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ARTICLE INFO ABSTRACT

Keywords: Modelling is essential in both the financial and insurance industries. The emergence of machine
Synthetic data learning and deep learning models offers new tools for this, but they often require large
Generative adversarial networks datasets that are typically unavailable in business fields due to privacy and ethical concerns.
Generative modelling This lack of data is currently one of the main hurdles in developing better models. Generative

]()::ltlzzléitznce modelling, such as Generative Adversarial Networks (GANs), can address this issue by creating
Shorteut synthetic data that can be freely shared. While GANs are widely studied in fields like computer
vision, their use in business is limited, primarily because business questions often focus
on identifying causal effects, whereas GANs and neural networks typically emphasise high-
dimensional correlations. This paper explores whether GANs can produce synthetic data that
reliably answers causal questions by performing causal analyses on GAN-generated data under
varying assumptions. The study includes cross-sectional, time series, and complete structural
model scenarios. Findings show that while basic GANs replicate causal relationships in simple
cross-sectional data, they struggle with more complex structural models. In contrast, CausalGAN
effectively replicates the original causal model, and TimeGAN modifies the causal representation

in time series data.
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1. Introduction

To make sense of the complexities of reality, and make optimal decisions accordingly, organisations and researchers have always
striven to come up with models that can accurately represent observed phenomena (e.g. consumption behaviour, loan defaults). In
the past, these models were defined by the analyst and calibrated to (small) data. Recently, however, during the so-called machine
learning revolution, the focus shifted to a more data-driven, algorithmic approach. Machine learning algorithms now search for
the optimal model by finding support for it in the data instead of being chosen by the analyst. This approach led to the increased
collection of, investment in, demand for, reliance on, and value of data for organisations and research significantly [1]. It has also
brought the tension between utility of data and privacy of its subjects to the forefront of public discussion [2]. Recently developed
generative modelling methods, which create data with a distribution similar to the original while excluding any real data, have
been proposed as a potential solution [3]. Decision-making is, however, almost always a causal question and little is known about
the replication capabilities of these methods beyond correlations. For this reason, this paper seeks to fill the gap by performing an
investigation of the causal replication capabilities of data replication methods as well as defining a path forward to making them a
viable option for decision-making.

There are a lot of advantages to the algorithmic approach to modelling, the most important being increased performance and
the opportunity for analysts to be systematic and transparent about the process by which the model was selected [4]. The power of
this approach has been apparent in several fields that have had incredible advances in replicating reality due to the availability of
large amounts of data. One of the most famous examples is ImageNet, a database with millions of hand-labelled pictures, enabling
revolutionary progress in image recognition [5]. More recently GPT-3, a multi-purpose natural language model, similarly achieved
impressive results after learning from a data set containing 45 TB of plain text [6]. However, such large amounts of data are not
always readily available. In many fields centring around individuals, such as the social and health sciences (e.g. finance, insurance,
medical fields), the collecting or sharing of such datasets is far from trivial due to ethical and privacy concerns [7]. One recently
emerging option to alleviating such concerns is generative modelling.

Generative models aim to learn the (high-dimensional) distribution of a dataset, but traditional neural networks, which underpin
models like GANS, often focus on correlations rather than causality. This limitation hampers their ability to generalise across different
contexts. Finding the causal structure from observational data is a big challenge however. This problem, finding the cause from the
effect is called an inverse problem. Consider this example in The Black Swan from Taleb [8]:

“Operation 1 (the melting ice cube): Imagine an ice cube, and consider how it may melt over the next two hours while you play a few
rounds of poker with your friends. Try to envision the shape of the resulting puddle.

Operation 2 (where did the water come from?): Consider a puddle of water on the floor. Now try to reconstruct in your mind’s eye the
shape of the ice cube it may once have been. Note that the puddle may not have necessarily originated from an ice cube”.

Operation 1 is an example of the forward way of thinking, where the effect (the water) is to be predicted from the cause (ice
cube). With the right models it is possible to accurately come up with the resulting pool of water. In contrast, operation 2 asks the
inverse, finding the shape of the cube (cause) from the pool of water (effect). There are however an almost infinite amount of possible
ice cubes that could have led to that pool of water. This example also translates to joint probability distributions and underlying
causal models. For a given joint distribution there are a multitude of possible underlying causal models. This non-uniqueness leads
to uncertainty in determining the causal model from a joint probability distribution [9].

In this paper, we survey the literature on generative adversarial networks, and evaluate their capacity to preserve certain causal
structures (i.e. cross-sectional, time series, and full structural) in the synthetic datasets they generate. We do so by first generating a
dataset where the data-generating function, and thus the structural causal model, is known. Secondly, we make a synthetic copy of
this known dataset with a specific GAN method and perform different causal analyses with an increasingly lenient set of assumptions,
from cross-sectional to time-series to structural. The considered GAN models for these experiments are the original GAN model [10],
TimeGAN [11] and CausalGAN [12], each with their own focus of preserving the structure of the data. Lastly, we check if the results
in the real data align with those in the synthetic data to evaluate the causality preserving capabilities.

We find that for relationships in data where the assumptions hold such that correlation equals causation, inference on the real and
synthetic data yield the same results only in the case where the actual causal structure aligns with the most simple model that can



Y.-C. Bauwelinckx et al. Journal of Computational and Applied Mathematics 457 (2025) 116312

replicate the correlations in the data. In more complex cases, for instance when a variable has time-dependence and both influences
cross-sectional features as well as itself, we find that the generative model converges on a model with the same general distribution,
but that it does so with a simpler underlying causal structure. Our results point at the reason being the often-used regularisation
in machine learning that builds in a preference for smaller models (as posited in Occam’s razor) which is not necessarily a valid
principle in causality. Finally, when the whole causal structure is considered, it becomes apparent that currently the applicability
is still limited due to the stringent assumptions that need to be met in order to overcome the challenges of the inverse problem.

The remainder of this paper is structured as follows. In Section 2, we overview the field of generative machine learning models
and the relation to causality. In Section 3, we lay-out the problem setup and discuss the structural approach we take to evaluate
the causal replication capacity of GAN-based models. In Section 4, we give a general introduction to the inner workings of GAN-
models and detail three different GAN variations that we take as representative for the different streams in the GAN literature that
aim to capture increasingly complex correlations (i.e. cross-sectional correlations, time-series correlations, full causal structure). In
Section 5, we present the results of our evaluation. In Section 6, we discuss some of the additional real-world challenges that we
abstracted away from but that need to be considered where these methods to be used in real-world cases. Lastly, in Section 7, we
summarise and conclude our findings.

2. Literature review

Generative models aim to learn a representation of the high-dimensional distribution of a dataset. Once this representation
is learned, it can then be used to generate new samples that maintain the original dataset’s distribution of features but that did
not appear in the original dataset.! Generative methods are thus capable of simulating non-existent but realistic-looking data, also
referred to as synthetic data, that can be shared more freely. A well-known use-case is pictures of human faces for computer vision
applications. Even in the possession of a large dataset of pictures of human faces, sharing this freely could present issues concerning
privacy. However, generative models are capable of constructing fake but human-looking faces that can, due to their non-existence,
be shared more freely to further the quality of applications.

While generative modelling has been around for decades, a major breakthrough in the ability to efficiently training such
models was achieved in 2014 with Generative Adversarial Networks (GANs) [10]. This method increased our capacity to fit high-
dimensional distributions of data, like images and video data. The GAN framework has found widespread applications throughout
computer vision, like image generation [15,16], text to image translation [17], the blending of images [18], enhancing quality of
pictures [19,20], filling in blanks in pictures [21], removing rain droplets from pictures [22] and a more infamous example of
deepfakes [23]. While these are noteworthy variations and applications of the GAN framework, the common factor here is the focus
on computer vision.

A limited amount of applications of the GAN framework have been found in fields where data is numerical or tabular in form.
Some examples are real-time risk warning of process industries [24], traffic event detection [25], risk forecasting in financial
markets [26] as well as synthetic data generation of credit card [27], housing [28] and insurance [29] data. Similarly, there are
also GAN applications adapted for time series data. Some examples are financial time series generation [30], electricity price and
consumption data [31,32], or just time series generation in general [11,33,34]. A more complete overview of GANSs for tabular data
and time series can be found in the work of Fonseca et al. [35] and Brophy et al. [36] respectively.

The adoption of GANSs in these fields, especially in human sciences like economics, is still quite limited. The main reason for
this is that in these fields, most questions are inherently about identification of causal effects. Neural networks, which are at the
centre of the GAN framework, in contrast, still focus mostly on high-dimensional correlations. An example of this is shown in the
paper by [37], where they analyse a neural network trained to classify images. The neural network appears to be able to accurately
identify whether or not there is a cow in a picture, until you ask the network to classify a picture of a cow in an uncommon
environment. The model is, for instance, not able to recognise a cow on a beach, because of the spurious correlation between cows
and grasslands. Learning to label images with grass in it are shortcuts that expose the lack of generalisation of the neural network,
unable to adapt to a new domain [38]. Recently, a field has emerged called Causal Machine Learning where researchers try to make
steps towards making machine learning models more causal [39]. While this field is promising, due to the inverse problem nature
of finding causality in observational data, it is currently still in its infancy in regards to applicability.

The most prevalent used loss-functions for GANs are some form of binary cross-entropy [10,11,16,40] or Wasserstein dis-
tance [41-43]. These losses indicate in some form or another the difference between two joint probability functions. Replicating
the joint probability distribution, however, does not guarantee replication of the underlying causal process.

Other work has been done combining the idea of causality and generative modelling. DAG-GAN [44] uses the generative
adversarial network framework for causal discovery. CGN [45] is able to generate counterfactual images and can use these to
improve out-of-distribution robustness. GANs incorporating causal models have also been explored. For CausalGAN [12] the focus is
on intervening on images through the causal model and generating more creative images. Causal-TGAN [46] structures the generator
according to the causal model of the data. To judge the quality of the generated data they look at the how well the synthetic data
performs in prediction tasks. This differs from the causal preservation we want to evaluate.

Recently, diffusion models showed impressive results in image generation as well [47]. With adaptations of this method still
mainly focusing on image generation, the possible models that focus on generating data at the cross-sectional and time series level

1 Note that to have such privacy guarantees, one needs to explicitly include an optimisation for it in the model fitting step such as in [13]. Else there are
cases when replication could occur [14].
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Fig. 1. Experiment setup for each choice of assumptions and GAN method.

are still limited [48,49], while at the full structural level no adaptation has been proposed to our knowledge. As the field of diffusion
models develops more our research could also be extended to this model. For now however, the focus is on the more established
generative adversarial networks.

3. Problem setup

In this section we explain how we will evaluate how well causal relations are replicated by the generative models. The evaluation
setup is shown in Fig. 1. First, a data generation model with a known causal structure is made according to the assumptions listed
in Sections 3.1-3.3. The resulting model is discussed in Section 3.4. This will be used to generate a dataset (generated dataset) that
will be used to train the generative machine learning models discussed in Section 4. Experiments will then be done to see if the
causal structure imposed in the generated data is still present in the synthetic data made by the trained generative models. The results
of these experiments are shown in Section 5.

3.1. Cross-sectional

The first type of causal relationships are those on a cross-sectional level. Ordinary least squares (OLS) is a popular regression
model to find causal effects in cross-sectional data. In this case we assume that a variable can be represented by an OLS model. The
OLS model produces valid causal inference under the following assumptions:

Assumption 1 (Linear in Parameters). The model can be written in the form:
y =P+ Pix1+ Prxy+ -+ frx; +e. 1)

Assumption 2 (Random Sampling). The sample of n observations (x;;, X, ..., Xy ¥;) : i =1,2,...,n is drawn randomly from the
model.

Assumption 3 (No Perfect Collinearity). An independent variable in (1) cannot be an exact linear combination of the other
independent variables.

Assumption 4 (Zero Conditional Mean). The expected value of the error ¢ should be zero, given any values of the independent
variables:

E(elxy, x5, ..., %) = 0.
Assumption 5 (Homoskedasticity). The error ¢ has the same variance, given any values of the independent variables. This can be

noted as:

Var(e|xy,x,,...,x;) = o2

Assumption 6 (Normality). The error ¢ is normally distributed with a mean of zero and variance ¢2. The error is independent of
the explanatory variables x,, x,, ..., x,. More simply:

€ ~ Normal(0, 62).
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3.2. Time-series

In cross-sectional modelling observations have no time aspect, this changes when considering time-series models. Here we
consider the popular class of linear autoregressive models. The assumptions to perform valid causal inference with these models are
as follows:

Assumption 1 (Linear in Parameters). The stochastic process (x;;, X, ..., Xy, ¥) - t = 1,2,...,n can be written in the form:

Vi =P+ Bixy + Boxpp + 0+ Brxy + € 2

Assumption 2 (No Perfect Collinearity). An independent variable in (2) cannot be an exact linear combination of the other
independent variables.

Assumption 3 (Zero Conditional Mean). For each 7, the expected value of the error ¢, should be zero, given any values of the
independent variables:

E(e %15 Xp05 s X)) =0, =1,2,...,n.

Assumption 4 (Homoskedasticity). The error ¢, has the same variance, given any values of the independent variables:

2
Var(e|x;1,Xps ... Xg) =0",t=1,2,...,n.

Assumption 5 (No Serial Correlation). Given the independent variables x;;, x,,, ..., x;, errors in two different time steps are not
correlated:

Corr(eg, €1x,1, X195 .., X)) = 0,V # 5.

Assumption 6 (Normality). The error ¢, is normally distributed a zero mean and variance o2 and independent of the explanatory
variables x,;, X, ..., X;t-

€, ~ Normal(0, 0'2).

Most assumptions are very similar to the previous OLS assumptions. There are two main differences. First is the absence of
OLS Assumption 2 specifying observations to be randomly sampled. Under time-series assumptions observations have an order
determined by the time step ¢. Second, time-series Assumption 5 is added, requiring the error term to have no serial correlation.

In the time-series we will consider, autoregressive terms are included as well. We make an additional assumption for this
autoregressive time-series to be weakly dependent, meaning the correlation between y, and y,,, is almost O for s large enough.
In other words, as the variables get farther away from each other in time, the correlation decreases. In the following case:

y=ay._ te

the autoregressive model is lagged for one period and the assumption is satisfied if |a| < 1.
3.3. Structural model

Lastly, the case remains where the whole causal structure is considered. Here, the goal is to attempt to reconstruct the full
structural causal model from the data. As far as we know, no such methods exist in econometrics.? For this reason, we adopt a
method from the emerging field of causal discovery, primarily within the computer science literature, to accomplish this task.

Recovering the causal model from observational data is far from trivial. Recall the example above of trying to figure out the
shape of the ice cube from a pool of water. As many forms of ice cubes can result in the same pool of water, many structural
causal models can result in the same observational data. Therefore, picking one of all possible models is dependent on further
assumptions made by each causal discovery algorithm. The general approach is to embed known features of causality, such as
environment independence [50] or acyclicity [51], into the loss function that a machine learning algorithm optimises for. Even
then, it is sometimes only possible to provide a set of possible structural causal models that are all equally able to generate the
observational data, also called Markov equivalent. A recent trend is to extend the data to also include interventions and their
outcomes [52]. This extra information can be used to exclude certain Markov equivalent models and decrease the set of potential
underlying causal models.

One of the more frequently used causal discovery algorithms is LINGAM [53], which assumes that the causal effects are linear, the
generating causal graph is acyclic, that the distribution of the noise is non-gaussian and no unobserved confounders. The LINGAM
model can be expressed in matrix form as follows:

x=Bx+e,

2 In economics, and many other fields that model complex phenomena, a structural model is defined from theory and then calibrated to data instead of
trying to infer the complete model itself from the data.
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Fig. 2. Full causal model of the generated dataset.

with the observed variables x, the connection strength matrix B and exogenous variables e. The condition of acyclicity allows the
matrix B to be permuted to become lower triangular with a zero-diagonal. With the additional assumption of the exogenous variables
e, or in other words the noise, being non-Gaussian, the matrix B can be uniquely identified using only the data x. This identifiability
thus means that the algorithms results in a single causal graph. Different variations on this method exist like models with hidden
common causes [54], time-series [55] or non-linearity [56].

In the case of Gaussian noise, only a set of Markov equivalent causal models can be estimated, while under the assumption of
non-Gaussian noise this set can be reduced to one full causal model. This assumption is, however, in contrast with the assumption
of Gaussian noise that is needed in many inference methods for valid causal inference, including the OLS and autoregressive models
we discussed above.

3.4. Generated dataset
To take into account the aforementioned assumptions, we define the following model:

Vi =ay,_ + ﬂlxl,t + ﬂ2x2,r te€p,
X1 = P32+ Pazoy + €3,

Xy = P52y, + €3, 3
21 = €45
Zy, =€s.

A graphic representation of this structural model, also called the causal graph, is shown in Fig. 2. For the estimation of this
causal structure with the different inference methods, we will always assume full observability.

The variables x; and x, are a linear combinations of the contemporaneous values of z; and z,. The underlying models for these
two variables therefore meet the assumptions of the cross-sectional ordinary least squared (OLS) model. OLS should therefore be an
appropriate method to estimate the causal effects of z, and z, on x; and x,. We confirm this in the Results section.

For the variable y,, extending the assumption on the data to allow for autocorrelation, a first order autoregressive model can
infer « on f, and g,.

Finally a variant of LINGAM for time-series can be used to infer the causal structural model.

While the model was specifically chosen to contain both cross-sectional and time-series causality, it is easy to think of a real-world
model that follows this functional form. One example is a simple income process, where the monthly income now depends on the
income last month and some contemporaneous features (e.g. employment sector, location) which in turn are distributed according
to (conditionally) random distributed preferences.

4. Generative adversarial networks

Generative adversarial networks, or GANSs, is a framework for generative machine learning first introduced by Goodfellow et al.
in 2014 [10]. A generative model takes a training dataset drawn from a real world distribution as input and tries to replicate this data
distribution. The framework has shown great success in generating synthetic images indistinguishable from real images [19,57,58].
While the focus has been on the improvement of the framework for image generation and manipulation, the GAN framework has
recently also gathered attention for its possibilities with numerical and categorical data, like tabular and time series data.

For each of the levels we want to consider (cross-sectional, time series and structural) we have selected a version of a GAN that
is meant to represent the data at this level well. At the cross-sectional level, the base version of GAN [10] has been chosen as a
baseline. For time series, we chose TimeGAN [11] due to its popularity as a general time series generation model and its strong
performance. Finally for the structural model we chose CausalGAN [12] as it is the only GAN model that incorporates the causal
generative structure of the data. How these models work will be further explained below.
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Fig. 3. Generative adversarial networks diagram.

4.1. Framework

A generative adversarial network consists of two competing neural networks: a generator G, which generates fake data, and a
discriminator D, that is trained to discern which data is fake (made by the generator) and which data is real. The process can be
described as a zero-sum game between the generator and discriminator. During the training process the generator adapts to better
fool the discriminator and the discriminator in turn adapts to better detect the fake data. The resulting trained generator can then
be extracted to replicate the distribution of the original data.

4.1.1. Architecture

Fig. 3 shows the basic structure of a GAN. The generator G learns to map a latent space p, to a more complex distribution p,,
which is the distribution meant to mimic the real data distribution p,,,. Typically, this latent space is a high-dimensional space
with each variable drawn from a Gaussian distribution with a mean of zero and a standard deviation of one. The concept is thus
that one can insert sample of noise (z) into the generator, which it will learn to map onto a sample of the distribution of the real
data. The generating function can then be described by

G(2) = X, @

where X, are samples created by the generator. The discriminator D has the task of distinguishing the fake data X, from the real
data X,,,. The generator and discriminator are trained by playing a non-cooperative game against each other. The main aim of
the generator is to produce samples which are similar to the real data. On the other hand, the main aim of the discriminator is to
distinguish between fake samples from the generator and samples from the real data. The discriminator D receives both samples
and tries to determine which comes from the real data distribution by assigning a probability D(x), which signifies the certainty
the discriminator has in its decision. If D(x) = 1, the sample x is thought to come from p,,,. On the other hand, if D(x) = 0, the
discriminator judges the sample to be from p,. This prediction from the discriminator and the known ground truth is then used
to improve both the generator and the discriminator. During the joint training of the generator and discriminator, G will start to
generate increasingly realistic samples to fool the discriminator, while the discriminator learns to better differentiate the real and
fake samples. The end goal of the GAN as a whole is that the discriminator can no longer tell the difference between the generated
samples X < (D(x) = 1/2) and the real data samples X, with the discriminator no longer able to improve itself.

Both the generator and discriminator are fully-connected networks to capture the connections between the variables. Both neural
network use 3 layers. For the generator these layers contain 128, 64 and 64 nodes respectively. For the discriminator the layers
contain 256, 128 and 64 nodes respectively. Both networks use the ReLu activation function for the output of the hidden layers.
For the output of the discriminator the sigmoid activation function is used. Formally the networks can be described as:

Input : z ~ N0, 1)%,
Hidden layers :  h;, = ReLu(W, ,z + by ,),
G(2) : By = ReLu(Wyhy 4 + b, ),
hs o = ReLu(W3h, , + b3 o),
Output : G(z) =W, h3, +b,,,
Input : X ~ DgsPdata>
Hidden layers :  hj ; = ReLu(W, 4x + by ;),
D(x) : hy g = ReLu(Ws 4hy 4 + by ),
h3 g = ReLu(W; 4hy g + b3 4),
Output : D(x) = o(W, sh3 4+ b, 4),
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Fig. 4. TimeGAN diagram.

where d, represents the dimension of the noise vector. The variables 4, ,, correspond to the outputs of the /th hidden layer of the
neural network nn (g for generator, d for discriminator). The weights and biases for the neural network are denoted by W, ,, and
by ., Tespectively.

4.1.2. Loss function

The objective function of the GAN tries to match the real data distribution p,,, with p,. The original GAN [10] uses two objective
functions. The objective for D is to maximise the probability of assigning the correct label to both real and fake samples. This is
done by minimising the negative log-likelihood for binary classification. Simultaneously G is trained to minimise log(1-D(G(z))),
thus maximising the probability of the generated samples being classified as real by the discriminator. This results in a mini-max
game with objective function V(G,D):

rrgn max V(D,G) = EX~Pdam [logD(x)] + IEZsz[log(l — D(G(2)))]. (5)

The value function V(G,D) is known as the binary cross entropy function, commonly used in binary classification tasks.
4.2. GAN extentions

Many different variations of GANs have been proposed since its inception. In this section different relevant adaptions are
presented, ordered by which level of causality they are aiming to improve.

4.2.1. TimeGAN

TimeGAN by Yoon et al. [11] is an adaptation of the original GAN framework that aims to improve the preservation of temporal
dynamics for time-series data. This means that newly generated sequences should respect the original relationships between variables
across time. Two main ideas are combined in the TimeGAN framework, the flexibility of the unsupervised GAN framework and a
more controllable supervised autoregressive model. Fig. 4 shows the structure of TimeGAN.

The TimeGAN framework contains the components of a generative adversarial network, as well as an auto-encoder. The latter
takes as input a vector of static features, s, and a vector of temporal features, x,.. The encoder is then trained to map the feature
space, which s and x,.;- belong to, to a latent space. This allows the adversarial network to learn the underlying temporal dynamics of
the data via lower-dimensional representations. The output of the encoder are the latent vectors A, and h,, being lower-dimensional
latent codes of the input s and x,.,. In the opposite direction, the decoder takes the static and temporal latent vectors back to their
feature representations. The reconstructed static and temporal features are respectively denoted as 3 and %,.

The other main component in the framework, the generative adversarial network, has a generator that takes as input random
noise vectors and outputs latent vectors /2, and ,. The generator in this framework is autoregressive, meaning it also uses its previous
outputs &,.,_, for the construction of h,. A key difference with a regular GAN architecture is that the generator maps to this latent
space instead of the usual feature space. Both the real latent codes k, and h, and the synthetic latent codes &, and h, are received
by the discriminator, which has the task to classify these codes as either real or fake.

The resulting framework has three loss functions. First, the reconstruction loss:

Lr=Ey s =5+ D lIx, = %I, )
t
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) Causal graph A — C < B (b) Generator architecture for A — C < B

Fig. 5. Graphical representation of an example causal graph (A— C «B) and the resulting causal generator.

This loss is linked to the auto-encoder component of the framework, quantifying the difference between original features s, x, and
the reconstructed features 5 and %,.

Second, the unsupervised loss is the same type of loss used in the original GAN framework, maximising (discriminator) or
minimising (generator) the likelihood of providing correct classifications. This gives the following loss function:

Ly =E,,  logy,+ Y logyl +E . sllog(l =)+ ¥ log(l - 5], )
t t

where notations y and j denote classifications by the discriminator as respectively real or synthetic data.

Lastly, the supervised loss is introduced. The addition of this loss is motivated by the idea that the regular feedback from the
discriminator, the unsupervised loss, may be insufficient incentive for the generator to capture the step-wise conditional distributions
in the data. To calculate this loss, the autoregressive generator g uses the real latent codes k, and h,_; instead of the synthetic &,
and h,_, to generate h,, or g(h,, h,_,,z,), as shown in the following equation:

Ly =B, oY Ilh = glhs Ay, z)ll5]. )
t

A linear combination of £;; and Ly is used to train the generator and the discriminator. £, guides the generator to create
realistic sequence, while £ ¢ uses ground-truth targets to ensure that the step-wise transitions are similar. To train the autoencoder
components, the encoder and the decoder, a linear combination of L and Lg is used. By combining the different objectives,
TimeGAN is trained to simultaneously encode feature vectors, generate latent codes for these feature vectors, and iterate across
time.

4.2.2. CausalGAN

CausalGAN is a generative adversarial framework proposed by Kocaoglu et al. [12]. CausalGAN is an implicit causal generative
model that replicates data constraint to a given causal graph. Implicit generative models, which the original GAN model is part of,
can sample from a probability distribution, without the ability to provide likelihoods for the samples [59]. Causal implicit generative
models can not only sample from a probability distribution but also from conditional and interventional distributions, which causal
graphs embeds.

Consider a simple causal graph, A — C <« B, as depicted in Fig. 5(a). The parent nodes, A and B are assumed to have no
other variables influencing their distribution and can be written as A = G,(Z,) and B = Gg(Zp), where Z, is some chosen noise
distribution (e.g. Gaussian), and G, is a function mapping this distribution to the distribution of the variable. The variable C has
two parent nodes and can be written as C = G.(A, B, Z;), being a function of both A and B, as well as a chosen distribution.
This representation is similar to how the generator of the original GAN framework is structured. Fig. 5(b) shows how a generator
can be constructed to represent a given causal graph. For each variable a feedforward neural network is used represent functions
G,, resulting in a larger generator network consisting of linked individual generators. The formal description of a generator for a
variable is as follows:

Input : z®ec,

Hidden layers :  h;, = ReLu(W) ,z +b; ;)
hy g = ReLu(W hy 4 + b, ),

Output : G (z,0) =W, hy o+

G,.(z,¢) :

0,8
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Table 1
Fitted parameters for all GANs for the OLS model. The OLS model is fitted on the base generated dataset as well as the synthetic
datasets generated by GAN, TimeGAN and CausalGAN respectively.

Model Par. Real GAN TimeGAN CausalGAN

OLS B3 0.9990 + 0.0051 1.0209 + 0.0715 0.3762 + 0.4320 0.9869 + 0.1087
A 1.0017 + 0.0052 1.0797 + 0.1272 1.2249 + 0.3362 0.9666 + 0.1029
Ps 0.9996 + 0.0057 1.0157 + 0.1266 1.1066 + 0.0179 1.0006 + 0.1625

where the symbol & represents concatenation and ¢ represent the variables that act as causes towards the generator’s variable. The
primary distinction from the standard GAN implementation is that the generator uses these causes ¢ as additional input. Consider
the example in Fig. 5, the generators G, and G for variables A and B have c as an empty set. In the case of variable C, the set of
causes ¢ contains the previously generated values G4(z4) and Gg(zp). The result is one generator consisting of several connected
smaller generators. The discriminator here is no different than the default GAN implementation. By building in the causal graph
into the generator, it will constrain the generated data to the given causal model and not only reproduce joint probabilities, but
also the causal relationships. For the implementation of CausalGAN in this paper Causal-TGAN [46] is used. This version uses the
same core idea as CausalGAN, with some added adjustments for tabular data.

The downside is that both data and the relevant causal graph needs to be known to train and use the generator. To this end, we
use a causal discovery method, in this case the standard- and time-variant of LINGAM to provide us with the causal graph of the
data.

5. Results

Consider the model described in Section 3.4 with the following parameters:

Parameter Value
a 0.5
B> B. B3, By, Bs 1

where e, ~ N(0,0.5). From this model we sample 10,000 observations to use for further experiments. These observations will
further be referred to as generated data. This dataset will be used to train the different GAN models as well as give baseline values
for estimated parameters. The experiments assume a perfect scenario where the model is known. For example, it is assumed that
x, can be modelled using an OLS regression with z;, and z, as explanatory variables. On this dataset multiple causal inference
methods are fitted as described in Section 3. The expectation is that the parameters for the model listed above are also found when
the causal inference models are fitted to the generated dataset. These same causal inference models are used on the (synthetic)
datasets generated by the generative models. The comparison of the results found in these experiments are discussed below for each
generative model we consider. Each experiment is done, in its entirety, 10 times and reported results show averages and standard
deviations over these 10 runs.

5.1. GAN

First, we train a standard GAN with the generated data described above. From this GAN, we generate 10,000 samples to preserve
the statistical power of our inference results. These latter samples will be referred to as the synthetic data. The first model we fit
on both datasets is OLS for the following:

xp = P32y + Pazy + €3,
Xy = P52y +€3.

The fitted parameters for this OLS model can be seen in Table 1. The results show that on a cross-sectional level, with the
underlying model meeting the assumptions in 3.1, the GAN methodology can replicate data with similar causal relationships. We
find that the causal relationships identified in the synthetic data generated by the GAN are slightly less accurate compared to those
in the original generated data, but the difference is not significant.

While the data the GAN is trained on is time-ordered, the synthetic data produced by the GAN is sampled randomly, without
any notion of time. So, as expected, when running an autoregressive model on the y variable in our model, it does not find any
time-correlation (« coefficient for y) in the synthetic data. Interestingly, it does capture the cross-sectional relationships for y (4,
and f4,).

5.2. TimeGAN
Next, TimeGAN is trained on the generated dataset, after which we again sample 10,000 datapoints for a new synthetic dataset.

Note that the synthetic data generated by TimeGAN is time-ordered, which was not the case for the data generated by the regular
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Table 2
Fitted parameters for all GANs for the autoregressive time series part of the model. The autoregressive model is fitted on the
base generated dataset as well as the synthetic datasets generated by GAN, TimeGAN and CausalGAN respectively.

Model Par. Real GAN TimeGAN CausalGAN

TS a 0.5004 + 0.0011 0.0030 + 0.0020 0.0233 + 0.1331 0.0011 + 0.0064
B 0.9993 + 0.0040 1.0007 + 0.1773 1.0597 + 1.5236 0.9635 + 0.1896
b 0.9982 + 0.0045 1.1439 + 0.1682 0.8796 + 2.0436 0.9927 + 0.2035
Table 3
Fitted parameters for TimeGAN using generated data from the alternative model (10).

Model Parameter Real TimeGAN

OLS Bs 0.9999 + 0.0002 0.9967 + 0.0247
A 1.0000 + 0.0001 1.0049 + 0.0219
Ps 0.9999 + 0.0001 1.0005 + 0.0024

TS a 0.4999 + 0.0008 —0.0128 + 0.0207
B 1.0000 + 0.0016 2.0719 + 0.0680
b, 1.0000 + 0.0016 2.0002 + 0.1550

GAN. Here the goal is to find the autoregressive term « as well as the cross-sectional terms (f,) in the following model:
Yy =ay,_y + Pixy + Brxy +ey,
X1 =Pz + Pyzy + €, 9)
Xy = P52y +€3.

For completeness, we also fit the autoregressive model to the data generated by the base GAN. The results of this are shown
in Table 2. As expected, as there is no time-ordering in the synthetic data produced by the regular GAN, it does not find any
time-correlation (« coefficient for y) in the synthetic data. Interestingly, it does capture the cross-sectional relationships for y (8,
and ).

When performing the same experiment with TimeGAN, it is clear that the synthetic data produced by TimeGAN does not properly
maintain causal relationships, neither on a cross-sectional level (Table 1) nor over time (Table 2). The results are far from what
would be expected and also vary significantly from run to run, resulting in higher standard deviations in the results. This is likely
due to there being no auto-correlation in the variables outside of y, and TimeGAN attempting to find time dependent structure
where none exists. To confirm this, we also consider the following alternate causal structure, where all variables have some sort of
time-dependence (direct or indirect):

Y=oy + Pix 4 Paxg, e,
X1 = P32+ Pazas + €2,
Xy = PsZoy + €3 (10
Zyyp = Z1 -1 T €y
234 = Z4-1 T €5

Table 3 shows the results for TimeGAN in the case of the alternative structure. In this case TimeGAN is able to accurately capture
the causal relationships on a cross-sectional level (g5, f,;, fs) but still fails to capture the structure in y (a, f; and p,). However,
it does not seem like the model completely missed the mark. When we look at the original formulation for y, with the chosen
parameters for the experiment, it can be rewritten as follows:

Yy =05y, +x1,+x3, +¢
=0.25y,5 + (x;, +0.5x; ) + (xp, +0.5x5,_1)
+ (e, +0.5¢,_1)
= 0.125y,_3 + (x, + 0.5x, ,_; +0.25x,_5)
+(xp, +0.5x5,1 +0.25x,,_5)
+ (¢, + 0.5¢,_, +0.25¢,_,).
This decomposition of y can be continued further until the autoregressive part for y is negligible. Now, if the change in x;, and

x, in each time step is limited and thus x;, = x;,_; and x,, & x,,_, as is the case here due to the stationarity of y, and using
ano(%)" =2, we can write:

Yy ®2X), 4+ 2%, + €,

with e ~ N(O, %). The results shown in Table 3 thus suggest that TimeGAN has learned this smaller representation of y, using only
x; and x,, that results in the same expected values of y over time. This representation, however, does not represent the actual causal
model underlying y. This result can be interpreted as TimeGAN having found a shortcut in the way it reconstructs the original data.
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Table 4

Causal effects detected by LINGAM on both the generated dataset and the
synthetic dataset generated by CausalGAN. The table contains all significant
causal effects (>0.1). Causal effects of less significance (<0.1) are simplified to
0. Bold number indicate that the causal effect is reversed.

Causal effect Real CausalGAN GAN
21— x; 1.00 0.93 1.03
Z,~ X, 1.01 0.80 1.07
Z,— X, 0.99 0.83 0.16
xX=y 1.02 1.04 0.14
X—= Y 1.01 1.00 0.39
z= 2, 0 0 -1.11
Z— X, 0 0 —-0.47
zZ=>y 0 0 0.86
Z>y 0 0.14 -0.10
X=X, 0 0.14 0.65

5.3. CausalGAN

Lastly, the full structural causal model is considered. Here, a model cannot be directly trained to the data since no such method
exists as far as the authors are aware. A two-step approach is taken where first the causal structure is identified with LINGAM. This
extracted structure is then compared to our data generating model (Eq. (3)) to check if LINGAM is an appropriate and efficient causal
discovery method for our case. Then CausalGAN is used to generate data that follows this structure. Lastly, LINGAM is applied to
the synthetic data and its output is compared to the causal structure retrieved from the generated data.

As noted before, LINGAM uses the assumption of non-Gaussian noise, which is incorrect for model (3) used previously in this
section. To start from a correct causal structure for this experiment, we adjust the distribution of the noise our data structure (3)
to be uniformly distributed, ¢, ~ U(—1, 1). Under these conditions the time-variant of LINGAM is able to find the underlying causal
model correctly. However, CausalGAN is not equipped to deal with time-series, so we are forced to only consider the cross-sectional
causal relations here.

Table 4 shows all causal relationships detected by LINGAM in both the generated dataset and the synthetic dataset produced by
CausalGAN. Additionally, we show the causal relationships detected in synthetic data from a basic GAN trained on the generated
data. For this one representative example is chosen since the use of means and standard deviations give warped representations of the
results. The synthetic data sampled from CausalGAN consistently maintains causal relationships relatively well. Some deterioration
can be seen, as well as introducing small additional causal effects. The basic GAN framework is however not capable of retaining the
causal relationships when the whole causal structure is considered. Causal discovery on the synthetic data of the basic GAN gives
varying results even when performed multiple times on one synthetic dataset. None of the resulting graphs are close to the original
causal graph. This shows that adding the additional information of the (correct) underlying causal graph through the CausalGAN
model does help maintaining the causal structure.

6. Real world challenges

In our tests of the causality replicating capabilities of GANs, we have purposely abstracted away from many of the additional
challenge that come with working with real-world data. In this section we address some of the most important challenges and give
an overview of the variations on the GAN framework that have been proposed to tackle them.

6.1. Computational resources

An aspect of Generative Adversarial Networks that should be mentioned is the need for significant computational resources. One
contributing factor is the need for several neural networks. In the base version of GAN, 2 neural networks need to be trained. This
increases with more complex frameworks like TimeGAN and CausalGAN which use several additional or larger neural networks.
More complex models usually also involve tuning more hyperparameters. While this was not an issue for the data considered
in the experiments conducted, it can become computationally expensive for more complex datasets. Overall, while GANs offer
powerful capabilities in generative modelling, the significant computational resources required are a key consideration, particularly
for applications that demand high fidelity and scalability.

6.2. Privacy

Privacy concerns are one of the main drivers for the recent rise in interest in synthetic data. While in general synthetic
data is sampled from a reconstruction of the distribution of the original data, fear of replicating real samples due to overfitting
remain [14,60]. Membership inference attacks also form a common concern in the field of privacy [61,62]. These attacks leverage

the fact that machine learning models generally perform better on the data it was trained on to reconstruct the training data.
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These concerns have sparked the search for GAN variants that give certain privacy guarantees. The models used in the
experiments (GAN, TimeGAN and CausalGAN) for example do not offer any such guarantees. One possible privacy guarantee is
differential privacy. An algorithm is differentially private if an observer seeing the output cannot tell if a particular datapoint was
used in the computation. In the case where the observer has access to the generated samples but not the generator, recent work has
shown that the base form of GAN has some privacy guarantees in terms of both differential privacy and robustness to membership
inference attacks [63]. These guarantees get stronger for larger training datasets. If additionally the generator is available, several
differential privacy GANs have been proposed, such as DPGAN [64], PPGAN [65] and PATE-GAN [13].

Privacy guarantees, however, come at the price of replication quality since you in some form or another adding noise to the data
by limiting the impact a training sample can have on the model, even though it might be highly informative [66,67].

6.3. Fairness

Machine learning has an increasingly large impact on current day decision making, scaling decisions made on a micro-scale to a
macro-scale in an often opaque manner. This trend has raised concerns about building in, or scaling up biases in decisions. Fairness
in machine learning is a recently growing area of research that studies how to ensure that such biases and model inaccuracies do
not lead to discriminatory models on the basis of sensitive attributes such as gender or ethnicity. Using synthetic data can help by
debiasing the data before it even gets used for further analysis. In such a framework a generative model is trained on unfair data
to generate synthetic fair data.

A first challenge to fairness is defining what it actually is, which is often highly dependent on the context of the business decisions
that is being made with the model. One often used interpretation is that certain features, also called protected or sensitive features
(e.g. gender, ethnicity), should not have any impact on the outcome of the model. This orthogonalisation of the model outcome
and the protected features comes with two major challenges. First, it requires outside definition of what the protected features
are. Second, if you want to rid observational data of such biases, it is not enough to just delete the features, you need to know
the relevant causal structures to exclude both the direct and indirect impact the protected attribute has on the outcome [68,69].
Otherwise the model can just learn the protected features by using different proxies which are correlated to them [70]. CFGAN [71]
and DECAF [70] are two methods to generate fair data that are rooted in this approach to fairness. Both methods therefore require
a causal graph as additional input, something we saw in our results is not generally feasible with current causal discovery methods.

FairGAN [72] and Fairness GAN [73] have also been suggested for the purpose of generating fair data. FairGAN uses an additional
discriminator on top of the classical GAN architecture to determine whether samples are from the protected or unprotected group.
Fairness GAN uses an added loss function that encourages demographic parity. Demographic parity is satisfied if the decisions
made from the data are not dependent on a given sensitive attribute. This requires a specification of the explanatory variables x,
the target variables y and the sensitive variables s, where y does not need specification in other methods. FairGAN is applied to
low-dimensional structured data, while Fairness GAN is applied to high dimensional image data.

6.4. Tabular data

Tabular data is data that contains both discrete and continuous columns and is one of the most commonly encountered data
formats in both business and research [74]. Tabular data, and especially the discrete features within them are challenging for
GAN methods since the continuous functions used in neural nets are ill-equipped to fit the non-continuous distributions of discrete
variables.

The generator of a regular GAN cannot generate discrete samples because the generator is trained by the loss from the
discriminator via backpropagation [10]. To tackle this problem, MedGAN [75] adds an autoencoder model to the regular GAN
framework to generate high-dimensional discrete variables. The TimeGAN model [11] used in the experiments uses one-hot encoding
for discrete variables. Both TGAN [74] and TableGAN [76] look to improve the performance on the continuous distributions as
well. TGAN clusters numerical variables to deal with the multi-modal distribution for continuous features and adjusts the loss
function to effectively generate discrete features. TableGAN uses a classifier neural network to predict synthetic records’ labels to
improve consistency in generated records. An additional loss, information loss, is introduced as well. This loss is the difference in
key statistical values of both the real and synthetic data. In the paper the mean and standard deviation are used as key statistical
properties.

Besides the mix of continuous and discrete columns, the distributions of data often differs from the standard Gaussian-like
distributions found in typical generative applications like image generation. To this end CTGAN [42] addresses additional concerns
about non-Gaussian and multi-modal distributions, and imbalanced categorical columns. CTAB-GAN [77] looks further into these
issues and tackles data imbalance and long-tail distributions. The previously mentioned Causal-TGAN [46] combines ideas of CTGAN
and CausalGAN [12] to leverage knowledge about the causal structure for a better performance while also being able to handle
tabular data.

7. Conclusion
Data has become a driving force in both business, research, and policy, but the increasing use of personal data raises significant
privacy and ethical concerns. Regulatory bodies are responding by setting boundaries, but a potential solution is generative

modelling: models that generate data to replicate high-dimensional distributions without revealing identifiable information. This
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approach supports accurate modelling for predictive tasks (e.g., “If I observe X, what will Y be?””) without compromising privacy.
However, for interventional questions (e.g., “If I do X, how will Y change?”), where causal inference is needed, synthetic data must
not only have the right distribution but also accurately reflect the underlying causal relationships, a challenge current methods
struggle to address.

We evaluate how well these causal relationships are replicated by the generative modelling techniques that are typically used for
synthetic data. As far as we know, we are the first to do so with a focus on causality. We find that in the case where the assumptions
are met that make correlation equal causation, causal inference on the real and synthetic data yield the same results only if the
simplest model that can generate the distribution of the features equals the real one. This points at the principle of Occam’s razor,
that is the foundation for regularisation in machine learning to counter overfitting, is actually working against us in the case where
we want to replicate causal relationships. Moreover, we find that for the replication of time series the generative model TimeGAN
creates a “shortcut” in the representation. The generated data looks similar to the original data, but the underlying causal structure
has changed.

When nothing is known about the causal structure, and the analyst can thus not easily construct a functional form to test
with classic causal inference methods like OLS, causal discovery can be used. Causal discovery tries to find the causal structure
in observational data, which can then be used as input for a generative model that can generate synthetic data explicitly according
to the causal structure. We find that, while this works in simple cases (e.g. in the case of cross-sectional correlation with non-gaussian
noise), the necessary assumptions on both the causal discovery and generation side seem too restrictive to be widely applicable in
real-world contexts.

A path forward seems to be to augment the observational data fed to the GAN models with additional information such as
knowledge on different environments in which the data was collected or interventional data from experiments [39]. While this can
present a way forward for many fields, it is often not applicable in the context of businesses related to people’s finances or health.

Organisations that want to improve their decision making by leveraging synthetic data should thus be careful about what the
current state-of-the-art is actually capable of.
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