© e+ st + Dp) Mt + 1) =a(t + 1) pll
h=1 h=1

from which we obtain

ai(t+1) S "t e+ 1)
Sa T e+ Dy (1)

zE(t+1) =

7

Substituting Equation (11) back to Equation (9) completes the proof.

3.2 Step 2: Health-contingent Risk-sharing

(t,t+1)

(t,t+1),

The accumulated fund balances of members who die between time t and ¢ + 1 sum up into the
total mortality credits to be distributed. The total mortality credits S(¢ + 1) to be distributed

at time ¢t + 1 is represented as:

N(t)
St+1) =Y (1—IL(t+1))s(t+1)
=1
N(t)
=> Xi(t+1),

i=1

where N(t) is the number of people initially alive at time ¢, i.e. the beginning of the period

[t,t + 1],

1 if individual 7 is alive at time ¢ + 1,

Li(t+1) =
0 otherwise,

and

Xi(t+1) =1 —L(t+1))s(t +1).
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Definition 2. The health-contingent fund value after risk-sharing Vih (t) in the proposed frame-

work is the following:

Lt 41 si(t+1)g;" (1) t+1)—6(t+1 i ha(t+1) =1
D Sy ST D= D) =1
S2(t+1)+ Z;;tﬁ”zﬂ)(q)j(t) [S(t+1) — (¢ +1)] if hy(t+1) = 2,
Sj
ViE+1) =1
b;
sNrs=l(¢ 4 1) + z;&EHZ?:l)(?’f SIS =3+ 1] R+ 1) = Nigs = 1,
‘ j=1 % j
;gff“)q O [S(t+1)—8(t+1)] if hi(t+1) = Nys,

S s (1)) ()
(12)

where 6(t +1) = > icaq41) sg(t + 1) — sj(t + 1) is a deviation term equals to the sum of the
differences between the empirical and expected state-dependent accumulated fund balance of
members in the set A(t 4 1) who are alive at time ¢ + 1 given alive at time ¢, and ¢’ (¢) is the
one-year probability of death over the period [t, ¢+ 1] for individual ¢ initially in the health state
bi(t) at time t. We have E[5(t + 1)] = 0 since E[s!(t + 1)] = s;(t + 1) for every individual 1.
This term is deducted from the total mortality credit to adjust the deviation from the empirical
and expected sum of accumulated fund balances, which thus ensures the self-sustainability of
the fund. The weighting in the total mortality credit minus the deviation is similar to the idea

of the proportional risk-sharing rule in Donnelly and Young (2017).

Proposition 2. The health-contingent risk-sharing rule in Equation (12) is actuarially fair
for every individual i if ENHS Lsh(t 4+ 1)p b“h(t,t +1) = si(t+ 1) ZNHS 1pb“h(t t+1) in
Equation (7) holds.

Proof. We calculate the expectation of the health-contingent fund value after risk-sharing:

Ngs—1 . b;
EVit+1)]= S she+ )i e +1) + N‘Z)(H Dai (tz_ E[S(t +1)],
h=1 Zj—l sj(t+ 1)(1j] (t)
Npg—1 N(t
: si(t + 1)
=s;(t+1) pf“h(t,t—i—l)—i— s(t+1 q (t),
f; Z;V(? sj(t+1)q z:: ’
Npg—1
—si(t+1) PUM (4 1) 4 st + )¢ (8),
h=1
:Si(t + 1),

which completes the proof since the expectation of the health-contingent fund value after risk-
sharing is equal to the accumulated fund value at risk before risk-sharing for every individual
i. O
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Proposition 3. The health-contingent risk-sharing rule in Equation (12) is self-sustaining.

Proof. We calculate the sum of the health-contingent fund values after risk-sharing across all

individuals i:

SNovit+1 = > stt+D+SE+) - | D stt+1) —si(t+1)
i i€A(t+1) I€A(t+1)
=S(t+1)+ Y si(t+1)
I€A(t+1)
= > st+D)+ > si(t+1)
i€D(t+1) i€A(t+1)

:Zsi(t-F 1),

where D(t+1) is the set of members who have died during the period [¢,¢+1]. This completes the
proof since the sum of the health-contingent fund values after risk-sharing across all individuals
1 is equal to the sum of the accumulated fund values before risk-sharing across all individuals
i. O
The proposed framework for health-contingent mortality pooling products has the flexibility to
include other risk-sharing rules in Step 2. For example, one possible future extension can be the
conditional mean risk-sharing introduced in Denuit and Dhaene (2012) and further investigated

in Denuit (2019). The fund balance of member ¢ after risk-sharing is:

sh(t + 1) + EEGISE G (¢ 4 1) — 5(¢ + 1)] if hi(t+1) =1,
s2(t+ 1) + EEAGISEII G (¢ 4 1) — 5t + 1)] if hi(t+1) =2,

ViE+1) =1
sNrs =Lt 4 1) 4+ W[S(Hr 1)—d0(t+1)] ifhi(t+1)= Ngs—1,
W[S(Hl) —6(t+1)] if hi(t+ 1) = Nus,

where the conditional mean E[X;(t+1)|S(t+1)] can be calculated following Denuit and Dhaene
(2012) and Denuit (2019).

3.3 Step 3: Health-contingent Benefit Payments

After risk-sharing, the benefit payment is then determined from the balance after risk-sharing
Vih(t + 1). The benefit paid to every individual at time ¢ + 1 has the flexibility to be either
annuity-like payments or level payments. The annuity-like payments are represented as:
h
w if individual ¢ survives,
Bt +1) ={ ien (13)
VI(t+1) if individual 4 dies,

12



h
T t+1

State h at time ¢ + 1:

where is the actuarial notation of an annuity due for individual ¢ that is aged x and in

o

iy, =1+ plt+1,t+1+k),
k=1

and pl(t + 1, + 1 + k) is the survival probability of individual i who is aged = and in health

State h at time ¢ + 1 between time ¢t + 1 and ¢t + 1 + k, no matter which health states the

individual transits into during the period. We also have the relationship that:

Nps-1
PRt +1t+1+k) = Y pM(t+1,t+k+1),
j=1
which is because the survival probability is the sum of the transition probabilities to the health
states except for the dead state. The fund recalculates the annuity-like payments at each point
in time. This will naturally yield higher benefit payments for members in more disabled states

because their fund balances will be higher and their annuity factor will be lower.

Meanwhile, the drawdown payments can be predetermined level payments which are higher in
more disabled health states:

min(BP(t + 1)Predetermined y7h(p 4 if individual 4 survives,
Bh(t 4 1) = (Bi'(t+1) i (t+1)) (14)
VIt +1) if individual 4 dies.

The minimum function min (Bl (t + 1)Fredetermined y7h (1 4 1)) is applied so that if the prede-
termined level payment Bf(t + 1)Fredetermined jg higher than the fund value after risk-sharing
VI(t 4 1), the fund value after risk-sharing will be paid and the remaining fund balance will

become zero.

3.4 Step 4: Health-contingent Accumulation in the Next Period

The fund value of individual 7 after health-contingent risk-sharing and benefit payment
Fi(t+1) = V(t+1) — Bl(t + 1) becomes the initial value for the next period [t + 1, +2]. The
health state of individual ¢ at time ¢ + 1 becomes the initial health state for the next period
[t + 1,t + 2], which determines the transition probabilities to the health states at time t + 2.
These transition probabilities along with the health state of individual 7 at time ¢+ 2 determine
the health-contingent accumulation between time ¢ + 1 and t + 2 in Step 4, followed by the

health-contingent risk-sharing and benefit payments in subsequent steps.

3.5 Summary of fund operation

In summary, there are three mechanisms resulting in higher payments in less healthy states:
1. Health-contingent accumulation factor.

2. Higher probability of death in a less healthy state and thus a higher proportion of total
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mortality credits.
3. Higher payout ratio in a less healthy state due to:
e Lower annuity due values.

e Higher level payout ratios.

4 Numerical Illustration: Income Payments and Balances
under Different Settings

This section displays the results including income payments and balances of members with

different settings of risk-sharing. The general assumptions we make for all experiments are:
o The interest rate is 3% per annum.
e The pool is established in calendar year 2022.

e Pool members are male whose transition rates and mortality rates are calculated from the
Retirement Income Toolkit using the 5-state health model in Sherris and Wei (2021) and
HRS US data.

The transition probability matrices from ages 60 to 109 for the next 20 years are calculated
with the Retirement Income Toolkit available at https://github.com/RI-Toolkit/rit. The
parameters for the five-state health model used in the toolkit are calibrated in Sherris and Wei
(2021) using the Health and Retirement Study (HRS) data from 1998 to 2014. The details of
the model and the parameters can be found in the appendix. Meanwhile, for each age in each
state in the next 20 years, the survival probabilities until age 109 are produced to construct the
annuity factor d${,t+1’ which is used to calculate income payments as shown in Equation (13).
We simulate the transition between states of members as well as deaths with the transition

probability matrices, and we use the health-contingent risk-sharing rule in Equation (12).

4.1 No Risk-Sharing, Pool Size=1

We start with no risk-sharing, which means each individual withdraws the annuity-alike in-
come payments according to Equation (13), but there is no distribution of the total mortality
credits and individuals are managing their own longevity risks. Therefore, only Mechanism 3,
the health-state-dependent payout ratio, leads to the difference in income payments between
different health states.

We study an individual aged 60 in year 2022 which is time 0 with an initial balance of $600, 000,
and then transits into H, M, D, or, MD states at time 1 and stays in those states respectively
for the next 20 years. The relative income payments and relative balances over the next 20
years are shown in Figure 3. From Figure 3(a), we can see the difference between different
health states in income payments, which is mainly driven by the lower annuity factor d_;

it+1
in the less healthy and more disabled states, leading to a higher income payment according to
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Equation (13). Meanwhile, we can see from Figure 3(b) that the balance is consumed faster in
a less healthy or more disabled state. This leads to the income payments in the MD state after
11 years being lower than the income payments in the D state since the balance in the MD state
is lower than the balance in the D state and not enough to generate a higher income payment
than the D state. The income payments in all states are also decreasing over time because there

is no risk-sharing to benefit from mortality credits under this setting.

0.20 1.5
@ Q
g 015 5
a g 40
K _g
< H E H
) — M 1) — M
5 010 bl ¢ v
£ MD g MD
® [
< s 05
T e — 5
£ —— &
0.00 0.0 1
T T T T T T T T T T
1 5 10 15 20 0 5 10 15 20
Time (Years) Time (Years)
(a) Relative income payments (b) Relative balances

Figure 3: Individuals joined at age 60 at time O initially healthy and transit into different
health states (No risk-sharing over the next 20 years).

Similarly, Figure 4 displays the relative income payments and relative balances of individuals
joined at age 80 at time 0, initially healthy with an initial balance of $200,000, and transits
into different health states.
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Figure 4: Individuals joined at age 80 at time 0 initially healthy and transit into different
health states (No risk-sharing over the next 20 years).

From Figure 4, we can see that both the income payments and balances reduce faster than the

aged 60 cohort. Moreover, the relative income ratios start at a higher value compared with
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age 60, which is due to the lower annuity due factor at older ages used in Equation (13). For
example, the relative income ratios start at around 10% in H and M states, and around 15% in
D and MD states for the aged 80 cohort, compared with the 5% to 7.5% for the aged 60 cohort.
Furthermore, since there is no risk-sharing and we assume these individuals are alive and stay
in these health states for the next 20 years, the income payments and balances in Figures 3 and

4 are deterministic in this case.

4.2 Risk-sharing, Closed Pool, and No State-dependent Index

We now include risk-sharing but with a closed pool and no state-dependent index, which means
there are 100 or 1000 aged 60 members joining the pool at time O initially healthy with an
initial balance of $600,000, no new member is joining afterwards, and the state-dependent
accumulation factors are proportional to c? ={1,1,1,1} for h = 1,2,3,4, every individual 1,
and every time period. Due to the participation of risk-sharing, in addition to Mechanism 3,
Mechanism 2 that people in a less healthy state get a higher proportion of mortality credits also

leads to the difference in income payments between different health states.

4.2.1 Age=60, Pool Size=100

With a pool size of 100, Figure 5(a) shows that the relative income payments still show the
pattern that the income payments in a less healthy and more disabled state are higher. However,
we can see that with a pool size of 100 instead of 1, the income payments in the MD state are
higher than in the D state for a longer period of time. This is because from Equation (12),
it can be seen that the probability of death in the MD state for the cohort aged 60 joining
at time 0 is higher than the probability of death in the D state qi(t) > ¢}(¢) for the next 20
years t € [1,20], which leads to a higher compensation from the total mortality credits in an
MD state than in a D state. Meanwhile, the D state still benefits more than the H and M
states since ¢3(t) > ¢?(t) > ¢} (t). We observe that the income payments in Figure 5(a) are
higher than in Figure 3(a) and show a less decreasing trend, which is also because of the benefit
from mortality credits for surviving members. We can also observe that from the balances in
Figure 5(b) that the balance of the MD state is not decreasing as fast as in Figure 3(b) when

there is no risk-sharing.

Then, we study how stable the relative income payments are. There are two sources of random-
ness, the volatility in the transition rates from the frailty model, and the empirical transition
between states for given transition rates. Figure 6 displays the 95% confidence intervals (CIs)
of income payments for individuals transit into H, M, D, and MD states from 100 simulated
paths. It can be seen that for the relative income payments, the confidence intervals in the D

and MD states are more volatile than in the H and M states.
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Figure 5: Individuals joined at age 60 at time 0 initially healthy and transit into different
health states (Risk sharing with closed pool, size= 100).
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Figure 6: Relative income payments: 95% confidence interval for individuals joined at age 60
at time 0 initially healthy and transit into different health states (Risk sharing with closed
pool, size= 100).
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4.2.2 Age=60, Pool Size=1000

We now increase the size of the closed pool from 100 to 1000 with the other assumptions
remaining the same. Figure 7 displays the 95% confidence intervals for relative income payments
when the size of the closed pool is 1000. Comparing Figure 7 with Figure 6, we can see that
with a larger pool size, the relative income payments are significantly higher, with more trend
of increase in D and MD states, and the 95% confidence intervals for relative income payments

are much narrower.
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Figure 7: Relative income payments: 95% confidence interval for individuals joined at age 60
at time 0 initially healthy and transit into different health states (Risk sharing with closed
pool, size= 1000).

4.3 Risk-sharing, Open Pool and Mixed Cohort, and No State-dependent Accu-

mulation Factor

We now assume that the pool consists of members of different ages ranging from age 60 to
80, different initial health states, and initial age-dependent contributions. Table 1 displays
the number of people at each age between 60 and 80, and initially in H, M, D, and MD
states respectively. The distribution of people in different health states follows the health-
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state-dependent lifetable generated by the Retirement Income Toolkit. The number of people
joining decreases with age, while the proportion of people in M, D, and MD states increases
with age. Moreover, Table 1 also shows the age-dependent initial balance in the last column.
The initial contribution at age 60 is $600, 000, and it decreases by $20,000 when age increases
by one to reflect the consumption of retirement savings. It is assumed to be an open pool so
the combination of members in Table 1, that is a total of 1912 new members, will join the pool
every year for the first 20 years. Moreover, we also assume that the accumulation factors are
state-independent so they are proportional to c? ={1,1,1,1} for h =1,2,3,4, every individual
i, and every time period. Therefore, only Mechanisms 2 and 3 lead to health-state-dependent

income payments.

Table 1: Number of people in different health states and ages with age-dependent balances
joining the pool at the beginning of every year.

Health States
Age H M | D | MD | Total | Balance
60 100 0 0 0 100 | 600,000
61 94 5 0 0 99 580,000
62 88 10 | 1 0 99 560,000
63 83 15 | 1 0 99 540,000
64 77 20 | 1 1 99 520,000
65 72 24 | 1 1 98 500,000
66 67 28 | 1 1 97 480,000
67 62 32 | 1 2 97 460,000
68 57 35 | 1 2 95 440,000
69 52 38 | 1 2 93 420,000
70 48 41 | 1 3 93 400,000
71 44 44 | 1 3 92 380,000
72 40 46 | 1 4 91 360,000
73 36 48 | 1 4 89 340,000
74 32 50 | 1 4 87 320,000
75 29 51 1 5 86 300,000
76 26 52 | 1 5 84 280,000
77 23 52 | 1 6 82 260,000
78 20 53 | 1 6 80 240,000
79 17 53 | 1 6 77 220,000
80 15 52 | 1 7 75 200,000
Subtotal | 1082 | 749 | 19 | 62 | 1912 NA

We assign the members who join at time 0 with ID numbers from 1 to 1912, ordered by age
and within each age by the joining health state H, M, D, and MD. The ID numbers continue
for members who join in the subsequent years. We assume that members 1, 2, 3, and 4 join the
pool at time 0 aged 60, initially in the H state, and transit into the H, M, D, and MD states
respectively and stay in their respective states for the next 20 years. It is the same for members
1838 to 1841 except that they are aged 80 initially in the H state when they join the pool at
time 0. Only those 8 members stay in those states to make observation easier, while the other

members move freely between states.
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From Figure 8, we can see that the mean relative income payments and mean relative balances
of the age 60 at time 0 cohort show similar patterns like increasing income payments in MD
and D states and relatively stable payments in M and H states. Meanwhile, the pattern that
MD > D > M > H in terms of income payments persists.
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Figure 8: Individuals joined at age 60 at time 0O initially healthy and transit into different
health states (Risk sharing with open pool, state-dependent factors proportional to
h
car={1,1,1,1}).

Figure 9 plots the mean relative income payments and mean relative balances of the age 80
cohort in different states. We can see that for the age 80 cohort, the income in the D state is
higher than in the MD state because we observe that the probability of death in the D state is
significantly higher than in the MD state after age 85, that is ¢3(t) > ¢}(t) for t > 5. The very
high income payments in the D state are because of the very high mortality rate ¢3(t) > 0.2
after age 90 in the D state, which distributes very high mortality credits to that cohort and pays
very high income from the remaining balance due to the small annuity factor. The expected
future life at age 80 in the D state is 7.54 years, so the probability that an individual keeps

getting income payments in the D state for the next 20 years is small.
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Figure 9: Individuals joined at age 80 at time 0 initially healthy and transit into different
health states (Risk sharing with open pool, state-dependent factors proportional to
h
cp ={1,1,1,1}).

4.4 Risk-sharing, Open Pool, and State-dependent Accumulation Factors

We now wish to distribute more of the mortality credits to the members in a less healthy
and more disabled state, so we assume that the state-dependent accumulation factors a? are
proportional to ¢ = {1,1.01,1.02,1.08} for h = 1,2,3,4, every individual 4, and every time
period. Therefore, apart from Mechanisms 2 and 3, Mechanism 1 also starts to play a role in
the health-state-dependent income payments. The rest of the assumptions are the same as in

Subsection 4.3.

4.4.1 Numerical Illustration of Determining State-dependent Accumulation Factors

We perform a simple illustration of how the state-dependent accumulation factors are determ-
ined with a set of indexes that the accumulation factors are proportional to. We have the

following known information:
o The interest rate is 3%, so a; = 1.03.
o The accumulation factors are proportional to {1,1.01,1.02,1.08}.

If we look at a male aged 60 in the H state in the year 2022, the one-year transition probabilities
from H state to H, D, M, MD, and Dead states are {0.9409,0.0519, 0.0030, 0.0008,0.0034}.

Using Equation (10), the state-dependent accumulation factors are calculated to be:

al(t+1) = 1.0293,
aZ(t+ 1) = 1.0396,
a}(t+ 1) = 1.0499,
a}(t+1) = 1.1117,
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which are proportional to {1,1.01,1.02,1.08}. This is fair because:

1.0293 x 0.9409 + 1.0396 x 0.0519 4 1.0499 x 0.0030
+1.1117 x 0.0008 + 1.03 x 0.0034 = 1.03.

Similarly, if we look at a male aged 60 in the D state in the year 2022, the one-year transition
probabilities from D state to H, D, M, MD, and Dead states are {0.1343,0.0208, 0.7950, 0.0226, 0.0273}.

Using Equation (10), the accumulation factors are calculated to be:

al(t+1) =1.0114,
aZ(t+1) = 1.0215,
a3(t +1) = 1.0316,
a}(t+1) = 1.0923,

which are also proportional to {1,1.01,1.02,1.08}. This is fair because:

1.0114 x 0.1343 + 1.0215 x 0.0208 4 1.0316 x 0.7950
+1.0923 x 0.0226 4 1.03 x 0.0273 = 1.03.

From the above illustration, we can see that the state-dependent accumulation factor depends
on the initial state at the beginning of the year and also the state at the end of the year.
Following the same procedure, we thus determine the state-dependent accumulation factors for

each member at different ages and in different states at the end of each period.

4.4.2 Comparison of Incomes and Balances in Different Health States

We wish to study how the mean relative income payments and mean relative balances will change
when the accumulation factors change from state-independent to state-dependent. Figure 10
shows the mean relative income payments and mean relative balances of the aged 60 join
at time 0 cohort in different states since time 1 with the accumulation factors proportional
to {1,1.01,1.02,1.08}. We can see that compared with when the accumulation factors are
proportional to {1,1,1,1} as in Figure 8, the income payments in the MD and D states are
higher in Figure 10(a), and the balances are consumed slower in Figure 10(b). The same

observation can be found for the aged 80 cohort when we compare Figure 11 with Figure 9.
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Figure 10: Individuals joined at age 60 at time 0 initially healthy and transit into different
health states (Risk sharing with open pool, state-dependent factors proportional to

ch ={1,1.01,1.02,1.08}).
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Figure 11: Individuals joined at age 80 at time 0 initially healthy and transit into different
health states (Risk sharing with open pool, state-dependent factors proportional to

ch ={1,1.01,1.02,1.08}).

Table 2 presents the ratio of the sum of the expected present value (EPV) of income payments

between time 0 and 20 discounted back to time 0 over the initial contribution for different

cohorts with state-independent accumulation factors or state-dependent accumulation factors

proportional to {1,1.01,1.02,1.08}. We can see that with the state-dependent accumulation

factors, the sum of expected present income payments is lower in the H state, and higher in the
D and MD states for both 60 and 80 cohorts joining at time 0. We can also see that the change
in the H and M states are at a relatively low level at around 1%, while the change in the D
state is around 4% — 5% and the change in the MD state is around 13% — 16%, indicating that
with the proposed health state-dependent risk-sharing rule, the income in the less healthy state

can be increased by a significant amount at a relatively small cost of the healthy members.
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Table 2: Sum of the expected present value of income payments relative to initial contribution
for cohorts in different health states with state-independent accumulation factors or
state-dependent accumulation factors proportional to c? ={1,1.01,1.02,1.08}.

Age 60\Health States | H M D MD

State-independent 0.7587 0.8223 1.2597 1.4169
State-dependent 0.7531 0.8248 1.3058 1.6464
Change in Percentage | -0.74%  0.30% 3.65% 16.20%
Age 80\Health States | H M D MD

State-independent 1.0687 1.1688 3.0665  2.2599
State-dependent 1.0547 1.1673 3.2214  2.5644
Change in Percentage | -1.32% -0.12% 5.05% 13.48%

We also want to emphasise that the ratios c? to which the age-dependent accumulation factors
are proportional can be specific to any individual ¢, although we currently set them to be the
same for every pool member and the same across all time periods. For example, we can set the
age 60 — 69 cohort to have the accumulation factors proportional to {1,1.005,1.01,1.04}, while
the accumulation factors for the aged 70 — 80 cohort to be proportional to {1,1.01,1.02,1.08}.
To be more specific, in theory, we can let every individual ¢ have their own proportion index

c?, which can also vary for different time periods.

Another thing to notice is that an individual can withdraw any amount of the remaining account
balance after risk sharing and benefit payment because the fund is actuarially fair at any point
in time and at the individual level. Therefore, if one individual has an emergent liquidity
requirement, or finds it too risky if they are in the MD state with a very high probability of
death but also a high account balance which could be all lost if they die in the next period,

they can partially or fully withdraw the remaining account balance.

4.4.3 Confidence Intervals

We now study how stable the income payments are with the assumptions in Subsection 4.4. We
run 100 simulations and plot the 95% CIs for the income payments in H, M, D, and MD states
for age 60 and 80 cohorts respectively in Figures 12 and 13. We can see that the Cls in the H
and M states are quite narrow compared with those in the D and MD states. This is because
of the lower benefit from the total mortality credits in the H and M states, which is where
volatility mainly comes from. Moreover, it can be observed that the lower CI in the D and MD
states can still provide higher income payments than in the H and M states, indicating that
even in the low-income year either because of systematic change in transition rate or because
of less people die than expected, the less healthy and more disabled members can still receive

some level of protection for the higher income payments to cover their higher LTC needs.
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Figure 12: Relative income payments: 95% confidence interval for individuals joined at age 60
at time 0 initially healthy and transit into different health states (Risk sharing with open
pool, state-dependent factors proportional to czh ={1,1.01,1.02,1.08}).
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Figure 13: Relative income payments: 95% confidence interval for individuals joined at age 80
at time 0 initially healthy and transit into different health states (Risk sharing with open
pool, state-dependent factors proportional to czh ={1,1.01,1.02,1.08}).

4.4.4 Multiple Transitions

Furthermore, we study the income payments when multiple transitions between health states
happen. We observe an individual aged 60 at time 0 and initially healthy. Then, the individual
transits into State M at time 6, stays until time 11 then transits to State MD, recovers from
the MD state back to the M state at time 16, and stays in State M until time 20.

The mean income payments and balances relative to the initial balance of this individual are
displayed in Figure 14. We can see from Figure 14(a) that the income payment ratio starts
at around 5% in the healthy state, then slightly increases when the transition to the M state
happens at time 6. At time 11, there is a sudden and significant increment in the income
payment ratio to around 8% due to the transition to the MD state, and the income payment
ratio keeps increasing after time 11 until time 15 to around 10%. At time 16 when the individual
recovers from the MD state to the M state, the income payment rapidly reduces to slightly above
5% to reflect the lower incurred LTC costs. Therefore, the proposed LTC pooling product can
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quickly adjust to the different needs for LTC costs in different health states.
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Figure 14: Individuals joined at age 60 at time 0 initially healthy, transits to State M at time
6, transit to state MD at time 11, and transits back to state M at time 16 (Risk sharing with
open pool, state-dependent factors proportional to ¢! = {1,1.01,1.02,1.08}).

4.5 Level Payments: Risk-sharing, Open Pool, and State-dependent Accumulation

Factors

We keep the assumptions as in Subsection 4.4, but we change the decumulation plan from

Equation (13) to Equation (14). The predetermined drawdown payments in Equation (14) we

use are:
rbase B (1) if hi(t +1) = H,
b 2 ~ _
Bl (1 4 1)Predeterminea _ | 12Or L) AT (e 1) = M, (15)
3.00r%¢Fy(t;)  if hy(t+ 1) = D,
3.25r2¢ Fy(L;) i hy(t+ 1) = MD,
where r%’ase = -+ and d¥ is the annuity due of individual ¢ aged x at the time of

ity oin Titi join
joining if in the healthy state, ;Z is the initial time of joining of individual 4, and Fl(gz) is thus
the initial contribution of individual 7. Note that dgvti,join and FZ(;Z) do not change over time
once the age, joining time, and initial contribution of the individual 7 are known. For example,
in one path of the simulation, the annuities due values for individuals who join at time 0 aged 60
and 80 if being healthy are 19.3386 and 10.5082 respectively. This results in the base drawdown
rates being equal to 5.2% and 9.5% for those who join at time 0 age 60 and 80 respectively.
Then, if one individual who joins at time 0 aged 60 transits into D state, the drawdown rate
becomes 3 x 5.2% = 15.6%. To match the significantly higher drawdown rates in D and MD
states compared with annuity-like payments, we also change the proportion of the accumulation

factors to c? ={1,1.01,1.40,1.45} for h = 1,2, 3,4, every individual 7, and every time period.

With the settings above, Figure 15 plots the 95% confidence interval of the relative income
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payments of individuals aged 60 joined at time 0 and then transfers and stays in the H, M, D,
and MD states. We can see that with level payments, the income payments are straight lines
over time as long as the balance does not completely run out because the risk is absorbed in
the remaining balances. The income payments in the M, D, and MD states are 1.25, 3, and 3.25

times the income payments in the H state as described in Equation (15).

0.20 0.20
8 8
5 015 § 0.15
[ ©
o o
s s
£ £
o o
e 0.10 ° 0.10 4
ks k]
[5) [
i i
g £
g 0.05 o g 0.05
£ £
0 Relative Incomes O Relative Incomes
— 95%Cl — 95%Cl
0.00 + 0.00
T T T T T T T T T T
1 5 10 15 20 1 5 10 15 20
Time (Years) Time (Years)
(a) H state (b) M state
0.20 0.20
8 8
5 015 § 015
© ©
o o
s s
£ £
j=} o
< 0.10 2 0.10
=3 =
ks k]
[5) [}
o i
g £
E 0.05 + E 0.05
o Relative Incomes o Relative Incomes
— 95%Cl — 95%Cl
0.00 — 0.00
T T T T T T T T T T
1 5 10 15 20 1 5 10 15 20
Time (Years) Time (Years)
(c) D state (d) MD state

Figure 15: Relative income payments: 95% confidence interval for individuals joined at age 60
at time 0 initially healthy and transit into different health states (Risk sharing with open
pool, state-dependent factors proportional to cf” = {1,1.01,1.40,1.45}, predetermined level

payments).

Figure 16 plots the 95% confidence interval of the relative income payments of individuals aged
80 joined at time 0 and then transfers and stays in the H, M, D, and MD states. A similar
pattern is observed in that the relative income payments are stable until the balances run out,
reflected as the payments drop to zero. We can also see from Figure 16 that for individuals
aged 80 joined at time 0, the income payments in the D and MD states are 3 and 3.25 times
the payments in the H state but last for a shorter period of time, which corresponds with the

shorter life expectancy at age 80 in the D and MD states.
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Figure 16: Relative income payments: 95% confidence interval for individuals joined at age 80
at time 0 initially healthy and transit into different health states (Risk sharing with open
pool, state-dependent factors proportional to clh ={1,1.01,1.40,1.45}, predetermined level

payments).

Table 3 summarises the sum of EPV of income payments for aged 60 and 80 members who join
at time 0 and stay in H, M, D, and MD states respectively. We can see that the EPV in D and
MD states are more than twice the initial contribution for both ages 60 and 80, indicating the
effectiveness of hedging against LTC risk. Compared with Table 2, we can see that for aged
60 individuals, the EPV in D and MD states are higher using level income payments compared
with annuity-like payments. Meanwhile, for aged 80 individuals, the EPV in D and MD states
using level income payments are lower compared with annuity-like payments. This is because
level income payments are good at immediately providing a higher income payment in the more
unhealthy state since it is a pre-specified amount paid out from the account balance, while
annuity-like payments need to wait for the higher proportion from the mortality credits and
higher health-state-dependent return to accumulate. However, using level income payments can
drain the balance faster, especially in the D and MD states at older age, which explains why

the EPVs are lower using level payments. Nevertheless, old individuals in the D and MD states
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still benefit a lot from this product since they have more than twice their initial contribution.

Table 3: Sum of the expected present value of level income payments relative to initial
contribution for cohorts in different health states with state-dependent accumulation factors
proportional to ¢/ = {1,1.01,1.40,1.45}.

Health States

Age H M D MD
60 | 0.7852 | 0.9815 | 2.3557 | 2.5520
80 | 1.0704 | 1.1035 | 2.5466 | 2.3482

4.5.1 Multiple Transitions with Level Payments

We also study the case when multiple transitions between health states happen with level
payments. Figure 17 displays the mean relative income payments and mean relative balances
along with the 95% confidence intervals when the individual is age 60 and joined at time 0,
initially in State H, transits to State M at time 6, transits to State MD at time 11, and transits
back to State M at time 16. From Figure 17, we observe the pattern that the relative income
payments change immediately when a health-state transition happens, and there is no volatility

in the income payments as long as the balance does not completely run out.
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Figure 17: Individuals joined at age 60 at time 0 initially healthy, transits to State M at time
6, transit to State MD at time 11, and transits back to State M at time 16 (Risk sharing with
open pool, state-dependent factors proportional to ¢! = {1,1.01,1.40,1.45}, predetermined
level payments).

5 Conclusions

In conclusion, this paper proposes a general framework for health-contingent mortality pooling
products allowing for recovery from disability, heterogeneous members, dynamic pooling, actu-
arial fairness, and self-sustainability. When a transition to a less healthy state happens, the

proposed health-contingent product can immediately provide a higher income payment at the
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end of the year to cover the higher long-term care (LTC) cost incurred. This rise in income
payments persists if the individual stays in this less healthy state. Moreover, if the member
recovers from disability, the income payments of the proposed product will decrease to reflect

the less required LTC cost in a healthier state.

There are three mechanisms resulting in higher income payments in less healthy states: the
proposed health-contingent accumulation, a higher proportion of mortality credits due to the
higher probability of death, and higher payout ratios in less healthy states. We examine how the
different settings on the risk-sharing pool can affect the income payments and balances. We find
that the proposed state-dependent risk-sharing rule is useful in providing much higher income
payments to members in a less healthy state to cover their higher LTC cost, at a relatively low
cost to the healthy members. Moreover, a larger pool size helps reduce the volatility in the

income payments and balances.

Furthermore, the proposed framework has the flexibility to accommodate different types of
decumulation plans, while annuity-like payments and level payments are studied in the paper.
We find that the payments of the proposed products are stable and can sustain the lifetime of
most individuals. For both decumulation plans, the total expected present value of all income
payments will be higher for members in the less healthy states. With level payments, people
being functionally disabled will receive higher income payments for a shorter period of time,

which corresponds with their shorter life expectancy.
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Appendix 1: Multi-state Health Model Parameters
We use the Cox regression model with trend and frailty, along with the parameters calibrated
in Sherris and Wei (2021) using the Health and Retirement Study (HRS) data from 1998 to

2014. The Cox regression model is represented as:

In { N s(1)} = Bs + 728 (1) + 7 B 4 pow + asthu,

where
¢w = ¢w—1 + 5w>¢0 =0.

We use \; 4(t) to represent the transition intensity of individual i for transition type s at time
t, Bs for the level of transition intensity of transition type s, x;(t) for the age of individual ¢ at
time ¢, F; as an indicator of gender for individual ¢ which equals 1 for female and 0 for male,

female

and . for the sensitivity of In {)\; s(¢)} with respect to z;(t) and Fj, w for the wave

age

Vs
of investigation which follows w = (t —1998)/2 + 1, the latent factor v, that is a random walk,

and €, the error term that is standard normal distributed.

The parameters calibrated in Sherris and Wei (2021) are presented in Tables 4 and 5 along with
the standard errors in parentheses. The parameters vary by transition types s = 1,2,3,...,12,
where each transition type that s corresponds to is presented in the row above. We use *** for

p-value< 0.01, ** for p-value< 0.05, and * for p-value< 0.10.

Table 4: Parameters for Cox model with trend and frailty (Part 1).

Transition Type H—-M H—-D H—MD H—Dead M—MD M—Dead

5= 1 2 3 4 5 6

Bs 18819 **F 08858 vF 122858 FF* 111111 ™% 72376 02753  *FF
(0.0160) (0.0261) (0.0479) (0.0252) (0.0176) (0.0170)

y29e 0.0254  **x 00792 Rk 00979  FFX 01039  *FF 00540  *FF 00875k
(0.0002) (0.0003) (0.0006) (0.0003) (0.0002) (0.0002)

~female -0.3234  FFE 02712 FFF (01458 k¥ -0.5462  *FF 03852  FRX 02676  FH*
(0.0213) (0.0311) (0.0573) (0.0350) (0.0225) (0.0252)

bs 0.0328  F¥¥  _0.0427  FFF 00008  ¥F* 00715 R 00269  FFF 00643  Fx
(0.0035) (0.0059) (0.0110) (0.0057) (0.0036) (0.0036)

o -0.0108 -0.0235 0.0454 -0.0014 -0.0058 -0.0358  **
(0.0118) (0.0217) (0.0402) (0.0027) (0.0100) (0.0153)

Table 5: Parameters for Cox model with trend and frailty (Part 2).

Transition Type D—H D—M D—MD D—Dead MD—M MD—Dead

s= 7 8 9 10 11 12

Bs 0.4088  ***  _1.9761  *** 43012 ***  _7.0530  ***  _0.0150 ~6.2490 o
(0.0351) (0.0863) (0.0603) (0.0406) (0.0211) (0.0195)

Fa9e -0.0312  *FF 00195  *FR 00147  FFF 00741  FRX _0.0300  F** 0.0591 ook
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)

yfemale -0.0300 -0.1695  * 0.1451  ** S0.4672  **x 00011 -0.3161 ok
(0.0397) (0.0982) (0.0666) (0.0496) (0.0022) (0.0250)

bs -0.0206  *FF _0.0691 ***  _0.0135 -0.0041 -0.0115  ** -0.0238 ok
(0.0084) (0.0219) (0.0119) (0.0054) (0.0052) (0.0040)

as 0.0855  ***  _0.0667 0.1024  * -0.0375 0.1029  *¥* 0.0282
(0.0320) (0.0716) (0.0540) (0.0329) (0.0226) (0.0173)
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Appendix 2: Outputs of Multi-state Health Model

With the multi-state health model and the parameters specified in Appendix 1, we use the
Retirement Income Toolkit available at https://github.com/RI-Toolkit/rit to simulate one-
year transition probabilities for different initial ages, genders, and calendar years. Tables 6 and 7
display two examples of simulated transition probabilities for USA males in 2022 aged 60 and
80 respectively. We can see that as age increases, the transition probabilities to the H state are
lower, and the transition probabilities to the states with functional disability like the D and MD
states are higher. The probabilities of death generally increase as age increases and as people

move to a less healthy state.

Table 6: One-year transition probability matrix for USA males aged 60 in 2022.

Initial State\New State | H M D MD Dead

H 0.9409 0.0519 0.0030 0.0008 0.0034
M 0 0.9797 0 0.0120 0.0083
D 0.1343 0.0208 0.7950 0.0226 0.0273
MD 0 0.1245 0 0.8288 0.0467
Dead 0 0 0 0 1

Table 7: One-year transition probability matrix for USA males aged 80 in 2022.

Initial State\New State | H M D MD Dead

H 0.8649 0.1098 0.0087 0.0032 0.0135
M 0 0.9508 0 0.0256 0.0236
D 0.0643 0.0099 0.7884 0.0340 0.1034
MD 0 0.0776 0 0.7959 0.1265
Dead 0 0 0 0 1

Figure 18 displays the transition probabilities over time of the aged 60 cohort initially in the
H, M, D, or MD states in year 2022 to all the health states, along with the probability of being
alive. From Figure 18(a), we can see that for those aged 60 initially in the healthy (H) state,
the number of people in the healthy (H) state steadily decreases, the number of people with
morbidity (M) increases until around age 80 and then decreases, and the number of people in
the D state only slightly increases because most of the people have functional disability also
have morbidity and thus go into the MD state resulting in a peak at around age 90. From
Figure 18(b), we can see that for those aged 60 initially in the M state, since recovery from
morbidity is not allowed, people cannot enter the H and D states with no morbidity. The

number of people entering the MD state has a peak around age 80.

Figure 18(c) also displays the aged 60 cohort in 2020 but the initial health state is the D state
with functional disability. Since recovery from functional disability is allowed, some people
move back to the healthy (H) state, with a peak around age 68. Meanwhile, some people move
to the M state, which can be a direct transition from the D state to the M state, recovery from
the D state to the H state and then transit to the M state, going to the MD state first and then
transiting to the M state, or any number of transitions as long as allowed in the model. The
peak of people in the M state is around age 80. Moreover, we can also see some proportion of

people in the MD state that keeps increasing until around age 65 then stays at a similar level
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and starts decreasing after around age 90.

Finally, Figure 18(d) displays the aged 60 cohort in 2020 and initially in the MD state. We
can see from Figure 18(d) that people can only transit between the MD state and the M state
given initially in the MD state, except for the dead state. The survival probability decreases
the fastest when the individual is initially in the MD state, compared with the H, M, and D
states shown in Figure 18(a), Figure 18(b), and Figure 18(c) respectively. The number of people
remaining in the MD state steadily decreases, while the number of people in the M state reaches

a peak at around age 70.
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Figure 18: Transition probabilities to different health states for aged 60 cohort in 2022
initially in the H state, M state, D state, or MD state.

Figure 19 shows the transition probabilities for the aged 80 cohort in 2022 initially in the H,
M, D, and MD states. One common property we can observe by comparing the aged 80 cohort
with the aged 60 cohort is that the survival probabilities reduce much faster compared with the
aged 60 cohort. Then, comparing Figure 19(a) with Figure 18(a), we can see that the aged 80
cohort transits into the M, D, and MD states sooner than the aged 60 cohort. The proportion
of people in the M, D, and MD states is not necessarily higher because more aged 80 people

36



transit into the dead state. Comparing Figure 19(b) with Figure 18(b) for people initially in
the M state, we can see that more aged 80 people transit into the MD state and the peak also
comes faster. Then, from Figures 19(c) and 19(d), we can see that the mortality rates for the
aged 80 cohort initially with functional disability and with or without morbidity are quite high,

so the survival probabilities are decreasing rapidly.
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Figure 19: Transition probabilities to different health states for aged 80 cohort in 2022
initially in the H state, M state, D state, or MD state.

Table 8 shows the values of the annuity due for people aged from 60 to 100 in different health
states in 2022. As time progresses, the same table of annuity due values is recalculated with
the updated transition probabilities, which is used in the calculation of benefit payments in
Equation (13). For example, the 20-year ahead estimated annuity due values in 2042 are
displayed in Table 9. From Table 8 and Table 9, we can see that the annuity due values

increase over time in all four health states, which reflects mortality improvements.
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Table 8: Annuity due values for people aged from 60 to 100 in H, M, D, and MD health states
in 2022.

Health States

Age | H M D MD
60 | 19.34 | 18.09 | 16.77 | 14.73
61 18.95 | 17.65 | 16.22 | 14.23
62 | 18.51 | 17.18 | 15.65 | 13.74
63 18.10 | 16.81 | 15.13 | 13.26
64 17.68 | 16.32 | 14.64 | 12.76
65 17.26 | 15.87 | 14.13 | 12.26
66 16.80 | 15.41 | 13.62 | 11.83
67 | 16.40 | 14.97 | 13.16 | 11.38
68 15.91 | 14.57 | 12.65 | 10.94
69 | 15.47 | 14.11 | 12.14 | 10.48
70 | 15.05 | 13.68 | 11.67 | 10.07
71 14.60 | 13.26 | 11.17 | 9.67
72 14.20 | 12.80 | 10.68 | 9.28
73 | 13.73 | 12.37 | 10.24 | 8.89
74 | 13.31 | 11.96 | 9.80 8.53
75 | 12.85 | 11.56 | 9.41 8.18
76 12.41 | 11.13 | 8.99 7.85
77 | 11.99 | 10.75 | 8.55 7.53
78 | 11.56 | 10.32 | &8.19 7.21
79 | 11.16 | 9.94 7.83 6.92
80 | 10.76 | 9.55 7.45 6.63
81 10.35 | 9.21 7.13 6.36
82 9.94 8.81 6.76 6.10
83 9.55 8.45 6.47 5.86
84 9.15 8.15 6.19 5.63
85 8.77 7.81 5.89 5.41
86 8.40 7.48 5.63 5.20
87 8.04 717 5.36 5.00
88 7.70 6.88 5.13 4.81
89 7.35 6.59 4.90 4.63
90 7.03 6.31 4.69 4.46
91 6.71 6.04 4.48 4.30
92 6.41 5.77 4.28 4.15
93 6.11 5.54 4.12 4.01
94 5.83 5.30 3.95 3.88
95 5.56 5.08 3.79 3.75
96 5.30 4.86 3.64 3.63
97 5.05 4.65 3.50 3.51
98 4.82 4.46 3.37 3.41
99 4.59 4.27 3.25 3.30
100 | 4.38 4.10 3.14 3.21
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Table 9: Annuity due values for people aged from 60 to 100 in H, M, D, and MD health states
in 2042.

Health States

Age H M D MD
60 | 21.29 | 20.45 | 17.50 | 16.62
61 | 20.89 | 20.08 | 17.01 | 16.11
62 | 20.53 | 19.67 | 16.42 | 15.61
63 | 20.12 | 19.28 | 15.95 | 15.11
64 | 19.70 | 18.86 | 15.38 | 14.61
65 | 19.28 | 18.43 | 14.85 | 14.13
66 | 18.92 | 17.98 | 14.38 | 13.64
67 | 1850 | 17.57 | 13.87 | 13.15
68 | 18.06 | 17.12 | 13.33 | 12.67
69 | 17.64 | 16.69 | 12.81 | 12.21
70 | 17.20 | 16.30 | 12.26 | 11.76
71 |16.81 | 15.81 | 11.83 | 11.31
72 | 16.40 | 15.41 | 11.36 | 10.87
73 | 15.94 | 14.97 | 10.88 | 10.48
74 | 15.52 | 14.52 | 10.38 | 10.05
75 | 15.10 | 14.08 | 9.93 | 9.63
76 | 14.68 | 13.64 | 9.52 | 9.27
70 | 14.24 | 13.25 | 9.12 8.89
78 | 13.78 | 12.83 | 8.65 | 8.52
79 | 13.36 | 12.42 | 8.27 8.18
80 | 12.95 | 12.00 | 7.93 | 7.84
81 12.53 | 11.58 | 7.54 7.53
82 | 12.13 | 11.19 | 7.16 | 7.22
83 | 11.72 | 10.79 | 6.85 | 6.93
84 | 11.31 | 10.41 | 6.55 | 6.65
85 | 10.89 | 10.03 | 6.25 | 6.38
86 | 10.49 | 9.63 | 5.94 | 6.12
87 1 10.09 | 9.29 | 5.68 | 5.88
88 | 9.72 | 891 | 5.42 | 5.65
89 | 9.33 | 859 | 5.18 | 5.43
90 | 8.96 | 8.21 | 4.95 | 5.22
91 859 | 7.92 | 4.72 | 5.02
92 | 825 | 7.59 | 4.51 | 4.83
93 | 7.89 | 7.28 | 4.32 | 4.65
94 | 7.56 | 6.97 | 4.14 | 4.48
95 | 7.23 | 6.67 | 3.96 | 4.32
96 | 6.90 | 6.39 | 3.79 | 4.17
97 | 6.57 | 6.11 | 3.65 | 4.02
98 | 6.27 | 5.85 | 3.51 | 3.88
99 | 598 | 5,59 | 3.37 | 3.75
100 | 5.69 | 5.33 | 3.25 | 3.63
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