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Abstract

In this paper, we propose a four-step decomposition of hybrid liabilities into a hedgeable
part, an idiosyncratic part, a financial systematic part, and an actuarial systematic part. We
generalize existing approaches for decomposing hybrid liabilities by incorporating depen-
dence between financial and actuarial markets and allowing heterogeneity in policyholder-
specific risks. Our model provides a market- and model-consistent valuation framework
which we illustrate using a portfolio of with-profit pure endowment contracts.

Keywords: risk decomposition, systematic risk, market-consistent valuation, mean-
variance hedging, incomplete market

1 Introduction

This paper studies the risk management of monetary hybrid liabilities composed of financial
and actuarial risks. Financial risks, such as those arising from market price fluctuations, and ac-
tuarial risks, such as those related to mortality or longevity, inherently require different pricing
and risk management approaches. When a liability represents a non-linear combination of these
distinct types of risks, it becomes challenging to disentangle and identify the individual risk
components and to effectively integrate appropriate techniques such as financial hedging, di-
versification, and other actuarial methods for managing the claim. As a result, institutions face
significant challenges in accurately valuing and managing such hybrid liabilities, potentially
leading to mispricing, inadequate risk mitigation, and regulatory non-compliance.

In this paper we develop a risk management framework for hybrid liabilities that begins with a
decomposition of the liability into four different uncorrelated parts. The hedgeable part captures
the part of the liability which can be managed by a hedging portfolio. A second part captures
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non-hedged financial risks. These are the so-called financial derivatives, which can be traded
in financial markets, but in an incomplete market, their no-arbitrage value is not unique. A
third part captures the part of the claim which can be managed through diversification, which
is therefore called the idiosyncratic part. Lastly, the fourth part contains risks that cannot be
diversified away or sold in financial markets. These are the actuarial systematic risks. Next,
we investigate how to value a hybrid claim employing our decomposition results. We will use
replications and risk-neutral pricing to value the two financial parts, where we explicitly account
for market incompleteness. The two actuarial parts are priced using an appropriate actuarial risk
measure.

We show that our decomposition of a hybrid claim in four parts is optimal in mean-variance
sense. From a market-consistent perspective, where the claim must be valued using available
market information, it is reasonable to first determine the optimal way to decompose the hybrid
claim into a financial part (both hedgeable and non-hedged) and an actuarial part. The finan-
cial part is a combination of a hedgeable (linear) part and a non-hedged (non-linear) part. The
actuarial part can then again be decomposed in two parts, a systematic actuarial part and an
idiosyncratic part. We also show that, under some technical conditions on the expectations, this
decomposition is unique if we aim for four uncorrelated parts. The condition on the expectations
of the different parts can be relaxed if we shift from uncorrelated parts to orthogonal parts.

Dhaene et al. (2017) decompose a hybrid liability into two parts: a hedgeable part and a non-
hedged part, using fair hedgers. They show that using a mean-variance optimization criteria
leads to a fair hedger. The hedgeable part can be priced using the replicating portfolio ap-
proach whereas an actuarial valuation can be used for the residual, non-hedged part, leading to
a market-consistent pricing formula for hybrid claims. This approach was further extended in
Delong et al. (2019), Barigou and Dhaene (2019), and Barigou et al. (2019, 2022). Deelstra
et al. (2020) decompose a hybrid liability in three parts, taking into account also systematic
risks, which require a different pricing approach compared to financial and diversifiable risks.
However, their approach still considers an additive valuation in a complete financial market.
This was then generalized to non-linear valuation in an incomplete market in Linders (2023).
Moreover, Dhaene (2022) introduces a decomposition in four parts, where systematic risks are
separated in financial and actuarial systematic risks. In this framework, it was assumed that
financial markets are independent from the actuarial market and that the policyholder-specific
risks are identically and conditionally independently distributed.

In this paper we will explore in more detail the four-step decomposition of Dhaene (2022). We
generalize the assumptions and we show under which conditions such a decomposition is opti-
mal. We also investigate under which conditions the idiosyncratic part is indeed diversifiable.
Moreover, we show how to value a hybrid claim by employing the four-step decomposition.
This new valuation turns out to be a fair valuation as defined in Dhaene et al. (2017).

Regulatory frameworks, such as Solvency II and IFRS 17, mandate the valuation of insurance
products to be market consistent, meaning that the price of a hybrid liability should be ‘in line’
with the prices of traded assets that can be observed in the financial market. Consequently,
it is crucial to distinguish between the parts of a liability that can be valued using financial
pricing methods (e.g., via replicating portfolios) and the parts that require alternative pricing
approaches such as actuarial pricing techniques (e.g., statistical models and diversification prin-
ciples). Combining actuarial and financial valuation theories for complex liabilities was first
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proposed in Brennan and Schwartz (1976) for pricing variable annuity contracts, and further
explored in Embrechts (2000); see also Bacinello et al. (2021). In Muermann (2008), the au-
thors discuss the pricing of catastrophe insurance using information from CAT bonds; see also
Beer and Braun (2022). The idea of pricing financial derivatives in incomplete markets by using
the available information in the market was already explored in Cont (2006). In Malamud et al.
(2008), the authors consider the market-consistent pricing of insurance claims that combine
traded and non-traded risks. In Pelsser and Stadje (2014), it was shown that market-consistent
valuations can be characterized by the set of two-step valuations. In Dhaene et al. (2017), the
class of hedge-based valuations was introduced and it was shown that in a particular setting the
class was equivalent with the two-step valuations. In Linders (2023), the class of 3-step valua-
tions was introduced and it was shown that if one wants to take into account the different nature
of systematic risks, the class of hedge-based valuations coincides with the 3-step valuations.

This paper contributes to the literature by generalizing and characterizing the four-step decom-
position introduced in the lecture notes of Dhaene (2022). We relax the assumption of market
independence and allow for potential correlations between financial and actuarial risks, reflect-
ing the intricate dynamics observed in practice. Additionally, we account for heterogeneity in
policyholder-specific risks, acknowledging that individuals may exhibit varying risk profiles
and dependencies. By doing so, our framework is applicable to a broader range of financial and
insurance products. Moreover, we show how this four-step decomposition can lead to a new
market- and model-consistent valuation that values financial derivatives under an appropriate
risk-neutral measure, while actuarial risks are valued under the real-world probability measure.
The valuation of the financial part relies on the theory of conic finance, which was developed in
Madan and Cherny (2010) and Madan and Schoutens (2016). Indeed, our valuation interprets
market consistency as the assumption that the financial parts of the hybrid claim (both hedge-
able and non-hedged) should be priced using a no-arbitrage argument, i.e. under a risk-neutral
measure. In the conic finance framework, we can trade the non-hedged financial part, but the
price at which one can buy, is a conservative (i.e. too high) price.

This paper is set out as follows. Section 2 defines the general model setting. Section 3 intro-
duces the 4-step decomposition of claims. Section 4 studies valuation using the 4-step decom-
position, and provides three concrete examples. Section 5 provides an application of the 4-step
decomposition for product claims. Finally, Section 6 concludes this paper.

2 General setting

Throughout this paper, we work in a one-period framework, assuming today is time 0 and the
single period ends at a future deterministic time T < ∞. All risks and claims encountered in
this paper have to be understood as liabilities which are payable at this future time T . More-
over, we assume that such liabilities are modeled as L2 random variables defined on a common
probability space (Ω,F ,P). The set of all such random variables is denoted by C.

We assume a liquid, arbitrage-free financial market in which n assets (n ≥ 1) are traded and a
risk-free bank account exists. The risk-free interest rate r is also assumed to be deterministic
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and constant. Let Y be an (n+ 1)-dimensional random vector representing the time-T payoffs

Y =
(
Y (0), Y (1), . . . , Y (n)

)
,

where Y (0) = erT is the time-T payoff of a risk-free bank account, and Y (1), Y (2), . . . , Y (n)

are the payoffs of the n traded assets. These financial assets can be bought and sold at a single
price. The time-0 prices observed in the market are denoted by the vector y, where

y =
(
y(0), y(1), . . . , y(n)

)
.

Moreover, market participants can trade any quantity of the financial assets at time t = 0 at
market prices. We denote by CY the set of all financial derivatives, defined as follows:

CY =
{
S ∈ C|∃ Borel function f s.t. S = f (Y ) and E

[
f 2 (Y )

]
< ∞

}
= L2(Ω, σ(Y ),P). (2.1)

A derivative is thus a linear or non-linear function of the traded assets.

In addition to the traded payoffs Y , the set C also contains non-traded payoffs, which we divide
into two parts. The random vector Z represents all non-traded systematic risks. A risk is
categorized as a systematic risk if it will impact a large group of policyholders simultaneously.
For example, macroeconomic risks and market-wide shocks, as well as systematic insurance-
related risks, such as climate risk or longevity risk, are all stored in a d-dimensional vector
Z = (Z1, Z2, . . . , Zd). The set of all risks which depend on financial and systematic risks is
denoted by CY ,Z and is defined as follows:

CY ,Z =
{
S ∈ C|∃ Borel function f s.t. S = f (Y ,Z) and E

[
f 2 (Y ,Z)

]
< ∞

}
= L2(Ω, σ(Y ,Z),P). (2.2)

We also assume that apart from the traded risks Y and the non-traded systematic risks Z, there is
also a N -dimensional vector X = (X1, X2, . . . , XN) with risks that can drive a hybrid liability.
As a result, we can have hybrid claims which are in C, but which are not in CY ,Z .

3 4-step decomposition of a claim S

Consider a claim S defined on the probability space (Ω,F ,P). The claim S can be expressed
as a function of several underlying random variables (which are in C), including the financial
assets Y , but it may also depend on the realizations of Z and X . Later, we will specify the
claim S as an aggregate liability of an insurance portfolio containing several policyholders. At
the moment, however, we do not need this additional assumption.

3.1 The hedgeable and systematic part of a liability

Since S is linked to traded financial risks, we first seek an optimal hedging strategy for the claim
S to manage and mitigate the traded financial risks associated with S. Following Dhaene et al.
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(2017), we introduce the hedger θ, which is a function assigning a hedge θS =
(
θ
(0)
S , θ

(1)
S , . . . , θ

(n)
S

)
to any random variable S ∈ C. The hedge θS for the claim S is a linear combination of the
traded assets. We assume here a static hedge and therefore θS is an (n+1)- dimensional vector:

θ : C → Rn+1.

The i-th component of the vector θS denotes the number of units we hold of the asset Y (i). We
also assume that a feasible hedger is normalized, i.e., θ0 = 0, and is translation invariant, i.e.,
θS+c = θS +

(
c, e−rT , 0, . . . , 0

)
for any constant c ∈ R. The payoff at maturity T of the hedge

is denoted by Y h and can therefore be expressed as follows:

Y h = θS · Y , (3.1)

where ‘·’ denotes the inner product operator between two vectors. A hedging strategy is an
n-dimensional real vector. The set of all hedging strategies is denoted by Θ, and we assume
non-redundancy of the financial market, meaning that θ · Y = 0 implies θ = 0. In this paper,
we focus on hedgers θ which are market consistent. Market and model consistency of hedgers
as well as the notion of fair hedgers was first introduced in Dhaene et al. (2017) and further
explored in Barigou et al. (2022), Linders (2023), among others. An overview was provided in
Dhaene (2022).

Definition 3.1 (Market-consistent hedgers) The hedger θ is said to be a market-consistent
hedger if for any real vector v =

(
v(0), v(1), . . . , v(n)

)
, we have

θS+v·Y = θS + v,

for all S ∈ C.

Market consistency of a hedger implies that a claim which consists of a hedgeable part, i.e.
a part which can be expressed as a linear combination of the available traded assets, will be
hedged using that linear combination and the hedge of the remaining part.

The claim S depends not only on financial assets but also on the non-traded risks. Therefore,
we may not be able to perfectly hedge the claim, i.e. the payoff Y h differs from the liability
S. The residual part of the liability S is then defined as what remains of the liability S after
subtracting the payoff of the hedging strategy:

Residual part = S − Y h.

This residual part continues to depend on both financial and systematic risks. To better inves-
tigate how different realizations of the financial assets Y and the systematic risks Z affect the
residual part S−θS ·Y , we decompose it into a systematic component Y s and an idiosyncratic
part Y i using the conditional expectation approach, expressed as follows:

S − Y h = Y s + Y i, (3.2)

where

Y s = E
[
S − Y h | Y ,Z

]
, (3.3)

Y i = S − E [S | Y ,Z] . (3.4)
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The systematic part Y s represents the component of S − Y h that can be predicted using Y and
Z, which are factors influencing all observations or policyholders simultaneously. Since Y and
Z reflect shared factors, such as market prices or other systematic effects, E

[
S − Y h | Y ,Z

]
models how the expectation of the residual part behaves as a function of the systematic and
financial factors. Therefore, we regard Y s as a systematic part. On the contrary, the term
‘idiosyncratic’ refers to the portion of risk unique to an individual claim or component, un-
explained by broader systematic factors. In Section 3.3, we will demonstrate that Y i can be
diversifiable in a more specific context.

Deelstra et al. (2020) decompose the unhedged residual part of a hybrid liability into two dif-
ferent parts to separate the systematic part from the diversifiable part. Note, however, that they
assumed that hybrid claims were product claims, and that financial and actuarial risks are in-
dependent. Moreover, the financial market was assumed to be complete. The lecture notes of
Dhaene (2022, pp. 58–62) generalizes these results to account for incompleteness of the fi-
nancial market, resulting in the same four-step decomposition as was proposed here. Note,
however, that the framework proposed in the context holds for a general hybrid liability, allows
for an incomplete financial market and, moreover, incorporates dependence between financial
and actuarial risks.

We can interpret Y s also as the ‘between-scenario’ part, whereas Y i can be regarded as the
‘within-scenario’ part. These interpretations play a crucial role when analyzing the variance
of the non-hedged part S − Y h. The following remark elaborates on how the ‘between’ and
‘within’ parts are defined in terms of variances.

Remark 3.1 (between vs. within group variance) Using Expressions (3.3) and (3.4), we can
then write:

Var [Y s] = Var
[
E
[
S − Y h| Y ,Z

]]
, (3.5)

Var
[
Y i
]

= E
[
Var
[
S − Y h| Y ,Z

]]
. (3.6)

The variance Var [Y s] represents the ‘between group’ variance, whereas Var [Y i] represents the
‘within group’ variance of the non-hedged residual part S−Y h. Indeed, the conditional expec-
tation E

[
S − Y h| Y ,Z

]
corresponds with the expectation of the non-hedged part in a certain

scenario of the systematic risks and the financial assets. Therefore, its variance is a measure for
the variability between the different scenarios. The conditional variance Var

[
S − Y h| Y ,Z

]
,

on the other hand, measures the variance in each scenario for the systematic risks and financial
assets. Therefore, its expectation is a measure of the average variability within each scenario.

Using the law of total variance, it follows directly from Expressions (3.5) and (3.6) that we can
decompose the variance of the residual part S − Y h as follows:

Var
[
S − Y h

]
= Var [Y s] + Var

[
Y i
]
. (3.7)

This identity follows from the orthogonality property of conditional expectations and is com-
monly known as the variance decomposition. Bühlmann (1995) was the first to apply this de-
composition to claim payoffs in life insurance, separating financial investment risk and actuarial
mortality risk. Subsequent research has applied similar variance decomposition techniques to
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analyze investment and insurance risks, most notably Parker (1997), Frees (1998), Marceau
and Gaillardetz (1999), Bruno et al. (2000), Christiansen and Helwich (2008). Among these,
only Frees (1998) and Christiansen and Helwich (2008) explicitly include systematic mortality
risk and both assume that actuarial risk is independent of financial investment risk. The others
treat actuarial risk purely as the random variation of individual lifetimes and do not incorporate
systematic mortality risk.

The hedger is used to decompose the claim S in two parts, a hedgeable and a non-hedged
residual part. Using Expression (3.2), we further decompose the residual part in a systematic
part and an idiosyncratic part. Since the hedgeable part only depends on the financial assets Y
and the systematic part only depends on the systematic risks Z and the financial assets Y , we
find that the hedgeable part Y h and the systematic part Y s both belong to the set CY ,Z , which
was defined in (2.2). In the following theorem, we investigate to what extent this decomposition
of the non-hedged residual liability S−Y h into a systematic and an idiosyncratic part is optimal
and unique.

In Theorem 3.2, we show that the systematic part Y s arises as the solution of a quadratic opti-
mization problem where we approximate the non-hedged residual part with an element in the
set CY ,Z . Moreover, the systematic part Y s is also the unique element in the set CY ,Z that gives
a decomposition of the non-hedged part in two uncorrelated parts, provided the expectation of
Y s is equal to the expectation of the residual part S − Y h. Lastly, we show that this condition
on the mean can be relaxed if we require the two components to be orthogonal, rather than
uncorrelated, where orthogonality is defined via the inner-product condition in (3.9) below.

Theorem 3.2 Let the residual part S − Y h be decomposed as

S − Y h = Y s +
(
S − Y h − Y s

)
,

where Y s ∈ CY ,Z . Then the following statements are equivalent.

(1) Y s = E
[
S − Y h| Y ,Z

]
.

(2) Y s is the solution to the optimization problem

Y s = argmin
ξ∈CY ,Z

E
[(
S − Y h − ξ

)2]
. (3.8)

(3) The random variable Y s satisfies

E
[(
S − Y h − Y s

)
ξ
]
= 0, for any ξ ∈ CY ,Z . (3.9)

(4) If we have that
E [Y s] = E

[
S − Y h

]
, (3.10)

then Y s satisfies

Cov
[
S − Y h − Y s, ξ

]
= 0, for any ξ ∈ CY ,Z . (3.11)
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Proof. First, we prove the equivalence of statements (1) and (2). Note that if

f (y, z) = argmin
π

E
[(
S − Y h − π (Y ,Z)

)2 |Y = y,Z = z
]
,

then f (y, z) = E
[
S − Y h | Y = y,Z = z

]
. Hence, we find that f (Y ,Z) = E

[
S − Y h|Y ,Z

]
,

which shows that Y s is indeed the solution to the maximization problem. Moreover, since the
solution is unique, we find the desired equivalence.

Next, we demonstrate the equivalence of statements (2) and (3). We consider the Hilbert space
L2(Ω,F ,P) with the inner product defined as ⟨X, Y ⟩ = E [XY ]. Since Y s ∈ CY ,Z , CY ,Z is a
closed Hilbert subspace of L2(Ω,F ,P). Let

X = S − Y h,

X ∈ L2(Ω,F ,P), and CY ,Z ⊂ L2(Ω,F ,P), then the projection theorem in Hilbert spaces
implies that

(a) there exists a unique element X̂ ∈ CY ,Z such that

∥X − X̂∥ = inf
ξ∈CY ,Z

∥X − ξ∥,

where ∥X∥ = ⟨X,X⟩
1
2 = (E [X2])

1
2 .

(b) The X̂ is also uniquely characterized by:〈
X − X̂, ξ

〉
= E

[
(X − X̂)ξ

]
= 0, for any ξ ∈ CY ,Z .

We then find that the statements (2) and (3) are equivalent.

Next, we show that statement (3) implies (4). If (3) holds, we also have (1); that is Y s =
E
[
S − Y h | Y ,Z

]
. It is then straightforward to see that

E [Y s] = E
[
E
[
S − Y h | Y ,Z

]]
= E

[
S − Y h

]
.

Therefore, we find that

Cov[S − Y h − Y s, ξ] = E
[(
S − Y h − Y s

)
ξ
]
− E

[
S − Y h − Y s

]
E [ξ] = 0,

for any ξ ∈ CY ,Z .

Lastly, we show that statement (4) implies (1). Let Y s satisfy (3.10). For any L2 random
variable ξ ∈ CY ,Z , it follows from Expression (3.11) that

Var
[
S − Y h − Y s + ξ

]
− Var

[
S − Y h − Y s

]
− Var [ξ] = 0.

Note that Var
[
S − Y h − Y s + ξ

]
can be expressed as

Var
[
S − Y h − Y s + ξ

]
= Var

[
E
[
S − Y h − Y s + ξ | Y ,Z

]]
+ E

[
Var

[
S − Y h − Y s + ξ | Y ,Z

]]
= Var

[
E
[
S − Y h | Y ,Z

]
− Y s + ξ

]
+ E

[
Var

[
S − Y h | Y ,Z

]]
.
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Additionally, Var
[
S − Y h − Y s

]
can be written as

Var
[
S − Y h − Y s

]
= Var

[
E
[
S − Y h − Y s | Y ,Z

]]
+ E

[
Var

[
S − Y h − Y s | Y ,Z

]]
= Var

[
E
[
S − Y h | Y ,Z

]
− Y s

]
+ E

[
Var

[
S − Y h | Y ,Z

]]
.

Then we find that

Var
[
E
[
S − Y h | Y ,Z

]
− Y s + ξ

]
− Var

[
E
[
S − Y h | Y ,Z

]
− Y s

]
− Var[ξ]

=Var
[
S − Y h − Y s + ξ

]
− Var

[
S − Y h − Y s

]
− Var [ξ]

=0.

Hence, we have:
Cov

[
E
[
S − Y h | Y ,Z

]
− Y s, ξ

]
= 0.

Note that the random variable E
[
S − Y h | Y ,Z

]
−Y s is an element of CY ,Z . We put E

[
S − Y h | Y ,Z

]
−

Y s = M . Suppose M is a non-degenerate random variable. Then, we have:

Cov [M,M ] = Var [M ] > 0.

However, this contradicts Expression (3.11). Therefore, we conclude that:

M = c, with probability 1,

where c ∈ R is a constant. Consequently, Y s can be expressed as:

Y s = E
[
S − Y h | Y ,Z

]
−M = E

[
S − Y h | Y ,Z

]
− c.

From Expression (3.10), we deduce that c = 0. Therefore, we have:

Y s = E
[
S − Y h | Y ,Z

]
.

This concludes the proof.

Theorem 3.2 provides an ‘optimal’ way to isolate a systematic part from the non-hedged residual
claim, where optimality is defined in mean-variance sense. This residual part depends on the
choice of the hedger. Indeed, the hedger determines the hedgeable part, which only consists of
financial risks. The systematic parts consists of financial risks which are not yet captured by the
hedgeable part and systematic risks. It is then straightforward to show that the random variable
Y h + Y s is the best approximation of the claim S in the set CY ,Z . Indeed, following the same
steps as in the proof of Theorem 3.2, we can show that

Y h + Y s = argmin
ξ∈CY ,Z

E
[
(S − ξ)2

]
.

This result shows that the hedger only distributes the financial risk contained in S between the
hedgeable part Y h and the systematic part Y s. Therefore, if we want to decompose the claim S
in a part that depends only on the financial and the systematic information on the one hand, and
a residual part on the other hand, the choice of the hedger θS is not important.
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Because the systematic part Y s contains those financial risks in S which are not captured by
Y h, we try to separate the financial and the actuarial systematic information in Y s. We apply
the conditional expectation approach to decompose Y s into a financial systematic part Y s

fin and
an actuarial part Y s

act:
Y s = Y s

fin + Y s
act,

where

Y s
fin = E

[
E
[
S − Y h | Y ,Z

]
| Y
]
= E

[
S − Y h | Y

]
, (3.12)

Y s
act = E

[
S − Y h | Y ,Z

]
− E

[
S − Y h | Y

]
= E [S | Y ,Z]− E [S | Y ] . (3.13)

It is straightforward to verify that Y s
fin also solves the following optimization problem:

Y s
fin = argmin

ξ∈CY

E
[
(Y s − ξ)2

]
.

Hence, Y s
fin can also be interpreted as the best financial derivative to hedge the systematic claim

Y s. However, note that Y s
fin is not necessarily a linear combination of financial assets, in which

case a hedging strategy cannot be found to replicate the payoff of Y s
fin. In case one wants to

receive the payoff Y s
fin, one needs to buy it over-the-counter at the best market price. Similarly

to Theorem 3.2, we can also prove that, under the additional assumption that E
[
Y s
fin

]
= E[Y s],

the financial systematic part Y s
fin is characterized as follows:

Cov
[
Y s − Y s

fin, ξ
]
= 0, for any ξ ∈ CY . (3.14)

The financial systematic part is the unique financial derivative that ensures the residual part is
uncorrelated with the set CY of financial derivatives, provided their expectations are equal. This
leads to the variance decomposition:

Var[Y s] = Var
[
Y s
fin

]
+Var [Y s

act] . (3.15)

More specifically, Y s
fin represents the portion of the systematic part Y s that can be predicted

based on the traded assets Y , reflecting the changes in Y s resulting from shifts in market prices.
On the other hand, Y s

act represents the deviations in the systematic part Y s that are not explained
by Y . It measures the contribution of Z to the variation in Y s, conditional on Y . In other
words, it quantifies the influence of actuarial (non-traded) systematic risks on the systematic
part Y s beyond what is already captured by market prices Y .

Following the steps above, we find that a hybrid liability S can be decomposed into

S = Y h + Y i + Y s
fin + Y s

act,

with

Y h = θS · Y ,

Y i = S − E[S | Y ,Z] ,

Y s
fin = E[S | Y ]− θS · Y ,

Y s
act = E[S | Y ,Z]− E[S | Y ] .

To illustrate this decomposition, we present Example 3.1 below.
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Example 3.1 (Unit-linked insurance liability) Consider a portfolio with N insurance policy-
holders, with each policyholder i receives a payoff at maturity T given by

f (Y )×Xi, for i = 1, 2, . . . , N,

where f is a borel-measurable function, and Xi = 1 if policyholder i is alive at T , and Xi = 0
otherwise. Assume that each Xi is independent of Y , and that there exists a systematic mortality
r.v. Z ∈ C with support A, such that for any z ∈ A, X1 | Z = z,X2 | Z = z, . . . , XN | Z = z
are i.i.d. claims. The aggregate liability S is then given by

S =
N∑
i=1

f(Y )×Xi.

Using the mean-variance hedger θMV
S as defined in Definition 3.2, the aggregate liability S can

be decomposed into
S = Y h + Y i + Y s

fin + Y s
act,

where

Y h = N E[X1]× θMV
f(Y ) · Y ,

Y i = f(Y )×

(
N∑
i=1

Xi −N E[X1 | Z]

)
,

Y s
fin = N E[X1]×

(
f(Y )− θMV

f(Y ) · Y
)
,

Y s
act = N f(Y )× (E[X1 | Z]− E[X1]) .

This example is also considered in Dhaene (2022, p.61), though we note that this setting as-
sumes independence between the policy-specific risk Xi and financial risk Y . In Section 5, we
will extend this framework to a more general setting where this assumption is relaxed.

Remark 3.3 For any choice of hedging strategy θ, we have

E
[
Y i
]
= E [S − E [S | Y ,Z]] = 0, (3.16)

E [Y s
act] = E [E [S | Y ]− E [S | Y ,Z]] = 0. (3.17)

Moreover, if we choose the hedger θ such that E
[
Y h
]
= E [S], then

E
[
Y s
fin

]
= E

[
E [S | Y ]− Y h

]
= 0. (3.18)

Note that we have established that Y s and Y i are uncorrelated, and so are Y s
fin and Y s

act. In
the following theorem, we further show that the random variables Y i, Y s

fin, Y s
act are pairwise

uncorrelated, and Y h is uncorrelated with both Y i and Y s
act.

Theorem 3.4 For any choice of hedger θ, we have that

• the random variables Y i, Y s
fin, Y s

act are pairwise uncorrelated,
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• the hedgeable part Y h is uncorrelated with each of Y i and Y s
act.

Proof. From Theorem 3.2, we find that

Cov
[
Y i, ξ

]
= 0, for any ξ ∈ CY ,Z .

It follows directly from (3.1), (3.12) and (3.13) that Y h, Y s
fin and Y s

act are L2 random variables
that are measurable with respect to σ(Y ,Z). Therefore, we have that

Cov
[
Y i, Y h

]
= Cov

[
Y i, Y s

act

]
= Cov

[
Y i, Y s

fin

]
= 0.

Similarly, since Y h ∈ CY , it follows from (3.14) that

Cov
[
Y s
act, Y

h
]
= Cov

[
Y s − Y s

fin, Y
h
]
= 0.

We have shown that a claim S, which depends on the financial assets Y and systematic risks Z,
can always be decomposed into a hedgeable part Y h and three uncorrelated components, namely
Y s
fin, Y s

act, and Y i, using the conditional expectation approach. Moreover, the idiosyncratic part
Y i and the actuarial systematic part Y s

act are always uncorrelated with Y h, regardless of the
choice of hedger θS . However, the correlation between the financial residual part Y s

fin and Y h

is not immediately clear. Indeed, one can end up in a situation where Y s
fin and Y h are dependent

because they are exposed to the same traded risks. We will show in the following section that
such a situation is excluded when using the mean-variance hedger, i.e., Y s

fin is also uncorrelated
with Y h, which implies that these four parts will be pairwise uncorrelated.

Subsequently, we consider a more specific framework in Section 3.3 and regard the hybrid
liability S as an aggregate claim. We can then discuss the diversifiability of the idiosyncratic
part Y i.

3.2 Mean-variance hedge

In Theorem 3.4, we have shown that Y i, Y s
fin, and Y s

act are pairwise uncorrelated, and Y h is
uncorrelated with both Y i and Y s

act regardless of the hedging strategy θS . However, we are
unable to unravel the dependence between the financial systematic part Y s

fin and the hedgeable
part Y h unless the hedging strategy is specified. Recall that the financial payoffs which are
traded in the market are stored in the vector Y =

(
Y (0), Y (1), Y (2), . . . , Y (n)

)
. We use Hlinear

to denote the space of all linear combinations of the financial assets:

Hlinear = span{Y (0), Y (1), Y (2), . . . , Y (n)}.

Note there is a one-to-one correspondence between the set Hlinear containing random variables
which can be expressed as linear combinations of the financial assets and the set Θ with hedgers.
Indeed, each hedger in Θ defines a random variable that belongs to the set Hlinear, and vice
versa.

12



We aim to hedge the claim S such that the non-hedged component, S − Y h, satisfies two
conditions: it is uncorrelated with every random variable in the space Hlinear, and its expectation
is zero. In Theorem 3.5, we will demonstrate that these conditions are met if and only if the
mean-variance hedging strategy is employed. Furthermore, this approach ensures that the four
components of the decomposition are pairwise uncorrelated.

Definition 3.2 (Mean-variance hedge) For any S ∈ C, the mean-variance hedger θMV is the
hedger which assigns to the claim S the hedging strategy θMV

S by solving the following mini-
mization problem:

θMV
S = argmin

ν∈Θ
E
[
(S − ν · Y )2

]
. (3.19)

Mean-variance hedging is widely applied for hedging contingent claims; see, e.g., Föllmer and
Sondermann (1986), Schweizer (1995), Thomson (2005), Dhaene et al. (2017), Barigou and
Dhaene (2019), Linders (2023), among others.

In the following theorem, we show a characterization of the mean-variance hedger, which is
similar to Theorem 3.2.

Theorem 3.5 Consider a claim S ∈ C and the corresponding hedge Y h = θS · Y . Then, the
following statements are equivalent.

(1) The hedging strategy θS is determined by the mean-variance hedge (3.19), i.e., θS = θMV
S .

(2) The hedging strategy θS is determined such that non-hedged part S − Y h is orthogonal to
each random variable Y (i) :

E[(S − θS · Y )Y (i)] = 0, for i = 0, 1, . . . , n. (3.20)

(3) The hedging strategy θS is determined such that the non-hedged part S−Y h is uncorrelated
to each random variable Y (i) :

Cov
[
S − θS · Y , Y (i)

]
= 0, for i = 0, 1, . . . , n, (3.21)

and the expectation of the hedgeable part Y h is equal to the expectation of the claim E [S] :

E
[
Y h
]
= E[S]. (3.22)

Proof. First, we show that (1) ⇐⇒ (2):
It directly follows from (3.19) that θMV

S is determined from the first-order conditions given in
(3.20).

Next, we show that (2) =⇒ (3):

Given that Y (0) = erT , it follows from (3.20) that

E [S − θS · Y ] = 0.

13



Then we have:

Cov
[
S − θS · Y , Y (i)

]
= E

[
(S − θS · Y )Y (i)

]
− E [S − θS · Y ]× E

[
Y (i)

]
= 0.

Lastly, we show that (3) =⇒ (2):

From (3.21) and (3.22), we find that

E
[
(S − θS · Y )Y (i)

]
= Cov

[
S − Y h, Y (i)

]
+ E

[
S − Y h

]
× E

[
Y (i)

]
= 0,

for i = 0, 1, 2, . . . , n.

The finite-dimensional result in Theorem 3.5 is the discrete-time analogue of the Föllmer–Schweizer
decomposition in continuous time. For an overview of quadratic hedging approaches in the
continuous-time setting, including mean-variance hedging via the Föllmer–Schweizer decom-
position, see Schweizer (2001).

The financial market with traded assets Y is said to be complete if for any claim S ∈ CY , there
exists a hedging strategy ν ∈ Θ such that S = ν · Y , almost surely. Therefore, completeness
in our one-period model corresponds with all financial derivatives being linear combinations of
the traded financial assets, i.e. we have to define that CY = HLinear.

Lemma 3.1 Consider a claim S ∈ C and the corresponding hedge Y h = θS · Y . Assume the
hedger is market consistent, i.e. θS+ν·Y = θS + ν. If the financial market is complete, there
exists a hedger such that Y s

fin = 0.

Proof. If the market is complete, for any S ∈ C, since E[S | Y ] ∈ CY , then there exists a
hedging strategy ν such that

E[S | Y ] = ν · Y .

Define the hedger θ : C → Rn+1 such that for any S ∈ C,

Y h = θS · Y = E[S | Y ].

Therefore, it directly follows from (3.12) that the financial systematic part Y s
fin = 0.

Proposition 3.1 Consider a hybrid claim S and the mean variance hedger θMV . We have that
the claim S can be decomposed as follows

S = θMV
S · Y + Y i + Y s

fin + Y s
act,

where Y i, Y s
fin, and Y s

act are given by (3.4), (3.12), and (3.13), respectively. Moreover, the parts
θMV
S · Y , Y i, Y s

act and Y s
fin are pairwise uncorrelated.
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Proof. As demonstrated in Dhaene (2022), the mean-variance hedge of a claim S coincides
with the the mean-variance hedge of the conditional expectation E[S | Y ]:

θMV
S = θMV

E[S|Y ].

Using Expressions (3.1) and (3.12), we find that

Cov
[
Y h, Y s

fin

]
= Cov

[
θMV
E[S|Y ] · Y ,E[S | Y ]− θMV

E[S|Y ] · Y
]
.

Then it follows from Theorem 3.5 that

Cov
[
Y h, Y s

fin

]
= 0.

Therefore, from Theorem 3.4, it follows that Y h, Y i, Y s
fin, Y s

act are pairwise uncorrelated.

3.3 Diversifiability of the idiosyncratic part Y i

The systematic part Y s only depends on the financial risks Y and the systematic risks Z,
whereas the idiosyncratic part Y i is still a combination of financial, systematic and actuarial
risks. In this subsection, we investigate diversification properties of the idiosyncratic part Y i

in case the liability S represents an aggregate liability. Suppose there are N policyholders la-
beled 1 to N . The random variables X1, X2, . . . , XN represent the policyholder-specific risks.
We assume a heterogeneous portfolio, so the Xi random variables are not necessarily identical.
However, we assume that the random variables Xi, i = 1, 2, . . . , N are conditionally indepen-
dent, i.e.,

P [X1 ≤ x1, . . . , XN ≤ xN | Y = x1,Z = x2] =
N∏
i=1

P [Xi ≤ xi | Y = x1,Z = x2] . (3.23)

Each policyholder will receive a payoff which is a function of its own policyholder-specific risk
Xi and the financial market. To be more precise, we assume the liability S is then given by

S =
N∑
i=1

hi (Xi,Y ) . (3.24)

We demonstrate in Theorem 3.6 that the idiosyncratic part Y i, which is given by (3.4), is di-
versifiable in the sense that the per-policy loss of the idiosyncratic part Y i

N
tends to zero as the

number of participants increases. This result is a generalization of Dhaene (2022, p. 60), and
Theorem 3.1 in Deelstra et al. (2020), where the authors derive a similar result, but under the as-
sumption the aggregate liability S is a product claim. Moreover, they assume that the systematic
risk factors are independent of the financial assets.

Theorem 3.6 Consider the claim S given by (3.24) and its idiosyncratic part given by (3.4).
Assume that the random variables X1, X2, . . . , XN are conditionally independent; see (3.23).
Then Y i is diversifiable, in the sense that

Y i

N

p−→ 0 as N → ∞,

where
p−→ denotes convergence in probability.
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Proof. It directly follows from (3.16) that E
[
Y i

N

]
= 0. And the variance of Y i

N
can be expressed

as

Var

[
Y i

N

]
=

1

N2
Var [S − E [S | Y ,Z]]

=
1

N2
(Var [E [S − E [S | Y ,Z] | Y ,Z]] + E [Var [S − E [S | Y ,Z] | Y ,Z]])

=
1

N2
(Var [E [S | Y ,Z]− E [S | Y ,Z]] + E [Var [S | Y ,Z]])

=
E [Var [S | Y ,Z]]

N2
. (3.25)

Using (3.24), and taking into account the conditional independence assumption in (3.23), the
variance of Y i

N
can be rewritten as

Var

[
Y i

N

]
=

∑N
i=1 E [Var [hi (Xi,Y ) | Y ,Z]]

N2
. (3.26)

Since hi(Xi,Y ) are L2 random variables on (Ω,F ,P), there exists a constant M > 0 such that

Var [hi(Xi,Y )] ≤ M for all i.

It follows that

Var

[
Y i

N

]
→ 0 as N → ∞.

Therefore, Y i

N
converges to 0 in probability as N → ∞.

Remark 3.7 Note that combining Theorem 3.6 with Expression (3.4) for the idiosyncratic part
Y i results in

S

N

p−→ E
[
S

N
| Y ,Z

]
, if N → +∞.

In case we hold a large portfolio, the per-policy liability is random and will converge to the
conditional expectation. If hi (Xi,Y ) = hi (Xi), we recover the central limit theorem.

Theorem 3.6 indicates that the conditional independence assumption (3.23) is a sufficient con-
dition to show that the claim Y i is diversifiable. However, conditional independence is not a
necessary assumption to demonstrate that Y i is diversifiable. The following counterexample is
presented to illustrate this observation.

Example 3.2 (Conditional independence and diversifiability) Assume that X1|Y ,Z is de-
pendent with Xi|Y ,Z for i = 2, 3, . . . , N , while Xi|Y ,Z is independent of Xj|Y ,Z for
i, j = 2, 3, . . . , N. In this context, condition (3.23) is violated, however, we can still demon-
strate that Y i is diversifiable. Indeed, it follows from (3.25) that Var

[
Y i

N

]
is given by

Var
[
Y i

N

]
=

∑N
i=1 E [Var [hi (Xi,Y ) | Y ,Z]] +

∑N
j=2 E [Cov [h1(X1,Y ), hj(Xj,Y ) | Y ,Z]]

N2
.
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Since Var [hi (Xi,Y )] < ∞ and Cov [h1(X1,Y ), hj(Xj,Y )] < ∞, we can conclude that

Var
[
Y i

N

]
→ 0 as N → ∞. We find that Y i

N
converges to 0 in probability as N → ∞. We

conclude that that conditional independence is not a necessary condition to show that the claim
Y i

N
is diversifiable.

Example 3.2 demonstrates that conditional independence is a sufficient but not necessary con-
dition to prove that Y i is diversifiable. In convtrast, as shown in Example 3.3, Y i may fail
to be diversifiable under certain conditions. In addition, Appendix A shows that when S is a
catastrophe-type liability, the payoff Y i is no longer diversifiable.

Example 3.3 (Non-diversifiability without conditional independence) We define liability S
as the aggregate claim amount where each policyholder has a claim Xi:

S =
N∑
i=1

Xi.

We assume Y = Y (0), i.e. there is only a risk-free bank account and no risky asset. For sim-
plicity, we take r = 0 and therefore Y (0) = 1. Furthermore, the random variable Z can be
represented as the systematic risk factor with P[Z = 1] = 1 − P[Z = 0] = p. Moreover,
assume that there are Bernoulli random variables I0 and I1 with success parameters p0 and p1,
respectively. The claim amounts Xi are given by

Xi = ZI1Wi + (1− Z)I0Vi,

where W = (W1, . . . ,WN) is multivariate normal with Corr [Wi,Wj] = ρ > 0 and Wi ∼
N (µ1, σ

2
1) with µ1 > 0. The random vector V is also multivariate normal, but now with

independent marginals and Vi ∼ N (0, σ2
0) . Lastly, we assume that Z, I1, I0,W ,V are all

independent of each other.

If we use that I1 is independent of Wi, I0 is independent of Vi, and E[Vi] = E[Wi] = 0, we find
that

E [Var [Xi|Z]] = p× p1 ×
(
σ2
1 + µ2

1 − p1µ
2
1

)
+ (1− p)× p0σ

2
0.

Using the single correlation ρ between the random variables Wi and Wj and the independence
between Vi and Vj , we find that the conditional covariance can be calculated as follows:

E [Cov [Xi, Xj|Z]] = p× p1 ×
(
ρσ2

1 + µ2
1 − p1µ

2
1

)
.

Therefore, Var
[
Y i

N

]
in this case is given by

Var

[
Y i

N

]
=

E [Var[Xi | Y , Z]] + (N − 1)× E [Cov [Xi, Xj | Y , Z]]

N

→ p× p1 ×
(
ρσ2

1 + µ2
1 − p1µ

2
1

)
> 0.

We can conclude that Var
[
Y i

N

]
does not converge to zero, indicating that Y i is not diversifiable

in this case.
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3.4 Illustration: pure endowment contract with profit

Consider a financial market consisting of a risk-free bank account and a risky stock market
fund. We consider an insurer holding a portfolio consisting of N policyholders. We assume
each policyholder has paid a premium P at the start of the contract which is fully invested in
the risky stock market fund. The time-T price vector is then given by Y =

(
erT , Y (1)

)
. The

time-0 market prices are given by
(
1, y(1)

)
. Under the physical measure P, we assume that the

log returns of the risky stock market fund can be described by a normal distribution:

log
Y (1)

y(1)
∼N

((
µf − 1

2
(σf )

2
)
T, (σf )

2T
)
. (3.27)

Each policyholder will receive an amount of 1 at maturity T , provided this policyholder is
alive. However, since the premium was invested in the risky fund, the investment might allow
the insurer to share some of the profits with the policyholder. Hence, the insurer will payout
α
(
Y (1) −K

)
+

on top of the defined benefit of 1 at maturity. Therefore, the aggregate liability
S is given by

S =
(
1 + α

(
Y (1) −K

)
+

)
×

N∑
i=1

Xi. (3.28)

Here, X1, X2, . . . , XN are identically distributed but not necessarily independent, Bernoulli
random variables, where Xi = 1 if policyholder i survives to maturity T and Xi = 0 otherwise.

Conditionally on a common systematic longevity risk Z ≤ 0, the Xi are i.i.d. with

P (Xi = 1 | Z = z) = ez. (3.29)

The factor Z has a positive effect on the longevity in the portfolio in that if Z increases, the
survival probabilities of the policyholders are increasing. If the dynamics of the longevity risk
Z is assumed to follow an Ornstein–Uhlenbeck process, then Z follows a normal distribution.
To ensure that ez is a well-defined probability, we censor the normal distribution from above at
0 and take

Z̃ ∼ N (µs, σ
2
s), Z =

{
Z̃, if Z̃ < 0,

0, if Z̃ ≥ 0,
(3.30)

and assume that log Y (1)

y(1)
and Z̃ are jointly normal with correlation ρ. For more details on this

type of product, we refer to Deelstra et al. (2020) and Linders (2023).

In the following proposition we give a closed-form expression for the mean-variance hedge of
the claim S given by (3.28).

Proposition 3.2 Consider the hybrid claim (3.28). The financial, systematic and actuarial risks
are described by (3.27), (3.30) and (3.29), respectively. The mean-variance hedge θMV

S =(
θ(0), θ(1)

)
in (3.19) is then given by

θ(1) =
CovP

[
Y (1), S

]
VarP [Y (1)]

, (3.31)

θ(0) = e−rT
(
EP [S]− θ(1)EP [Y (1)

])
, (3.32)
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where

EP [Y (1)
]

= y(1)eµfT , (3.33)

VarP
[
Y (1)

]
=

(
y(1)
)2

e2µfT
(
e(σf)

2
T − 1

)
, (3.34)

EP [S] = Neµs+
1
2
(σs)

2

[Φ (−c− σs)− αKΦ2 (d2 + ρσs,−c− σs,−ρ)]

+ Nαy(1)eµfT+µs+
1
2
(σs)

2+ρσsσf

√
TΦ2

(
d1 + ρσs,−c− ρσf

√
T − σs,−ρ

)
+ N (Φ (c)− αKΦ2 (d2, c, ρ))

+ Nαy(1)eµfTΦ2

(
d1, c+ ρσf

√
T , ρ

)
, (3.35)

EP [SY (1)
]

= Ny(1)eµfT+µs+
1
2
(σs)

2+ρσsσf

√
TΦ
(
−c− σs − ρσf

√
T
)

− NαKy(1)eµfT+µs+
1
2
(σs)

2+ρσsσf

√
TΦ2

(
d1 + ρσs,−c− σs − ρσf

√
T ,−ρ

)
+ Nα

(
y(1)
)2

e2µfT+(σf)
2
T+µs+

1
2
(σs)

2+2ρσsσf

√
TΦ2

(
d1 + σf

√
T + ρσs,−c− σs − 2ρσf

√
T ,−ρ

)
+ Ny(1)eµfT

[
Φ
(
c+ ρσf

√
T
)
− αKΦ2

(
d1, c+ ρσf

√
T , ρ

)]
+ Nα

(
y(1)
)2

e2µfT+(σf)
2
TΦ2

(
d1 + σf

√
T , c+ 2ρσf

√
T , ρ

)
, (3.36)

c =
µs

σs

, (3.37)

d1 =
log y(1) − logK +

(
µf +

1
2
(σf )

2)T
σf

√
T

, (3.38)

d2 =
log y(1) − logK +

(
µf − 1

2
(σf )

2)T
σf

√
T

, (3.39)

Φ(x) denotes the CDF for the standard normal distribution, and Φ2(x, y, τ) is the CDF of a
standard bivariate normal with correlation τ .

The proof of the Proposition 3.2 is given in Appendix B. The following proposition provides
a closed form expression for the random variables denoting the systematic parts of the hybrid
liability. The proof can be found in Appendix C.

Proposition 3.3 Consider the hybrid claim (3.28). The financial, systematic and actuarial risks
are described by (3.27), (3.30) and (3.29), respectively. The financial systematic part Y s

fin can
be expressed as

Y s
fin =N

(
1 + α

(
Y (1) −K

)
+

)
EP [eZ | Y (1)

]
− θ(0)erT − θ(1)Y (1) (3.40)

=N
(
1 + α

(
Y (1) −K

)
+

)[
Φ

(
m
(
Y (1)

)
s

)
+ em(Y

(1))+ s2

2 Φ

(
−m

(
Y (1)

)
s

− s

)]
− θ(0)erT − θ(1)Y (1),
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and the actuarial systematic part Y s
act can be expressed as

Y s
act =N

(
1 + α

(
Y (1) −K

)
+

)
×
(
eZ − EP [eZ | Y (1)

])
(3.41)

=N
(
1 + α

(
Y (1) −K

)
+

)[
eZ − Φ

(
m
(
Y (1)

)
s

)
− em(Y

(1))+ s2

2 Φ

(
−m

(
Y (1)

)
s

− s

)]
,

where

m
(
Y (1)

)
= µs + ρσs

log Y (1)

y(1)
−
(
µf − 1

2
(σf )

2)T
σf

√
T

, (3.42)

s = σs

√
1− ρ2. (3.43)

The quantity eZ is the realized survival probability, which is based on the particular longevity
risk scenario that eventually unfolds. The conditional expectation EP

[
eZ | Y (1)

]
corresponds

with the expected survival probability, taking into account a particular scenario for the risky
fund. Therefore, the difference between the two corresponds with the error that is caused be-
cause the survival probability turns out to deviate from our estimate, where we already took
into account the financial information. The actuarial systematic part Y s

act reflects the expected
payout of the liability that cannot be explained by the information contained in the risky fund.
The financial systematic part of the liability corresponds with what is left of the expected payoff
of the claim in a given scenario for the risky fund after we use the payout of the hedge to cover
the liability.

Proposition 3.4 Consider the hybrid claim (3.28). The financial, systematic and actuarial risks
are described by (3.27), (3.30) and (3.29), respectively. Then, the idiosyncratic part Y i is given
by

Y i = N
(
1 + α

(
Y (1) −K

)
+

)
×

(∑N
i=1 Xi

N
− eZ

)
. (3.44)

Proof. It follows directly from (3.4) and Proposition 3.3 that Y i is given by (3.44).

The idiosyncratic part measures the deviations of the experienced survival probability of the
portfolio with the realization of the survival probability in a given systematic scenario.

For different portfolio sizes N and correlations ρ, we simulate 50, 000 paths with parameter
values given in Table 1. The guaranteed amount at maturity is equal to 1 and we assume here
that the single premium paid for this contract was fully invested in the risky fund. The current
value of the equity fund is now y(1) = 0.7. Note that this could be generalized to a situation
where the insurer invests the premium in a portfolio consisting of bonds and the risky equity
fund. A bonus will be paid out once the equity fund is above the guaranteed amount. Therefore,
we put K = 1

We first consider a baseline scenario ρ = 0, N = 500, which corresponds to the case where
the financial asset Y (1) is independent of the non-traded systematic risk Z. Figure 1 presents
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µf σf T µs σs K α y(1) r

0.03 0.25 10 -0.28 0.0876 1 0.5 0.70 0.02

Table 1: Simulation parameters
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Figure 1: Decomposition of the simulated claim S across the first 50 paths (N = 500, ρ = 0): each
bar is stacked by contributions from Y h (hedgeable part), Y s

fin (financial systematic part), Y s
act (actuarial

systematic part), and Y i (idiosyncratic part).

a stacked bar plot illustrating how the different decomposition components contribute to the
claim S.

Each bar in Figure 1 represents the liability in a randomly generated scenario. The blue seg-
ment shows the realization of the hedgeable part Y h, which dominates almost all paths. By
the mean–variance hedge construction we have E[Y h] = E[S], so on average Y h fully matches
the liability. The orange bars depict the financial systematic part Y s

fin, which fluctuates above
and below zero with roughly symmetric magnitude. Its mean is approximately zero because
it represents the gap between the static hedge Y h and the conditional expectation E

[
S | Y (1)

]
It captures the ‘level of the incompleteness’ of the financial market. The green bars show the
actuarial systematic part Y s

act, which is even more tightly centered around zero. The expec-
tation of Y s

act is also close to 0, which captures the gap between the conditional expectation
EP
[
S | Y (1), Z

]
and the conditional expectation EP

[
S | Y (1)

]
. Finally, the purple bars repre-

sent the idiosyncratic part, which is vanishingly small at this scale. It arises from individual
survival randomness and, by diversification across a large portfolio, is nearly zero in every path.

3.4.1 Impact of N on the idiosyncratic part Y i

Figure 2 presents the histograms of the idiosyncratic part per policy for a small portfolio size
N = 100 and a large portfolio size N = 2000, under the assumption that financial and actu-
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arial risks are independent. Note, however, that the policyholder-specific risks X1, X2, . . . are
dependent, since they all depend on the systematic risk Z. These two histograms demonstrate
that the variance of Y i

N
converges to zero as the portfolio size increases, hence the idiosyncratic

part Y i is clearly diversifiable.
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Figure 2: Histograms of the per-policy idiosyncratic component Y i

N for varying N

3.4.2 Impact of the correlation ρ

We begin by examining how the correlation ρ between the traded asset Y (1) and the non-tradable
longevity risk (through the factor Z̃) affects the mean-variance hedge. Figure 3 plots the stock
hedge ratio θ(1) and the bank-account hedge ratio θ(0) as functions of ρ. From the figure it is
clear that θ(1) is always positive and increases with ρ, which follows directly from (3.31) since a
higher correlation raises CovP

[
Y (1), S

]
. Conversely, θ(0) decreases as ρ increases, as seen from

(3.32), θ(0) decreases as ρ increases, as seen from (3.32): because the total expected payoff
E[S] is given in (3.35), any additional hedge allocated to the stock position θ(1)E[Y (1)] must be
financed less through the bank account. In particular, CovP

[
Y (1), S

]
remains strictly positive

for all ρ, ensuring that θ(1) > 0 throughout.
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Figure 3: Mean–variance hedge ratios as functions of ρ.
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Meanwhile, to assess how the correlation ρ affects the components that consists of the non-
hedged part S − Y h, Figure 4 is presented to illustrate the effect of the correlation on the
variances of Y s

fin, Y s
act, and Y i.

Figure 4 shows that as |ρ| increases, the variance of the actuarial systematic part Y s
act decreases,

because the financial asset Y (1) contains more information about the systematic factor Z. More-
over, when ρ = 1 or ρ = −1, we can write

Z = a log
Y (1)

y(1)
+ b,

for some a, b ∈ R. Taking into account that Z has mean µs and variance σ2
s , we find that

Z =


σs

lnY (1) − ln y(1) −
(
µf − 1

2
(σf )

2
)
T

σf

√
T

+ µs, if ρ = 1,

−σs

lnY (1) − ln y(1) −
(
µf − 1

2
σ2
f

)
T

σf

√
T

+ µs, if ρ = −1.

It follows from (3.41) that

Y s
act = N

(
1 + α (Y (1) −K)+

) (
eZ − eZ

)
= 0.

Therefore, the variance of the actuarial systematic part goes to zero as |ρ| → 1. By contrast,
the per-policy variance of the idiosyncratic part Y i remains close to zero since we are holding
a large portfolio and Theorem 3.6 showed that in this case, the variance should be close to zero
as Y i is diversified.
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Figure 4: Per-policy (N = 500) variances of Y s
fin, Y s

act, and Y i as functions of ρ.

We now focus on the financial systematic part Y s
fin. From Figure 4 we find that the variance

of the financial systematic part decreases as the correlation ρ increases. Intuitively, this means
that the mean-variance hedge improves in capturing the financial risks of the hybrid claim as
the correlation increases. Figure 5 presents its histograms for various values of the correlation
ρ, and Table 2 reports the corresponding variance, skewness and excess kurtosis. In every case
the distribution is clearly right-skewed, and the skewness increases with ρ. Likewise, the excess
kurtosis is positive and grows with ρ, becoming particularly large at ρ = 0.8. Moreover, there is

23



ρ Var(Y s
fin) Skew(Y s

fin) Kurt(Y s
fin) Var(Y s

act) Skew(Y s
act) Kurt(Y s

act)

-0.8 2185.929 0.986 3.374 532.721 0.095 2.055
0.0 1709.578 1.164 10.133 1594.735 0.151 4.685
0.8 1612.502 1.928 29.350 616.501 -0.026 5.443

Table 2: Sample variance, skewness and excess kurtosis of Y s
fin and Y s

act for various values of ρ.

a finite lower bound for Y s
fin, which occurs when the stock price Y (1) equals the strike K; this

is evident in the curve of Y s
fin versus Y (1) in Figure 6.
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Figure 5: Histograms of the financial systematic part Y s
fin for various values of ρ.
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Figure 6: Y s
fin as a function of the stock price Y (1) for various values of ρ

Subsequently, we turn to the actuarial systematic part Y s
act and investigate how the correlation

ρ affects Y s
act. Figure 7 shows the histograms of Y s

act for various ρ, and Table 2 lists the cor-
responding sample variance, skewness, and excess kurtosis. Across all correlation levels, Y s

act

remains approximately centered around zero, with skewness close to zero, while its excess kur-
tosis increases with ρ. This behavior is quite intuitive: as ρ grows, Y (1) and Z are more likely
to move together, making Y s

res given in (3.41) prone to more extreme outcomes.
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Figure 7: Histograms of the actuarial systematic part Y s
act for various values of ρ.

4 4-step market-consistent valuation

In the previous section, we considered decomposition formulas for general claims in the set C.
In this section, we consider the valuation of such claims. As in Dhaene et al. (2017), a valuation
is a mapping ρ : C → R, which is normalized

ρ[0] = 0,

and translation-invariant

ρ[S + c] = ρ[S] + e−rT c, for any constant c ∈ R.

Solvency II requires that the valuation of liabilities should be market consistent.1 The concept
of market consistency was first introduced in Cont (2006) when pricing derivatives and further
explored in an insurance context in Malamud et al. (2008).

Definition 4.1 (Market-Consistent Valuation) A valuation ρ[·] is market consistent if for any
claim S ∈ C and trading strategies v, we have:

ρ[S + v · Y ] = ρ[S] + v · y. (4.1)

Market consistency of a valuation requires that all hedgeable claims, i.e., all claims that can be
expressed as linear combinations of the traded financial assets, be priced at their hedging costs.
It also implies that in order to price a hedgeable claim, market consistency prescribes that only
information from the financial market be used, see Cont (2006).

The actuarial approach to value claims is based on the best estimates and the risk margins. This
approach may be preferred for orthogonal claims, which are claims independent of the financial
market. We denote the set of orthogonal claims by C⊥. As in Dhaene (2022), we say that a
valuation ρ[·] is model consistent if we have that

ρ[S] = π[S], S ∈ C⊥, (4.2)
1Solvency II requires that the valuation of liabilities be market-consistent, meaning that it should reflect current

market information and be aligned with prices observed in deep, liquid, and transparent (DLT) markets.
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where π : C → R is an actuarial valuation, i.e. a valuation which is law invariant under the
probability measure P. Therefore, model consistency of a valuation implies that there exists
an actuarial valuation such that the model-consistent valuation coincides with this actuarial
valuation on the set of orthogonal claims. This concept was first introduced in Dhaene et al.
(2017).

Dhaene et al. (2017) introduce the class of hedge-based valuations. Moreover, it was shown that
this class of valuations coincides with the class of valuations which are both market and model
consistent, see also Dhaene (2022).

Definition 4.2 A valuation ρ[·] is a hedge-based valuation if there exists a fair hedger θ that is
both model- and market-consistent, and a model-consistent valuation π such that

ρ[S] = θS · y + π [S − θS · Y ] . (4.3)

Hedge-based valuations start from a fair hedging strategy θS for the claim S to determine the
hedging cost. The remaining residual part is then priced using a model-consistent valuation.
Note that the mean-variance hedger is both market- and model-consistent, see Dhaene (2022).
However, the hedger θ used in the hedge-based valuation does not necessarily need to be the
mean-variance hedger.

In this section we consider the valuation of hybrid claims S defined in (3.24). We decompose
this claim in four parts, where we use the mean-variance hedger to determine the hedgeable part
in the decomposition. We then find:

S = θMV
S · Y + Y i + Y s

fin + Y s
act,

where Y i, Y s
fin, and Y s

act are given by Expressions (3.4), (3.12), and (3.13), respectively. Then
using the hedge-based valuation, we find that the valuation of the claim S can be expressed as
follows

ρ[S] = θMV
S · y + π

[
Y i + Y s

fin + Y s
act

]
,

for some choice of the model-consistent valuation. Since the financial market is assumed to be
arbitrage-free, any risk-neutral measure Q can be used to express the value of the hedgeable
part θMV

S · y as a discounted risk-neutral expectation. We can then also express the value of the
liability as follows:

ρ[S] = e−rTEQ[Y h] + π
[
Y i + Y s

fin + Y s
act

]
,

where Q is a risk-neutral measure. Hence, market consistency states that we need to value the
hedgeable part at its hedging cost. However, in the following examples we show different ways
to value the systematic and idiosyncratic parts.

4.1 Example 1: valuation based on the standard-deviation principle

A first idea is to use an actuarial valuation to value the residual part. In this section, we use the
standard-deviation principle as the model-consistent valuation π:

π[S] = e−rT
(
EP[S] + λσP[S]

)
, (4.4)
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where λ ≥ 0 is a risk loading. Note that model consistency only requires a P-law invariance
valuation for the orthogonal claims. However, the valuation π given by (4.4) is always P-law
invariant. The corresponding valuation is a particular example of a hedge-based valuation, as
introduced in Dhaene et al. (2017) in a one-period setting, and further investigated in Barigou
et al. (2019), Barigou and Dhaene (2019), and Chen et al. (2021) in a multi-period setting.

Proposition 4.1 Consider the hedge-based valuation given in (4.2), where the hedger θ is given
by (3.19), and the actuarial valuation π is given by (4.4). The value of the insurance liability S
given by Expression (3.24) can be expressed as follows:

ρMV SD [S] = e−rTEQ[Y h] + λe−rT
√
VarP[Y i] + VarP[Y s

act] + VarP[Y s
fin]. (4.5)

Proof. It follows from (3.16) and (3.10) that

EP [Y i
]
= EP [Y s] = 0.

From Lemma 3.1, we find that

VarP
[
S − θMV

S · Y
]
= VarP

[
Y s
act + Y s

fin + Y i
]
= VarP[Y s

act] + VarP[Y s
fin] + VarP[Y i].

Therefore, it follows from (4.1) that ρMV SD[S] is given by (4.5).

A special case of the valuation in (4.5) is presented in Dhaene (2022, pp. 78–80), where a
product claim is considered and decomposed into a hedgeable part, a diversifiable part, and a
residual part. The risk Y h is managed using an appropriate hedging strategy. The first term
therefore represents the cost to set up this hedging strategy. Note that this cost is indifferent to
the choice of the risk neutral measure. The systematic and idiosyncratic parts are managed using
a capital buffer. Since we use the variance to build the capital buffer, this buffer is not affected
by the dependence between the idiosyncratic and the systematic parts. Otherwise stated, to
determine the capital buffer, we only need the distribution of the two systematic parts Y s

act and
Y s
fin together with the distribution of the idiosyncratic part Y i.

4.2 Example 2: valuation based on conditional standard-deviation prin-
ciple

Generally speaking, actuarial valuation principles, such as the standard-deviation principle in
(4.4), are P-law invariant and based on the assumption that actuarial risks are diversifiable.
Under the conditional independence assumption in (3.23), Theorem 3.6 demonstrates that the
actuarial component Y i becomes diversifiable as the number of policyholders increases. This
justifies the application of an actuarial valuation to Y i.

The valuation in (4.5) employs the standard-deviation principle to determine the capital buffer
for both the systematic part Y s and the diversifiable part Y i. The systematic part Y s consists
again of two parts: a financial part, as defined in (3.12), and a actuarial systematic part, as
defined in (3.13). Unlike Y i, the systematic part Y s is non-diversifiable, which means its per-
policy variance for the insurer will not converge to zero if the number of policyholders increases.
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Moreover, the financial part Y s
fin reflects pure financial risk. Therefore, one may consider a

different approach instead of using the standard-deviation principle to set the risk margin.

Observe that Y s
fin, Y s

act, and Y i all depend on Y . To more effectively manage traded financial
risks, one can use a conditional valuation such that the standard-deviation principle is only used
using a particular realization of the financial assets. To aggregate over all possible scenarios of
the financial assets, we assume that a risk-neutral measure Q can be specified.

π[S] = e−rT
(
EQ [EP[S | Y ] + λσP[S | Y ]

])
, (4.6)

where α ≥ 0 is a risk loading. The corresponding valuation of the claim S is then a two-step
valuation as introduced in Pelsser and Stadje (2014).

Proposition 4.2 Consider the hedge-based valuation given in (4.2), where the hedger θ is given
by (3.19), and the model-consistent valuation π is given by (4.6). The value of the insurance
liability S given by Expression (3.24) can be expressed as follows:

ρTSSD[S] = e−rTEQ [Y h + Y s
fin

]
+ λe−rTEQ

[√
VarP [Y s

act + Y i | Y ]

]
. (4.7)

Proof. It follows from (3.4), (3.12), and (3.13) that

EP [S − Y h | Y
]
= Y s

fin.

From (3.4) and (3.13), we get

VarP
[
S − Y h | Y

]
= VarP

[
Y s
act + Y i | Y

]
.

Therefore, we find that ρTSSD[S] is given as in (4.7).

Dhaene (2022, pp. 115–117) obtains two-step valuation of a product claim, in which the claim
is decomposed into hedgeable, diversifiable, and residual parts. This framework combines con-
ditional expectations and risk adjustments, offering a structured approach to risk management.

4.3 Example 3: Conic market-consistent valuation

Inspired by the examples in the previous two subsections, we will propose a new valuation in
this subsection. The mean-variance hedge based valuation (4.5) has the interesting property
that the risk margin is composed of marginal variances. Indeed, since we showed in Proposition
3.1 that our claim can be decomposed in four uncorrelated parts, building a risk margin based
on variances will not include the covariances. The two-step standard-deviation principle has
the advantage that the systematic financial part is valued under a financial valuation rather than
a real-world valuation. However, the value of this systematic financial part depends on the
choice of the Q measure. Moreover, the risk margin is not composed of marginal variances.
Therefore, in this section, we propose a valuation that takes a prudent approach when employing
a financial valuation for the systematic residual part, and that determines the risk margin using
only marginal variances.
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Assume that we have a claim S ∈ C. Then the best approximation in mean-variance sense of
the claim S in the set CY can be determined as follows:

Y f (S) = argmin
ξ∈CY

E
[
(S − ξ)2

]
.

Note that Y f depends solely on the realization of the traded assets Y , but it is not necessarily
a linear combination of the financial assets. Therefore, this claim Y f can be interpreted as a
financial derivative. Since the market is assumed to be incomplete the price of Y f may not be
unique. A counter party therefore may accept to provide the payoff Y f in return for a conser-
vative price. To take into account the incompleteness of the market, we therefore determine the
price using a supremum over a set P of possible risk-neutral measures Q. Therefore, the price
of the financial part of the hybrid claim S is determined as follows:

Price of Y f (S) = e−rT sup
Q∈P

EQ [Y f
]
,

for a given set P . This idea is similar to the bid-ask pricing that is applied in conic finance; see,
e.g., Madan and Cherny (2010) and Madan and Schoutens (2016). The claim Y f is a financial
claim, but not necessarily hedgeable. However, the ‘market’ is considered as a counterparty that
is willing to accept Y f , but only in return for a price that makes the cashflow acceptable for the
‘market’.

We can now define a new model-consistent valuation:

π[S] = e−rT sup
Q∈P

EQ [Y f
]
+ e−rT

(
EP [S − Y f

]
+ λσP [S − Y f

])
. (4.8)

For an orthogonal claim, the model-consistent valuation π defined in (4.8) coincides with
the standard-deviation principle (4.4), and hence π is indeed model consistent. The model-
consistent valuation is used in the hedge-based valuation (see Definition 4.2) to determine a
price for the part of the claim that cannot be hedged. The model-consistent valuation we
propose in (4.8) valuates the financial part by using a non-linear financial valuation to take
into account the incompleteness of the market, whereas the remaining part is valuated using a
standard-deviation principle.

Theorem 4.1 Consider the hedge-based valuation given in (4.2) where the hedger θ is given
by (3.19), and the model-consistent valuation π is given by (4.8). The value of the insurance
liability S given by (3.24) can be expressed as follows:

ρCMC [S] = e−rT sup
Q∈P

EQ [Y h + Y s
fin

]
+ λe−rT

√
VarP [Y i] + VarP [Y s

act], (4.9)

where Y h is determined using (3.1) with a fair hedger θ, and Y i, Y s
act, and Y s

fin are given by
(3.4), (3.13), and (3.12), respectively. Then, ρCMC [·] is a fair valuation.

Proof. If we use the mean-variance hedger, the valuation of the claim S is given by

ρCMC [S] = e−rTEQ [Y h
]
+ π

[
S − Y h

]
,
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with π given by (4.8). One can show that

Y s
fin = argmin

ξ∈CY

E
[(
S − Y h − ξ

)2]
.

Note that S − Y h − Y s
fin = Y i + Y s

act and EP [Y i + Y s
act] = 0. Taking into account that Y i and

Y s
act are uncorrelated, we find the desired result.

4.4 Illustration: 4-step market-consistent valuation for the pure endow-
ment contract with profit

Building on the example from Section 3.4, we now employ the 4-step market-consistent valua-
tion framework outlined above to value a pure endowment contract with profit. We still consider
the aggregate liability S as defined in (3.28). Closed-form expressions exist for the MSVD val-
uation in (4.5) of S, as shown in Appendix D.1. It is important to note that this valuation is
independent of the specific choice of the risk-neutral measure. Both the two-step valuation
and the conic market-consistent valuation involve calculating the risk-neutral expectation of the
financial component of the hybrid claim. However, since the market is incomplete, multiple
risk-neutral measures may exist. The financial model introduced in (3.27) depends on two pa-
rameters. Because the martingale condition must hold for each risk-neutral measure Q, we can
characterize each Q by its risk-neutral volatility parameter σQ.

When ρ = 0, it is straightforward to verify that EQ
[
Y h + Y s

fin

]
increases as σQ increases and

approaches a constant limit N
(
eµs+

1
2
(σs)2Φ(−c− σs) + Φ(c)

)(
1 + αy(1)erT

)
as σQ −→ ∞.

If ρ ̸= 0, using Proposition D.1 and the parameters in Table 1, Figure 8 plots EQ
[
Y h + Y s

fin

]
as

a function of σQ for different values of ρ. From Figure 8, we find that for non-zero correlation,

0 1 2 3 4 5 6
Risk-neutral volatility Q

200

250

300

350

400

450

500

550

600

EQ
[Y

h
+

Ys fin
]

= 0
= 0.80
= 0.40
= 0.40
= 0.80

Figure 8: EQ
[
Y h + Y s

fin

]
as functions of σQ for various values of ρ (N = 500), the dashed line

corresponds with σQ = σf .
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the risk-neutral expectation EQ
[
Y h + Y s

fin

]
initially increases in σQ, attains a unique maximum

at an interior point σQ∗ , and then decreases as σQ grows further. In contrast, when ρ = 0,
EQ
[
Y h + Y s

fin

]
increases monotonically and approaches a constant limit as σQ −→ ∞, so

there is no finite interior maximizer. Consequently, if σQ is restricted to an interval Σ, the
maximum value is achieved at the interior point σQ∗ when ρ ̸= 0 and σQ∗ ∈ Σ, or otherwise
at the right endpoint of the interval Σ that yields the larger expectation; for ρ = 0, the worst-
case expectation always occurs at the upper endpoint, or at the asymptote if Σ is unbounded
above. Note also that for relatively small values of σQ, the risk-neutral expectation EQ

[
Y h +

Y s
fin

]
increases as a function of the correlation, whereas the reverse relationship holds for large

volatilities σQ.

For the conditional standard-deviation principle given in (4.6) we choose the risk-neutral mea-
sure with σQ = σf , under which the time-T distribution of the stock price matches that of the
classic geometric Brownian motion model. The TSSD valuation in (4.7) of S also admits a
closed-form expression, as shown in Appendix D.2. In order to determine the conic market-
consistent value (4.9), we employ the closed-form expressions for the variance Var [Y i + Y s

act]
derived in Appendix D.3 together with the closed-form expression for EQ

[
Y h + Y s

fin

]
, but now

for various choices of σQ in order to determine the supremum.

4.4.1 Comparison of 4-step market-consistent valuation principles

Using the parameters in Table 1, we fix the risk loading at λ = 0.3 for all three valuation
principles: the standard-deviation principle (4.4), the conditional expectation principle (4.6),
and the conic market-consistent valuation (4.8). To compare these valuations, we take the time-
0 mean-variance hedge value as a benchmark and consider the per-policy value ρ[S]

N
. Under

the conditional standard-deviation principle we take Q with σQ = σf , while under the new
market-consistent principle we restrict σQ to the interval Σ = (95%σf , 105%σf ).
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Figure 9: Comparison of 4-step market-consistent valuations (MVSD, TSSD, CMC) across correlation
ρ: the left panel (a) shows raw valuation levels, and the right panel (b) shows each valuation normalized
to the MV hedge (100%).

From Figure 9(a), all three market-consistent valuations (MVSD, TSSD, and CMC) increase as
the correlation ρ rises. A larger ρ strengthens the hedge by increasing the covariance between
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the stock Y (1) and the systematic factor Z, which raises the mean variance hedge value. Equiv-
alently, as ρ grows, asset and liability co-move more closely, making larger liability realizations
more likely and, therefore, increasing the expected payoff. Since the mean-variance hedge has
the same expectation as the liability, increasing the correlation will drive up each valuation.

The difference between the value of the mean-variance hedge (blue line) and the value under
the different valuations represents the capital buffer that is required for holding non-hedged
liabilities. We find that MVSD consistently requires the smallest capital buffer, with TSSD
only marginally higher. CMC starts below TSSD at negative ρ but overtakes both MVSD and
TSSD as ρ increases. Moreover, under MVSD and TSSD the buffer for the unhedgeable part
remains nearly constant across ρ, whereas under CMC it increases with ρ.

The conic market-consistent valuation increases as the correlation ρ increases. This behavior
can be observed in Figure 8, where the interval Σ is chosen such that we remain on the left
side of the plot. In this region, the expectation EQ

[
Y h + Y s

fin

]
consistently increases with ρ.

However, if the size of the interval Σ were sufficiently enlarged, the conic market-consistent
valuation would drastically increase, but would then become a decreasing function of the cor-
relation.

Recall from Figure 5 and Table 2 that the skewness and kurtosis of the financial systematic part
Y s
fin increase with ρ, and can become quite large for high ρ. Figure 9(b) shows each valuation

as a percentage of the MV hedge (100%). Under MVSD and TSSD, this buffer ratio stays flat
or even declines at high ρ. In contrast, the CMC ratio increases steadily with ρ, indicating that
this method can allocate a larger capital buffer to the unhedgeable part in response to stronger
co-movement between the financial asset and the aggregate liability.

5 Applications of 4-step decomposition for product claims

In this section, we focus on a specific setting where the claims are product claims, i.e. we specify
the function hi in Expression (3.24) to be the product of a financial part and an actuarial part.
To simplify the analysis, we assume that the N policyholders select their payoff functions fi
from a finite set of m distinct functions, where m ≤ N . In this setting, the policyholders are
grouped such that all individuals within the same group share the same payoff function. Let
fj(Y ) denote the payoff function for group j ∈ {1, 2, . . . ,m}, and let Nj represent the number
of policyholders in group j, satisfying:

∑m
j=1Nj = N.

Using this grouping, the claim for the k-th policyholder in group j can be expressed as fj(Y )×
Xjk, where Xjk represents the policyholder-specific variable for the k-th policyholder in group
j. The aggregate claim S can now be expressed as follows:

S =
m∑
j=1

Nj∑
k=1

fj(Y )×Xjk. (5.1)

For simplicity, we will sometimes use the shorthand notation fj to denote fj(Y ).

We also assume that the systematic risk vector Z is independent of the financial assets Y .
Conditional on Z = z, the actuarial risks Xjk, for j = 1, 2, . . . ,m and k = 1, 2, . . . , Nj , are in-
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dependent and identically distributed. Moreover, given that Z = z, these risks are conditionally
independent of the financial assets, i.e., Xjk ⊥ Y

∣∣Z = z.

The mean-variance hedger will be used to determine the hedgeable part of the claim. We will
then use Expressions (3.1), (3.4), (3.13), and (3.12) to decompose the aggregate claim S as
follows:

S = Y h + Y i + Y s
act + Y s

fin,

where

Y h =
m∑
j=1

θMV
fj

· Y ×NjE[X1],

Y i =
m∑
j=1

Nj∑
k=1

fj (Xjk − E[X1|Z]) ,

Y s
fin =

m∑
j=1

(
fj − θMV

fj
· Y
)
NjE [X1] ,

Y s
act =

m∑
j=1

Njfj (E [X1|Z]− E [X1]) .

This decomposition generalizes the special case considered in Example 3.1, where the setting
involves a single payoff function (m = 1). If we use the mean–variance hedge to determine
which part of the hybrid claim will be covered using a hedging strategy, the systematic financial
component Y s

fin is driven by the difference between the (non-linear) financial payoff fj and its
hedge θMV

fj
· Y . This difference represents the unhedgeable portion of the financial risk. As

the hedging strategy becomes more accurate, the systematic component decreases. However,
in an incomplete market, selling non-linear payoff functions that cannot be perfectly replicated
comes with a risk, captured by the residual financial part. The actuarial systematic part Y s

act

considers the deviations of the expectation of the actuarial risk in a given systematic scenario,
from its unconditional counterpart, i.e. aggregated over all possible systematic scenarios.

We can use this decomposition to determine the value of the product claim (5.1). We start
by using Expression (4.5) for the mean-variance standard deviation principle. The per-policy
MVSD value of the claim S defined in (5.1) can then be expressed as:

ρMVHB[S]

N
=

e−rT

N

m∑
j=1

θMV
fj

· Y 0 ×NjE[X1] +
λe−rT

N

√
A+B + C, (5.2)
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where

A =
m∑
j=1

NjEP [fj(Y )2
]
EP [VarP [X1 | Z]

]
, (5.3)

B = EP

( m∑
j=1

fj(Y )Nj

)2
VarP

[
EP [X1 | Z]

]
, (5.4)

C = VarP
[

m∑
j=1

(
fj − θMV

fj
· Y
)
NjE[X1]

]
. (5.5)

The first term in (5.2) represents the cost of the mean-variance hedge. The financial payoff
fj is hedged based on the expected number of financial payouts. The term A represents the
aggregate capital buffer required to cover the idiosyncratic part of the hybrid claim. This term
grows linearly with the number of policyholders, hence it will vanish in the per-policy case.
The term B takes into account the fluctuations of the conditional expectation, and therefore
corresponds with the aggregate capital buffer to cover the actuarial systematic part. Finally,
term C quantifies the unhedgeable financial risk, representing the systematic financial part.

We also consider the valuation under the two-step standard deviation principle using Expression
(4.7). Assume we fix a pricing measure Q, then the per-policy TSSD value of the aggregate
claim S can then be expressed as

ρTS[S]

N
=

e−rT

N

m∑
j=1

NjEP [X1] · EQ [fj(Y )] +
λe−rT

N
EQ
[√

D + E
]
, (5.6)

where

D =
m∑
j=1

Njfj(Y )2EP [VarP [X1 | Z]
]
,

E =

(
m∑
j=1

fj(Y )Nj

)2

VarP
[
EP [X1 | Z]

]
.

The term EQ [fj(Y )] represents the price of the financial payoff under the chosen pricing mea-
sure Q. Note that in an incomplete market, a trading strategy to replicate this payoff may not
exist. The terms D and E are used to determine the capital buffers for the idiosyncratic and
actuarial systematic parts, respectively. Note that both D and E are random variables which
depend on the realization of the financial risks Y .

Lastly, we also determine the value of the hybrid liability using the conic market-consistent val-
uation by Expression (4.9). The per-policy value of the aggregate claim S can then be expressed
as

ρ[S]

N
=

e−rT

N
sup
Q∈P

EQ

[
m∑
j=1

NjEP [X1] · fj(Y )

]
+

λe−rT

N

√
A+B, (5.7)

where A and B are given by (5.3) and (5.4), respectively. Note that the first term of Expression
(5.7) represents the hedging of the financial payoff, taking into account the uncertainty about
the pricing measure. The capital buffer to account for the non-financial risks is then similar to
the valuation derived in (5.2).
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6 Conclusion

In this paper, we developed a comprehensive framework for managing hybrid liabilities that
intertwine financial and actuarial risks, addressing the challenges of disentangling, pricing,
and mitigating these complex risks. We propose a four-step decomposition of liabilities into
hedgeable financial risks, diversifiable actuarial risks, non-hedged residual financial risks, and
non-diversifiable systematic risk. In this way, we shed light on the interplay between financial
and actuarial markets. Our framework incorporates correlations between these markets and ac-
counts for heterogeneity in policyholder-specific risks, making it applicable to a wide range of
financial and insurance products.

The key contribution of this paper lies in its ability to bridge the gap between actuarial and
financial valuation theories, offering a market- and model-consistent valuation framework that
is both practical and robust. Such a valuation framework is called “fair” in Dhaene et al. (2017).
This framework enables insurers, pension funds, and financial institutions to manage hybrid
liabilities more effectively, ensuring accurate pricing, improved risk mitigation, and regulatory
compliance. The provided examples illustrate the applicability of our approach in a real-world
contract, highlighting its versatility and utility.

Future research could explore further refinements to the framework, such as incorporating ad-
ditional layers of risk or adapting it to emerging financial instruments. Additionally, empirical
studies could validate the framework’s effectiveness in different market conditions and regu-
latory environments. Ultimately, this paper lays a foundation for the management of hybrid
liabilities, contributing to the ongoing evolution of risk management practices in the financial
and insurance sectors.
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Appendix

A Non-diversifiable Y i of a catastrophe liability S

Consider an insurance company with N policyholders, each having an individual loss Xi. The
aggregate claim is given by S =

∑N
i=1 Xi, We assume there is a single systematic risk factor,

denoted by Z. The random variable Z can be interpreted as a catastrophe risk for a region,
defined as

Z =

{
1, if a catastrophe occurs;
0, otherwise,

where P[Z = 1] = p, with p ∈ (0, 1). Additionally, for i = 1, 2, . . . , N, we assume that Xi|Z
is independent of Y |Z. Conditioned on Z = 1, we have

Xi|Z = 1
d
=

{
0, with probability 1− p1;
X1

LN , with probability p1,

where X1
LN ∼ Lognormal(µ1, σ1). Moreover, for any i ̸= j, Corr [Xi, Xj | Z = 1] = ρ, where

ρ > 0. Alternatively, conditioned on Z = 0, we have

Xi|Z = 0
d
=

{
0, with probability 1− p0
X0

LN , with probability p0,
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where X1
LN ∼ Lognormal(µ0, σ0), with µ0 < µ1 and p0 < p1. Furthermore, Xi|Z = 0 is

independent of Xj|Z = 0, for any i ̸= j.

Note that, in this case, although Xi|Y , Z = 0 is independent of Xj|Y , Z = 0 for i ̸= j,
conditional independence does not hold in general, as Xi|Y , Z = 1 is positively correlated
with Xj|Y , Z = 1. We can find that

Var [Xi | Y , Z = 1] = p1 × e2µ1+2σ2
1 − p21 × e2µ1+σ2

1 ,

Var [Xi | Y , Z = 0] = p0 × e2µ0+2σ2
0 − p20 × e2µ0+σ2

0 .

Hence, E [Var[Xi | Y , Z]] < ∞, and it is given by

E [Var[Xi | Y , Z]] = p× p1 × e2µ1+σ2
1 × (eσ

2
1 − p1) + (1− p)× p0 × e2µ0+σ2

0 × (eσ
2
0 − p0).

Additionally, we have that

Cov [Xi, Xj | Y , Z = 1] = ρ×
(
p1e

2µ1+2σ2
1 − p21e

2µ1+σ2
1

)
,

Cov [Xi, Xj | Y , Z = 0] = 0.

Then E [Cov [Xi, Xj | Y , Z]] < ∞, and it is given by

E [Cov [Xi, Xj | Y , Z]] = p× ρ× p1e
2µ1+σ2

1 × (eσ
2
1 − p1).

Therefore, Var
[
Y i

N

]
in this case is given by

Var

[
Y i

N

]
=

N × E [Var[Xi | Y , Z]] +N × (N − 1)× E [Cov [Xi, Xj | Y , Z]]

N2

=
E [Var[Xi | Y , Z]] + (N − 1)× E [Cov [Xi, Xj | Y , Z]]

N
.

As N → ∞, it is straightforward to see

lim
N→∞

Var

[
Y i

N

]
= E [Cov [Xi, Xj | Y , Z]] = p× ρ× p1e

2µ1+σ2
1 × (eσ

2
1 − p1).

Since Var
[
Y i

N

]
does not approach 0 as N → ∞, it follows that Y i

N
does not converge to 0 in

probability.

B Proof of Proposition 3.2

From (3.27) and (3.28) we immediately obtain EP[Y (1)] and VarP[Y (1)] as given in (3.33) and
(3.34). Set X = log Y (1) with

X ∼ N
(
log y(1) +

(
µf − 1

2
(σf )

2
)
T, (σf )

2T
)
.
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Thus (X, Z̃) is bivariate normal with

µ =

[
log y(1) +

(
µf − 1

2
(σf )

2
)
T

µs

]
, Σ =

[
(σf )

2T ρ σf σs

√
T

ρ σf σs

√
T (σs)

2

]
.

Using definition (3.28),

EP[S] = N

∫ 0

−∞

∫ ∞

−∞
ez fX,Z̃(x, z) dxdz +Nα

∫ 0

−∞

∫ ∞

logK

(ex −K) ez fX,Z̃(x, z) dxdz

+N

∫ ∞

0

∫ ∞

−∞
fX,Z̃(x, z) dxdz +Nα

∫ ∞

0

∫ ∞

logK

(ex −K) fX,Z̃(x, z) dxdz.

Consider

I =

∫ 0

−∞

∫ ∞

logK

ex+z fX,Z̃(x, z) dxdz.

Let x = (x, z)⊤ and L⊤ = (1, 1). Then we have that,

eL
⊤xe−

1
2
(x−µ)⊤Σ−1(x−µ) = eL

⊤µ+
1
2
L⊤ΣLe−

1
2
(x−µ∗)⊤Σ−1(x−µ∗),

where

µ∗ = µ+ΣL =

[
log y(1) +

(
µf +

1
2
(σf )

2
)
T + ρ σf σs

√
T

µs + (σs)
2 + ρ σf σs

√
T

]
.

Hence
I = eL

⊤µ+
1
2
L⊤ΣLP

(
X∗ ≥ logK, Z̃∗ < 0

)
,

with (X∗, Z̃∗) ∼ N (µ∗,Σ). Using d1 and c from (3.38) and (3.37),

I = y(1)eµfT+µs+
1
2
(σs)2+ρσfσs

√
T Φ2

(
d1 + ρσs,−c− ρσf

√
T − σs,−ρ

)
,

where Φ2 is the standard bivariate normal CDF.

Applying the same steps to the remaining integrals yields (3.35) for EP[S] and (3.36) for
EP[S Y (1)]. Therefore, by substituting (3.33), (3.34), (3.35), and (3.36) in (3.31) and (3.32),
we can derive the closed-form expressions for θMV

S .

C Proof of Proposition 3.3

It follows directly from (3.12) that

Y s
fin = EP

[(
1 + α

(
Y (1) −K

)
+

) N∑
i=1

Xi

∣∣∣∣ Y (1)

]
− θ(0)erT − θ(1)Y (1)

=
(
1 + α

(
Y (1) −K

)
+

)
EP

[
EP

[
N∑
i=1

Xi

∣∣∣∣ Y (1), Z

] ∣∣∣∣ Y (1)

]
− θ(0)erT − θ(1)Y (1)

= N
(
1 + α

(
Y (1) −K

)
+

)
EP [eZ | Y (1)

]
− θ(0)erT − θ(1)Y (1).
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Write Z = Z̃ 1{Z≤0} + 01{Z>0}. Then

EP [eZ | Y (1)
]

= EP
[
eZ̃1{Z≤0} | Y (1)

]
+ P

[
Z̃ > 0 | Y (1)

]
.

Since Z̃ and log Y (1) are jointly normal with correlation ρ, we have Z̃ | Y (1) ∼ N
(
m
(
Y (1)

)
, s2
)
,

with m
(
Y (1)

)
and s given in (3.42) and (3.43).It is straightforward to find that Y s

fin can be ex-
pressed as (3.40).

Meanwhile, from (3.13) we obtain

Y s
act =

(
1 + α

(
Y (1) −K

)
+

)(
EP

[
N∑
i=1

Xi

∣∣∣∣ Y (1), Z

]
− EP

[
N∑
i=1

Xi

∣∣∣∣ Y (1)

])
= N

(
1 + α

(
Y (1) −K

)
+

) (
eZ − EP [eZ | Y (1)

])
Using (3.40) for the conditional expectation then yields (3.41).

D Closed-form expressions for 4-step market-consistent val-
uations

D.1 MVSD valuation

The MVSD valuation in (4.5) of S admits a closed-form expression, since

ρMV SD[S] = θ(0)y(0) + θ(1)y(1) + λe−rTVarP
[
Y s
fin + Y s

act + Y i
]
,

and
VarP

[
Y s
fin + Y s

act + Y i
]
= EP[S2]−

(
EP[S]

)2 − (θ(1))2VarP [Y (1)
]
, (D.1)

where θ(0), θ(1) are given by (3.32) and (3.31), EP[S] follows from (3.35),VarP
[
Y (1)

]
is given

by (3.34), and EP[S2] can be expressed as

EP[S2]

= Neµs+
1
2
(σs)2Φ(−c− σs) +N(N − 1)e2µs+2(σs)2Φ(−c− 2σs) +N2Φ(c)

+ Nα2
(
y(1)
)2

e2µfT+(σf )
2T
[
NΦ2

(
d1 + σf

√
T , c+ 2ρσf

√
T , ρ

)
+ eµs+

1
2
(σs)2+2ρσsσf

√
TΦ2

(
d1 + σf

√
T + ρσs,−c− σs − 2ρσf

√
T ,−ρ

)]
+ 2Nα(1− αK)y(1)eµfT+µs+

1
2
(σs)2+ρσsσf

√
TΦ2

(
d1 + ρσs,−c− σs − ρσf

√
T ,−ρ

)
+ NαK(αK − 2)

[
eµs+

1
2
(σs)2Φ2 (d2 + ρσs,−c− σs,−ρ) +NΦ2 (d2, c, ρ)

]
+ N(N − 1)α2

(
y(1)
)2

e2µfT+(σf )
2T+µs+2(σs)2+4ρσsσf

√
TΦ2

(
d1 + σf

√
T + 2ρσs,−c− 2σs − 2ρσf

√
T ,−ρ

)
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+ 2N2α(1− αK)y(1)eµfTΦ2

(
d1, c+ ρσf

√
T , ρ

)
+ 2N(N − 1)α(1− αK)y(1)eµfT+2µs+2(σs)2+2ρσsσf

√
TΦ2

(
d1 + 2ρσs,−c− 2σs − ρσf

√
T ,−ρ

)
+ N(N − 1)αK(αK − 2)e2µs+2(σs)2Φ2 (d2 + 2ρσs,−c− 2σs,−ρ) . (D.2)

Here, c, d1, d2 are given by (3.37), (3.38), and (3.39), respectively.

Let P denote the set of equivalent martingale measures, each uniquely determined by its risk-
neutral volatility σQ > 0. Under any Q ∈ P , the time-T stock price Y (1) satisfies

log
Y (1)

y(1)
∼ N

((
r − 1

2
σ2
Q
)
T, σ2

QT
)
,

so that e−rTY (1) is a Q-martingale and no-arbitrage requires σQ > 0. Hence the maximal
admissible set is

Pmax =
{
Q(σ) : σ > 0

}
.

In applications one typically restricts to a feasible subset by prescribing an interval Σ ⊂ (0,∞),
yielding

P =
{
Q(σ) : σ ∈ Σ

}
.

The following Proposition demonstrates that EQ
[
Y h + Y s

fin

]
admits a closed-form expression

that depends only on the risk-neutral volatility σQ.

Proposition D.1 Let Q ∈ P be any risk-neutral measure with volatility σQ ∈ Σ.

• If ρ = 0, then the risk-neutral expectation of Y h + Y s
fin can be expressed as

EQ [Y h + Y s
fin

]
= N

(
eµs+

1
2
(σs)2Φ(−c− σs) + Φ(c)

)[
1 + αemQ+

vQ
2 Φ

(
− logK +mQ + vQ√

vQ

)
− αKΦ

(
− logK +mQ√

vQ

)]
. (D.3)

• If ρ ̸= 0, then the risk-neutral expectation of Y h + Y s
fin can be expressed as

EQ [Y h + Y s
fin

]
= N

[
Φ

(
a1 + bmQ√
1 + b2vQ

)
− αKΦ2

(
a1 + bmQ√
1 + b2vQ

,
− logK +mQ√

vQ
, ρ1

)

+ αemQ+
vQ
2 Φ2

(
a1 + bmQ + bvQ√

1 + b2vQ
,
− logK +mQ + vQ√

vQ
, ρ1

)]

+ Nea1s+
s2

2
+bsmQ+

b2s2

2
vQ

[
Φ

(
a2 − b2svQ − bmQ√

1 + b2vQ

)
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+ αemQ+(bs+
1
2
)vQΦ2

(
a2 − (b2s+ b)vQ − bmQ√

1 + b2vQ
,
− logK +mQ + bsvQ + vQ√

vQ
,−ρ1

)

− αKΦ2

(
a2 − b2svQ − bmQ√

1 + b2vQ
,
− logK +mQ + bsvQ√

vQ
,−ρ1

)]
. (D.4)

Here c is given by (3.37), s is given by (3.43), and

mQ = ln y(1) +
(
r − 1

2
(σQ)

2
)
T, vQ = (σQ)

2T,

b =
ρ

σf

√
(1− ρ2)T

, ρ1 =
b
√
vQ√

1 + b2vQ
,

a1 =
µs

σs

√
1− ρ2

− b
ln y(1) + (µf − 1

2
σ2
f )T

σf

√
T

, a2 = − a1 − s.

Proof. Let X = log Y (1). Under any risk-neutral measure Q with volatility σQ ∈ Σ, X ∼
N (mQ, vQ) with

mQ = log y(1) +
(
r − 1

2
(σQ)

2
)
T, vQ = (σQ)

2T.

If ρ = 0, then EQ
[
Y h + Y s

fin

]
can be written as

EQ [Y h + Y s
fin

]
= N

(
eµs+

1
2
(σs)2Φ(−c− σs) + Φ(c)

)(
1 + αEQ [(eX −K)+

])
,

where c is given in (3.37). Hence, it is straightforward that EQ
[
Y h + Y s

fin

]
can be expressed as

(D.3).

If ρ ̸= 0, then EQ
[
Y h + Y s

fin

]
can be written as

EQ [Y h + Y s
fin

]
= NEQ

[(
1 + α

(
eX −K

)
+

)
Φ(a1 + bX)

]
+ Nea1s+

s2

2 EQ
[(

1 + α
(
eX −K

)
+

)
ebsXΦ(a2 − bX)

]
.

Since EQ
[(

1 + α
(
eX −K

)
+

)
Φ(a1 + bX)

]
can be expressed as

EQ
[(

1 + α
(
eX −K

)
+

)
Φ(a1 + bX)

]
=

∫ ∞

−∞
Φ(a1 + bx)fQ

X(x)dx

+ α

∫ ∞

logK

exΦ(a1 + bx)fQ
X(x)dx

− αK

∫ ∞

logK

Φ(a1 + bx)fQ
X(x)dx.

Let W ∼ N (0, 1) be independent of X . Then∫ ∞

−∞
Φ(a1 + bx)fQ

X(x)dx = P (W − bX ≤ a1) .
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Note that W − bX ∼ N (−bmQ, 1 + b2vQ), we have that∫ ∞

−∞
Φ(a1 + bx)fQ

X(x)dx = Φ

(
a1 + bmQ√
1 + b2vQ

)
.

Additionally, for j = 0, 1, we find that∫ ∞

logK

ejxΦ(a1 + bx)fQ
X(x)dx = ejmQ+

j2vQ
2 P (W − bX∗ ≤ a1,−X∗ ≤ − logK) ,

where X∗ is independent of W , and X∗ ∼ N (mQ + jvQ, vQ). Then

W − bX∗ ∼ N (−bmQ − jbvQ, 1 + b2vQ),

and

CorrQ(W − bX,−X) =
b
(
EQ [X2]−

(
EQ [X]

)2)√
1 + b2vQ

√
vQ

=
b
√
vQ√

1 + b2vQ
.

Hence,∫ ∞

logK

ejxΦ(a1+bx)fQ
X(x)dx = ejmQ+

j2vQ
2 Φ2

(
a1 + bmQ + jbvQ√

1 + b2vQ
,
− logK +mQ + jvQ√

vQ
,

b
√
vQ√

1 + b2vQ

)
,

where Φ2 is the bivariate normal CDF with the stated correlation.

Repeating the same steps for the second expectation yields (D.4).

D.2 TSSD valuation

The TSSD valuation in (4.7) of S admits a closed-form expression, since

ρTSSD[S] = e−rTEQ [Y h + Y s
fin

]
+ λe−rTEQ [VarP [Y s

act + Y i | Y (1)
]]
,

where EQ
[
Y h + Y s

fin

]
admits a closed-form expression as shown above, and EQ

[
VarP

[
Y s
act + Y i | Y (1)

]]
can be written as

EQ [VarP [Y s
act + Y i | Y (1)

]]
= NEQ

[
f
(
Y (1)

)2 EP [eZ | Y (1)
]]

+ N(N − 1)EQ
[
f
(
Y (1)

)2 EP [e2Z | Y (1)
]]

− N2EQ
[
f
(
Y (1)

)2 (EP [eZ | Y (1)
])2]

, (D.5)

where
f
(
Y (1)

)
= 1 + α

(
Y (1) −K

)
+
.

When ρ = 0, EQ
[
VarP

[
Y s
act + Y i | Y (1)

]]
can be further simplified to

EQ [VarP [Y s
act + Y i | Y (1)

]]
= NEQ

[
f
(
Y (1)

)2] (EP[eZ ] + (N − 1)EP[e2Z ]−N
(
EP[eZ ]

)2)
, (D.6)
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where

EQ
[
f
(
Y (1)

)2]
= 1 + α2e2mQ+2vQΦ

(
− logK +mQ + 2vQ√

vQ

)
+ 2α(1− αK)emQ+

vQ
2 Φ

(
− logK +mQ + vQ√

vQ

)
+ αK(αK − 2)Φ

(
− logK +mQ√

vQ

)
, (D.7)

and for j = 1, 2, EP
[
ejZ
]

is given by

EP [ejZ] = ejµs+
j2

2
(σs)2Φ(−c− jσs) + Φ(c). (D.8)

When ρ ̸= 0, for j = 1, 2, EQ
[
f
(
Y (1)

)2 EP
[
ejZ | Y (1)

]]
can be expressed as

EQ
[
f
(
Y (1)

)2 EP [ejZ | Y (1)
]]

= Φ

(
a1 + bmQ√
1 + b2vQ

)
+ α2e2mQ+2vQΦ2

(
a1 + bmQ + 2bvQ√

1 + b2vQ
,
− logK +mQ + 2vQ√

vQ
, ρ1

)

+ 2α(1− αK)emQ+
vQ
2 Φ2

(
a1 + bmQ + bvQ√

1 + b2vQ
,
− logK +mQ + vQ√

vQ
, ρ1

)

+ αK(αK − 2)Φ2

(
a1 + bmQ√
1 + b2vQ

,
− logK +mQ√

vQ
, ρ1

)

+ eja1s+
j2s2

2
+jbsmQ+

j2b2s2

2
vQ

[
Φ

(
−a1 − js− bmQ − jb2svQ√

1 + b2vQ

)

+ α2e2mQ+(2jbs+2)vQΦ2

(
−a1 − js− bmQ − (jb2s+ 2b)vQ√

1 + b2vQ
,
− logK +mQ + (jbs+ 2)vQ√

vQ
,−ρ1

)

+ 2α(1− αK)emQ+(jbs+
1
2
)vQΦ2

(
−a1 − js− bmQ − (jb2s+ b)vQ√

1 + b2vQ
,
− logK +mQ + (jbs+ 1)vQ√

vQ
,−ρ1

)

+ αK(αK − 2)Φ2

(
−a1 − js− bmQ − jb2svQ√

1 + b2vQ
,
− logK +mQ + jbsvQ√

vQ
,−ρ1

)]
, (D.9)
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and

EQ
[
f
(
Y (1)

)2 (EP [eZ | Y (1)
])2]

= Φ2

(
a1 + bmQ√
1 + b2vQ
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. (D.10)

d3 =
a2 − bmQ − (2b2s+ 2b)vQ√

1 + b2vQ
(D.11)

d4 =
a1 + bmQ + (b2s+ 2b)vQ√

1 + b2vQ
(D.12)

d5 = d3 + bsρ1
√
vQ, (D.13)

and

C1 =

 1 ρ21 ρ1
ρ21 1 ρ1
ρ1 ρ1 1

 , C2 =

 1 ρ21 −ρ1
ρ21 1 −ρ1
−ρ1 −ρ1 1

 , C3 =

 1 −ρ21 −ρ1
−ρ21 1 −ρ1
−ρ1 −ρ1 1

 .
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D.3 CMC valuation

Consider the conic market-consistent valuation principle given in (4.9), that is

ρCMC [S] = e−rT sup
Q∈P

EQ [Y h + Y s
fin

]
+ λe−rT

√
VarP [Y i + Y s

act],

where VarP [Y s
act + Y i] can be written as:

VarP
[
Y s
act + Y i

]
= EP [S2

]
−N2EP

[
f
(
Y (1)

)2 (EP [eZ | Y (1)
])2]

. (D.14)

Here EP [S2] is given in (D.2). By the same method used to derive EQ
[
f
(
Y (1)

)2 (EP
[
eZ | Y (1)

])2]
in (D.10), we can obtain a closed-form for EP

[
f
(
Y (1)

)2 (EP
[
eZ | Y (1)

])2] simply by replac-

ing mQ, vQ with mP = log y(1) + (µf − 1
2
(σf )

2)T , vP = σ2
fT , respectively.

E Decomposition of the unhedgeable part S − Y h under var-
ious values of ρ
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(a) ρ = −0.8
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(b) ρ = −0.4
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(c) ρ = 0
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(d) ρ = 0.4
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(e) ρ = 0.8

Figure 10: Decomposition of the unhedgeable part S − Y h across the first 50 paths (N = 500): each
bar is stacked by contributions from Y s

fin (financial systematic part), Y s
act (actuarial systematic part), and

Y i (idiosyncratic part).
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